CalAmp Wireless Networks Corporation
299 Johnson Avenue, Suite 110
Waseca, MN 56093-0833 USA
Phone: 507-833-8819
Fax: 507-833-6748

FCC Part 24/90/101 Certification Application

FCC Form 731

For The

Viper
VHF RADIO MODEM

FCC ID: NP4-5098-502

TABLE OF CONTENTS

Page \#
Test 1: Transmitter Rated Output Power 3
Test 2: Transmitter Spurious and Harmonic Output 4
Test 3: Frequency Stability with Variation in Supply Voltage 8
Test 4: Frequency Stability with Variation in Ambient Temperature 10
Test 5: Transmitter Occupied Bandwidth - Mask D 12
6.25 kHz Quarter Channel Mask E 15
12.5 kHz Half Channel Mask D, 101.111(a)(5), 24.133(a)(2) 24
25 kHz Full Channel Mask G, 101.111(a)(6), 24.133(a)(1) 50
50 kHz Full Channel Mask G, 101.111(a)(6), 24.133(a)(1) 78
Test 6: Field Strength of Spurious Radiation 96
Calibration Information 102

NAME OF TEST: Transmitter Rated Power Output
RULE PART NUMBER:
FCC: 2.1046 (a) (c), 24.132, 101.113 (a)

TEST RESULTS:

TEST CONDITIONS:

TEST EQUIPMENT:

See results below

Standard Test Conditions
50-Ohm Atten, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Atten, Bird Electronics Model 10-A-MFN-10 (10dB, 10W)
Power Supply, Instek Model GPS-2303
Digital Multimeter, Fluke 8012A
Power Meter, Model HP8901B with Sensor Module HP 11722A

TEST SET-UP:

TEST RESULTS:

Frequency (MHz)	DC Voltage at Final (Vdc)	DC Current into Final (Adc)	DC Power into Final (W)	RF Power Output (W)
928.1	14.0	2.51	35.1	10.0
928.1	8.0	0.90	7.2	1.0

NAME OF TEST: Transmitter Spurious and Harmonic Outputs

RULE PART NUMBER:

MINIMUM STANDARDS: For 10 Watts: $43+10 \log _{10}(10$ Watts $)=-53.0 \mathrm{dBc}$

TEST RESULTS: Meets minimum standards (see data on following pages)
TEST CONDITIONS: Standard Test Conditions, 25 C

TEST PROCEDURE:
TEST EQUIPMENT:
or -65 dBc , whichever is the lesser attenuation.

For 1 Watt: $55+10 \log _{10}(1$ Watt) $=-43 \mathrm{dBc}$ or -65 dBc , whichever is the lesser attenuation.

RF Voltage measured at antenna terminals
FCC: 2.1051, $90.210(\mathrm{c}, 3)(\mathrm{d}, 3)(\mathrm{e}, 3), 101.111(5)(6), 24.133$;

TIA/EIA - 603-C
50-Ohm Atten, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Atten, Bird Electronics Model 10-A-MFN-10 (10dB, 10W)
Power Supply, Instek Model GPS-2303
Spectrum Analyzer, HP8563E
Power Meter, Model HP 437B Power Meter
Reference Generator, Agilent E8257D
High Pass Filter, Mini Circuits VHP-16

TEST SET-UP:

MEASUREMENT PROCEDURE:

1. The transmitter carrier output frequency is $928.000,944.000$, and 960.000 . The reference oscillator frequency is 23.040 MHz . The power amplifier has voltage levels at 14.0 Volts and 8.0 Volts for 10 watts and 1 watt, respectively.
2. The carrier reference was established on the spectrum analyzer with the filter by-pass in place. Then the spectrum was scanned from DC to 2 Fc . Finally, the high pass filter was inserted to null the carrier fundamental and extend the range of the spectrum analyzer for harmonic measurements above 2 Fc .
3. At each spurious frequency, generation substitution was used to establish the true spurious level.
4. The spectrum was scanned to the $10^{\text {th }}$ harmonic of the highest internally generated frequency.

Tuned Frequency Power	928.025	MHz
	10.0	Watts
Min	40.0	dBm
Specification	-53.0	dBc
Worse Case	-85.5	dBc
Spurious		Relative to
Frequency		Carrier
(MHz)	Harmonic	(dBc)
1856.050	2	-85.5
2784.075	3	-90.0
3712.100	4	-119.5
4640.125	5	-101.0
5568.150	6	-109.7
6496.175	7	-103.3
7424.200	8	-118.3
8352.225	9	-108.5
9280.250	10	-115.3
10208.275	11	-87.2
11136.300	12	-111.0
12064.325	13	-109.5
12992.350	14	-113.7
13920.375	15	-116.2
14848.400	16	-103.0
15776.425	17	-106.5
16704.450	18	-113.7
17632.475	19	-98.0
18560.500	20	-96.0

Tuned		
Frequency	928.025	MHz
Power	1.0	Watts
	30.0	dBm
Min		
Specification	-43.0	dBc
Worse Case	-77.2	dBc
Spurious		Relative to
Frequency (MHz)	Harmonic	Carrier (dBc)
1856.050	2	-88.5
2784.075	3	-97.2
3712.100	4	-109.5
4640.125	5	-102.7
5568.150	6	-99.7
6496.175	7	-111.3
7424.200	8	-108.3
8352.225	9	-106.5
9280.250	10	-105.3
10208.275	11	-77.2
11136.300	12	-101.0
12064.325	13	-99.5
12992.350	14	-103.7
13920.375	15	-106.2
14848.400	16	-93.0
15776.425	17	-96.5
16704.450	18	-103.7
17632.475	19	-88.0
18560.500	20	-86.0

Tuned Frequency Power	944.1	MHz
	10.0	Watts
Min	40.0	dBm
Specification	-53.0	dBc
Worse Case	-88.0	dBc
Spurious		Relative to
Frequency		Carrier
(MHz)	Harmonic	(dBc)
1888.200	2	-93.5
2832.300	3	-91.7
3776.400	4	-120.5
4720.500	5	-106.8
5664.600	6	-114.7
6608.700	7	-104.0
7552.800	8	-113.5
8496.900	9	-110.2
9441.000	10	-114.8
10385.100	11	-97.4
11329.200	12	-109.0
12273.300	13	-117.3
13217.400	14	-117.5
14161.500	15	-108.5
15105.600	16	-101.7
16049.700	17	-112.2
16993.800	18	-104.2
17937.900	19	-88.0
18882.000	20	-93.0

Tuned		
Frequency	944.1	MHz
Power	1.0	Watts
	30.0	dBm
Min		
Specification	-43.0	dBc
Worse Case	-78.0	dBc
Spurious		Relative to
Frequency (MHz)	Harmonic	Carrier (dBc)
1888.200	2	-95.2
2832.300	3	-99.2
3776.400	4	-110.5
4720.500	5	-104.8
5664.600	6	-104.7
6608.700	7	-113.0
7552.800	8	-108.5
8496.900	9	-100.2
9441.000	10	-104.8
10385.100	11	-87.4
11329.200	12	-99.0
12273.300	13	-107.3
13217.400	14	-107.5
14161.500	15	-98.5
15105.600	16	-91.7
16049.700	17	-102.2
16993.800	18	-94.2
17937.900	19	-78.0
18882.000	20	-83.0

Tuned Frequency Power	959.975	MHz
	10.0	Watts
Min	40.0	dBm
Specification	-53.0	dBc
Worse Case	-86.0	dBc
Spurious		Relative to
Frequency		Carrier
(MHz)	Harmonic	(dBc)
1919.950	2	-92.8
2879.925	3	-91.2
3839.900	4	-119.8
4799.875	5	-102.7
5759.850	6	-115.5
6719.825	7	-103.5
7679.800	8	-114.5
8639.775	9	-90.2
9599.750	10	-111.7
10559.725	11	-108.0
11519.700	12	-106.7
12479.675	13	-115.5
13439.650	14	-120.0
14399.625	15	-100.8
15359.600	16	-104.8
16319.575	17	-116.3
17279.550	18	-105.8
18239.525	19	-86.0
19199.500	20	-95.2

