

**MET Laboratories, Inc.** Safety Certification - EMI - Telecom Environmental Simulation 33439 WESTERN AVENUE ! UNION CITY, CALIFORNIA 94587 ! PHONE (510) 489-6300 ! FAX (510) 489-6372

June 14, 2006

LGC Wireless 2540 Junction Avenue San Jose, CA 95134

Dear Tom Macall,

Enclosed is the EMC test report for compliance testing of the LGC Wireless, FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU as tested to the requirements of the FCC Certification rules under Title 47 of the CFR Part 24 Subpart E for Broadband PCS Devices and Part 15 Subpart B for Unintentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please contact me.

Sincerely yours, MET LABORATORIES, INC.

Boonmanus Seelapasay Documentation Department

Reference: (\LGC Wireless\EMCS20025-FCC24E)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc. While use of the National Voluntary Laboratory Accreditation Program (NVLAP) letters or the NVLAP Logo, the Standards Council of Canada Logo, or the Nationally Recognized Testing Laboratory (NRTL) Letters in this report reflects MET Accreditation under these programs, these letters, logo, or statements do not claim product endorsement by NVLAP or any Agency of the U.S. Government. This letter of transmittal is not a part of the attached report.





The Nation's First Licensed Nationally Recognized Testing Laboratory



Electromagnetic Compatibility CFR Title 47 Part 24 Subpart E

# Electromagnetic Compatibility Criteria Test Report

for the

LGC Wireless FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU

> Verified under FCC Certification Rules Title 47 of the CFR, Part 24 Subpart E for Broadband PCS Devices

### MET Report: EMCS20025-FCC24E

June 14, 2006

**Prepared For:** 

LGC Wireless 2540 Junction Avenue San Jose, CA 95134

> Prepared By: MET Laboratories, Inc. 4855 Patrick Henry Dr., Building 6 Santa Clara, CA 95054



Electromagnetic Compatibility CFR Title 47 Part 24 Subpart E

#### Electromagnetic Compatibility Criteria Test Report

for the

### LGC Wireless FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU

**Tested Under** 

FCC Certification Rules Title 47 of the CFR, Part 24 Subpart E for Broadband PCS Devices

Shawn McMillen, Project Engineer Electromagnetic Compatibility Lab

Boonmanus Seelapasay Documentation Department

**Engineering Statement:** The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 24 Subpart E and Part 15 Subpart B of the FCC Rules under normal use and maintenance.

Tony Permsombut, Manager Electromagnetic Compatibility Lab



# **Report Status Sheet**

| Revision | Report Date   | Reason for Revision |  |  |
|----------|---------------|---------------------|--|--|
| Ø        | June 14, 2006 | Initial Issue.      |  |  |



# **Table of Contents**

| I.   | Executive Summary                                                    |    |
|------|----------------------------------------------------------------------|----|
|      | A. Purpose of Test                                                   | 2  |
|      | B. Executive Summary                                                 | 2  |
| II.  | Equipment Configuration                                              |    |
|      | A. Overview                                                          | 4  |
|      | B. References                                                        | 5  |
|      | C. Test Site                                                         | 6  |
|      | D. Description of Test Sample                                        | 6  |
|      | E. Equipment Configuration                                           |    |
|      | F. Support Equipment                                                 |    |
|      | G. Ports and Cabling Information                                     | 14 |
|      | H. Mode of Operation                                                 |    |
|      | I. Method of Monitoring EUT Operation                                |    |
|      | J. Modifications                                                     |    |
|      | a.) Modifications to EUT                                             |    |
|      | b.) Modifications to Test Standard                                   |    |
|      | K. Disposition of EUT                                                |    |
| III. | Electromagnetic Compatibility Criteria for Unintentional Radiators   |    |
|      | § 15.107(a) Conducted Emissions Limits                               |    |
|      | § 15.109(a) Radiated Emissions Limits                                |    |
| IV.  | Electromagnetic Compatibility Criteria for Intentional Radiators     |    |
|      | § 2.1046 RF Power Output                                             |    |
|      | § 2.1047 Modulation Characteristics                                  |    |
|      | § 2.1049 Occupied Bandwidth                                          |    |
|      | § 2.1053 Radiated Spurious Emissions                                 |    |
|      | § 2.1051 Spurious Emissions at Antenna Terminals                     |    |
|      | 2-11-04/EAB/RF Out of Band Rejection                                 |    |
|      | § 2.1055 Frequency Stability over Temperature and Voltage Variations |    |
| v.   | Test Equipment                                                       |    |
| VI.  | Certification & User's Manual Information                            |    |
|      | A. Certification Information                                         |    |
|      | B. Label and User's Manual Information                               |    |
|      |                                                                      |    |



# **List of Tables**

| Table 1 Executive Summary of EMC ComplianceTesting                                                      | 2  |
|---------------------------------------------------------------------------------------------------------|----|
| Table 2. Equipment Configuration                                                                        |    |
| Table 3. Support Equipment                                                                              |    |
| Table 4. Ports and Cabling Information                                                                  | 14 |
| Table 5. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Section 15.107(a) (b) |    |
| Table 6. Conducted Emissions - Voltage, AC Power, Phase Line 120 VAC, Top Unit                          |    |
| Table 7. Conducted Emissions - Voltage, AC Power, Neutral Line 120 VAC, Top Unit                        |    |
| Table 8. Conducted Emissions - Voltage, AC Power, Phase Line 120 VAC, Expansion Hub                     | 20 |
| Table 9. Conducted Emissions - Voltage, AC Power, Neutral Line 120 VAC, Expansion Hub                   |    |
| Table 10. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)                        |    |
| Table 11. Radiated Emissions Limits Test Results, 30 MHz to 1GHz, Class A                               |    |
| Table 12. Radiated Emissions Limits Test Results, 1 GHz to 10 GHz, Class A                              |    |
| Table 13. Radiated Harmonics, Downlink                                                                  | 54 |
|                                                                                                         |    |

