CalAmp Wireless Networks Corporation 299 Johnson Avenue, Suite 110 Waseca, MN 56093-0833 USA Phone: 507-833-8819 Fax: 507-833-6748

FCC Certification Application

For The

Guardian 900 RADIO MODEM

FCC ID: NP4-5096-500

Page #

TABLE OF CONTENTS

Test 6: Transmitter Occupied Bandwidth	3
Test 7: Transmitter Mask Emission Limits	5
12.5 kHz Half Channel Mask I / Mask 101.111(a)(5)	5
25 kHz Full Channel Mask B / Mask 101.111(a)(6) / Mask 24.133 (a)(1)	15
Calibration Information	25

NAME OF TEST: **Transmitter Occupied Bandwidth**

RULE PART NUMBER: FCC: 2.201, 2.202, 2.1033 (c)(14), 2.1049 (h), 2.1041, 24.131, 101.109, 22.357;

Necessary Bandwidth Measurement

This radio modem uses digital modulation signals, passing through a Squared Root Raised Cosine $\alpha=0.2$ or α =0.5 DSP implemented low-pass filter to an FM transceiver. The digital modulation is based on SRRC4FSK allows a SRRC2FSK subset to be used for lower bit rate with a better sensitivity reception. The necessary bandwidth calculation for this type of modulation is not covered by paragraphs (1), (2) or (3) from 2.202(c). Therefore, the approach outlined in (2.202(c)(4)) is applicable in this case.

The measurement explanations are provided below.

Necessary Bandwidth Measurement:

Channel	Emission	Measured	Measured 99%	
Spacing	Туре	Peak	Occupied BW	
		Deviation		
12.5 kHz	10K2F3D	2.451 kHz	10.2 kHz	
12.5 kHz	10K2F3E	2.451 kHz	10.2 kHz	
25 kHz	15K3F3D	5.12 kHz	15.3 kHz	
25 kHz	15K3F3E	5.12 kHz	15.3 kHz	

THEORY OF MEASUREMENT

The way to define the Occupied Bandwidth is "The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth." The mathematics are as follows:

$$0.005*TP = P_{(f1)} = \int_{0}^{f1} PSD_{(f)} df$$
$$0.995*TP = P_{(f2)} = \int_{0}^{f2} PSD_{(f)} df$$

f1

OBW=f2-f1

where TP (total mean power) is

$$TP = \int_{0}^{+\infty} PSD_{(f)} df = (1/t) \int |z_{(t)}|^2 dt$$
$$-\infty$$

and PSD (power spectral distribution) is

$$PSD_{(f)} = |Z_{(f)}|^2 + |Z_{(-f)}|^2 \qquad 0 \le f < \infty$$

and expresses the positive frequency representation of the transmitter output power for z(t) signal.

By applying these mathematics to the measurements, it is possible to measure the Occupied Bandwidth using a digital spectrum analyzer.

The Occupied Bandwidth measurement is in two parts relatively independent of each other. The first gives the RF spectrum profile, and the second calculates the frequency limits and they result in the Occupied bandwidth. While the first involves RF measurement instrumentation, the second is strictly a computational part related to measured trace.

TEST EQUIPMENT:

50-Ohm Attenuator, Bird Electronics Model 25-A-MFN-20 (20dB, 25W) 50-Ohm Power Splitter, Mini Circuits Model ZFSC-3-4 (5.5dB IL at UHF) DC Power Supply, Instek Model GPS-2303 Spectrum Analyzer, Hewlett Packard Model HP8563E Modulation Analyzer, Hewlett Packard Model HP8901A

TEST SET-UP:

For the above requirements, the occupied bandwidth of a transmitter was measured using the following settings: Occupied BW % Power: 99% Trace: Max Hold A RBW: 100 Hz (12.5 kHz channels) RBW: 300 Hz (25 kHz channels) VBW: same as RBW SPAN: 50 kHz (12.5 kHz channels) SPAN: 150 kHz (25 kHz channels)

NAME OF TEST:	Transmitter Mask Emission Limits for Emission Designators 10K2F3D and 10K2F3E
RULE PART NUMBER:	FCC: 2.202, 2.1049 (c) (1),22.359, 90.210 (i), 101.111 (a)(5);
MINIMUM STANDARI	DS:
	Mask I Sidebands and Spurious [P = 10 Watts and P=1 Watt] Authorized Bandwidth = 12.5 kHz From Fo to 6.8 kHz, down 0 dB. Greater than 6.25 kHz to 9.0 kHz, down 25 dB Greater than 9.0 kHz to 15 KHz, down 35 dB Greater than 15 KHz, 43+10log(P) or 70 dB
	Attenuation = 0 db at Fo to > 6.8 kHz Attenuation = 25 dB at 6.8 kHz Attenuation = 35 dB at 9.0 KHz Attenuation = 53 dB at > 15 KHz @ 10W or 43 dB @ 1W
	Mask 101.111(a)(5) Sidebands and Spurious [P = 10 Watts and P=1 Watt] Authorized Bandwidth = 12.5 kHz From Fo to 2.5 kHz, down 0 dB. Greater than 2.5 kHz to 6.25 kHz, down 53log(fd/2.5) Greater than 6.25 kHz to 9.5 KHz, down 103log(fd/3.9) Greater than 9.5 to 15 KHz, 157log(fd/5.3) Greater than 15 KHz,, 50+10log(P) or 70 dB
	Attenuation = 0 db at Fo to 6.25 kHz Attenuation = 21.1dB at 6.25 kHz Attenuation = 39.8 dB at 9.5 KHz Attenuation = 70.9 dB at 15 kHz Attenuation = 60 dB at > 15 KHz @ 10W or 50dB @ 1W
TEST RESULTS:	Meets minimum standards (see data on following page)
TEST CONDITIONS:	Standard Test Conditions, 25 C RF Power Level = 1 Watt and 10 Watts Voltage = 20VDC
TEST PROCEDURE:	TIA/EIA – 603-C
TEST EQUIPMENT:	50-Ohm Attenuator, Bird Electronics Model 25-A-MFN-20 (20dB, 25W) 50-Ohm Power Splitter, Mini Circuits Model ZFSC-3-4 (5.5dB IL at UHF) DC Power Supply, Instek Model GPS-2303 Spectrum Analyzer, Hewlett Packard Model HP8563E Modulation Analyzer, Hewlett Packard Model HP8901A