Tuned		
Frequency	959.975	MHz
Power	1.0	Watts
	30.0	dBm
Min		
Specification	-43.0	dBc
Worse Case	-76.0	dBc
Spurious		Relative to
Frequency (MHz)	Harmonic	Carrier (dBc)
1919.950	2	-82.8
2879.925	3	-81.2
3839.900	4	-109.8
4799.875	5	-92.7
5759.850	6	-105.5
6719.825	7	-93.5
7679.800	8	-104.5
8639.775	9	-80.2
9599.750	10	-101.7
10559.725	11	-98.0
11519.700	12	-96.7
12479.675	13	-105.5
13439.650	14	-110.0
14399.625	15	-90.8
15359.600	16	-94.8
16319.575	17	-106.3
17279.550	18	-95.8
18239.525	19	-76.0
19199.500	20	-85.2

NAME OF TEST: Frequency Stability with Variation in Supply Voltage
RULE PART NUMBER: FCC: 2.1055 (d)(1), 90.213 (a), 101.107, 24.135;

MINIMUM STANDARD: Shall not exceed 1.00 ppm .
TEST RESULTS: Meets minimum standard, see data on following page
TEST CONDITIONS: Standard Test Conditions, 25 C
TEST EQUIPMENT: Frequency Counter, HP 8901A
DC Power Supply, Instek Model GPS-2303
Digital Voltmeter, Fluke Model 8012A
50-Ohm Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Attenuator, Bird Electronics Model 10-A-MFN-10 (10dB, 10W)

TEST SET-UP:

TEST SET-UP

Channel Frequency: $\quad 928.1500 \mathrm{MHz}$
Tolerance Requirements: 1.0 ppm
Highest Variation: 0.05 ppm

Input Voltage (Vdc)	Frequency	Frequency Error (MHz)	Frequency Error
10	928.150050	50	0.05
20	928.150000	0	0.00
30	928.150050	50	0.05

NAME OF TEST: Frequency Stability with Variation in Ambient Temperature
RULE PART NUMBER: FCC: 2.1055 (d)(1), 90.213 (a), 101.107, 24.135;

MINIMUM STANDARD: Shall not exceed 1.00 ppm from test frequency
TEST RESULTS: Meets minimum standard, see data on following page
TEST CONDITIONS: Standard Test Conditions
TEST EQUIPMENT: Frequency Counter, HP8901A
DC Power Supply, Instek Model GPS-2303
Digital Voltmeter, Fluke Model 8012A
$50-\mathrm{Ohm}$ Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
$50-\mathrm{Ohm}$ Attenuator, Bird Electronics Model 10-A-MFN-10 (10dB, 10W)
Climate Chamber, Test Equity Half Cube Model 105

TEST SET-UP:

Channel Frequency:
Voltage \& Power Level:
Highest Variation:
944.15000 MHz

20 Volts @ 10 Watts
0.13 ppm

Temperature	Measured Frequency $($ Deg C)	Frequency Error (MHz)	Frequency Error (ppm)
-30	928.150030	30	0.03
-20	928.150100	100	0.11
-10	928.150100	100	0.11
0	928.150120	120	0.13
10	928.150000	0	0.00
20	928.150100	100	0.11
30	928.150020	20	0.02
40	928.150040	40	0.04
50	928.150050	50	0.05
60	928.150060	60	0.06

Channel Frequency:
Voltage \& Power Level:
Highest Variation:

944.15000 MHz

20 Volts @ 1.0 Watts 0.13 ppm

Temperature	Measured Frequency (MHz)	Frequency Error (Hz)	Frequency Error (ppm)
-30	928.150000	0	0.00
-20	928.150110	110	0.12
-10	928.150120	120	0.13
0	928.150100	100	0.11
10	928.150000	0	0.00
20	928.150110	110	0.12
30	928.150000	0	0.00
40	928.150060	60	0.06
50	928.150060	60	0.06
60	928.150050	50	0.05

NAME OF TEST: Transmitter Occupied Bandwidth

RULE PART NUMBER: FCC: 2.201, 2.202, 2.1033 (c)(14), 2.1049 (h), 2.1041, 90.203(j)(3), 24.131, 101.109;

Necessary Bandwidth Measurement

This radio modem uses digital modulation signals, passing through a Squared Root Raised Cosine $\alpha=0.2$ or $\alpha=0.5$ DSP implemented low-pass filter to an FM transceiver. The digital modulation is based on SRRC4FSK allows a SRRC2FSK subset to be used for lower bit rate with a better sensitivity reception. The necessary bandwidth calculation for this type of modulation is not covered by paragraphs (1), (2) or (3) from $2.202(c)$. Therefore, the approach outlined in (2.202(c)(4)) is applicable in this case.

The measurement explanations are provided below.
Necessary Bandwidth Measurement:

Channel Spacing	Emission Type	Data Rate	Baud Rate	Measured Peak Deviation	Measured 99\% Occupied BW
6.25 kHz	3K30 F1D	4 kbps	4000	1.51 kHz	3.3 kHz
6.25 kHz	3K55 F1D	8 kbps	4000	1.49 kHz	3.55 kHz
6.25 kHz	3 K20 F1D	12 kbps	4000	1.15 kHz	3.20 kHz
6.25 kHz	3 K45 F1D	16 kbps	4000	1.056 kHz	3.45 kHz
12.5 kHz	8K20 F1D	8 kbps	8000	3.31 kHz	8.20 kHz
12.5 kHz	8 K30 F1D	16 kbps	8000	3.65 kHz	8.30 kHz
25 kHz	16 K5 F1D	16 kbps	16000	6.50 kHz	16.5 kHz
25 kHz	16 K8 F1D	32 kbps	16000	7.29 kHz	16.8 kHz
12.5 kHz	8K50 F1D	24 kbps	8000	3.725 kHz	8.50 kHz
12.5 kHz	8 K08 F1D	32 kbps	8000	3.728 kHz	8.08 kHz
25 kHz	17 K8 F1D	48 kbps	16000	7.590 kHz	17.8 kHz
25 kHz	17 K0 F1D	64 kbps	16000	7.520 kHz	17.0 kHz
50 kHz	29K8 F1D	32 kbps	32000	9.36 kHz	29.8 kHz
50 kHz	30 K 0 F1D	64 kbps	32000	11.02 kHz	30.0 kHz
50 kHz	29 K 5 F1D	96 kbps	32000	10.81 kHz	29.5 kHz
50 kHz	30 K 5 F1D	128 kbps	32000	11.66 kHz	30.5 kHz

THEORY OF MEASUREMENT

The way to define the Occupied Bandwidth is "the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission" (FCC 2.202), the mathematics are as follows:

$$
\begin{aligned}
& 0.005 * \mathrm{TP}=\mathrm{P}_{(\mathrm{fl})}=\int_{0}^{\mathrm{f} 1} \mathrm{PSD}_{(\mathrm{f})} \mathrm{df} \\
& 0.995 * \mathrm{TP}=\mathrm{P}_{(\mathrm{f} 2)}=\int_{0}^{\mathrm{f} 2} \mathrm{PSD}_{(\mathrm{f})} \mathrm{df}
\end{aligned}
$$

$$
\mathrm{OBW}=\mathrm{f} 2-\mathrm{fl}
$$

where TP (total mean power) is

$$
\mathrm{TP}=\int_{0}^{+\infty} \operatorname{PSD}_{(\mathrm{f})} \mathrm{df}=(1 / \mathrm{t}) \int_{-\infty}^{+\infty}\left|\mathrm{z}_{(\mathrm{t})}\right|^{2} \mathrm{dt}
$$

and PSD (power spectral distribution) is

$$
\operatorname{PSD}_{(\mathrm{ff}}=\left|\mathrm{Z}_{(\mathrm{f})}\right|^{2}+\left|\mathrm{Z}_{(-\mathrm{f})}\right|^{2} \quad 0 \leq \mathrm{f}<\infty
$$

and expresses the positive frequency representation of the transmitter output power for $\mathrm{z}(\mathrm{t})$ signal.
By applying these mathematics to the measurements, it is possible to measure the Occupied Bandwidth using a digital spectrum analyzer.

The Occupied Bandwidth measurement is in two parts relatively independent of each other. The first gives the RF spectrum profile, and the second calculates the frequency limits and they result in the Occupied bandwidth. While the first involves RF measurement instrumentation, the second is strictly a computational part related to measured trace.