# **List of Figures**

| Figure 1. B | Block Diagram of Test Configuration, Downlink Conducted Measurement          | 7  |
|-------------|------------------------------------------------------------------------------|----|
| Figure 2. B | Block Diagram of Test Configuration, Uplink Conducted Measurement            | 8  |
| Figure 3. B | Block Diagram of Test Configuration, Downlink Spurious Measurement           | 9  |
| Figure 4. B | Block Diagram of Test Configuration, Uplink Spurious Measurement             | 10 |
| Figure 5. B | Block Diagram of Test Configuration Downlink Frequency Stability Measurement | 11 |
| Figure 6. B | Block Diagram of Test Configuration Uplink Frequency Stability Measurement   | 12 |

# **List of Photographs**

| Photograph 1. LGC Wireless FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU | 6  |
|---------------------------------------------------------------------------------------------|----|
| Photograph 2. Conducted Emissions Test Setup, Front View                                    |    |
| Photograph 3. Conducted Emissions Test Setup, Back View                                     |    |
| Photograph 4. Radiated Emission Limits Test Setup, 30 MHz to 1 GHz, Front View              |    |
| Photograph 5. Radiated Emission Limits Test Setup, 30 MHz to 1 GHz, Back View               |    |
| Photograph 6. Radiated Emission Limits Test Setup, 1 GHz to 10 GHz, Front View              |    |
| Photograph 7. Radiated Emission Limits Test Setup, 1 GHz to 10 GHz, Back View               |    |
| Photograph 8. Test Equipment and setup for various Radiated Measurements                    | 55 |



| AC               | Alternating Current                                                                                                                                                                                                                                                                                                                     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACF              | Antenna Correction Factor                                                                                                                                                                                                                                                                                                               |
| Cal              | Calibration                                                                                                                                                                                                                                                                                                                             |
| d                | Measurement Distance                                                                                                                                                                                                                                                                                                                    |
| dB               | Decibels                                                                                                                                                                                                                                                                                                                                |
| dBμA             | Decibels above one microamp                                                                                                                                                                                                                                                                                                             |
| dBμV             | Decibels above one microvolt                                                                                                                                                                                                                                                                                                            |
| dBµA/m           | Decibels above one microamp per meter                                                                                                                                                                                                                                                                                                   |
| dBµV/m           | Decibels above one microvolt per meter                                                                                                                                                                                                                                                                                                  |
| DC               | Direct Current                                                                                                                                                                                                                                                                                                                          |
| Е                | Electric Field                                                                                                                                                                                                                                                                                                                          |
| DSL              | Digital Subscriber Line                                                                                                                                                                                                                                                                                                                 |
| ESD              | Electrostatic Discharge                                                                                                                                                                                                                                                                                                                 |
| EUT              | Equipment Under Test                                                                                                                                                                                                                                                                                                                    |
| f                | Frequency                                                                                                                                                                                                                                                                                                                               |
| FCC              | Federal Communications Commission                                                                                                                                                                                                                                                                                                       |
| GR-1089-CORE     | (GR) General Requirement(s) imposed by the NEBS standard, (CORE) Central Office Recovery Express (AT&T), (1089) specifies various parts of the General Requirements under Bellcore Technical Standard, Requirements for Electromagnetic Compatibility and Electrical Safety - Generic Criteria for Network Telecommunications Equipment |
| GRP              | Ground Reference Plane                                                                                                                                                                                                                                                                                                                  |
| Н                | Magnetic Field                                                                                                                                                                                                                                                                                                                          |
| НСР              | Horizontal Coupling Plane                                                                                                                                                                                                                                                                                                               |
| Hz               | Hertz                                                                                                                                                                                                                                                                                                                                   |
| IEC              | International Electrotechnical Commission                                                                                                                                                                                                                                                                                               |
| kHz              | kilohertz                                                                                                                                                                                                                                                                                                                               |
| kPa              | kilopascal                                                                                                                                                                                                                                                                                                                              |
| kV               | kilovolt                                                                                                                                                                                                                                                                                                                                |
| LISN             | Line Impedance Stabilization Network                                                                                                                                                                                                                                                                                                    |
| MHz              | Megahertz                                                                                                                                                                                                                                                                                                                               |
| $\mu \mathbf{H}$ | microhenry                                                                                                                                                                                                                                                                                                                              |
| μ                | microfarad                                                                                                                                                                                                                                                                                                                              |
| μs               | microseconds                                                                                                                                                                                                                                                                                                                            |
| NEBS             | Network Equipment-Building System                                                                                                                                                                                                                                                                                                       |
| PRF              | Pulse Repetition Frequency                                                                                                                                                                                                                                                                                                              |
| RF               | Radio Frequency                                                                                                                                                                                                                                                                                                                         |
| RMS              | Root-Mean-Square                                                                                                                                                                                                                                                                                                                        |
| ТWT              | Traveling Wave Tube                                                                                                                                                                                                                                                                                                                     |
| V/m              | Volts <b>per m</b> eter                                                                                                                                                                                                                                                                                                                 |
| VCP              | Vertical Coupling Plane                                                                                                                                                                                                                                                                                                                 |

# List of Terms and Abbreviations



Electromagnetic Compatibility Executive Summary CFR Title 47 Part 24 Subpart E

# I. Executive Summary



#### A. Purpose of Test

An EMC evaluation was performed to determine compliance of the LGC Wireless FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU, with the requirements of Part 24 Subpart E and Part 15 Subpart B. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU. LGC Wireless should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU, has been **permanently** discontinued.

