RF Exposure Compliance Requirements ViPR Analog Telemetry Radio Modem

FCC Rule: 1.1307, 1.1310, 2.1091 (b) (d), 2.1093

Description of Compliance:

The ViPR will be professionally installed in the SCADA (Supervisory Control And Data Acquisition) market and will be mounted with a fixed RTU (Remote Terminal Unit). A minimum separation distance listed in the table below must be maintained between the radiating structure and any person to classify as a mobile under FCC MPE regulations.

Antenna Gain vs. Recommended Safety Distance

	Antenna Gain		
	5 dBi	10 dBi	15 dBi
Min Safety Distance (max power)	63.8cm	115 cm	201.7 cm

Note: It is the responsibility of the user to guarantee compliance with the FCC MPE regulations when operating this device in a way other than described above.

The calculation for the more stringent specification, a General Population/Uncontrolled Mobile device according to section 2.1091(b) and section 1.1310 Note 2 is shown below:

Limits for General Population/Uncontrolled Exposure:

Frequency Range	Electric Field	Magnetic Field	Power Density (mW/cm ²)	Averaging
(MHz)	Strength (V/m)	Strength (A/m)		Time (mins)
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f (MHz)/1500 (MHz)	30
1500-100000			1.0	30

Environmental Specification: f(MHz)/(1500 mW/cm²) 928 MHz/(1500 MHz mW/cm²) = 0.62 mW/cm² (worst case)

 $S = (PG)/(4\pi R^2)$

(OET Bulletin 65)

Where:

 $S = Power Density (mW/cm^2)$

P = Power input to the antenna (mW)

G = Power Gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna (cm)

Distance Calculation for 5dBi antenna:

 $R = \sqrt{(PG)/(4\pi S)}$

Antenna Gain: 5.0 dBi $10^{(5 \text{ dBi/10})} = 3.16$ Power input to the Antenna: $40.0 \text{dBm} = 10^{(40.0 \text{dBm/10})} = 10000 \text{ mW}$

 $R = \sqrt{((10000 \text{ mW} \times 3.16)/(4\pi \times 0.62 \text{ mW/cm}^2))} = 63.8 \text{ cm}$ (Minimum Distance)

Distance Calculation for 10dBi antenna:

 $R = \sqrt{(PG)/(4\pi S)}$

Antenna Gain: 10.0 dBi $10^{(10 \text{ dBi}/10)} = 10$ Power input to the Antenna: $40.0 \text{dBm} = 10^{(40.0 \text{dBm}/10)} = 10000 \text{ mW}$

 $R = \sqrt{((10000 \text{ mW}*10)/(4\pi*0.62 \text{ mW/cm}^2))} = 113 \text{ cm}$ (Minimum Distance)

Distance Calculation for 15dBi antenna:

 $R = \sqrt{(PG)/(4\pi S)}$

Antenna Gain: 15.0 dBi $10^{(15\text{dBi}/10)} = 31.6$ Power input to the Antenna: $40.0\text{dBm} = 10^{(40.0\text{dBm}/10)} = 10000 \text{ mW}$

 $R = \sqrt{((10000 \text{ mW} \times 31.6)/(4\pi \times 0.62 \text{ mW/cm}^2))} = 201.7 \text{ cm}$ (Minimum Distance)