TEST EQUIPMENT:

50-Ohm Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Attenuator, Bird Electronics Model 10-A-MFN-10 (10dB, 10W)
DC Power Supply, Hewlett Packard Model 6653A
Spectrum Analyzer, Hewlett Packard Model HP8563E
Modulation Analyzer, Hewlett Packard Model HP8901A

TEST SET-UP:
For the above requirements, the occupied bandwidth of a transmitter was measured using an HP8563E using the following settings:
Occupied BW \% Power: 99\%
Trace: Max Hold A
RBW: 100 Hz (6.25 and 12.5 kHz channels)
RBW: 300 Hz (25 kHz and 50 kHz channels)
VBW: 3 kHz
SPAN: 100 kHz (6.25 and 12.5 kHz channels)
SPAN: 150 kHz (25 kHz channels)
SPAN: 200 kHz (50 kHz channels)

MODULATION SOURCE DESCRIPTION:
The 4-level signaling transmits two information bits per symbol (baud), which yields a bit rate of twice the on-air baud rate. Hence the 64 kbps references in the Installation Guide correspond to a transmitter baud rate of 32000 baud. The 8 -level signaling transmits three information bits per symbol (baud), which yields
a bit rate of three times the on-air baud rate. Hence the $12,24,48$, or 96 kbps references in the Installation Guide correspond to a transmitter baud rate of $4000,8000,16000$ or 32000 baud. The $16-l e v e l$ signaling transmits four information bits per symbol (baud), which yields a bit rate of four times the on-air baud rate. Hence the $16,32,64$, or 128 kbps references in the Installation Guide correspond to a transmitter baud rate of $4000,8000,16000$ or 32000 baud. That digital signal is digitally filtered (Square Root Raised Cosine pulse shaping with $\alpha=0.2$ or 0.5) by the DSP and converted to I\&Q components, then fed to the digital to analog converter. This SRRC4FSK, SRRC8FSK, or SRRC16FSK wave shape applied to the FM modulator will then produce a compact RF spectrum, when using proper frequency deviation, to fit inside the restrictive masks inherent to the intended channel bandwidth.

TX Data Test Pattern:
The transmit "test data" pattern command produces a $107,3741,823$ bit pseudo- random pattern. This pattern is generated by the DSP. The $107,3741,823$ bit sequence is repeated thereafter as long is necessary to complete the test duration, this sequence lasts 67,109 seconds at 16 kbps . Commonly this is longer than the test duration. This pattern is applied to the DSP modulator for mapping to 4-FSK, 8-FSK and 16-FSK and pulse shaping with SRRC $\alpha=0.2$ or $\alpha=0.5$ depending on the channel selection. This data follows same modulation process as described in MODULATION SOURCE DESCRIPTION and the resulting base band signal feeds the modulator's input of the transceiver.

NAME OF TEST: Transmitter Occupied Bandwidth for Emission Designators 3K55F1D, 3K30F1D, 3K20F1D and 3K45F1D

RULE PART NUMBER:

MINIMUM STANDARDS:

TEST RESULTS:

TEST CONDITIONS:

TEST PROCEDURE:
TEST EQUIPMENT:

FCC: 2.202, 90.209 (b)(5), 90.210 (e), 2.1049 (c) (1);

Mask E

Sidebands and Spurious [$\mathrm{P}=10$ Watts and $\mathrm{P}=1$ Watt]
Authorized Bandwidth $=6 \mathrm{kHz}$
From Fo to 3 kHz , down 0 dB .
Greater than 3 kHz to 4.6 kHz , down $30+16.67(\mathrm{fd}-3 \mathrm{kHz}) \mathrm{dB}$ or 55 $+10 \log (\mathrm{P})$ or 65 dB , whichever is the lesser attenuation.
Greater than 4.6 kHz , at least $55+10 \log _{10}(\mathrm{P})$ or 65 dB , whichever is the lesser attenuation.

Attenuation $=0 \mathrm{~dB}$ at Fo to 3 kHz
Attenuation $=30 \mathrm{~dB}$ at 3 kHz and 56.7 dB at $4.6 \mathrm{kHz} @ 10$ Watts
Attenuation $=65 \mathrm{~dB}$ at frequencies greater than $4.6 \mathrm{kHz} @ 10$ Watts
Attenuation $=30 \mathrm{~dB}$ at 3 kHz and 50 dB at 4.2 kHz and 55 dB at 4.6
kHz @ 1 Watt
Attenuation $=55 \mathrm{~dB}$ at frequencies greater than $4.6 \mathrm{kHz} @ 1$ Watt
Meets minimum standards (see data on following page)
Standard Test Conditions, 25 C
RF Power Level $=1$ Watt and 10 Watts
Voltage $=20 \mathrm{VDC}$
TIA/EIA - 603-C
50-Ohm Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Attenuator, Bird Electronics Model 10-A-MFN-10 (10dB, 10W)
50-Ohm Attenuator, Pasternack Model PE7002-10 (10dB)
DC Power Supply, Hewlett Packard Model 6653A
Spectrum Analyzer, Hewlett Packard Model HP8563E
Modulation Analyzer, Hewlett Packard Model HP8901A

TEST SET-UP:

Mask: E
Output Power $=1 \mathrm{Watt}$

Spectrum for Emission: 3K30 F1D
Data Rate: $4 \mathrm{kbps} \quad$ Peak Deviation with Data: 1.51 kHz

Narrow Span

Wide Span

Output Power $=10$ Watt
Narrow Span

Wide Span

Mask: E
Output Power = 1 Watt

Spectrum for Emission: 3K55 F1D
Data Rate: 8 kbps
Peak Deviation with Data: 1.49 kHz

Narrow Span

Wide Span

Output Power $=10$ Watt
Narrow Span

Wide Span

Mask: E
Output Power $=1$ Watt
Spectrum for Emission: 3K20 F1D
Data Rate: 12 kbps Peak Deviation with Data: 1.15 kHz

*ATTEN 20dB

CENTER 928. 2 MHz SPAN $10 \square . \square \mathrm{MHz}$
粮 100 kHz 粯 $1 . \square \mathrm{kHz}$ SWP 2.50 sec

Mask：E
Output Power $=10$ Watt

Spectrum for Emission：3K20 F1D
Data Rate： 12 kbps

Peak Deviation with Data： 1.15 kHz

CENTER 928．15000MHz SPAN 30． 00 kHz米RBW $10 \square \mathrm{~Hz}$ 粯 $1 . \square \mathrm{kHz}$ SWP 3.05 sec
＊ATTEN 20dB

CENTER 928． 2 MHz SPAN $10 \square . \square \mathrm{MHz}$
粎BW $10 \square \mathrm{kHz}$ 粯 $1 . \square \mathrm{kHz}$ SWP 2.50 sec

Mask: E
Output Power $=1$ Watt
Spectrum for Emission: 3K45 F1D
Data Rate: 16 kbps
Peak Deviation with Data: 1.056 kHz

*ATTEN 20dB

CENTER 928. $2 \mathrm{MHz} \quad$ SPAN $10 \square . \square \mathrm{MHz}$
*RBW $10 \square \mathrm{kHz}$ 粯 $1 . \square \mathrm{kHz}$ SWP 2.5日sec

Mask: E
Output Power $=10 \mathrm{Watt}$

*ATTEN 20dB

1-dB/									
						10 MA	K E		
	-		4.	\cdots		m	nemor	mme	- - -
\square									

[^0]NAME OF TEST: Transmitter Occupied Bandwidth for Emission Designators 8K20F1D, 8K30F1D, 8K50F1D and 8K08F1D

RULE PART NUMBER:

MINIMUM STANDARDS:

TEST RESULTS:

TEST CONDITIONS:

FCC: 2.202, 90.209 (b)(5), $90.210(d), 2.1049$ (c) (1), 101.111 (a)(5), 24.133 a2;

Mask D

Sidebands and Spurious [Rule 90.210 (d), 5.8.3, $\mathrm{P}=10$ Watts and $\mathrm{P}=1$ Watt]
Authorized Bandwidth $=11.25 \mathrm{kHz}$ [Rule 90.209(b) (5), 5.8.3]
From Fo to 5.625 kHz , down 0 dB .
Greater than 5.625 kHz to 12.5 kHz , down 7.27($\left.\mathrm{f}_{\mathrm{d}}-2.88 \mathrm{kHz}\right) \mathrm{dB}$.
Greater than 12.5 kHz , at least $50+10 \log _{10}(\mathrm{P})$ or 70 dB , whichever is the lesser attenuation.