#### **B.** Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 24 Subpart E and Part 15 Subpart B, in accordance with LGC Wireless, purchase order number 717037.

| Reference                                        | Description                             | Compliance     |  |
|--------------------------------------------------|-----------------------------------------|----------------|--|
| Part 15 Subpart B §15.109(a) Conducted Emissions |                                         | None           |  |
| Part 15 Subpart B §15.107(a)                     | Radiated Emissions                      | None           |  |
| §2.1046; §24.232 RF Power Output                 |                                         | None           |  |
| §2.1047                                          | Modulation Characteristics              | Not Applicable |  |
| §2.1049                                          | Occupied Bandwidth                      | None           |  |
| §2.1051; §24.238                                 | Spurious Emissions at Antenna Terminals | None           |  |
| §2.1053; §24.238                                 | Radiated Spurious Emissions             | None           |  |
| §2.1055; §24.135 Frequency Stability             |                                         | None           |  |
| 2-11-04/EAB/RF                                   | Out of Band Rejection                   | None           |  |

 Table 1 Executive Summary of EMC ComplianceTesting



Electromagnetic Compatibility Equipment Configuration CFR Title 47 Part 24 Subpart E

# **II. Equipment Configuration**



#### A. Overview

MET Laboratories, Inc. was contracted by LGC Wireless to perform testing on the FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU, under LGC Wireless's purchase order number 717037.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the LGC Wireless, FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU.

The results obtained relate only to the item(s) tested.

| Model(s) Tested:                  | FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU |                               |  |  |
|-----------------------------------|------------------------------------------------------------------|-------------------------------|--|--|
| Model(s) Covered:                 | FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU |                               |  |  |
|                                   | Primary Power: 120 VAC                                           |                               |  |  |
|                                   | FCC ID: NOOFSN-809019-1                                          |                               |  |  |
|                                   |                                                                  | CDMA                          |  |  |
|                                   | Type of Modulations:                                             | TDMA                          |  |  |
|                                   |                                                                  | GSM                           |  |  |
| EU I<br>Specifications:           | Equipment Class:                                                 | PCB                           |  |  |
| specifications.                   | Max RF Output Power:                                             | CDMA: 28.30 dBm               |  |  |
|                                   |                                                                  | TDMA: 27.15 dBm               |  |  |
|                                   |                                                                  | GSM: 25.22 dBm                |  |  |
|                                   |                                                                  | Downlink: 1930-1995 MHz       |  |  |
|                                   | EUT Frequency Kanges.                                            | Uplink: 1850-1915 MHz         |  |  |
| Analysis:                         | The results obtained relate                                      | e only to the item(s) tested. |  |  |
|                                   | Temperature (15-35° C)                                           |                               |  |  |
| Environmental<br>Test Conditions: | Relative Humidity (30-60%)                                       |                               |  |  |
| rest Conditions.                  | Barometric Pressure (860-1060 mbar)                              |                               |  |  |
| Evaluated by:                     | Shawn McMillen                                                   |                               |  |  |
| Date(s):                          | June 14, 2006                                                    |                               |  |  |



# **B.** References

| CFR 47, Part 24, Subpart E | Federal Communication Commission, Code of Federal Regulations, Title 47,<br>Part 24: Rules and Regulations for Personal Communications Services |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CFR 47, Part 15, Subpart B | Electromagnetic Compatibility: Criteria for Radio Frequency Devices                                                                             |  |  |
| ANSI C63.4:2003            | Methods and Measurements of Radio-Noise Emissions from Low-Voltage<br>Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz       |  |  |
| ANSI/NCSL Z540-1-1994      | Calibration Laboratories and Measuring and Test Equipment - General Requirements                                                                |  |  |
| ANSI/ISO/IEC 17025:2000    | General Requirements for the Competence of Testing and Calibration Laboratories                                                                 |  |  |
| EIA/TIA-603-A-2004         | Land Mobile FM or PM Communication Equipment Measurement and Performance Standards                                                              |  |  |



#### C. Test Site

All testing was performed at MET Laboratories, Inc., 4855 Patrick Henry Drive, Building 6, Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories. In accordance with §2.948(d), MET Laboratories has been accredited by the National Voluntary Laboratory Accreditation Program (Lab Code: 100273-0).

#### **D.** Description of Test Sample

The LGC Wireless FSN-1-MH-1Main Hub, FSN-EH-1 Expansion Hub, and FSN809019-1 RAU, is an RF amplification and distribution system. In the downlink direction, the Main Hub (MH) unit receives an RF signal, from a base station or antenna system, which is then converted to IF signal. The IF signal is sent to the Expansion Hub (EH) via fiber link. The expansion hub distributes the IF signal to the remote access unit (RAU) via coax cable. The RAU then converts the IF to RF signal which is outputted to an antenna. In the Uplink direction the signal is received from the antenna by the RAU, which is processed back to the base station via the expansion and main hubs. The coax connection from expansion hub to remote unit also carries 54VDC power the remote unit.



