

## **TE Connectivity / ADC Telecommunications**

Spectrum 2300 MHz WCS Secondary RAU FCC 27:2015

Report # TECO0024



NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety





### Last Date of Test: February 25, 2015 TE Connectivity / ADC Telecommunications Model: Spectrum 2300 MHz WCS Secondary RAU

## **Radio Equipment Testing**

#### Standards

| Specification           | Method                  |
|-------------------------|-------------------------|
| FCC 27:2015, FCC 2.1046 |                         |
| FCC 27:2015, FCC 2.1049 |                         |
| FCC 27:2015, FCC 2.1051 | ANSI/TIA/EIA-603-C-2004 |
| FCC 27:2015, FCC 2.1053 |                         |
| FCC 27:2015, FCC 2.1055 |                         |

### Results

| Test Description                           | Applied | Results | Comments |
|--------------------------------------------|---------|---------|----------|
| Equivalent Isotropic Radiated Power (EIRP) | Yes     | Pass    |          |
| Emissions Bandwidth                        | Yes     | Pass    |          |
| Spurious Conducted Emissions               | Yes     | Pass    |          |
| Band Edge Compliance                       | Yes     | Pass    |          |
| Intermodulation                            | Yes     | Pass    |          |
| Frequency Stability                        | Yes     | Pass    |          |
| Field Strength of Spurious Emissions       | Yes     | Pass    |          |
| Peak to Average Ratio                      | Yes     | Pass    |          |

### **Deviations From Test Standards**

None

### Approved By:

Tim O'Shea, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

# **REVISION HISTORY**



| Revision Desc<br>Number |      | Description | Date | Page Number |
|-------------------------|------|-------------|------|-------------|
| 00                      | None |             |      |             |

# ACCREDITATIONS AND AUTHORIZATIONS



### **United States**

**FCC** - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

#### Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

#### European Union

**European Commission** – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

### Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

#### Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

#### Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

#### Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

#### Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

#### Israel

**MOC** – Recognized by MOC as a CAB for the acceptance of test data.

### Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

#### Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

### SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

# **MEASUREMENT UNCERTAINTY**

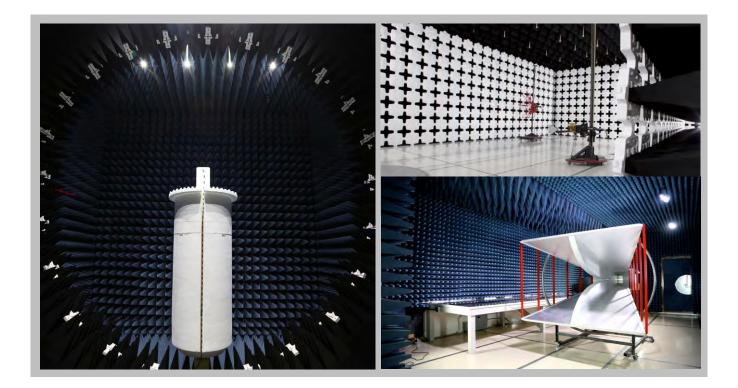


### **Measurement Uncertainty**

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error gualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


| Test                                  | + MU    | - MU     |
|---------------------------------------|---------|----------|
| Frequency Accuracy (Hz)               | 0.0007% | -0.0007% |
| Amplitude Accuracy (dB)               | 1.2 dB  | -1.2 dB  |
| Conducted Power (dB)                  | 0.3 dB  | -0.3 dB  |
| Radiated Power via Substitution (dB)  | 0.7 dB  | -0.7 dB  |
| Temperature (degrees C)               | 0.7°C   | -0.7°C   |
| Humidity (% RH)                       | 2.5% RH | -2.5% RH |
| Voltage (AC)                          | 1.0%    | -1.0%    |
| Voltage (DC)                          | 0.7%    | -0.7%    |
| Field Strength (dB)                   | 4.7 dB  | -4.7 dB  |
| AC Powerline Conducted Emissions (dB) | 2.9 dB  | -2.9 dB  |

# FACILITIES





| California<br>Labs OC01-13<br>41 Tesla<br>Irvine, CA 92618<br>(949) 861-8918 | Minnesota<br>Labs MN01-08, MN10<br>9349 W Broadway Ave.<br>Brooklyn Park, MN 55445<br>(612)-638-5136 | New York<br>Labs NY01-04<br>4939 Jordan Rd.<br>Elbridge, NY 13060<br>(315) 554-8214 | Oregon<br>Labs EV01-12<br>22975 NW Evergreen Pkwy<br>Hillsboro, OR 97124<br>(503) 844-4066 | <b>Texas</b><br>Labs TX01-09<br>3801 E Plano Pkwy<br>Plano, TX 75074<br>(469) 304-5255 | Washington<br>Labs NC01-05<br>19201 120 <sup>th</sup> Ave NE<br>Bothell, WA 9801<br>(425)984-6600 |  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
|                                                                              |                                                                                                      | NV                                                                                  | 'LAP                                                                                       |                                                                                        |                                                                                                   |  |  |
| NVLAP Lab Code: 200676-0                                                     | NVLAP Lab Code: 200881-0                                                                             | NVLAP Lab Code: 200761-0                                                            | NVLAP Lab Code: 200630-0                                                                   | NVLAP Lab Code:201049-0                                                                | NVLAP Lab Code: 200629-0                                                                          |  |  |
|                                                                              | Industry Canada                                                                                      |                                                                                     |                                                                                            |                                                                                        |                                                                                                   |  |  |
| 2834B-1, 2834B-3                                                             | 2834E-1                                                                                              | N/A                                                                                 | 2834D-1, 2834D-2                                                                           | 2834G-1                                                                                | 2834F-1                                                                                           |  |  |
|                                                                              |                                                                                                      | BS                                                                                  | MI                                                                                         |                                                                                        |                                                                                                   |  |  |
| SL2-IN-E-1154R                                                               | SL2-IN-E-1152R                                                                                       | N/A                                                                                 | SL2-IN-E-1017                                                                              | SL2-IN-E-1158R                                                                         | SL2-IN-E-1153R                                                                                    |  |  |
| VCCI                                                                         |                                                                                                      |                                                                                     |                                                                                            |                                                                                        |                                                                                                   |  |  |
| A-0029                                                                       | A-0109                                                                                               | N/A                                                                                 | A-0108                                                                                     | A-0201                                                                                 | A-0110                                                                                            |  |  |
| Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA     |                                                                                                      |                                                                                     |                                                                                            |                                                                                        |                                                                                                   |  |  |
| US0158                                                                       | US0175                                                                                               | N/A                                                                                 | US0017                                                                                     | US0191                                                                                 | US0157                                                                                            |  |  |
|                                                                              |                                                                                                      |                                                                                     |                                                                                            |                                                                                        |                                                                                                   |  |  |



# **PRODUCT DESCRIPTION**



### **Client and Equipment Under Test (EUT) Information**

| Company Name:            | TE Connectivity / ADC Telecommunications |  |  |  |
|--------------------------|------------------------------------------|--|--|--|
| Address:                 | 1187 Park Place                          |  |  |  |
| City, State, Zip:        | Shakopee, MN 55379                       |  |  |  |
| Test Requested By:       | Joshua Wittman                           |  |  |  |
| Model:                   | Spectrum 2300 MHz WCS Secondary RAU      |  |  |  |
| First Date of Test:      | February 12, 2015                        |  |  |  |
| Last Date of Test:       | February 25, 2015                        |  |  |  |
| Receipt Date of Samples: | February 12, 2015                        |  |  |  |
| Equipment Design Stage:  | Production                               |  |  |  |
| Equipment Condition:     | No Damage                                |  |  |  |

### Information Provided by the Party Requesting the Test

### Functional Description of the EUT:

Industrial Signal Booster.

### Testing Objective:

To demonstrate compliance to FCC Part 27.

# CONFIGURATIONS



### Configuration TECO0024-1

| Version     |
|-------------|
| 8.1.9.1dev5 |
|             |

| EUT                                    |                                             |                   |                  |
|----------------------------------------|---------------------------------------------|-------------------|------------------|
| Description                            | Manufacturer                                | Model/Part Number | Serial<br>Number |
| Spectrum 2300 MHz WCS<br>Secondary RAU | TE Connectivity / ADC<br>Telecommunications | SP-S3-2323-12-HP  | GR223E8E         |

| Peripherals in test setup boundary |                                             |                                                           |                                 |  |  |  |  |
|------------------------------------|---------------------------------------------|-----------------------------------------------------------|---------------------------------|--|--|--|--|
| Description                        | Manufacturer                                | Model/Part Number                                         | Serial Number                   |  |  |  |  |
| RF Signal Generator                | Aeroflex                                    | IFR 3413                                                  | 341006/252                      |  |  |  |  |
| Laptop                             | Lenovo                                      | T400                                                      | L3-A9994 08/09                  |  |  |  |  |
| Laptop Supply                      | Lenovo                                      | 42T4418                                                   | 11S42T4418Z1ZGWG19659N          |  |  |  |  |
| Power Supply                       | Xantrex                                     | HPD 60-5                                                  | MC27884                         |  |  |  |  |
| IO Control Device                  | TE Connectivity / ADC<br>Telecommunications | Various                                                   | None                            |  |  |  |  |
| IO Control Device                  | TE Connectivity / ADC<br>Telecommunications | Various                                                   | None                            |  |  |  |  |
| 54V Power Supply                   | TE Connectivity / ADC<br>Telecommunications | SPT-2400 SCDC-1                                           | 6211-00006                      |  |  |  |  |
| Power to Coax<br>Converter         | TE Connectivity / ADC<br>Telecommunications | SPT-0000000REV-1,<br>SPT-00000MICRO-1,<br>SPT0000000FWD-1 | MR2217AS, MR2250C2,<br>MR2266Y9 |  |  |  |  |
| Main Controller                    | TE Connectivity / ADC<br>Telecommunications | SPT-M3-8519-11-HP                                         | MR2289F3                        |  |  |  |  |
| Attenuator                         | Not Listed                                  | None                                                      | A1164                           |  |  |  |  |
| Attenuator                         | Not Listed                                  | None                                                      | A1153                           |  |  |  |  |