Attenuation $=0 \mathrm{~dB}$ at Fo to 5.625 kHz
Attenuation $=20 \mathrm{~dB}$ at 5.625 kHz and 70 dB at 12.5 kHz
Attenuation $=60.8 \mathrm{~dB}$ at frequencies greater than $12.5 \mathrm{kHz} @ 10 \mathrm{~W}$ Attenuation $=50 \mathrm{~dB}$ at frequencies greater than $12.5 \mathrm{kHz} @ 1 \mathrm{~W}$

Mask 101.111(a)(5)

Sidebands and Spurious [$\mathrm{P}=10$ Watts and $\mathrm{P}=1$ Watt]
Authorized Bandwidth $=12.5 \mathrm{kHz}$
From Fo to 2.5 kHz , down 0 dB .
Greater than 2.5 kHz to 6.25 kHz , down $53 \log (\mathrm{fd} / 2.5)$
Greater than 6.25 kHz to 9.5 KHz , down $103 \log (\mathrm{fd} / 3.9)$
Greater than 9.5 to $15 \mathrm{KHz}, 157 \log (\mathrm{fd} / 5.3)$
Greater than $15 \mathrm{KHz}, 50+10 \log (\mathrm{P})$ or 70 dB
Attenuation $=0 \mathrm{db}$ at Fo to 6.25 kHz
Attenuation $=21.1 \mathrm{~dB}$ at 6.25 kHz
Attenuation $=39.8 \mathrm{~dB}$ at 9.5 KHz
Attenuation $=70.9 \mathrm{~dB}$ at 15 kHz
Attenuation=60 dB at $>15 \mathrm{KHz} @ 10 \mathrm{~W}$ or $50 \mathrm{~dB} @ 1 \mathrm{~W}$
Mask 24.133(a)(2) $\mathbf{1 2 . 5} \mathbf{~ k H z}$
Sidebands and Spurious [$\mathrm{P}=10$ Watts and $\mathrm{P}=1$ Watt]
Authorized Bandwidth $=10 \mathrm{kHz}$
From Fo to 5 kHz , down 0 dB .
From 5 kHz to 25 kHz , down $116 * \log _{10}\left(\mathrm{f}_{\mathrm{d}}+5 / 3.05\right) \mathrm{dB}, 50+10 \log (\mathrm{P})$
or 70 dB .
Greater than $25 \mathrm{kHz}, 43+10 \log _{10}(\mathrm{P})$ or 80 dB .
Attenuation $=0 \mathrm{db}$ at Fo to 5 kHz
Attenuation $=25 \mathrm{~dB}$ at 5 kHz
Attenuation $=60 \mathrm{~dB}$ at $10 \mathrm{kHz} @ 10 \mathrm{~W}$
Attenuation $=50 \mathrm{~dB}$ at 8.22 kHz @ 1 W
Attenuation $=53 \mathrm{~dB}$ at $25 \mathrm{kHz} @ 10 \mathrm{~W}$
Attenuation = 43 dB at $25 \mathrm{kHz} @ 1 \mathrm{~W}$

Meets minimum standards (see data on following page)

Standard Test Conditions, 25 C
RF Power Level = 1 Watt and 10 Watts

$$
\text { Voltage }=20 \mathrm{VDC}
$$

TEST PROCEDURE:
TIA/EIA - 603-C, 2.2.13, 3.2.11.2
TEST EQUIPMENT: 50-Ohm Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Attenuator, Bird Electronics Model 10-A-MFN-10 (10dB, 10W)
50-Ohm Attenuator, Pasternack Model PE7002-10 (10dB)
DC Power Supply, Hewlett Packard Model 6653A
Spectrum Analyzer, Hewlett Packard Model HP8563E
Modulation Analyzer, Hewlett Packard Model HP8901A
TEST SET-UP:

Mask: D
Output Power $=1 \mathrm{Watt}$

Spectrum for Emission: 8K20 F1D
Data Rate: 8 kbps
Peak Deviation with Data: 3.31 kHz

Narrow Span

Wide Span

Output Power $=10$ Watts
Narrow Span

Wide Span

Mask: 101.111a5
Output Power $=1$ Watt

Spectrum for Emission: 8K20 F1D
Data Rate: 8 kbps
Peak Deviation with Data: 3.31 kHz

Narrow Span

Wide Span

Output Power $=10$ Watts
Narrow Span

Wide Span

Mask: D
Spectrum for Emission: 8K30 F1D
Output Power = 1 Watt
Data Rate: 16 kbps
Peak Deviation with Data: 3.65 kHz

Narrow Span

Wide Span

Output Power $=10$ Watts
Narrow Span

Wide Span

Mask: 101.111a5
Output Power $=1$ Watt

Spectrum for Emission: 8K30 F1D
Data Rate: 16 kbps
Peak Deviation with Data: 3.65 kHz

Narrow Span

Wide Span

Output Power $=10$ Watts
Narrow Span

Wide Span

Mask: D, 1W
Output Power $=1$ Watt

*ATTEN 20dB

10dB/								
					M	k D		
c.innom	-anmerner		\sim	\cdots	+manern	un	- mmon	moun

[^1]Mask: D, 1W
Output Power $=10$ Watts
Spectrum for Emission: 8K50 F1D

*ATTEN 20dB

10dB/									
						- 0 W MA	MASKD		
	-a.....n			\rightarrow	nemen		-menmon		+r*-

[^2]Mask: D, 1W
Output Power $=1$ Watt
Spectrum for Emission: 8K08 F1D
Data Rate: 32 kbps
Peak Deviation with Data: 3.728 kHz

*ATTEN 20dB

10dB/								
					1W Mas	sk D		
	-anner		\cdots	$-$	4-mand	.	wmorn	mommer

[^3]Mask: D, 1W
Output Power $=10 \mathrm{Watt}$

*ATTEN 20dB

[^4]Mask: 101.11a5
Output Power $=1$ Watt
Spectrum for Emission: 8K50 F1D
Data Rate: 24 kbps
Peak Deviation with Data: 3.725 kHz

Mask: 101.11a5
Output Power $=10 \mathrm{Watt}$
Spectrum for Emission: 8K50 F1D
Data Rate: 24 kbps
Peak Deviation with Data: 3.725 kHz

Mask: 101.11a5
Output Power = 1 Watt
Spectrum for Emission: 8K50 F1D
Data Rate: 32 kbps
Peak Deviation with Data: 3.728 kHz

Mask: 101.11a5
Output Power = 10 Watt
Spectrum for Emission: 8K50 F1D

Mask：24．133a2
Output Power $=1 \mathrm{Watt}$
Spectrum for Emission：8K20 F1D
Data Rate： 8 kbps
Peak Deviation with Data： 3.31 kHz

$$
\begin{aligned}
& \text { CENTER 930. } 2 \mathrm{MHz} \quad \text { SPAN } 10 \square . \square \mathrm{MHz} \\
& \text { 籼W } 100 \mathrm{kHz} \text { 粯W } 3 . \square \mathrm{kHz} \text { SWP 840ms }
\end{aligned}
$$

Mask: 24.133a2
Output Power $=10$ Watt

CENTER 930. $2 \mathrm{MHz} \quad$ SPAN $10 \square . \square \mathrm{MHz}$
籼B 100 kHz 粯 $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask：24．133a2
Output Power $=1$ Watt
Spectrum for Emission：8K30 F1D
Data Rate： 16 kbps
Peak Deviation with Data： 3.65 kHz
CENTER 930．15000MHz SPAN 50．00k Hz
粮 1 可 Hz 䊉 $3 . \square \mathrm{kHz}$ SWP 4． V sec
CENTER 930． 2 MHz SPAN 100.0 MHz
＊RBW 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask: 24.133a2
Output Power $=10$ Watt