Photograph 1. LGC Wireless FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU





Figure 1. Block Diagram of Test Configuration, Downlink Conducted Measurement



Electromagnetic Compatibility Equipment Configuration CFR Title 47 Part 24 Subpart E



Figure 2. Block Diagram of Test Configuration, Uplink Conducted Measurement



Electromagnetic Compatibility Equipment Configuration CFR Title 47 Part 24 Subpart E



Figure 3. Block Diagram of Test Configuration, Downlink Spurious Measurement



Electromagnetic Compatibility Equipment Configuration CFR Title 47 Part 24 Subpart E



Figure 4. Block Diagram of Test Configuration, Uplink Spurious Measurement



Electromagnetic Compatibility Equipment Configuration CFR Title 47 Part 24 Subpart E



Figure 5. Block Diagram of Test Configuration Downlink Frequency Stability Measurement



Electromagnetic Compatibility Equipment Configuration CFR Title 47 Part 24 Subpart E



Figure 6. Block Diagram of Test Configuration Uplink Frequency Stability Measurement



#### E. Equipment Configuration

The EUT was set up as outlined in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, and Figure 6. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

| Ref. ID | Name / Description | Model Number         | Part Number          | Serial Number |
|---------|--------------------|----------------------|----------------------|---------------|
| А       | Expansion Hub      | 710612-0 F0100HX8    |                      | А             |
| В       | Main Hub           | 710610-0<br>710612-0 | F0100HX0<br>F0100HWR | В             |
| С       | RAU (Main board)   | 710690-0             | F0100ZX0             | С             |

#### Table 2. Equipment Configuration

#### F. Support Equipment

LGC Wireless supplied support equipment necessary for the operation and testing of the FSN-1-MH-1 Main Hub, FSN-EH-1 Expansion Hub and FSN 809019-1 RAU. All support equipment supplied is listed in the following Support Equipment List.

| Ref. ID | Name / Description  | Manufacturer      | Model Number | Serial Number |
|---------|---------------------|-------------------|--------------|---------------|
| D       | Signal Generator    | HP                | E4432B       | US38080117    |
| Е       | 50 Ohms Terminator  | Narda             | 375BNB       | 07            |
| F       | Amplifier           | Mini-Circuit      | ZHL-4240W    | D111903#8     |
| G       | Spectrum Analyzer   | HP                | E4407B       | MY45102898    |
| Н       | Temperature Chamber | Tenny Engineering | Т630         | 11939-5       |

#### Table 3. Support Equipment

\* The 'Customer Supplied Calibration Data' column will be marked as either not applicable, not available, or will contain the calibration date supplied by the customer.

\*\* The AC/DC Adapter was use to power the EUT for testing purpose only, will not be sold with radio.



# G. Ports and Cabling Information

| Ref.<br>ID                                              | Port name on EUT                                    | Cable Description or reason<br>for no cable | Qty.    | Length<br>(m) | Shielded<br>(Y/N) | Termination Box<br>ID & Port ID |  |
|---------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|---------|---------------|-------------------|---------------------------------|--|
|                                                         | Spurious, Radiated & Conducted Emission (Down-Link) |                                             |         |               |                   |                                 |  |
| 1                                                       | A Front, Optic Tx Rx                                | Single Mode Optic                           | 2       | 2             | No                | B, Port 1 Rx Tx                 |  |
| 2                                                       | B Back, AC Input                                    | AC PWR Cord                                 | 1       | 2             | No                | AC PWR Outlet                   |  |
| 3                                                       | A Back, AC Input                                    | AC PWR Cord                                 | 1       | 2             | No                | AC PWR Outlet                   |  |
| 4                                                       | A Front, IF 1                                       | Coax                                        | 1       | 30            | Yes               | C, IF Port                      |  |
| 5                                                       | A Back, Down-Link 2                                 | Coax                                        | 1       | 5             | Yes               | Е                               |  |
|                                                         | S                                                   | purious, Radiated & Conducted               | Emissi  | on (Up-Lir    | ık)               |                                 |  |
| 1                                                       | A Front, Optic Tx Rx                                | Single Mode Optic                           | 2       | 2             | No                | B, Port 1 Rx Tx                 |  |
| 2                                                       | B Back, AC Input                                    | AC PWR Cord                                 | 1       | 2             | No                | AC PWR Outlet                   |  |
| 3                                                       | A Back, AC Input                                    | AC PWR Cord                                 | 1       | 2             | No                | AC PWR Outlet                   |  |
| 4                                                       | A Front, IF 1                                       | Coax                                        | 1       | 30            | Yes               | C, IF Port                      |  |
| 5                                                       | C, Antenna Port                                     | Coax                                        | 1       | 5             | Yes               | Е                               |  |
|                                                         | Free                                                | uency Stability & Conducted M               | leasure | ment (Up-]    | Link)             |                                 |  |
| 1                                                       | A Front, Optic Tx Rx                                | Single Mode Optic                           | 2       | 2             | No                | B, Port 1 Rx Tx                 |  |
| 2                                                       | B Back, AC Input                                    | AC PWR Cord                                 | 1       | 2             | No                | AC PWR Outlet                   |  |
| 3                                                       | A Back, AC Input                                    | AC PWR Cord                                 | 1       | 2             | No                | AC PWR Outlet                   |  |
| 4                                                       | A Front, IF 1                                       | Coax                                        | 1       | 30            | Yes               | C, IF Port                      |  |
| 5                                                       | C, Antenna Port                                     | Coax                                        | 1       | 5             | Yes               | Е                               |  |
| 6                                                       | A Back, Up-Link 2                                   | Coax                                        | 1       | 1             | Yes               | F                               |  |
| Frequency Stability & Conducted Measurement (Down-Link) |                                                     |                                             |         |               |                   |                                 |  |
| 1                                                       | A Front, Optic Tx Rx                                | Single Mode Optic                           | 2       | 2             | No                | B, Port 1 Rx Tx                 |  |
| 2                                                       | B Back, AC Input                                    | AC PWR Cord                                 | 1       | 2             | No                | AC PWR Outlet                   |  |
| 3                                                       | A Back, AC Input                                    | AC PWR Cord                                 | 1       | 2             | No                | AC PWR Outlet                   |  |
| 4                                                       | A Front, IF 1                                       | Coax                                        | 1       | 30            | Yes               | C, IF Port                      |  |
| 5                                                       | A Back, Down-Link 2                                 | Coax                                        | 1       | 5             | Yes               | E                               |  |
| 6                                                       | C, Antenna Port                                     | Coax                                        | 1       | 1             | Yes               | F                               |  |