| Cables                          |        |               |         |                         |                                        |
|---------------------------------|--------|---------------|---------|-------------------------|----------------------------------------|
| Cable Type                      | Shield | Length<br>(m) | Ferrite | Connection 1            | Connection 2                           |
| AC Power                        | No     | 1.8m          | No      | RF Signal Generator     | AC Mains                               |
| AC Power x2                     | No     | 1.8m          | No      | 54V Power Supply        | AC Mains                               |
| AC Power                        | No     | 1.8m          | No      | Power Supply            | AC Mains                               |
| AC Power                        | No     | 1.8m          | No      | Laptop Supply           | AC Mains                               |
| DC Power                        | No     | 1.8m          | Yes     | Laptop                  | Laptop Supply                          |
| DC Power                        | No     | 1.8m          | No      | IO Control Device       | Power Supply                           |
| Ethernet                        | No     | 1.8m          | No      | IO Control Device       | Laptop                                 |
| Coax x3                         | Yes    | 0.3m          | No      | IO Control Device       | Power to Coax Converter                |
| Coax x2                         | Yes    | 2.0m          | No      | Power to Coax Converter | Main Controller                        |
| Coax x2 to Coax<br>via combiner | Yes    | 3.0m          | No      | IO Control Device       | RF Signal Generator                    |
| Fiber                           | No     | 1.8m          | No      | IO Control Device       | IO Control Device                      |
| DC Power                        | No     | >3.0m         | Yes     | 54V Power Supply        | Power to Coax Converter                |
| Coax x2                         | Yes    | 3.05m         | No      | Main Controller         | Spectrum 2300 MHz<br>WCS Secondary RAU |

# CONFIGURATIONS



### Configuration TECO0024-2

| Software/Firmware Running during test |             |
|---------------------------------------|-------------|
| Description                           | Version     |
| Remote Firmware                       | 8.1.9.1dev5 |

| EUT                                    |                                             |                   |                  |
|----------------------------------------|---------------------------------------------|-------------------|------------------|
| Description                            | Manufacturer                                | Model/Part Number | Serial<br>Number |
| Spectrum 2300 MHz WCS<br>Secondary RAU | TE Connectivity / ADC<br>Telecommunications | SP-S3-2323-12-HP  | GR223E8E         |

| Peripherals in test se     | Peripherals in test setup boundary          |                                                           |                                 |  |  |  |  |  |  |
|----------------------------|---------------------------------------------|-----------------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| Description                | Manufacturer                                | Model/Part Number                                         | Serial Number                   |  |  |  |  |  |  |
| <b>RF Signal Generator</b> | Aeroflex                                    | IFR 3413                                                  | 341006/252                      |  |  |  |  |  |  |
| Laptop                     | Lenovo                                      | T400                                                      | L3-A9994 08/09                  |  |  |  |  |  |  |
| Laptop Supply              | Lenovo                                      | 42T4418                                                   | 11S42T4418Z1ZGWG19659N          |  |  |  |  |  |  |
| Power Supply               | Xantrex                                     | HPD 60-5                                                  | MC27884                         |  |  |  |  |  |  |
| IO Control Device          | TE Connectivity / ADC<br>Telecommunications | Various                                                   | None                            |  |  |  |  |  |  |
| IO Control Device          | TE Connectivity / ADC<br>Telecommunications | Various                                                   | None                            |  |  |  |  |  |  |
| 54V Power Supply           | TE Connectivity / ADC<br>Telecommunications | SPT-2400 SCDC-1                                           | 6211-00006                      |  |  |  |  |  |  |
| Power to Coax<br>Converter | TE Connectivity / ADC<br>Telecommunications | SPT-0000000REV-1,<br>SPT-00000MICRO-1,<br>SPT0000000FWD-1 | MR2217AS, MR2250C2,<br>MR2266Y9 |  |  |  |  |  |  |
| Main Controller            | TE Connectivity / ADC<br>Telecommunications | SPT-M3-8519-11-HP                                         | MR2289F3                        |  |  |  |  |  |  |
| Attenuator                 | Not Listed                                  | None                                                      | A1164                           |  |  |  |  |  |  |
| Attenuator                 | Not Listed                                  | None                                                      | A1153                           |  |  |  |  |  |  |

| Cables                          |        |               |         |                         |                                        |  |  |  |  |
|---------------------------------|--------|---------------|---------|-------------------------|----------------------------------------|--|--|--|--|
| Cable Type                      | Shield | Length<br>(m) | Ferrite | Connection 1            | Connection 2                           |  |  |  |  |
| AC Power                        | No     | 1.8m          | No      | RF Signal Generator     | AC Mains                               |  |  |  |  |
| AC Power x2                     | No     | 1.8m          | No      | 54V Power Supply        | AC Mains                               |  |  |  |  |
| AC Power                        | No     | 1.8m          | No      | Power Supply            | AC Mains                               |  |  |  |  |
| AC Power                        | No     | 1.8m          | No      | Laptop Supply           | AC Mains                               |  |  |  |  |
| DC Power                        | No     | 1.8m          | Yes     | Laptop                  | Laptop Supply                          |  |  |  |  |
| DC Power                        | No     | 1.8m          | No      | IO Control Device       | Power Supply                           |  |  |  |  |
| Ethernet                        | No     | 1.8m          | No      | IO Control Device       | Laptop                                 |  |  |  |  |
| Coax x3                         | Yes    | 0.3m          | No      | IO Control Device       | Power to Coax Converter                |  |  |  |  |
| Coax x2                         | Yes    | 2.0m          | No      | Power to Coax Converter | Main Controller                        |  |  |  |  |
| Coax x2                         | Yes    | >3.0m         | No      | Main Controller         | Spectrum 2300 MHz WCS<br>Secondary RAU |  |  |  |  |
| Coax x2 to Coax<br>via combiner | Yes    | 3.0m          | No      | IO Control Device       | RF Signal Generator                    |  |  |  |  |
| Fiber                           | No     | 1.8m          | No      | IO Control Device       | IO Control Device                      |  |  |  |  |
| DC Power                        | No     | >3.0m         | Yes     | 54V Power Supply        | Power to Coax Converter                |  |  |  |  |

# **MODIFICATIONS**



### **Equipment Modifications**

| Item | Date      | Test                                                | Modification                               | Note                                                                      | Disposition of EUT                                      |
|------|-----------|-----------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|
| 1    | 2/12/2015 | Frequency<br>Stability                              | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 2    | 2/18/2015 | Band Edge<br>Compliance                             | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 3    | 2/18/2015 | Equivalent<br>Isotropic<br>Radiated<br>Power (EIRP) | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 4    | 2/19/2015 | Spurious<br>Conducted<br>Emissions                  | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 5    | 2/19/2015 | Peak to<br>Average Ratio                            | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 6    | 2/19/2015 | Emissions<br>Bandwidth                              | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 7    | 2/19/2015 | Intermodulation                                     | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 8    | 2/25/2015 | Field Strength<br>of Spurious<br>Emissions          | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | Scheduled testing was completed.                        |

# EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

|                              |                    |                 |     |            | Interval |
|------------------------------|--------------------|-----------------|-----|------------|----------|
| Description                  | Manufacturer       | Model           | ID  | Last Cal.  | (mo)     |
| MN08 Direct Connect Cable    | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 10/2/2014  | 12       |
| 40 GHz DC Block              | Fairview Microwave | SD3379          | AMI | 10/2/2014  | 12       |
| Signal Generator MXG         | Agilent            | N5183A          | TIK | 10/17/2014 | 36       |
| EMPower USB RF Power Sensors | ETS                | 7002-006        | SRA | 4/17/2014  | 12       |
| EMPower USB RF Power Sensor  | ETS                | 7002-006        | SRE | 8/8/2014   | 12       |

#### **TEST DESCRIPTION**

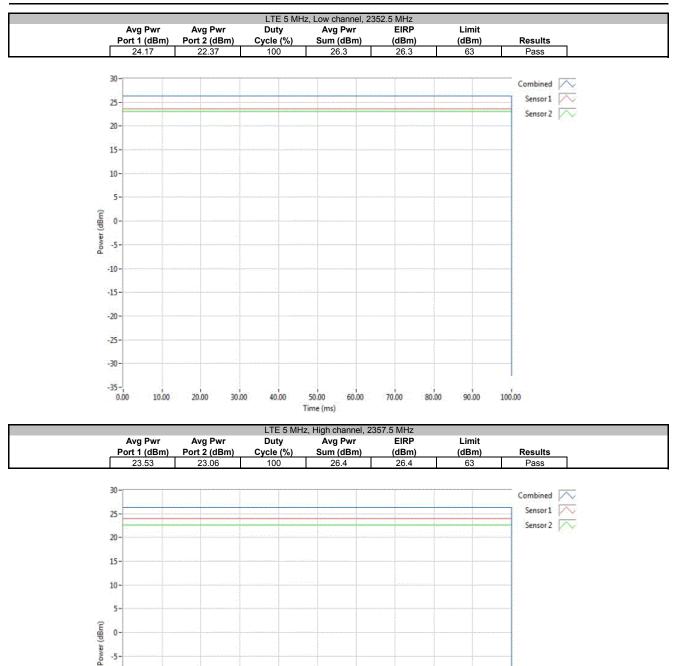
The RF output power was measured with the EUT set to the frequencies listed in the datasheet.

The power measurement was made using a direct connection between the RF output of the EUT and an RF Power Sensor which only measures across the high time of the burst of the carrier.

The observed duty cycle was noted but not needed to calculate the EiRP.

EiRP = Max Measured Power + Antenna gain (dBi)

The measurements from port 1 and port 2 were summed to determine the total average power in EIRP.


# EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)



| EUT: S                                                                               | Spectrum 2300 MHz WCS Seco              | ectrum 2300 MHz WCS Secondary RAU |                           |                      |                   |                       | Work Order:       | TECO0024                            |               |
|--------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|---------------------------|----------------------|-------------------|-----------------------|-------------------|-------------------------------------|---------------|
| Serial Number:                                                                       | GR223E8E                                |                                   |                           |                      |                   |                       | Date:             | 02/18/15                            |               |
| Customer:                                                                            | E Connectivity / ADC Telecommunications |                                   |                           |                      |                   |                       | Temperature:      | 22.7°C                              |               |
| Attendees:                                                                           |                                         |                                   |                           |                      |                   |                       | Humidity:         | 9%                                  |               |
| Project:                                                                             |                                         |                                   |                           |                      |                   | E                     | Barometric Pres.: | 1023.7                              |               |
| Tested by:                                                                           |                                         |                                   |                           |                      |                   |                       | Job Site:         | MN08                                |               |
| EST SPECIFICATIO                                                                     | ONS                                     |                                   | 1                         | Test Method          |                   |                       |                   |                                     |               |
| CC 27:2015                                                                           |                                         |                                   | 1                         | ANSI/TIA/EIA-603-C-2 | 004               |                       |                   |                                     |               |
|                                                                                      |                                         |                                   |                           |                      |                   |                       |                   |                                     |               |
| ligh wattage attenu<br>.imit is 2kW, (63 dB                                          |                                         | omer. Antenna gain is ass         | umed to be 0, per custom  | er the antenna gain  | will be reevaluat | ed during installatio | n. System is rate | d at 200mW (+23 d                   | Bm) per port. |
| COMMENTS<br>ligh wattage attenu<br>.imit is 2kW, (63 dB<br>DEVIATIONS FROM<br>None   | im).                                    | omer. Antenna gain is ass         | numed to be 0, per custom | er the antenna gain  | will be reevaluat | ed during installatio | n. System is rate | d at 200mW (+23 d                   | Bm) per port. |
| ligh wattage attenu<br>.imit is 2kW, (63 dB<br>DEVIATIONS FROM                       | im).                                    |                                   | Jnevor                    |                      | will be reevaluat | ed during installatio | n. System is rate | d at 200mW (+23 d                   | Bm) per port. |
| ligh wattage attenu<br>.imit is 2kW, (63 dB<br>DEVIATIONS FROM<br>Ione               | im).                                    | omer. Antenna gain is ass         |                           |                      | will be reevaluat | ed during installatio | n. System is rate | d at 200mW (+23 d<br>Limit<br>(dBm) | Bm) per port. |
| igh wattage attenu<br>imit is 2kW, (63 dB<br>EVIATIONS FROM<br>one<br>onfiguration # | im).                                    |                                   | Juevor<br>Avg Pwr         | Buls<br>Avg Pwr      | Duty              | Avg Pwr               | EIRP              | Limit                               |               |
| igh wattage attenu<br>imit is 2kW, (63 dB<br>EVIATIONS FROM<br>one<br>onfiguration # | im).                                    |                                   | Juevor<br>Avg Pwr         | Buls<br>Avg Pwr      | Duty              | Avg Pwr               | EIRP              | Limit                               |               |

## EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)





70.00

80.00

90.00

100.00

-5--10--15--20--25--30--35-0.00

10.00

20.00

30.00

40.00



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

|                           |                    |                 |     |            | Interval |
|---------------------------|--------------------|-----------------|-----|------------|----------|
| Description               | Manufacturer       | Model           | ID  | Last Cal.  | (mo)     |
| MN08 Direct Connect Cable | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 10/2/2014  | 12       |
| Attenuator - 20db, 'SMA'  | SM Electronics     | SA26B-20        | RFW | 4/3/2014   | 12       |
| 40 GHz DC Block           | Fairview Microwave | SD3379          | AMI | 10/2/2014  | 12       |
| Signal Generator MXG      | Agilent            | N5183A          | TIK | 10/17/2014 | 36       |
| Spectrum Analyzer         | Agilent            | E4440A          | AAX | 4/28/2014  | 12       |

#### **TEST DESCRIPTION**

A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

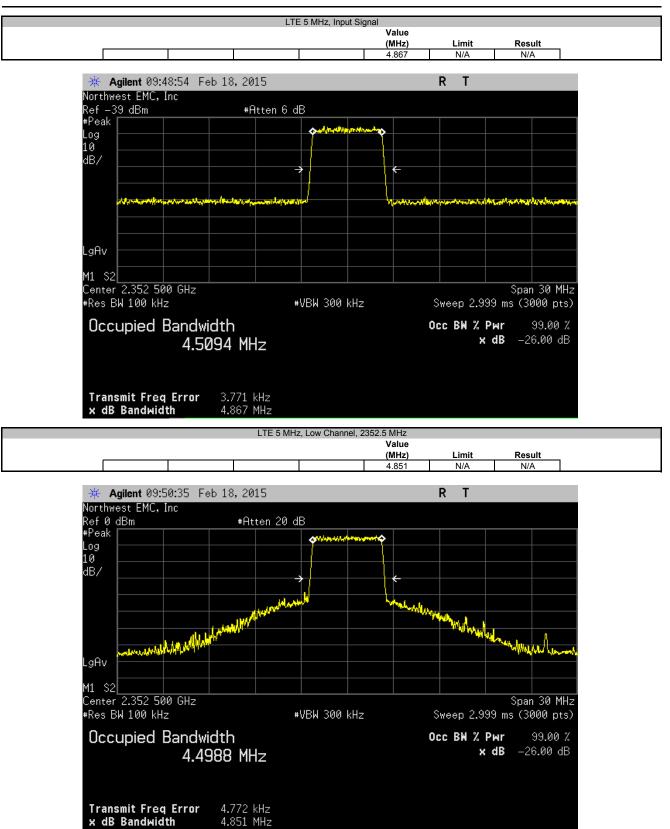
The spectrum analyzer settings were as follows:

RBW = Approx. 1% of the emission bandwidth (B). This was an iterative process to determine the RBW based on the emissions bandwidth (B).

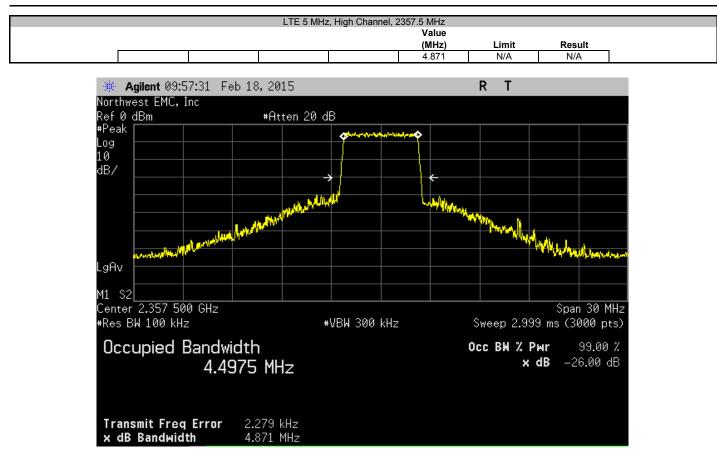
≻VBW= > RBW

A peak detector was used

Trace max hold.


The spectrum analyzer occupied bandwidth measurement function was then used to measure 26 dB emission bandwidth.

There is no required limit to be met in the rule part for this test. The purpose of the test is to both report the results and to utilize the emission bandwidth for setting the channel power integration bandwidth during conducted output power testing.




| FUT             | Spectrum 2300 MHz WCS Secondary RAU      |                         | Work Order:       | TECO0024 |        |
|-----------------|------------------------------------------|-------------------------|-------------------|----------|--------|
| Serial Number   |                                          |                         |                   | 02/19/15 |        |
|                 | TE Connectivity / ADC Telecommunications |                         | Temperature:      |          |        |
| Attendees       |                                          |                         | Humidity:         |          |        |
| Project         |                                          |                         | Barometric Pres.: |          |        |
|                 | Trevor Buls                              | Power: 110VAC/60Hz      | Job Site:         |          |        |
| TEST SPECIFICAT |                                          | Test Method             |                   |          |        |
| FCC 27:2015     |                                          | ANSI/TIA/EIA-603-C-2004 |                   |          |        |
|                 |                                          |                         |                   |          |        |
| COMMENTS        |                                          |                         |                   |          |        |
|                 | ined to be worst case.                   |                         |                   |          |        |
|                 | M TEST STANDARD                          |                         |                   |          |        |
| None            |                                          |                         |                   |          |        |
| Configuration # | 1 Signature                              | Trevor Buls             |                   |          |        |
|                 |                                          |                         | Value             |          |        |
|                 |                                          |                         | (MHz)             | Limit    | Result |
| LTE 5 MHz       |                                          |                         |                   |          |        |
|                 | Input Signal                             |                         | 4.867             | N/A      | N/A    |
|                 | Low Channel, 2352.5 MHz                  |                         | 4.851             | N/A      | N/A    |
|                 | High Channel, 2357.5 MHz                 |                         | 4.871             | N/A      | N/A    |