CENTER 930. 2 MHz SPAN 100.0 MHz
籼B 100 kHz 粯 $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask: 24.133a2
Output Power $=1 \mathrm{Watt}$
Spectrum for Emission: 8K50 F1D
Data Rate: 24 kbps
Peak Deviation with Data: 3.725 kHz

CENTER 930. $2 \mathrm{MHz} \quad$ SPAN $10 \square . \square \mathrm{MHz}$
籼W 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask: 24.133a2
Output Power $=10$ Watt

CENTER 930. 2 MHz SPAN $10 \square . \square \mathrm{MHz}$
*RBW 100 kHz 畨W $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask：24．133a2
Output Power $=1 \mathrm{Watt}$
Spectrum for Emission：8K08 F1D
Data Rate： 32 kbps
Peak Deviation with Data： 3.728 kHz

$$
\begin{aligned}
& \text { CENTER 930. } 2 \mathrm{MHz} \quad \text { SPAN } 10 \square . \square \mathrm{MHz} \\
& \text { 籼W } 100 \mathrm{kHz} \text { 粯W } 3 . \square \mathrm{kHz} \text { SWP 840ms }
\end{aligned}
$$

Mask: 24.133a2
Output Power $=10$ Watt

CENTER 930. 2 MHz SPAN $10 \square . \square \mathrm{MHz}$
籼W 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

NAME OF TEST: Transmitter Occupied Bandwidth for Emission Designators 16K5F1D 16K8F1D, 17K8F1D, and 17K0F1D

RULE PART NUMBER:

MINIMUM STANDARDS:

FCC: 2.202, 90.209 (b)(5), 90.210 (g), 2.1049 (c) (1), 101.111 (a)(6) 24.133 (a)(1);

Mask G

Sidebands and Spurious [$\mathrm{P}=10$ Watts and $\mathrm{P}=1$ Watt]
Authorized Bandwidth $=20 \mathrm{kHz}$
From Fo to 10 kHz , down 0 dB .
Greater than 10 kHz to 250% of authorized BW, at least $116 * \log _{10}\left(f_{d} / 6.1\right)$ or $50+10 \log (\mathrm{P})$ or 70 dB , whichever is the lesser attenuation [Greater than 10 kHz to 50 kHz for IC Mask G]
Greater than 250% of authorized BW, $43+10 \log _{10}(\mathrm{P})$ [Greater than 50 kHz for IC Mask G]

Attenuation $=0 \mathrm{~dB}$ at Fo to 5 kHz
Attenuation $=25 \mathrm{~dB}$ at 10 kHz
Attenuation $=60 \mathrm{~dB}$ at 20.1 kHz
Attenuation $=60 \mathrm{~dB}$ at 62.5 kHz [@ 050 kHz for IC Mask]
Attenuation $=53.0 \mathrm{~dB}$ at frequencies greater than $62.5 \mathrm{kHz} @ 10 \mathrm{~W}$ [greater than 50 kHz for IC Mask]
Attenuation $=43 \mathrm{~dB}$ at frequencies greater than $62.5 \mathrm{kHz} @ 1 \mathrm{~W}$ [greater than 50 kHz for IC Mask]

Mask 101.111(a)(6)
Sidebands and Spurious [$\mathrm{P}=10$ Watts and $\mathrm{P}=1$ Watt]
Authorized Bandwidth $=25 \mathrm{kHz}$
From Fo to 5.0 kHz , down 0 dB .
From 5 kHz to 10 kHz , down $83 * \log _{10}\left(\mathrm{f}_{\mathrm{d}} / 5\right) \mathrm{dB}$
Greater than 10.0 kHz to 250% auth BW, down $116 \log (\mathrm{fd} / 6.1)$ or $50+10 \log (\mathrm{P})$ or 70 dB .
Greater then 250% auth BW, $43+10 \log _{10}(\mathrm{P})$ or 80 dB .
Attenuation $=0 \mathrm{db}$ at Fo to 5 kHz
Attenuation $=25 \mathrm{~dB}$ at 10 kHz
Attenuation $=60 \mathrm{~dB}$ at $20.1 \mathrm{kHz} @ 10 \mathrm{~W}$
Attenuation $=50 \mathrm{~dB}$ at $16.5 \mathrm{kHz} @ 1 \mathrm{~W}$
Attenuation $=53 \mathrm{~dB}$ at $>62.5 \mathrm{kHz} @ 10 \mathrm{~W}$ or $43 \mathrm{~dB} @ 1 \mathrm{~W}$

Mask 24.133(a)(1) 25 kHz

Sidebands and Spurious [$\mathrm{P}=10$ Watts and $\mathrm{P}=1$ Watt]
Authorized Bandwidth $=20 \mathrm{kHz}$
From Fo to 10 kHz , down 0 dB .
From 10 kHz to 50 kHz , down $116 * \log _{10}\left(\mathrm{f}_{\mathrm{d}}+10 / 6.1\right) \mathrm{dB}$, $50+10 \log (\mathrm{P})$ or 70 dB .
Greater than $50 \mathrm{kHz}, 43+10 \log _{10}(\mathrm{P})$ or 80 dB .
Attenuation $=0 \mathrm{db}$ at Fo to 10 kHz
Attenuation $=25 \mathrm{~dB}$ at 10 kHz
Attenuation $=60 \mathrm{~dB}$ at $20 \mathrm{kHz} @ 10 \mathrm{~W}$
Attenuation $=50 \mathrm{~dB}$ at $16.45 \mathrm{kHz} @ 1 \mathrm{~W}$
Attenuation $=53 \mathrm{~dB}$ at $50 \mathrm{kHz} @ 10 \mathrm{~W}$
Attenuation=43 dB at $50 \mathrm{kHz} @ 1 \mathrm{~W}$

TEST RESULTS: Meets minimum standards (see data on following page)

TEST CONDITIONS: Standard Test Conditions, 25 C
RF Power Level = 1 Watt and 10 Watts
Voltage $=20 \mathrm{VDC}$
TEST PROCEDURE: TIA/EIA - 603-C
TEST EQUIPMENT:
50-Ohm Attenuator, Bird Electronics 50-A-FFN-20 (20dB, 50W)
$50-\mathrm{Ohm}$ Attenuator, Bird Electronics 10-A-MFN-10 (10dB, 10W)
50-Ohm Attenuator, Pasternack PE7002-10 (10dB)
Power Supply, Instek Model GPS-2303
Spectrum Analyzer, Hewlett Packard Model HP8563E
Modulation Analyzer, Hewlett Packard Model HP8901A

TEST SET-UP:

Mask: G
Output Power $=1$ Watt

Spectrum for Emission: 16K5 F1D
Data Rate: 16 kbps
Peak Deviation with Data: 6.5 kHz

Unmodulated Carrier

Narrow Span

Wide Span

Output Power $=10 \mathrm{Watt}$
Unmodulated Carrier

Narrow Span

Wide Span

Mask: 101.11a6
Output Power $=1$ Watt

Spectrum for Emission: 16K5 F1D
Data Rate: 16 kbps
Peak Deviation with Data: 6.5 kHz

Unmodulated Carrier

Narrow Span

Wide Span

Output Power $=10 \mathrm{Watt}$

Unmodulated Carrier

Narrow Span

Wide Span

Mask: G
Output Power $=1$ Watt

Spectrum for Emission: 16K8 F1D
Data Rate: 32 kbps
Peak Deviation with Data: 7.29 kHz

Narrow Span

Wide Span

Output Power $=10$ Watts

Narrow Span

Wide Span

Mask: 101.11a6
Output Power $=1$ Watt

Spectrum for Emission: 16K8 F1D
Data Rate: 32 kbps
Peak Deviation with Data: 7.29 kHz

Narrow Span

Wide

Output Power $=10$ Watts

Narrow Span

Wide Span

Mask: G
Output Power $=1 \mathrm{Watt}$
Spectrum for Emission: 17K8 F1D
Data Rate: 48 kbps
Peak Deviation with Data: 7.590 kHz

Mask: G
Output Power $=10$ Watts

Mask: G
Output Power $=1 \mathrm{Watt}$
Spectrum for Emission: 17K0 F1D
Data Rate: 64 kbps
Peak Deviation with Data: 7.520 kHz