TEST SET-UP:

Spectrum for Emission: 10K2F3D Peak Deviation with Data: 2.451 kHz Output Power = 1 Watt

Output Power = 10 Watts

Mask: I

Spectrum for Emission: 10K2F3E Peak Deviation with Data: 2.451 kHz Output Power = 1 Watt

Mask: I

Output Power = 10 Watts

Mask: I

NAME OF TEST:	Transmitter Mask Emission Limits for Emission Designators 15K3F3D and 15K3F3E			
RULE PART NUMBER:	FCC: 2.202, 90.209 (b)(5), 90.210(b), 2.1049 (c) (1), 101.111 (a)(6) 24.133 (a)(1), 22.359;			
MINIMUM STANDARDS:	Mask B Sidebands and Spurious [P = 10 Watts and P=1 Watt] Authorized Bandwidth = 20 kHz From Fo to 50% of authorized bandwidth, down 0 dB. From 50% to 100% of the authorized bandwidth, down 25dB From 100% to 250% of the authorized bandwidth, down 35 dB Greater than 250% of authorized BW, $43 + 10\log_{10}(P)$ Attenuation = 0 dB at Fo to 10 kHz			
	Attenuation = 25 dB at 10 kHz Attenuation = 35 dB at 20 kHz Attenuation = 53.0 dB at frequencies greater than 50 kHz @ 10 W Attenuation = 43 dB at frequencies greater than 50 kHz @ 1 W			
	Mask 101.111(a)(6) Sidebands and Spurious [P = 10 Watts and P=1 Watt] Authorized Bandwidth = 25 kHz From Fo to 5.0 kHz, down 0 dB. From 5 kHz to 10 kHz, down 83 * $\log_{10}(f_d/5)$ dB Greater than 10.0 kHz to 250% auth BW, down 116log(fd/6.1) or 50+10log(P) or 70 dB. Greater then 250% auth BW, 43+10log ₁₀ (P) or 80 dB.			
	$\begin{array}{l} \mbox{Attenuation} = 0 \mbox{ db at Fo to 5 kHz} \\ \mbox{Attenuation} = 25 \mbox{ dB at 10 kHz} \\ \mbox{Attenuation} = 60 \mbox{ dB at 20.1 kHz} \mbox{ ($10W$)} \\ \mbox{Attenuation} = 50 \mbox{ dB at 16.5 kHz} \mbox{ ($10W$)} \\ \mbox{Attenuation} = 53 \mbox{ dB at } > 62.5 \mbox{ kHz} \mbox{ ($10W$)} \\ \mbox{ or 43 dB} \mbox{ ($10W$)} \\ \mbox{ 1W} \end{array}$			
	Mask 24.133(a)(1) 25 kHz Sidebands and Spurious [P = 10 Watts and P=1 Watt] Authorized Bandwidth = 20 kHz From Fo to 10 kHz, down 0 dB. From 10 kHz to 50 kHz, down 116 * $\log_{10} (f_d + 10 / 6.1) dB$, 50+10log(P) or 70 dB. Greater than 50 kHz, 43+10log ₁₀ (P) or 80 dB.			
	Attenuation = 0 db at 10 to 10 kHz Attenuation = 25 dB at 10 kHz Attenuation = 60 dB at 20 kHz @ 10W Attenuation = 50 dB at 16.45 kHz @ 1W Attenuation = 53 dB at 50 kHz @ 10W Attenuation = 43 dB at 50 kHz @ 1W			
TEST RESULTS:	Meets minimum standards (see data on following page)			
TEST CONDITIONS:	Standard Test Conditions, 25 C RF Power Level = 1 Watt and 12 Watts			

Voltage = 20VDC

TEST PROCEDURE: TIA/EIA – 603-C

TEST EQUIPMENT: 50-Ohm Attenuator, Bird Electronics Model 25-A-MFN-20 (20dB, 25W) 50-Ohm Power Splitter, Mini Circuits Model ZFSC-3-4 (5.5dB IL at UHF) DC Power Supply, Instek Model GPS-2303 Spectrum Analyzer, Hewlett Packard Model HP8563E Modulation Analyzer, Hewlett Packard Model HP8901A

TEST SET-UP:

Spectrum for Emission: 15K3F3D Peak Deviation with Data: 5.12 kHz

Output Power = 1 Watt Mask: B

Spectrum for Emission: 15K3F3E Peak Deviation with Data: 5.12 kHz Output Power = 1 Watt Mask: B

which have been that

M M

horizonalistan

Equipment Calibration Information

Equipment	Serial Number	Cal Date	Cal Due
HP 8563E Spectrum Analyzer	3221A00149	4/15/2010	4/15/2012
Agilent E8257D Signal Generator	MY44320507	4/20/2010	4/20/2012
HP 8901A Modulation Analyzer	2950A05551	4/12/2010	4/12/2012
HP 437B Power Meter	3125U13882	4/12/2010	4/12/2012

Instruments have been calibrated using standards with accuracies traceable to NIST standards.