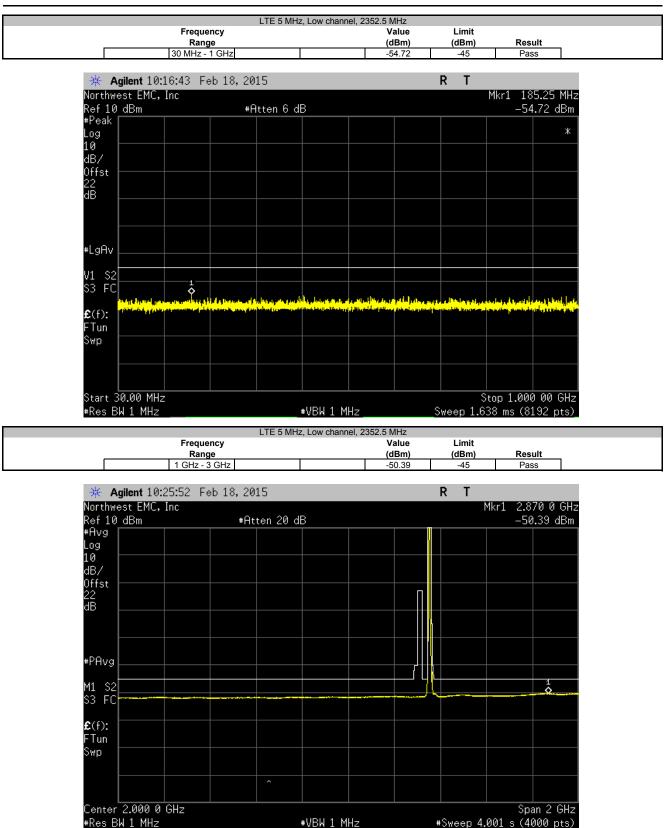




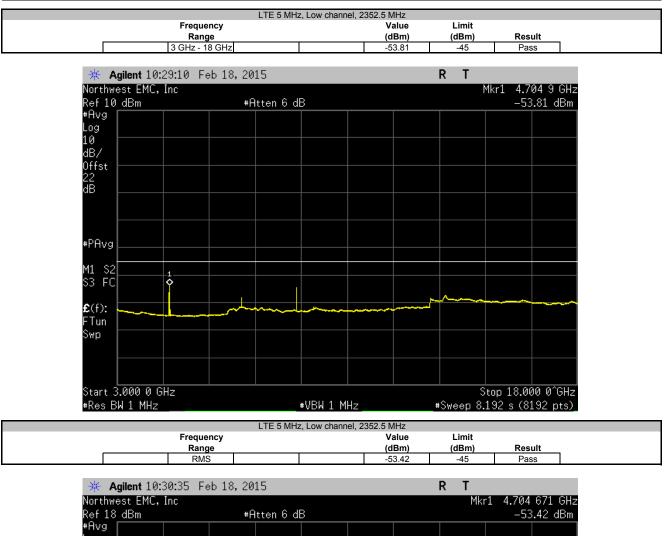
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

|                             |                    |                         |     |            | Interval |
|-----------------------------|--------------------|-------------------------|-----|------------|----------|
| Description                 | Manufacturer       | Model                   | ID  | Last Cal.  | (mo)     |
| Low Pass Filter 0-1000 MHz  | Micro-Tronics      | LPM50004                | HGV | 9/24/2014  | 12       |
| High Pass Filter            | K&L Microwave      | 11SH10-18000/T50000-2.4 | HIC | 2/16/2015  | 12       |
| High Pass Filter 2.8-18 GHz | Micro-Tronics      | HPM50111                | HGY | 10/2/2014  | 12       |
| MN08 Direct Connect Cable   | ESM Cable Corp.    | TTBJ141 KMKM-72         | MNU | 10/2/2014  | 12       |
| Attenuator - 20db, 'SMA'    | SM Electronics     | SA26B-20                | RFW | 4/3/2014   | 12       |
| 40 GHz DC Block             | Fairview Microwave | SD3379                  | AMI | 10/2/2014  | 12       |
| Signal Generator MXG        | Agilent            | N5183A                  | TIK | 10/17/2014 | 36       |
| Spectrum Analyzer           | Agilent            | E4440A                  | AAX | 4/28/2014  | 12       |

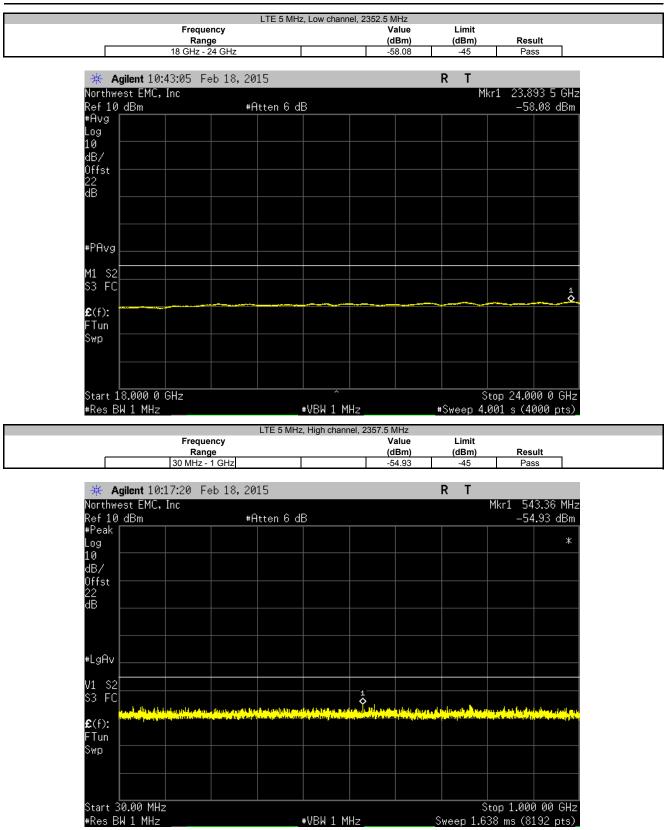

#### **TEST DESCRIPTION**

The antenna port spurious emissions were measured at the RF output terminal of the EUT with external attenuation on the RF input of the spectrum analyzer. Analyzer plots utilizing a 1 MHz resolution bandwidth and no video filtering were made for each modulation type from 30 MHz to 24 GHz. The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than or equal to the limit. Emissions close to the limit were remeasured using an RMS Average detector.