Mask: G
Output Power $=10$ Watts

Mask: 101.11a6
Output Power $=1 \mathrm{Watt}$
Spectrum for Emission: 17K8 F1D
Data Rate: 48 kbps
Peak Deviation with Data: 7.590 kHz

Mask: 101.11a6
Output Power $=10$ Watts
Spectrum for Emission: 17K8 F1D
Data Rate: 48 kbps
Peak Deviation with Data: 7.590 kHz

Mask: 101.11a6
Output Power $=1 \mathrm{Watt}$
Spectrum for Emission: 17K0 F1D
Data Rate: 64 kbps
Peak Deviation with Data: 7.520 kHz

Mask: 101.11a6
Output Power $=10$ Watts
Spectrum for Emission: 17K0 F1D
Data Rate: 64 kbps
Peak Deviation with Data: 7.520 kHz

Mask：24．133a1
Output Power $=1$ Watt
Spectrum for Emission：16K5 F1D
Data Rate： 16 kbps
Peak Deviation with Data： 6.5 kHz

$$
\begin{aligned}
& \text { CENTER 930.150ดMHz SPAN 150. Øk Hz }
\end{aligned}
$$

> CENTER 930. 2 MHz SPAN 100.0 MHz
> 籼W 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840ms

Mask: 24.133a1
Output Power $=10$ Watts

Spectrum for Emission: 16K5 F1D
Data Rate: 16 kbps
Peak Deviation with Data: 6.5 kHz

CENTER 930. 2 MHz SPAN $10 \boxed{0}$. MHz
籼W 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask：24．133a1
Output Power $=1$ Watt

CENTER 930．1500MHz SPAN 150． kkHz积 $30 \square \mathrm{~Hz}$ 粯 $3 . \square \mathrm{kHz}$ SWP 4．2ดsec

CENTER 930． $2 \mathrm{MHz} \quad$ SPAN $10 \square . \square \mathrm{MHz}$
＊RBW 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask: 24.133a1
Output Power $=10$ Watts

CENTER 930. $2 \mathrm{MHz} \quad$ SPAN $10 \square . \square \mathrm{MHz}$
*RBW 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask: 24.133a1
Output Power $=1$ Watt

Mask: 24.133a1
Output Power $=10$ Watts

CENTER 930. 2 MHz SPAN $10 \boxed{0}$. MHz
籼W 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

Spectrum for Emission: 17K8 F1D
Data Rate: 48 kbps
Peak Deviation with Data: 7.590 kHz

Mask: 24.133a1
Output Power $=1$ Watt

CENTER 930. 2 MHz SPAN $10 \square . \square \mathrm{MHz}$
籼W 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask: 24.133a1
Output Power $=10$ Watts

CENTER 930. 2 MHz SPAN $10 \boxed{0}$. MHz
籼W 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

NAME OF TEST:	Transmitter Occupied Bandwidth for Emission Designators 29K8F1D,
	30K0F1D, 29K5F1D and 30K5F1D

RULE PART NUMBER:

MINIMUM STANDARDS:

TEST RESULTS

TEST CONDITIONS:

TEST PROCEDURE:

TEST EQUIPMENT:

Mask 101.111(a)(6) 50 kHz
Sidebands and Spurious [$\mathrm{P}=10$ Watts and $\mathrm{P}=1$ Watt]
Authorized Bandwidth $=50 \mathrm{kHz}$
From Fo to 17.5 kHz , down 0 dB .
From 17.5 kHz to 22.5 kHz , down $83 * \log _{10}\left(\mathrm{f}_{\mathrm{d}} / 5\right) \mathrm{dB}$
Greater than 10.0 kHz to 250% auth BW, down $116 \log (\mathrm{fd} / 6.1)$
or $50+10 \log (\mathrm{P})$ or 70 dB .
Greater then 250% auth BW, $43+10 \log _{10}(\mathrm{P})$ or 80 dB .
Attenuation $=0 \mathrm{db}$ at Fo to 5 kHz
Attenuation $=25 \mathrm{~dB}$ at 10 kHz
Attenuation $=60 \mathrm{~dB}$ at $20.1 \mathrm{kHz} @ 10 \mathrm{~W}$
Attenuation $=50 \mathrm{~dB}$ at 16.5 kHz @ 1 W
Attenuation = 53 dB at > 62.5 kHz@ 10W or $43 \mathrm{~dB} @ 1 \mathrm{~W}$

Mask 24.133(a)(1) $\mathbf{5 0} \mathbf{~ k H z}$

Sidebands and Spurious [$\mathrm{P}=10$ Watts and $\mathrm{P}=1$ Watt]
Authorized Bandwidth $=45 \mathrm{kHz}$
From Fo to 22.5 kHz , down 0 dB .
From 22.5 kHz to 62.5 kHz , down $116 * \log _{10}\left(\mathrm{f}_{\mathrm{d}}+10 / 6.1\right) \mathrm{dB}$, $50+10 \log (\mathrm{P})$ or 70 dB .
Greater than $52.5 \mathrm{kHz}, 43+10 \log _{10}(\mathrm{P})$ or 80 dB .
Attenuation $=0 \mathrm{db}$ at Fo to 22.5 kHz
Attenuation $=25 \mathrm{~dB}$ at 22.5 kHz
Attenuation $=60 \mathrm{~dB}$ at $32.5 \mathrm{kHz} @ 10 \mathrm{~W}$
Attenuation $=50 \mathrm{~dB}$ at $29.0 \mathrm{kHz} @ 1 \mathrm{~W}$
Attenuation = 53 dB at $62.5 \mathrm{kHz} @ 10 \mathrm{~W}$
Attenuation $=43 \mathrm{~dB}$ at $62.5 \mathrm{kHz} @ 1 \mathrm{~W}$
Meets minimum standards (see data on following page)
Standard Test Conditions, 25 C
RF Power Level $=1$ Watt and 12 Watts
Voltage $=20 \mathrm{VDC}$
TIA/EIA - 603-C, 2.2.13, 3.2.11.2

50-Ohm Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Attenuator, Bird Electronics Model 10-A-MFN-10 (10dB, 10W)
50-Ohm Attenuator, Pasternack Model PE7002-10 (10dB)
DC Power Supply, Hewlett Packard Model 6653A
Spectrum Analyzer, Hewlett Packard Model HP8563E
Modulation Analyzer, Hewlett Packard Model HP8901A

TEST SET-UP:

Mask: 101.111a6 50 kHz Output Power $=1 \mathrm{Watt}$

Spectrum for Emission: 29K8 F1D Data Rate: 32 kbps

Peak Deviation with Data: 9.36 kHz

Mask: 101.111a6 50 kHz Output Power $=10 \mathrm{Watt}$

Spectrum for Emission: 29K8 F1D
Data Rate: $32 \mathrm{kbps} \quad$ Peak Deviation with Data: 9.36 kHz

Mask: 101.111a6 50 kHz
Output Power $=1$ Watt

Spectrum for Emission: 30K0 F1D
Data Rate: 64 kbps

Mask: 101.111a6 50 kHz
Output Power $=10 \mathrm{Watt}$

Spectrum for Emission: 30K0 F1D
Data Rate: $64 \mathrm{kbps} \quad$ Peak Deviation with Data: 11.02 kHz

*RBW 300 Hz 粯 3.0 kHz SWP 4.20sec

Mask: 101.111a6 50 kHz Output Power $=1 \mathrm{Watt}$

Spectrum for Emission: 29K5 F1D
Data Rate: 96 kbps Peak Deviation with Data: 10.81 kHz

Mask: 101.111a6 50 kHz
Output Power $=10$ Watt

Spectrum for Emission: 29K5 F1D
Data Rate: 96 kbps Peak Deviation with Data: 10.81 kHz

Mask: 101.111a6 50 kHz Output Power $=1 \mathrm{Watt}$

Spectrum for Emission: 30K5 F1D
Data Rate: 128 kbps Peak Deviation with Data: 11.66 kHz

Mask: 101.111a6 50 kHz
Output Power $=10 \mathrm{Watt}$

Spectrum for Emission: 30K5 F1D
Data Rate: 128 kbps Peak Deviation with Data: 11.66 kHz