| Table 4. | Ports | and | Cabling | Information |
|----------|-------|-----|---------|-------------|
|----------|-------|-----|---------|-------------|



#### H. Mode of Operation

Uplink mode: Simulation signal is being generated from Signal Generator then feed into Antenna port of RAF. Output is monitored by Spectrum analyzer through Hub's uplink port.

Downlink Mode: Simulation signal is being generated from Signal Generator then feed into Downlink port of hub. Output is monitored by Spectrum analyzer through RAU Antenna port.

#### I. Method of Monitoring EUT Operation

A Spectrum Analyzer and a Power Meter was use to monitor the EUT's transmitter channel and power output.

#### J. Modifications

#### a.) Modifications to EUT

No modifications were made to the EUT.

#### b.) Modifications to Test Standard

No modifications were made to the test standard.

#### K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to LGC Wireless upon completion of testing.



Electromagnetic Compatibility Unintentional Radiators CFR Title 47 Part 24 Subpart E

# III. Electromagnetic Compatibility Criteria for Unintentional Radiators



#### **Electromagnetic Compatibility Criteria for Unintentional Radiators**

#### § 15.107(a) Conducted Emissions Limits

**Test Requirement(s): 15.107 (a)** "Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 5. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals."

**15.107** (b) "For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 5. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals. The lower limit applies at the band edges."

| Frequency range                  | 15.107(b), Cla<br>(dBµ      | uss A Limits<br>(V) | 15.107(a), Class B Limits<br>(dBµV) |         |  |
|----------------------------------|-----------------------------|---------------------|-------------------------------------|---------|--|
| (MHZ)                            | Quasi-Peak                  | Average             | Quasi-Peak                          | Average |  |
| 0.15-0.5                         | 79                          | 66                  | 66 - 56                             | 56 - 46 |  |
| 0.5 - 5.0                        | 73                          | 60                  | 56                                  | 46      |  |
| 5.0 - 30                         | 73                          | 60                  | 60                                  | 50      |  |
| Note 1 — The lower limit shall a | pply at the transition from | equencies.          |                                     |         |  |

# Table 5. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Section 15.107(a) (b)

- **Test Procedures:** The EUT was placed on a 0.8m-high wooden table inside a semi-anechoic chamber. The method of testing, test conditions, and test procedures of ANSI C63.4 were used. The EUT was powered through a  $50\Omega/50\mu$ H LISN. An EMI receiver, connected to the measurement port of the LISN, scanned the frequency range from 150 kHz to 30 MHz in order to find the peak conducted emissions. All peak emissions within 6 dB of the limit were measured using a quasipeak and/or average detector as appropriate.
- **Test Results:** The EUT was found compliant with the Class A requirement(s) of this section.
- **Test Engineer(s):** Elijah Garcia

Test Date(s): June 7, 2006



0.745

26.11

PASS

60

-43.48

|                |                                        |                       |               | -                 |                                         |                        |                |                    |
|----------------|----------------------------------------|-----------------------|---------------|-------------------|-----------------------------------------|------------------------|----------------|--------------------|
| FREQ.<br>(MHz) | Corrected<br>Amplitude<br>(dBuV)<br>QP | Limit<br>(dBuV)<br>QP | Results<br>QP | Margin<br>(dB) QP | Corrected<br>Amplitude<br>(dBuV)<br>AVG | Limit<br>(dBuV)<br>AVG | Results<br>AVG | Margin<br>(dB) AVG |
| 0.209          | 31.83                                  | 79                    | PASS          | -47.17            | 27.11                                   | 66                     | PASS           | -38.89             |
| 0.412          | 51.83                                  | 79                    | PASS          | -27.17            | 41.33                                   | 66                     | PASS           | -24.67             |

## **Conducted Emissions - Voltage, AC Power, Top Unit**

73

Table 6. Conducted Emissions - Voltage, AC Power, Phase Line 120 VAC, Top Unit

PASS

| FREQ.<br>(MHz) | Corrected<br>Amplitude<br>(dBuV) QP | Limit<br>(dBuV)<br>QP | Results<br>QP | Margin<br>(dB) QP | Corrected<br>Amplitude<br>(dBuV)<br>AVG | Limit<br>(dBuV)<br>AVG | Results<br>AVG | Margin<br>(dB) AVG |
|----------------|-------------------------------------|-----------------------|---------------|-------------------|-----------------------------------------|------------------------|----------------|--------------------|
| 0.165          | 29.58                               | 79                    | PASS          | -49.42            | 17.81                                   | 66                     | PASS           | -48.19             |
| 0.208          | 28.82                               | 79                    | PASS          | -50.18            | 24.4                                    | 66                     | PASS           | -41.6              |
| 0.414          | 51.15                               | 79                    | PASS          | -27.85            | 41.2                                    | 66                     | PASS           | -24.8              |