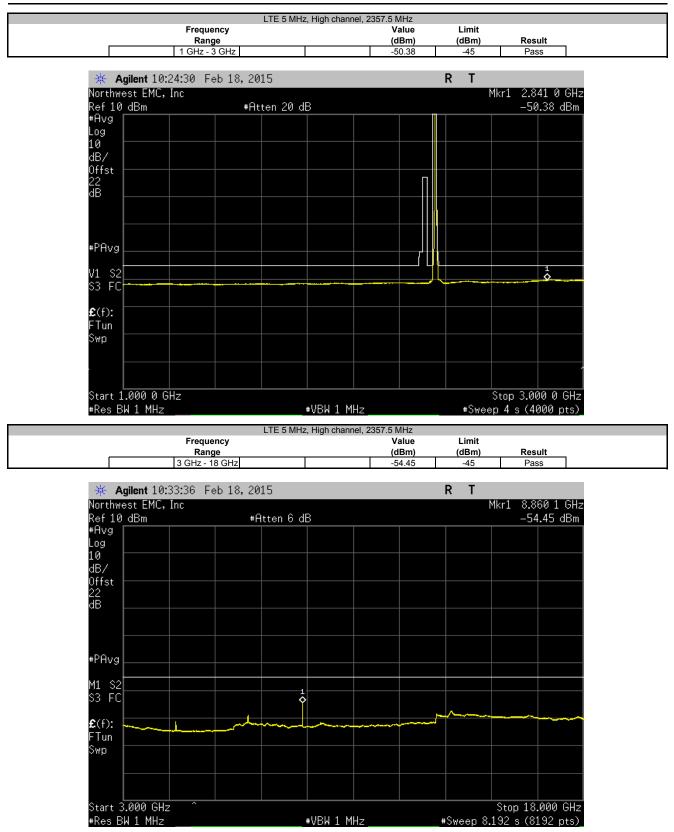



| EUT:                    | Spectrum 2300 MHz WCS Secondary RAL                                                                                                                                                              | I         |                                                                                                                                      | Work Order:                                                                           | TECO0024                                               |                                                      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
| Serial Number:          | GR223E8E                                                                                                                                                                                         |           |                                                                                                                                      | Date:                                                                                 | 02/19/15                                               |                                                      |
|                         | TE Connectivity / ADC Telecommunicatio                                                                                                                                                           | ns        |                                                                                                                                      | Temperature:                                                                          | 23.1°C                                                 |                                                      |
| Attendees:              |                                                                                                                                                                                                  |           |                                                                                                                                      | Humidity:                                                                             |                                                        |                                                      |
| Project:                | None                                                                                                                                                                                             |           |                                                                                                                                      | Barometric Pres.:                                                                     | 1031.8                                                 |                                                      |
| Tested by:              | Trevor Buls                                                                                                                                                                                      |           | Power: 110VAC/60Hz                                                                                                                   | Job Site:                                                                             | MN08                                                   |                                                      |
| EST SPECIFICAT          | IONS                                                                                                                                                                                             |           | Test Method                                                                                                                          |                                                                                       |                                                        |                                                      |
| CC 27:2015              |                                                                                                                                                                                                  |           | ANSI/TIA/EIA-603-C-2004                                                                                                              |                                                                                       |                                                        |                                                      |
|                         |                                                                                                                                                                                                  |           |                                                                                                                                      |                                                                                       |                                                        |                                                      |
| COMMENTS                |                                                                                                                                                                                                  |           |                                                                                                                                      |                                                                                       |                                                        |                                                      |
| ort 1 was determi       | ined to be worst case.                                                                                                                                                                           |           |                                                                                                                                      |                                                                                       |                                                        |                                                      |
|                         |                                                                                                                                                                                                  |           |                                                                                                                                      |                                                                                       |                                                        |                                                      |
|                         |                                                                                                                                                                                                  |           |                                                                                                                                      |                                                                                       |                                                        |                                                      |
|                         |                                                                                                                                                                                                  |           |                                                                                                                                      |                                                                                       |                                                        |                                                      |
|                         | M TEST STANDARD                                                                                                                                                                                  |           |                                                                                                                                      |                                                                                       |                                                        |                                                      |
|                         | W TEST STANDARD                                                                                                                                                                                  |           |                                                                                                                                      |                                                                                       |                                                        |                                                      |
| None                    |                                                                                                                                                                                                  | -         | - Bulp                                                                                                                               |                                                                                       |                                                        |                                                      |
| None                    | 1                                                                                                                                                                                                | gnature J | revor Buls                                                                                                                           |                                                                                       |                                                        |                                                      |
| None                    | 1                                                                                                                                                                                                | gnature J | Frequency                                                                                                                            | Value                                                                                 | Limit                                                  |                                                      |
| None<br>Configuration # | 1                                                                                                                                                                                                | gnature J |                                                                                                                                      | Value<br>(dBm)                                                                        | Limit<br>(dBm)                                         | Result                                               |
| None<br>Configuration # | 1<br>Sk                                                                                                                                                                                          | gnature   | Frequency<br>Range                                                                                                                   | (dBm)                                                                                 | (dBm)                                                  |                                                      |
| None<br>Configuration # | 1<br>Low channel, 2352.5 MHz                                                                                                                                                                     | gnature J | Frequency<br>Range<br>30 MHz - 1 GHz                                                                                                 | (dBm)<br>-54.72                                                                       | ( <b>dBm</b> )<br>-45                                  | Pass                                                 |
| None                    | 1<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz                                                                                                                                          | gnature   | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz                                                                                | (dBm)<br>-54.72<br>-50.39                                                             | (dBm)<br>-45<br>-45                                    | Pass<br>Pass                                         |
| None<br>Configuration # | 1<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz                                                                                                               | gnature J | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz<br>3 GHz - 18 GHz                                                              | (dBm)<br>-54.72<br>-50.39<br>-53.81                                                   | (dBm)<br>-45<br>-45<br>-45                             | Pass<br>Pass<br>Pass                                 |
| None<br>Configuration # | 1<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz                                                                                    | gnature J | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz<br>3 GHz - 18 GHz<br>RMS                                                       | (dBm)<br>-54.72<br>-50.39<br>-53.81<br>-53.42                                         | (dBm)<br>-45<br>-45                                    | Pass<br>Pass                                         |
| one                     | 1<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz                                                                                                               | gnature J | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz<br>3 GHz - 18 GHz                                                              | (dBm)<br>-54.72<br>-50.39<br>-53.81                                                   | (dBm)<br>-45<br>-45<br>-45                             | Pass<br>Pass<br>Pass                                 |
| lone                    | 1<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz                                                                                    | gnature   | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz<br>3 GHz - 18 GHz<br>RMS                                                       | (dBm)<br>-54.72<br>-50.39<br>-53.81<br>-53.42                                         | (dBm)<br>-45<br>-45<br>-45<br>-45                      | Pass<br>Pass<br>Pass<br>Pass<br>Pass                 |
| ione                    | 1<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz                                                         | gnature J | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz<br>3 GHz - 18 GHz<br>RMS<br>18 GHz - 24 GHz                                    | (dBm)<br>-54, 72<br>-50, 39<br>-53, 81<br>-53, 82<br>-58, 08                          | (dBm)<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         |
| ione                    | 1<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>High channel, 2357.5 MHz<br>High channel, 2357.5 MHz | gnature   | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz<br>3 GHz - 18 GHz<br>RMS<br>18 GHz - 24 GHz<br>30 MHz - 1 GHz                  | (dBm)<br>-54.72<br>-50.39<br>-53.81<br>-53.42<br>-58.08<br>-54.93                     | (dBm)<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45 | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |
| lone<br>Configuration # | 1<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>Low channel, 2352.5 MHz<br>High channel, 2357.5 MHz                             | gnature   | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz<br>3 GHz - 18 GHz<br>RMS<br>18 GHz - 24 GHz<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz | (dBm)<br>-54.72<br>-50.39<br>-53.81<br>-53.42<br>-58.08<br>-54.93<br>-54.93<br>-50.38 | (dBm)<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45<br>-45 | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |

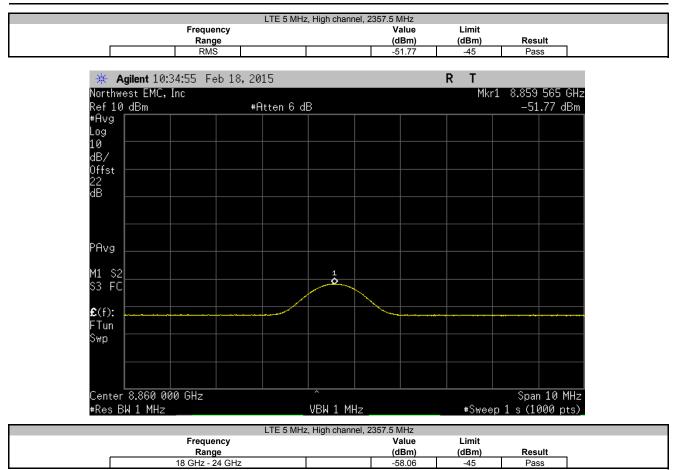







| ef 18 dBm           | #Atter | 16 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -53       | .42 dBm |
|---------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|
| Avg 🛛 👘             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| og 🛛                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| 0                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| B/                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| ffst                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| 2<br>B              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| В                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |         |
|                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
|                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
|                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| Avg                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
|                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| 1 \$2               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| 3 FC                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
|                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| (f):                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>*</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| Tun                 |        | Married |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
| wp                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | <br>The second secon |           |         |
|                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
|                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
|                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |
|                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 00 HU   |
| enter 4.704 000 0 G | Hz     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 20 MHz  |
| Res BW 1 MHz        |        | <u></u> #VBW 1 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1Hz      | -#Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o 1 s (10 | 00 pts) |














|                                     | eb 18,2015  |         | R T                            |                       |
|-------------------------------------|-------------|---------|--------------------------------|-----------------------|
| Northwest EMC, Inc<br>Ref 10 dBm    | #Atten 6 dB |         |                                | 108 5 GHz<br>3.06 dBm |
| #Avg<br>Log                         |             |         |                                |                       |
| 10                                  |             |         |                                |                       |
| dB/<br>Offst                        |             |         |                                |                       |
| Offst<br>22<br>dB                   |             |         |                                |                       |
|                                     |             |         |                                |                       |
|                                     |             |         |                                |                       |
| #PAvg                               |             |         |                                |                       |
| M1 S2                               |             |         |                                |                       |
| S3 FC                               |             |         |                                |                       |
| £(f):<br>FTun                       |             |         |                                |                       |
| Swp                                 |             |         |                                |                       |
|                                     |             |         |                                |                       |
|                                     |             |         |                                |                       |
| Start 18.000 0 GHz<br>#Res BW 1 MHz | #VBI        | W 1 MHz | Stop 24.0<br>#Sweep 4.001 s (4 |                       |

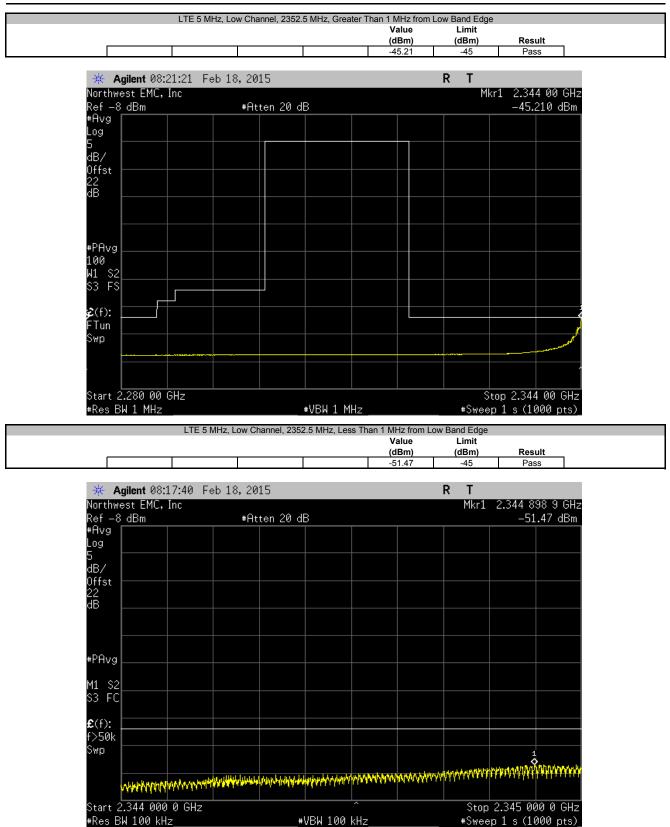


Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

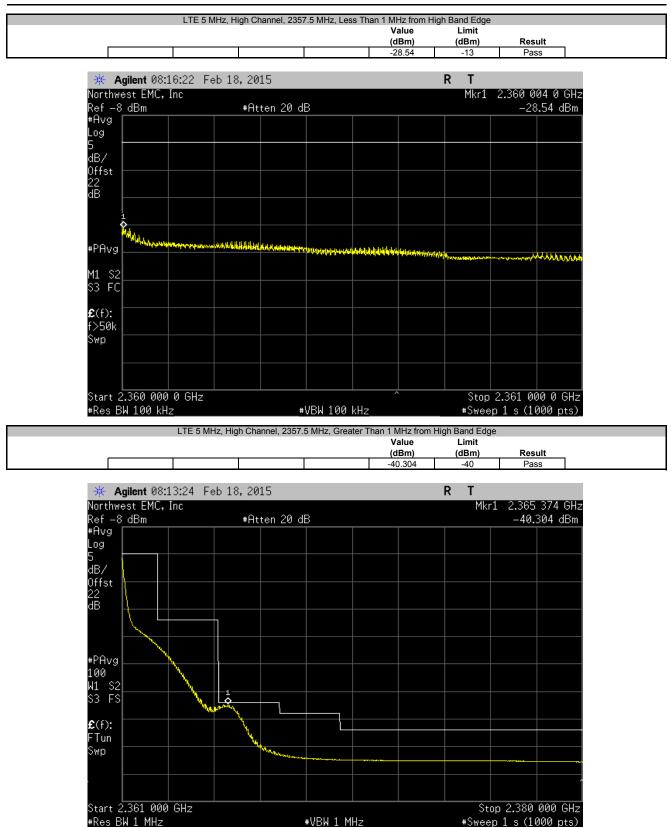
#### **TEST EQUIPMENT**

|                           |                    |                 |     |            | Interval |
|---------------------------|--------------------|-----------------|-----|------------|----------|
| Description               | Manufacturer       | Model           | ID  | Last Cal.  | (mo)     |
| MN08 Direct Connect Cable | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 10/2/2014  | 12       |
| Attenuator - 20db, 'SMA'  | SM Electronics     | SA26B-20        | RFW | 4/3/2014   | 12       |
| 40 GHz DC Block           | Fairview Microwave | SD3379          | AMI | 10/2/2014  | 12       |
| Signal Generator MXG      | Agilent            | N5183A          | TIK | 10/17/2014 | 36       |
| Spectrum Analyzer         | Agilent            | E4440A          | AAX | 4/28/2014  | 12       |