*RBW $30 \square \mathrm{~Hz}$ 粯 $3 . \square \mathrm{kHz}$ SWP 4.20sec

Mask: 24.133al 50 kHz Output Power $=1 \mathrm{Watt}$

Spectrum for Emission: 29K8 F1D
Data Rate: $32 \mathrm{kbps} \quad$ Peak Deviation with Data: 9.36 kHz

Mask：24．133al 50 kHz Output Power $=10 \mathrm{Watt}$

CENTER 930．1500MHz SPAN $150 . \square \mathrm{kHz}$积 $30 \square \mathrm{~Hz}$ 粯 $3 . \square \mathrm{kHz}$ SWP 4．2ดsec

CENTER 930． $2 \mathrm{MHz} \quad$ SPAN $10 \square . \square \mathrm{MHz}$
＊RBW 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask：24．133a1 50 kHz
Output Power＝ 1 Watt
Spectrum for Emission：30K0 F1D
Data Rate： $64 \mathrm{kbps} \quad$ Peak Deviation with Data： 11.02 kHz
CENTER 930．1500MHz SPAN 150． kkHz
米RW $30 \square \mathrm{~Hz}$ 粯 $3 . \square \mathrm{kHz}$ SWP 4．2ดsec
CENTER 930． 2 MHz SPAN 100.0 MHz
＊RBW 100 kHz 畨W $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask: 24.133al 50 kHz Output Power $=10$ Watt

Spectrum for Emission: 30K0 F1D
Data Rate: $64 \mathrm{kbps} \quad$ Peak Deviation with Data: 11.02 kHz

Mask: 24.133a1 50 kHz Output Power $=1 \mathrm{Watt}$

CENTER 930. $2 \mathrm{MHz} \quad$ SPAN $10 \square . \square \mathrm{MHz}$
籼W 100 kHz 粯W $3 . \square \mathrm{kHz}$ SWP 840 ms

Mask: 24.133a1 50 kHz Output Power $=10$ Watt

Mask: 24.133al 50 kHz Output Power $=1 \mathrm{Watt}$

Spectrum for Emission: 30K5 F1D
Data Rate: 128 kbps Peak Deviation with Data: 11.66 kHz

Mask: 24.133al 50 kHz Output Power $=10$ Watt

Spectrum for Emission: 30K5 F1D
Data Rate: 128 kbps Peak Deviation with Data: 11.66 kHz

NAME OF TEST: Field Strength of Spurious Radiation

RULE PART NUMBER:
MINIMUM STANDARDS: For 10 Watts: $43+10 \log _{10}(10$ Watts $)=-53.0 \mathrm{dBc}$ or -65 dBc , whichever is the lesser attenuation.

For 1 Watt: $55+10 \log _{10}(1$ Watt $)=-43 \mathrm{dBc}$ or -65 dBc , whichever is the lesser attenuation.

TEST RESULTS:

TEST CONDITIONS:

TEST PROCEDURE:

TEST EQUIPMENT:
FCC: 2.1053, 24.133, $90.210(c, 3)(d, 3)(e, 3), 101.111(a)$

Meets minimum standards (see data on following page)

Standard Test Conditions, 25 C
RF Power Level $=1$ Watt and 10 Watts
Voltage $=20 \mathrm{VDC}$

TIA/EIA - 603-C
Waveguide Horn Antenna, EMCO Model 3115

Waveguide Horn Antenna, Electro-Metrics EM-6961
Bilog Antenna, Chase Model CBL6111B
Dipole Antenna, Electro-Metrics Model EM-6924
Power Supply, Model Instek GPS-2303
Spectrum Analyzer, Model HP8563E
Reference Generator, Agilent Model E8257D
Power Meter, HP 437B Power Meter
50-Ohm Load, S.M. Electronics ST6S-20(20W)
MEASUREMENT PROCEDURE: Measurements were made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier.

TEST SET-UP:

Half Duplex Radio

Frequency: Power:	928.025 10	MHz		Spec = Highest		-53.0
Power:	40.0	dBm				
Spurious Frequency (MHz)	Polarization (Horz/Vert)	Spurious Level (dBm)	Substitution Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Spurious Attenuation dBc
1856.05	H	-99.8	-65.8	0.67	4.85	-101.7
	V	-110.0	-71.8	0.67	4.85	-107.7
2784.075	H	-105.5	-67.5	1.00	5.65	-102.9
	V	-110.0	-70.0	1.00	5.65	-105.4
3712.1	H	-108.7	-65.7	1.50	5.95	-101.3
	V	-110.0	-64.3	1.50	5.95	-99.9
4640.125	H	-86.2	-40.2	1.67	7.05	-74.8
	V	-90.7	-43.2	1.67	7.05	-77.8
5568.15	H	-104.7	-54.4	2.33	6.85	-89.9
	V	-107.0	-56.5	2.33	6.85	-92.0
6496.175	H	-106.8	-54.8	2.33	7.95	-89.2
	V	-105.8	-54.1	2.33	7.95	-88.5
7424.2	H	-106.0	-48.0	3.83	7.45	-84.4
	V	-110.0	-53.2	0.38	7.45	-86.1
8352.225	H	-107.2	-47.2	3.33	7.65	-82.9
	V	-110.0	-51.0	3.33	7.65	-86.7
9280.25	H	-108.3	-38.3	4.67	8.00	-75.0
	V	-110.0	-41.5	4.67	8.00	-78.2

Frequency: Power:	928.025 1	MHz		Spec = Highest Spur =		-43.0
Power:		Watts dBm				
Spurious Frequency (MHz)	Polarization (Horz/Vert)	Spurious Level (dBm)	Substitution Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Spurious Attenuation dBc
1856.05	HV	-105.2	-71.2	0.67	4.85	-97.0
		-104.3	-66.1	0.67	4.85	-92.0
2784.075	HV	-104.5	-66.5	1.00	5.65	-91.9
		-106.0	-66.0	1.00	5.65	-91.4
3712.1	HV	-110.0	-67.0	1.50	5.95	-92.6
		-106.5	-60.8	1.50	5.95	-86.4
4640.125	H	-103.0	-57.0	1.67	7.05	-81.6
		-96.7	-49.2	1.67	7.05	-73.8
5568.15	HV	-108.3	-58.0	2.33	6.85	-83.5
		-109.0	-58.5	2.33	6.85	-84.0
6496.175	H	-110.0	-58.0	2.33	7.95	-82.4

		V	-110.0	-58.3	2.33	7.95
7424.2	H	-110.0	-52.0	3.83	7.45	-78.7
	V	-110.0	-53.2	0.38	7.45	-76.1
8352.225	H	-110.0	-50.0	3.33	7.65	-75.7
	V	-110.0	-51.0	3.33	7.65	-76.7
9280.25	H	-110.0	-40.0	4.67	8.00	-66.7
	V	-110.0	-41.5	4.67	8.00	-68.2

Half Duplex Radio

Frequency: Power:	$\begin{array}{r} 944.1 \\ 10 \\ 40.0 \\ \hline \end{array}$	MHz Watts dBm		Spec = Highest Spur =		$\begin{aligned} & -53.0 \\ & -72.3 \end{aligned}$
Spurious Frequency (MHz)	Polarization (Horz/Vert)	Spurious Level (dBm)	Substitution Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Spurious Attenuation \qquad dBc
1888.2	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~V} \end{aligned}$	-104.0	-68.3	0.67	4.85	-104.2
		-102.2	-65.0	0.67	4.85	-100.9
2832.3	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~V} \end{aligned}$	-104.8	-64.1	1.00	5.65	-99.5
		-103.2	-63.2	1.00	5.65	-98.6
3776.4	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~V} \end{aligned}$	-109.0	-64.7	1.50	5.95	-100.2
		-107.7	-61.7	1.50	5.95	-97.3
4720.5	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~V} \end{aligned}$	-88.5	-41.5	2.33	7.05	-76.8
		-84.2	-37.0	2.33	7.05	-72.3
5664.6	H V	-105.3	-53.6	2.33	6.85	-89.1
		-103.5	-52.5	2.33	6.85	-88.0
6608.7	H V	-106.3	-53.6	2.33	7.95	-88.0
		-103.3	-50.3	2.33	7.95	-84.7
7552.8	HV	-106.3	-50.5	3.17	7.45	-86.2
		-106.0	-49.5	3.17	7.45	-85.2
8496.9	HV	-108.3	-46.8	3.67	7.65	-82.8
		-107.5	-46.2	3.67	7.65	-82.2
9441	HV	-107.8	-40.5	4.67	8.00	-77.1
		-108.2	-38.4	4.67	8.00	-75.0