-46.89

16.52

Table 7. Conducted Emissions - Voltage, AC Power, Neutral Line 120 VAC, Top Unit







Conducted Emission, Phase Line Plots, Top Unit



Conducted Emission, Neutral Line Plots, Top Unit



| <b>Conducted Emissions - V</b> | Voltage, AC Power, | <b>Expansion Hub</b> |
|--------------------------------|--------------------|----------------------|
|--------------------------------|--------------------|----------------------|

| FREQ.<br>(MHz) | Corrected<br>Amplitude<br>(dBuV)<br>QP | Limit<br>(dBuV)<br>QP | Results<br>QP | Margin<br>(dB) QP | Corrected<br>Amplitude<br>(dBuV)<br>AVG | Limit<br>(dBuV)<br>AVG | Results<br>AVG | Margin<br>(dB) AVG |
|----------------|----------------------------------------|-----------------------|---------------|-------------------|-----------------------------------------|------------------------|----------------|--------------------|
| 0.2            | 31.71                                  | 79                    | PASS          | -47.29            | 28.57                                   | 66                     | PASS           | -37.43             |
| 0.271          | 31.48                                  | 79                    | PASS          | -47.52            | 31.31                                   | 66                     | PASS           | -34.69             |
| 0.677          | 17.17                                  | 73                    | PASS          | -55.83            | 15.62                                   | 60                     | PASS           | -44.38             |

 Table 8. Conducted Emissions - Voltage, AC Power, Phase Line 120 VAC, Expansion Hub

| FREQ.<br>(MHz) | Corrected<br>Amplitude<br>(dBuV) QP | Limit<br>(dBuV)<br>QP | ResultsQ<br>P | Margin<br>(dB) QP | Corrected<br>Amplitude<br>(dBuV)<br>AVG | Limit<br>(dBuV)<br>AVG | ResultsA<br>VG | Margin<br>(dB) AVG |
|----------------|-------------------------------------|-----------------------|---------------|-------------------|-----------------------------------------|------------------------|----------------|--------------------|
| 0.202          | 29.77                               | 79                    | PASS          | -49.23            | 24.1                                    | 66                     | PASS           | -41.9              |
| 0.271          | 26.99                               | 79                    | PASS          | -52.01            | 25.43                                   | 66                     | PASS           | -40.57             |
| 0.407          | 16.51                               | 79                    | PASS          | -62.49            | 15.33                                   | 66                     | PASS           | -50.67             |

Table 9. Conducted Emissions - Voltage, AC Power, Neutral Line 120 VAC, Expansion Hub







Conducted Emission, Phase Line Plots, Expansion Hub



Conducted Emission, Neutral Line Plots, Expansion Hub



# **Conducted Emission Limits Test Setup**



Photograph 2. Conducted Emissions Test Setup, Front View



Photograph 3. Conducted Emissions Test Setup, Back View



#### **Electromagnetic Compatibility Criteria for Unintentional Radiators**

#### § 15.109(a) Radiated Emissions Limits

**Test Requirement(s):** 15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the Class B limits expressed in Table 10.

**15.109** (b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the Class A limits expressed in Table 10.

|                 | Field Strength (dBµV/m)                    |                                          |  |  |  |  |  |
|-----------------|--------------------------------------------|------------------------------------------|--|--|--|--|--|
| Frequency (MHz) | §15.109 (b), Class A Limit<br>(dBμV) @ 10m | §15.109 (a),Class B Limit<br>(dBμV) @ 3m |  |  |  |  |  |
| 30 - 88         | 39.00                                      | 40.00                                    |  |  |  |  |  |
| 88 - 216        | 43.50                                      | 43.50                                    |  |  |  |  |  |
| 216 - 960       | 46.40                                      | 46.00                                    |  |  |  |  |  |
| Above 960       | 49.50                                      | 54.00                                    |  |  |  |  |  |

 Table 10. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)

**Test Procedures:** The EUT was placed on a 0.8m-high wooden table inside a semi-anechoic chamber. The method of testing and test conditions of ANSI C63.4 were used. An antenna was located 3 m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. Unless otherwise specified, measurements were made using a quasi-peak detector with a 120 kHz bandwidth. (Emissions measured at 3m were normalized using an inverse proportionality factor of 20dB per decade for comparison to the 10 m limit.) Test Results: The EUT was found Compliant with the Class A requirement(s) of this section. Test Engineer(s): Elijah Garcia Test Date(s): June 7, 2006



### Radiated Emissions Limits Test Results, 30 MHz to 1 GHz, Class A

| Frequency<br>(MHz) | Antenna<br>Polarity<br>(H/V) | EUT<br>Azimuth<br>(Degrees) | Antenna<br>Height<br>(m) | Uncorrected<br>Amplitude<br>QP Detector<br>(dBuv) | Antenna<br>Correction<br>Factor<br>(dB/m) (+) | Cable<br>Loss<br>(dB) (+) | Corrected<br>Amplitude<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------------------------|-----------------------------|--------------------------|---------------------------------------------------|-----------------------------------------------|---------------------------|------------------------------------|-------------------|----------------|
| 32.24              | V                            | 360                         | 1                        | -4.82                                             | 15.90                                         | 0.94                      | 12.03                              | 39.00             | -26.97         |
| 33.1               | Н                            | 0                           | 1.45                     | -3.20                                             | 16.65                                         | 0.95                      | 14.40                              | 39.00             | -24.60         |
| 51.92              | V                            | 290                         | 1.63                     | 15.25                                             | 7.02                                          | 1.18                      | 23.44                              | 39.00             | -15.56         |
| 69.88              | V                            | 211                         | 1                        | 11.62                                             | 5.48                                          | 1.38                      | 18.48                              | 39.00             | -20.53         |
| 765.04             | V                            | 247                         | 1.94                     | 12.24                                             | 19.95                                         | 5.27                      | 37.46                              | 46.40             | -8.94          |
| 826.04             | V                            | 219                         | 1                        | 7.63                                              | 19.72                                         | 5.58                      | 32.92                              | 46.40             | -13.48         |