#### **TEST DESCRIPTION**


The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in the available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge. The resolution bandwidth was set to approximately 1% of the measured emissions bandwidth within the first 1 MHz block adjacent to the transmit band. An average RMS detector was used to match the method used during Output Power. The screen capture shows the margin between the measured value and the limit at the band edge.




| EUT               | Spectrum 2300 MHz WCS Secondary RAU      | Work Order:       | TECO0024 |        |
|-------------------|------------------------------------------|-------------------|----------|--------|
| Serial Number     | GR223E8E                                 | Date:             | 02/18/15 |        |
| Customer          | TE Connectivity / ADC Telecommunications | Temperature:      | 22.7°C   |        |
| Attendees         | None                                     | Humidity:         | 9%       |        |
| Project           | None                                     | Barometric Pres.: | 1023.7   |        |
| Tested by         | Trevor Buls Power: 110VAC/60Hz           | Job Site:         | MN08     |        |
| TEST SPECIFICAT   | IONS Test Method                         |                   |          |        |
| FCC 27:2015       | ANSI/TIA/EIA-603-C-2004                  |                   |          |        |
|                   |                                          |                   |          |        |
| COMMENTS          |                                          |                   |          |        |
| Port 1 was determ | ned to be worst case.                    |                   |          |        |
|                   |                                          |                   |          |        |
|                   |                                          |                   |          |        |
| DEVIATIONS FRO    | I TEST STANDARD                          |                   |          |        |
| None              |                                          |                   |          |        |
|                   |                                          |                   |          |        |
| Configuration #   | 1 Signature Trevor Buls                  |                   |          |        |
|                   | Signature                                |                   |          |        |
|                   |                                          | Value             | Limit    |        |
|                   |                                          | (dBm)             | (dBm)    | Result |
| LTE 5 MHz         |                                          |                   |          |        |
|                   | Low Channel, 2352.5 MHz                  |                   |          |        |
|                   | Greater Than 1 MHz from Low Band Edge    | -45.21            | -45      | Pass   |
|                   | Less Than 1 MHz from Low Band Edge       | -51.47            | -45      | Pass   |
|                   | High Channel, 2357.5 MHz                 |                   |          |        |
|                   | Less Than 1 MHz from High Band Edge      | -28.54            | -13      | Pass   |
|                   | Greater Than 1 MHz from High Band Edge   | -40.304           | -40      | Pass   |









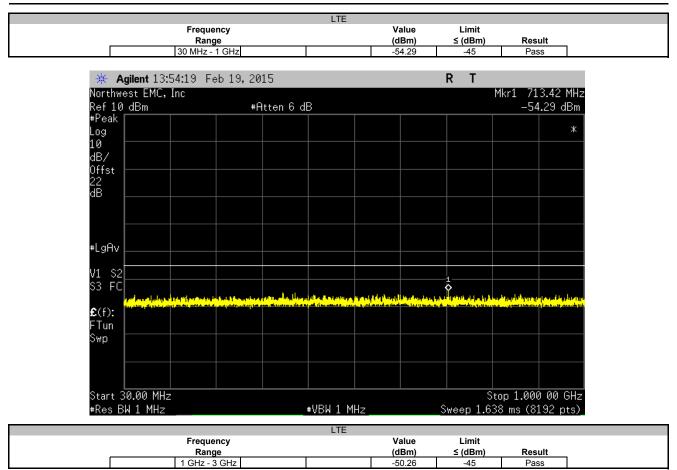


Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

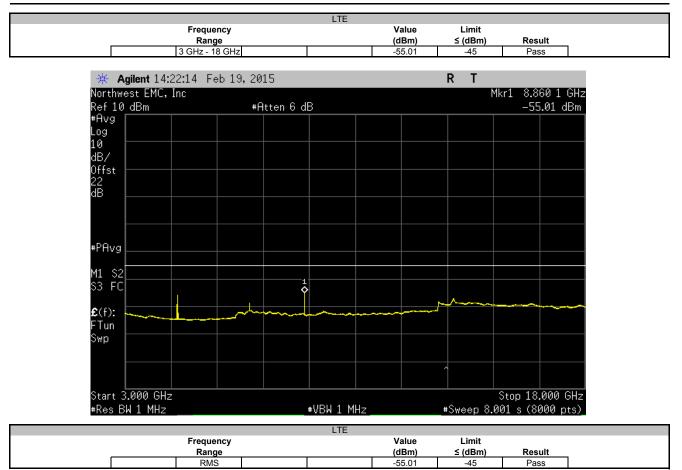
|                             |                    |                         |     |            | Interval |
|-----------------------------|--------------------|-------------------------|-----|------------|----------|
| Description                 | Manufacturer       | Model                   | ID  | Last Cal.  | (mo)     |
| Power Divider/Combiner      | Fairview Microwave | MP0208-2                | IAF | NCR        | 0        |
| Power Divider/Combiner      | Fairview Microwave | MP0208-2                | IAE | NCR        | 0        |
| High Pass Filter            | K&L Microwave      | 11SH10-18000/T50000-2.4 | HIC | 2/16/2015  | 12       |
| High Pass Filter 2.8-18 GHz | Micro-Tronics      | HPM50111                | HGY | 10/2/2014  | 12       |
| Low Pass Filter 0-1000 MHz  | Micro-Tronics      | LPM50004                | HGV | 9/24/2014  | 12       |
| MN08 Direct Connect Cable   | ESM Cable Corp.    | TTBJ141 KMKM-72         | MNU | 10/2/2014  | 12       |
| Attenuator - 20db, 'SMA'    | SM Electronics     | SA26B-20                | RFW | 4/3/2014   | 12       |
| 40 GHz DC Block             | Fairview Microwave | SD3379                  | AMI | 10/2/2014  | 12       |
| Signal Generator MXG        | Agilent            | N5183A                  | TIK | 10/17/2014 | 36       |
| Spectrum Analyzer           | Agilent            | E4440A                  | AAX | 4/28/2014  | 12       |

#### **TEST DESCRIPTION**


The EUT was configured with an input of two CW pulses at the top of the band and a modulated pulse near the bottom edge of the band.

The antenna port spurious emissions were measured at the RF output terminal of the EUT with external attenuation on the RF input of the spectrum analyzer. Analyzer plots utilizing a 1MHz resolution bandwidth and no video filtering were made for each modulation type from 30 MHz to 24 GHz. The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than or equal to the spurious conducted emissions limits. Measurements close to the limit were remeaured using a RMS average detector.




| EUT Spo                               | ectrum 2300 MHz WCS Seco   | ndary RAU    |           |                                                                         |   | Work Order                          | : TECO0024                                |                      |
|---------------------------------------|----------------------------|--------------|-----------|-------------------------------------------------------------------------|---|-------------------------------------|-------------------------------------------|----------------------|
| Serial Number: GR                     |                            | indui j 1010 |           |                                                                         |   |                                     | 02/19/15                                  |                      |
|                                       | Connectivity / ADC Telecom | munications  |           |                                                                         |   | Temperature                         |                                           |                      |
| Attendees: Nor                        |                            |              |           |                                                                         |   | Humidity                            |                                           |                      |
| Project: Nor                          | ne                         |              |           |                                                                         | B | arometric Pres.                     | : 1031.8                                  |                      |
| Tested by: Tre                        | evor Buls                  |              | Power: 11 | 0VAC/60Hz                                                               |   | Job Site                            | : MN08                                    |                      |
| TEST SPECIFICATIONS                   | S                          |              | Te        | est Method                                                              |   |                                     |                                           |                      |
| FCC 27:2015                           |                            |              | AN        | NSI/TIA/EIA-603-C-2004                                                  |   |                                     |                                           |                      |
|                                       |                            |              |           |                                                                         |   |                                     |                                           |                      |
| COMMENTS                              |                            |              |           |                                                                         |   |                                     |                                           |                      |
| Port 1 was determined                 | I to be worst case.        |              |           |                                                                         |   |                                     |                                           |                      |
|                                       |                            |              |           |                                                                         |   |                                     |                                           |                      |
| 1                                     |                            |              |           |                                                                         |   |                                     |                                           |                      |
|                                       |                            |              |           |                                                                         |   |                                     |                                           |                      |
|                                       | EST STANDARD               |              |           |                                                                         |   |                                     |                                           |                      |
| DEVIATIONS FROM TE<br>None            | EST STANDARD               |              |           |                                                                         |   |                                     |                                           |                      |
|                                       | EST STANDARD               |              | Trange    | Bulz                                                                    |   |                                     |                                           |                      |
| None                                  | EST STANDARD               | Signature    | Trevor    | Buls                                                                    |   |                                     |                                           |                      |
| None                                  | EST STANDARD               | Signature    | Trevor    | Frequency                                                               |   | Value                               | Limit                                     |                      |
| None<br>Configuration #               | EST STANDARD               | Signature    |           | Frequency<br>Range                                                      |   | (dBm)                               | ≤ (dBm)                                   | Result               |
| None<br>Configuration #               | EST STANDARD               | Signature    | 3         | Frequency<br>Range<br>30 MHz - 1 GHz                                    |   | (dBm)<br>-54.29                     |                                           | Pass                 |
| None<br>Configuration #<br>LTE<br>LTE | EST STANDARD               | Signature    | 3         | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz                   |   | ( <b>dBm</b> )<br>-54.29<br>-50.26  | ≤ (dBm)<br>-45<br>-45                     | Pass<br>Pass         |
| None Configuration # LTE LTE LTE LTE  | EST STANDARD               | Signature    | 3         | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz<br>3 GHz - 18 GHz |   | (dBm)<br>-54.29<br>-50.26<br>-55.01 | <mark>≤ (dBm)</mark><br>-45<br>-45<br>-45 | Pass<br>Pass<br>Pass |
| None                                  | EST STANDARD               | Signature    | 3         | Frequency<br>Range<br>30 MHz - 1 GHz<br>1 GHz - 3 GHz                   |   | ( <b>dBm</b> )<br>-54.29<br>-50.26  | ≤ (dBm)<br>-45<br>-45                     | Pass<br>Pass         |