	V	-106.0	-68.8	0.67	4.85	-94.7
2832.3	HV	-106.3	-65.6	1.00	5.65	-91.0
		-105.7	-65.7	1.00	5.65	-91.1
3776.4	HV	-109.8	-65.5	1.50	5.95	-91.0
		-109.3	-63.3	1.50	5.95	-88.9
4720.5	H V	-104.2	-57.2	2.33	7.05	-82.5
		-100.7	-53.5	2.33	7.05	-78.8
5664.6	H V	-110.5	-58.8	2.33	6.85	-84.3
		-110.0	-59.0	2.33	6.85	-84.5
6608.7	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	-107.2	-54.5	2.33	7.95	-78.9
		-107.7	-54.7	2.33	7.95	-79.1
7552.8	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	-106.7	-50.9	3.17	7.45	-76.6
		-107.3	-50.8	3.17	7.45	-76.5
8496.9	HV	-108.0	-46.5	3.67	7.65	-72.5
		-107.5	-46.2	3.67	7.65	-72.2
9441	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	-108.0	-40.7	4.67	8.00	-67.3
		-107.5	-37.7	4.67	8.00	-64.3

Half Duplex Radio

9599.75	H					
	V	-107.8	-40.3	5.00	8.00	-77.3

Frequency: Power:	$\begin{array}{r} 959.975 \\ 1 \\ 30.0 \\ \hline \end{array}$	MHz		Spec = Highest Spur =		$\begin{aligned} & -43.0 \\ & -68.8 \end{aligned}$
		Watts dBm				
Spurious Frequency (MHz)	Polarization (Horz/Vert)	Spurious Level (dBm)	Substitution Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Spurious Attenuation \qquad dBc
1919.95	H	-103.8	-64.8	0.67	4.85	-90.6
	V	-103.8	-66.5	0.67	4.85	-92.3
2879.925	H	-105.8	-63.1	0.83	5.65	-88.3
	V	-105.8	-65.1	0.83	5.65	-90.3
3839.9	H	-109.5	-63.2	1.00	5.95	-88.2
	V	-109.7	-65.2	1.00	5.95	-90.3
4799.875	H	-100.8	-52.8	1.67	7.05	-77.4
	V	-99.0	-52.3	1.67	7.05	-77.0
5759.85	H	-109.0	-58.3	2.17	6.85	-83.7
	V	-107.7	-57.4	2.17	6.85	-82.7
6719.825	H	-106.7	-52.2	2.67	7.95	-76.9
	V	-107.2	-52.4	2.67	7.95	-77.1
7679.8	H	-110.0	-53.3	3.33	7.45	-79.2
	V	-110.0	-53.0	3.33	7.45	-78.9
8639.775	H	-110.0	-48.5	4.67	7.65	-75.5
	V	-110.0	-48.2	4.67	7.65	-75.2
9599.75	H	-110.0	-42.5	5.00	8.00	-69.5
	V	-110.0	-41.8	5.00	8.00	-68.8

Full Duplex Radio

Frequency: Power:	$\begin{array}{r} 944.1 \\ 10 \\ 40.0 \\ \hline \end{array}$	MHz	-	Spec = Highest Spur =		-53.0 -74.0
Spurious Frequency (MHz)	Polarization (Horz/Vert)	Spurious Level (dBm)	Substitution Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Spurious Attenuation dBc
1888.2	H	-104.3	-68.6	0.67	4.85	-104.5
	V	-106.5	-69.3	0.67	4.85	-105.2
2832.3	H	-103.0	-62.3	1.00	5.65	-97.7
	V	-104.3	-64.3	1.00	5.65	-99.7
3776.4	H	-90.8	-46.5	1.50	5.95	-82.1
	V	-89.7	-43.7	1.50	5.95	-79.2

4720.5	H	-100.8	-53.8	2.33	7.05	-89.1
	V	-98.8	-51.7	2.33	7.05	-86.9
5664.6	H	-104.5	-52.8	2.33	6.85	-88.3
	V	-105.5	-54.5	2.33	6.85	-90.0
6608.7	H	-106.5	-53.8	2.33	7.95	-88.2
	V	-106.5	-53.5	2.33	7.95	-87.9
7552.8	H	-106.8	-51.0	3.17	7.45	-86.7
	V	-108.0	-51.5	3.17	7.45	-87.2
8496.9	H	-108.0	-46.5	3.67	7.65	-82.5
		-109.0	-47.7	3.67	7.65	-83.7
9441	V	-107.3	-40.0	4.67	8.00	-76.6
	H	-107.2	-37.4	4.67	8.00	-74.0

Frequency: Power:	$\begin{array}{r} 944.1 \\ 1 \\ 30.0 \end{array}$	MHz		Spec = Highest Spur =		-43.0 -65.8
		dBm				
Spurious Frequency (MHz)	Polarization (Horz/Vert)	Spurious Level (dBm)	Substitution Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Spurious Attenuation dBc
1888.2	HV	-107.0	-71.3	0.67	4.85	-97.2
		-107.0	-69.8	0.67	4.85	-95.7
2832.3	HV	-106.2	-65.5	1.00	5.65	-90.9
		-106.3	-66.3	1.00	5.65	-91.7
3776.4	H	-109.7	-65.4	1.50	5.95	-90.9
		-110.0	-64.0	1.50	5.95	-89.6
4720.5	H	-110.0	-63.0	2.33	7.05	-88.3
		-104.5	-57.3	2.33	7.05	-82.6
5664.6	HV	-110.0	-58.3	2.33	6.85	-83.8
		-107.3	-56.3	2.33	6.85	-81.8
6608.7	HV	-108.2	-55.5	2.33	7.95	-79.9
		-107.5	-54.5	2.33	7.95	-78.9
7552.8	HV	-107.5	-51.7	3.17	7.45	-77.4
		-107.7	-51.2	3.17	7.45	-76.9
8496.9	HV	-108.3	-46.8	3.67	7.65	-72.8
		-107.8	-46.5	3.67	7.65	-72.5
9441	HV	-108.3	-41.0	4.67	8.00	-67.6
		-109.0	-39.2	4.67	8.00	-65.8

Equipment Calibration Information

Equipment	Serial Number	Cal Date	Cal Due
HP 8563E Spectrum Analyzer	3221 A00149	$4 / 15 / 2010$	$4 / 15 / 2012$
Agilent E8257D Signal Generator	MY44320507	$4 / 20 / 2010$	$4 / 20 / 2012$
HP 8901A Modulation Analyzer	2950 A05551	$4 / 12 / 2010$	$4 / 12 / 2012$
HP 437B Power Meter	$3125 U 13882$	$4 / 12 / 2010$	$4 / 12 / 2012$

Instruments have been calibrated using standards with accuracies traceable to NIST standards.

[^0]: CENTER 928. 2 MHz SPAN $100 . \square \mathrm{MHz}$
 粎BW $10 \square \mathrm{kHz}$ 粯 $1 . \square \mathrm{kHz}$ SWP 2.50 sec

[^1]: CENTER 928. 2 MHz SPAN $100 . \square \mathrm{MHz}$
 粎BW $10 \square \mathrm{kHz}$ 粯 $1 . \square \mathrm{kHz}$ SWP 2.50 sec

[^2]: CENTER 928. 2 MHz SPAN $100 . \square \mathrm{MHz}$
 粎BW $10 \square \mathrm{kHz}$ 粯 $1 . \square \mathrm{kHz}$ SWP 2.50 sec

[^3]: CENTER 928. 2 MHz SPAN $100 . \square \mathrm{MHz}$
 粎BW $10 \square \mathrm{kHz}$ 粯 $1 . \square \mathrm{kHz}$ SWP 2.50 sec

[^4]: CENTER 928. 2 MHz SPAN $100 . \square \mathrm{MHz}$
 粎BW $10 \square \mathrm{kHz}$ 粯 $1 . \square \mathrm{kHz}$ SWP 2.50 sec