Table 11. Radiated Emissions Limits Test Results, 30 MHz to 1GHz, Class A



Radiated Emission Limits Test Results, 30 MHz to 1 GHz, Class A



#### Radiated Emissions Limits Test Results, 1 GHz to 10 GHz, Class A

| Frequency<br>(GHz) | Azimuth<br>(Degrees) | Antenna<br>Polarity<br>(H/V) | Height<br>(m) | Raw<br>Amp.<br>@<br>3m(Avg) | P.Amp<br>(dB) | Ant.Cor.<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Dist.Cor<br>Factor<br>(dB) | EUT Field<br>Strength<br>Final<br>Amp.<br>(dBuV/m) | Limit per<br>FCC pt 15<br>@ 3m<br>(dBuV/m) | Delta<br>(dB) |
|--------------------|----------------------|------------------------------|---------------|-----------------------------|---------------|------------------------------|-----------------------|----------------------------|----------------------------------------------------|--------------------------------------------|---------------|
| 1.65               | 201                  | Н                            | 1             | 53.82                       | 35.21         | 25.90                        | 2.75                  | 10.46                      | 36.80                                              | 49.5                                       | -12.70        |
| 1.65               | 358                  | V                            | 1.02          | 53.23                       | 35.21         | 25.81                        | 2.75                  | 10.46                      | 36.13                                              | 49.5                                       | -13.37        |
| 1.72               | 180                  | V                            | 2.7           | 50.02                       | 35.23         | 26.14                        | 2.85                  | 10.46                      | 33.32                                              | 49.5                                       | -16.18        |
| 2                  | 275                  | Н                            | 1.3           | 62.65                       | 35.23         | 26.25                        | 2.86                  | 10.46                      | 46.07                                              | 49.5                                       | -3.43         |
| 3.177              | 357                  | Н                            | 1.05          | 56.04                       | 35.52         | 30.61                        | 4.17                  | 10.46                      | 44.84                                              | 49.5                                       | -4.66         |
| *3.177             | 2                    | V                            | 1.02          | 59.62                       | 35.52         | 30.42                        | 4.17                  | 10.46                      | 48.23                                              | 49.5                                       | -1.27         |
| 3.45               | 300                  | Н                            | 1.42          | 55.04                       | 35.33         | 31.18                        | 4.36                  | 10.46                      | 44.78                                              | 49.5                                       | -4.72         |
| 3.45               | 192                  | V                            | 1.5           | 55.1                        | 35.33         | 30.97                        | 4.36                  | 10.46                      | 44.64                                              | 49.5                                       | -4.86         |
| 3.825              | 200                  | V                            | 1             | 43.04                       | 35.15         | 32.13                        | 4.61                  | 10.46                      | 34.17                                              | 49.5                                       | -15.33        |

#### Table 12. Radiated Emissions Limits Test Results, 1 GHz to 10 GHz, Class A

Note: \* - At this frequency, the measured electric-field strength exhibits a margin of compliance that is less than 3 dB below the specification limit. We recommend that every emission measured, have at least a 3 dB margin to allow for deviations in the emission characteristics that may occur during the production process.



Electromagnetic Compatibility Unintentional Radiators CFR Title 47 Part 24 Subpart E

## Radiated Emission Limits Test Setup, 30 MHz to 1 GHz



Photograph 4. Radiated Emission Limits Test Setup, 30 MHz to 1 GHz, Front View



Photograph 5. Radiated Emission Limits Test Setup, 30 MHz to 1 GHz, Back View



Electromagnetic Compatibility Unintentional Radiators CFR Title 47 Part 24 Subpart E

## Radiated Emission Limits Test Setup, 1 GHz to 10 GHz



Photograph 6. Radiated Emission Limits Test Setup, 1 GHz to 10 GHz, Front View



Photograph 7. Radiated Emission Limits Test Setup, 1 GHz to 10 GHz, Back View



Electromagnetic Compatibility Intentional Radiators CFR Title 47 Part 24 Subpart E

# IV. Electromagnetic Compatibility Criteria for Intentional Radiators



#### **Electromagnetic Compatibility Criteria for Intentional Radiators**

#### § 2.1046 RF Power Output

#### Test Requirements: § 2.1046 Measurements required: RF power output:

§ 2.1046 (a): For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

**§ 2.1046 (b):** For single sideband, independent sideband, and single channel, controlled carrier radiotelephone transmitters, the procedure specified in paragraph (a) of this section shall be employed and, in addition, the transmitter shall be modulated during the test as specified and as applicable in § 2.1046 (b) (1-5). In all tests, the input level of the modulating signal shall be such as to develop rated peak envelope power or carrier power, as appropriate, for the transmitter.

**§ 2.1046 (c):** For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

#### § 24.232 Power and antenna height limits.

**§ 24.232 (b):** Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

**Test Procedures:** As required by 47 CFR 2.1046, RF power output measurements were made at the RF output terminals using an attenuator and spectrum analyzer or power meter. This test was performed in all applicable modulations.