| ✤ Agilent 14:06:04<br>Northwest EMC, Inc | Feb 19, 2015 |            | RT     | Mkr1 2.842 4 GHz     |
|------------------------------------------|--------------|------------|--------|----------------------|
| Ref 10 dBm                               | #Atten 20    | ) dB       |        | -50.26 dBm           |
| ŧAvg                                     |              |            |        |                      |
| .og<br>.0                                |              |            |        |                      |
| IB/                                      |              |            |        |                      |
| offst                                    |              |            |        |                      |
| 12<br>IB                                 |              |            |        |                      |
|                                          |              |            |        |                      |
|                                          |              |            |        |                      |
| PAvg                                     |              |            |        |                      |
|                                          |              |            |        |                      |
| 11 S2                                    |              |            |        |                      |
| 3 FC                                     |              |            |        |                      |
| :(f):                                    |              |            |        |                      |
| Tun                                      |              |            |        |                      |
| iwp dwg                                  |              |            |        |                      |
|                                          |              |            |        |                      |
|                                          |              |            |        |                      |
| Start 1.000 0 GHz                        |              | ^          |        | Stop 3.000 0 GHz     |
| Res BW 1 MHz                             |              | #VBW 1 MHz | #Sweep | o 4.001 s (4000 pts) |





| 🔆 Agilent 14:22:51 Fe                 | b 19,2015   |     | RT         |                               |
|---------------------------------------|-------------|-----|------------|-------------------------------|
| Northwest EMC, Inc<br>Ref 10 dBm      | #Atten 6 dB |     | Mkr1       | 8.859 555 GHz<br>-52.51 dBm   |
| #Avg<br>Log                           |             |     |            |                               |
| 10                                    |             |     |            |                               |
| dB/<br>Offst                          |             |     |            |                               |
| Offst<br>22<br>dB                     |             |     |            |                               |
|                                       |             |     |            |                               |
|                                       |             |     |            |                               |
| #PAvg                                 |             |     |            |                               |
| M1 S2                                 |             |     |            |                               |
| \$3 FC                                |             |     |            |                               |
| <b>£</b> (f):<br>FTun                 |             |     | <u>·</u> · |                               |
| Swp                                   |             |     |            |                               |
|                                       |             |     |            |                               |
|                                       |             |     |            |                               |
| Center 8.860 000 GHz<br>#Res BW 1 MHz | #VBW 1      | MHz | *Sween     | Span 10 MHz<br>1 s (1000 pts) |



|                      |                         |              | LTE       |            |   |                  |                                   |                      |  |
|----------------------|-------------------------|--------------|-----------|------------|---|------------------|-----------------------------------|----------------------|--|
|                      | Freque<br>Ran           |              |           | Val<br>(dE |   | Limit<br>≤ (dBm) | Resu                              | .14                  |  |
|                      | 18 GHz -                | ge<br>24 GHz |           | -58        |   | -45              | Pas                               |                      |  |
|                      |                         |              |           |            |   |                  |                                   |                      |  |
|                      | l <b>ent</b> 14:43:45 F | eb 19, 2015  |           |            | I | RТ               |                                   |                      |  |
|                      | t EMC, Inc              |              |           |            |   | Mkı              |                                   | 01 0 GHz             |  |
| Ref 10 d             | IBm                     | #Atten 6 d   | IB        |            |   |                  | -58                               | .11 dBm              |  |
| #Avg                 |                         |              |           |            |   |                  |                                   |                      |  |
| Log<br>10            |                         |              |           |            |   |                  |                                   |                      |  |
| dB/                  |                         |              |           |            |   |                  |                                   |                      |  |
| Offst                |                         |              |           |            |   |                  |                                   |                      |  |
| Offst<br>22<br>dB    |                         |              |           |            |   |                  |                                   |                      |  |
| dB                   |                         |              |           |            |   |                  |                                   |                      |  |
|                      |                         |              |           |            |   |                  |                                   |                      |  |
|                      |                         |              |           |            |   |                  |                                   |                      |  |
| #PAvg                |                         |              |           |            |   |                  |                                   |                      |  |
| *rnv9                |                         |              |           |            |   |                  |                                   |                      |  |
| V1 S2                |                         |              |           |            |   |                  |                                   |                      |  |
| V1 S2<br>S3 FC       |                         |              |           |            |   |                  |                                   | 1                    |  |
|                      |                         |              |           |            |   |                  |                                   | \$                   |  |
| <b>£</b> (f):        |                         |              |           |            |   |                  |                                   |                      |  |
| FTun                 |                         |              |           |            |   |                  |                                   |                      |  |
| Swp                  |                         |              |           |            |   |                  |                                   |                      |  |
|                      |                         |              |           |            |   |                  |                                   |                      |  |
|                      |                         |              |           |            |   |                  |                                   | Î                    |  |
| Stort 18             | .000 GHz                |              |           |            |   |                  | Stop 24                           | 000 GHz              |  |
| ətart io.<br>#Res BW |                         |              | ₩VBW 1 MH | 17         |   | #Sweer           | э <del>с</del> ор 24.<br>18 с (80 | 000 GH2<br>)00 pts)_ |  |
| MICS DM              | I IIIZ                  |              | "VON I TH | 14         |   |                  |                                   | 700 pt3/_            |  |

# **FREQUENCY STABILITY**



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT               |                           |                   |     |            |          |
|------------------------------|---------------------------|-------------------|-----|------------|----------|
| Description                  | Manufacturer              | Model             | ID  | Last Cal.  | Interval |
| Thermometer                  | Omega Engineering, Inc.   | HH311             | DUB | 11/3/2014  | 36       |
| Humidity Temperature Chamber | Cincinnati Sub Zero (CSZ) | ZPH-32-3.5-SCT/AC | TBF | NCR        | 0        |
| Variable Transformer         | Powerstat                 | 246               | XFR | NCR        | 0        |
| Multimeter                   | Fluke                     | 117               | MNN | 1/20/2014  | 36       |
| Attenuator - 26dB SMA        | Fairview Microwave        | 18B5W-26          | RFY | 7/22/2014  | 12       |
| 40 GHz DC Block              | Fairview Microwave        | SD3379            | AMI | 10/2/2014  | 12       |
| Signal Generator MXG         | Agilent                   | N5183A            | TIK | 10/17/2014 | 36       |
| Spectrum Analyzer            | Agilent                   | E4440A            | AAX | 4/28/2014  | 12       |

#### **TEST DESCRIPTION**

A direct connect measurement was made between the EUT's antenna cable and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

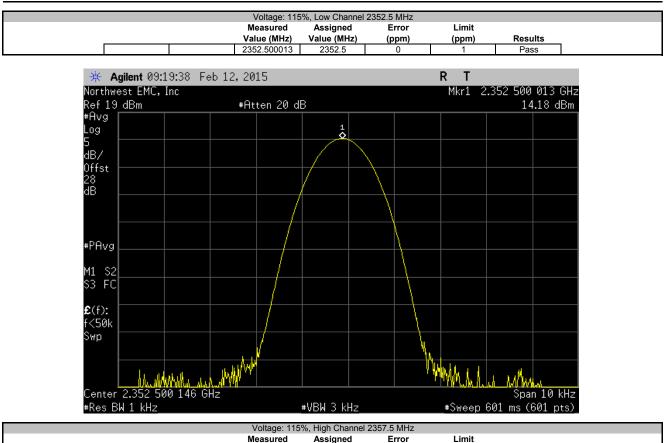
Measurements were made at the edges of the main transmit bands as called out on the data sheets. Testing was done with an absence of modulation in a CW mode of operation.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30  $^{\circ}$  to +50 $^{\circ}$  C) and at 10 $^{\circ}$ C intervals.

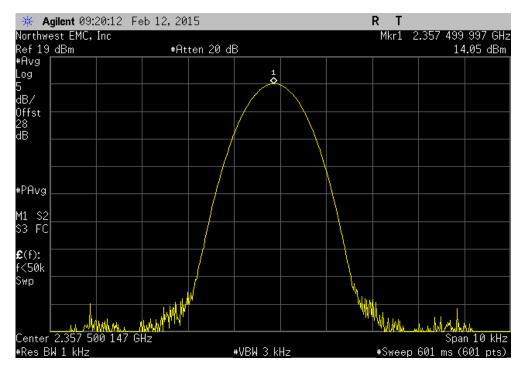
Per the requirements of FCC Part 27.54:

"The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation."