#### **Test Results:**

The EUT complies with the requirements of this section. The EUT conducted power does not exceed limit at the carrier frequency.

| Down Link  |                                                                                            |       |       |       |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------|-------|-------|-------|--|--|--|--|--|
| Modulation | ion Frequency Input Power Peak Output Modulated Output (MHz) (dBm) Power (dBm) Power (dBm) |       |       |       |  |  |  |  |  |
| GSM        | 1930.0                                                                                     | 10dBm | 25.22 | 25.08 |  |  |  |  |  |
| GSM        | 1962.5                                                                                     | 10dBm | 25.20 | 25.09 |  |  |  |  |  |
| GSM        | 1995.0                                                                                     | 10dBm | 25.12 | 24.99 |  |  |  |  |  |

| Down Link  |                    |                      |                            |                                 |  |  |  |  |
|------------|--------------------|----------------------|----------------------------|---------------------------------|--|--|--|--|
| Modulation | Frequency<br>(MHz) | Input Power<br>(dBm) | Peak Output<br>Power (dBm) | Modulated Output<br>Power (dBm) |  |  |  |  |
| CDMA       | 1930.0             | 10dBm                | 26.29                      | 23.46                           |  |  |  |  |
| CDMA       | 1962.5             | 10dBm                | 28.30                      | 25.05                           |  |  |  |  |
| CDMA       | 1995.0             | 10dBm                | 26.07                      | 23.92                           |  |  |  |  |

| Down Link  |                    |                      |                            |                                 |
|------------|--------------------|----------------------|----------------------------|---------------------------------|
| Modulation | Frequency<br>(MHz) | Input Power<br>(dBm) | Peak Output<br>Power (dBm) | Modulated Output<br>Power (dBm) |
| TDMA       | 1930.0             | 10dBm                | 26.03                      | 25.00                           |
| TDMA       | 1962.5             | 10dBm                | 27.15                      | 25.05                           |
| TDMA       | 1995.0             | 10dBm                | 25.90                      | 25.03                           |



| Uplink     |                    |                      |                            |                                 |
|------------|--------------------|----------------------|----------------------------|---------------------------------|
| Modulation | Frequency<br>(MHz) | Input Power<br>(dBm) | Peak Output<br>Power (dBm) | Modulated Output<br>Power (dBm) |
| GSM        | 1850.0             | -33dBm               | -13.97                     | -22.05                          |
| GSM        | 1882.5             | -33dBm               | -13.13                     | -19.74                          |
| GSM        | 1915.0             | -33dBm               | -14.03                     | -22.33                          |

| Uplink     |                    |                      |                            |                                 |
|------------|--------------------|----------------------|----------------------------|---------------------------------|
| Modulation | Frequency<br>(MHz) | Input Power<br>(dBm) | Peak Output<br>Power (dBm) | Modulated Output<br>Power (dBm) |
| CDMA       | 1850.0             | -33dBm               | -14.17                     | -23.29                          |
| CDMA       | 1882.5             | -33dBm               | -13.26                     | -21.55                          |
| CDMA       | 1915.0             | -33dBm               | -13.70                     | -22.26                          |

| Uplink     |                    |                      |                            |                                 |
|------------|--------------------|----------------------|----------------------------|---------------------------------|
| Modulation | Frequency<br>(MHz) | Input Power<br>(dBm) | Peak Output<br>Power (dBm) | Modulated Output<br>Power (dBm) |
| TDMA       | 1850.0             | -33dBm               | -13.77                     | -20.70                          |
| TDMA       | 1882.5             | -33dBm               | -12.92                     | -18.01                          |
| TDMA       | 1915.0             | -33dBm               | -14.77                     | -22.40                          |

Test Engineer(s): Shawn McMillen

Test Date(s): June 9, 2006



Block Diagram 1. RF Power Output Test Setup



# **Electromagnetic Compatibility Criteria for Intentional Radiators**

## § 2.1047 Modulation Characteristics

| Test Requirement(s): | § 2.1047 Measurements required: Modulation characteristics                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                      | <b>§ 2.1047 (a):</b> Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted. |  |  |  |
| Test Procedures:     | This EUT does not support the ability to modulate voice.                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Test Results:        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Test Engineer(s):    | Shawn McMillen                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Test Date(s):        | June 8, 2006                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |



# **Electromagnetic Compatibility Criteria for Intentional Radiators**

## § 2.1049 Occupied Bandwidth

| Test Requirement(s): | § 2.1049 Measurements required: Occupied bandwidth: The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the specified conditions of § 2.1049 (a) through (i) as applicable. |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Procedures:     | As required by 47 CFR 2.1049, <i>occupied bandwidth measurements</i> were made with a Spectrum Analyzer connected to the RF ports for both Uplink and Downlink.                                                                                                                                                                                                                      |  |  |  |
|                      | The modulation characteristics of signal generator's carrier was measured first at a maximum RF level prescribed by the OEM. The signal generator was then connected to either the Uplink or Downlink input at the appropriate RF level. The resulting modulated signal through the EUT was measured and compared against the original signal.                                       |  |  |  |
| Test Results:        | The EUT complies with the requirements of this section.                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Test Engineer(s):    | Shawn McMillen                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Test Date(s):        | June 9, 2006                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |





Plot 1. CDMA Downlink Input Low CH









#### Plot 3. CDMA Downlink Input Mid CH









#### Plot 5. CDMA Downlink Input Hi CH









#### Plot 7. CDMA Uplink Input Low CH









#### Plot 9. CDMA Uplink Input Mid CH









#### Plot 11. CDMA Uplink Input Hi CH