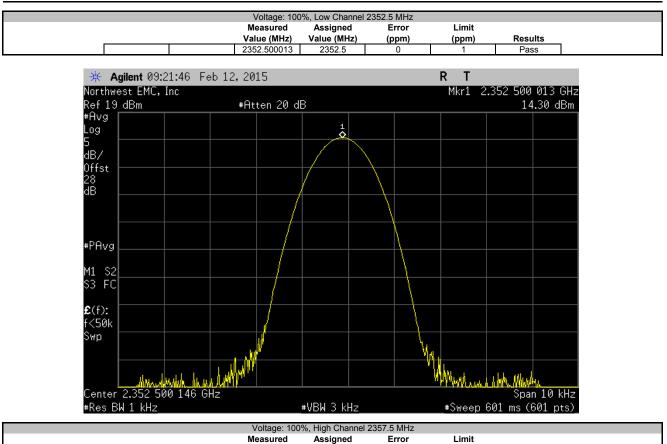
No specific limits are provided in either FCC 27.54, the product specific rule part, or FCC 2.1055, the equipment authorization procedure for testing frequency stability. While there are no limits called out, any results less than 1ppm will still allow the radio to be operating within the band.


## FREQUENCY STABILITY

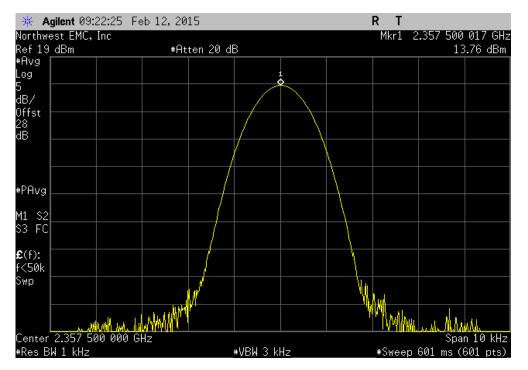
| NORTHWEST     | Γ  |
|---------------|----|
| СМГ           |    |
|               | )  |
| XMit 2015.01. | 14 |


| EUT:              | Spectrum 2300 MHz WCS Second | ary RAU   |                     |              |             | Work Order:       | TECO0024 |        |
|-------------------|------------------------------|-----------|---------------------|--------------|-------------|-------------------|----------|--------|
| Serial Number:    |                              |           |                     |              |             |                   | 02/13/15 |        |
|                   | TE Connectivity              |           |                     |              |             | Temperature:      |          |        |
| Attendees:        |                              |           |                     |              |             | Humidity:         |          |        |
| Project:          |                              |           |                     |              |             | Barometric Pres.: |          |        |
|                   | Trevor Buls                  |           | Power: 110VAC/60Hz  |              |             | Job Site:         |          |        |
| EST SPECIFICATI   |                              |           | Test Method         |              |             | JOD Sile.         |          |        |
| CC 27:2015        |                              |           | ANSI/TIA/EIA-603-C· | 2004         |             |                   |          |        |
| CC 27:2015        |                              |           | ANSI/TIA/EIA-003-C- | -2004        |             |                   |          |        |
|                   |                              |           |                     |              |             |                   |          |        |
| OMMENTS           |                              |           |                     |              |             |                   |          |        |
| lone              |                              |           |                     |              |             |                   |          |        |
|                   |                              |           |                     |              |             |                   |          |        |
|                   |                              |           |                     |              |             |                   |          |        |
|                   | I TEST STANDARD              |           |                     |              |             |                   |          |        |
| lone              |                              |           |                     |              |             |                   |          |        |
|                   |                              |           | Trevor Buls         |              |             |                   |          |        |
| Configuration #   | 1                            |           | Junon Buls          |              |             |                   |          |        |
|                   |                              | Signature | 2700000             |              |             |                   |          |        |
|                   |                              |           |                     | Measured     | Assigned    | Error             | Limit    |        |
|                   |                              |           |                     | Value (MHz)  | Value (MHz) | (ppm)             | (ppm)    | Result |
| /oltage: 115%     |                              |           |                     |              |             |                   |          |        |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352.500013  | 2352.5      | 0.0055            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.499997  | 2357.5      | 0.0013            | 1        | Pass   |
| /oltage: 100%     |                              |           |                     |              |             |                   |          |        |
| 0                 | Low Channel 2352.5 MHz       |           |                     | 2352.500013  | 2352.5      | 0.0055            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.500017  | 2357.5      | 0.0072            | 1        | Pass   |
| /oltage: 85%      | 3                            |           |                     |              |             |                   |          |        |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352,500013  | 2352.5      | 0.0055            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.5       | 2357.5      | 0.0000            | 1        | Pass   |
| Femperature: +50° |                              |           |                     | 2001.0       | 2007.0      | 0.0000            | •        | 1 400  |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352.500017  | 2352.5      | 0.0072            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.500014  | 2357.5      | 0.0059            | 1        | Pass   |
| Cemperature: +40° | right channel 2007.0 Miliz   |           |                     | 2007.000014  | 2007.0      | 0.0033            |          | 1 433  |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352.500013  | 2352.5      | 0.0055            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.500034  | 2357.5      | 0.0144            | 1        | Pass   |
| Femperature: +30° | High Charliner 2557.5 MHz    |           |                     | 2337.300034  | 2337.5      | 0.0144            | 1        | r doo  |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352.500034  | 2352.5      | 0.0145            | 1        | Pass   |
|                   |                              |           |                     |              |             |                   |          | Pass   |
| emperature: +20°  | High Channel 2357.5 MHz      |           |                     | 2357.500034  | 2357.5      | 0.0144            | 1        | Pass   |
|                   | Law Obernal 0250 5 Mile      |           |                     | 0050 500000  | 0050 5      | 0.0400            |          |        |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352.500029  | 2352.5      | 0.0123            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.500034  | 2357.5      | 0.0144            | 1        | Pass   |
| Femperature: +10° | Law Obernal 0250 5 Mile      |           |                     | 0050 50000 1 | 0050 5      | 0.0445            |          |        |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352.500034  | 2352.5      | 0.0145            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.500034  | 2357.5      | 0.0144            | 1        | Pass   |
| emperature: 0°    |                              |           |                     | 0050 5000 /- | 00505       |                   |          | _      |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352.500046  | 2352.5      | 0.0196            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.500034  | 2357.5      | 0.0144            | 1        | Pass   |
| emperature: -10°  |                              |           |                     |              |             |                   |          |        |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352.500029  | 2352.5      | 0.0123            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.500034  | 2357.5      | 0.0144            | 1        | Pass   |
| emperature: -20°  |                              |           |                     |              |             |                   |          |        |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352.500034  | 2352.5      | 0.0145            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.500014  | 2357.5      | 0.0059            | 1        | Pass   |
| emperature: -30°  |                              |           |                     |              |             |                   |          |        |
|                   | Low Channel 2352.5 MHz       |           |                     | 2352.500029  | 2352.5      | 0.0123            | 1        | Pass   |
|                   |                              |           |                     | 2357.500034  | 2357.5      | 0.0144            | 1        | Pass   |
|                   | High Channel 2357.5 MHz      |           |                     | 2357.500034  |             |                   |          | Pase   |

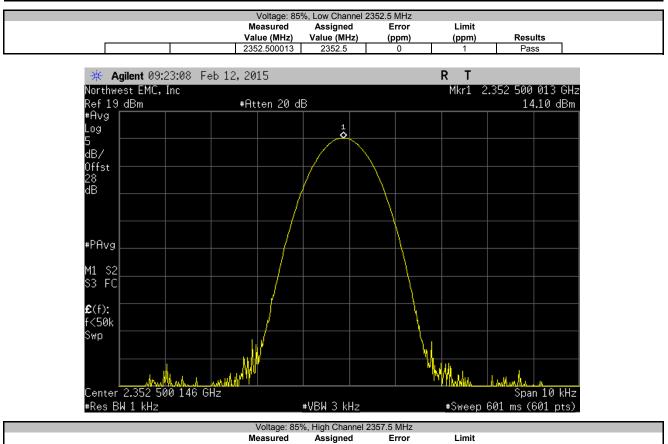
## FREQUENCY STABILITY

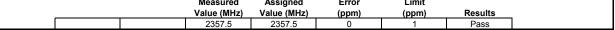


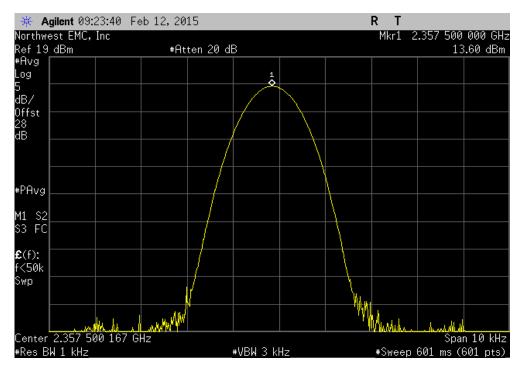




|  | Measured    | Assigned    | Error | Limit |         |
|--|-------------|-------------|-------|-------|---------|
|  | Value (MHz) | Value (MHz) | (ppm) | (ppm) | Results |
|  | 2357.499997 | 2357.5      | 0     | 1     | Pass    |

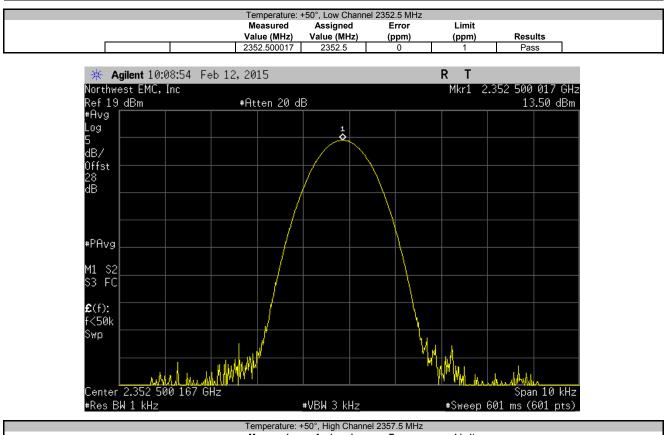




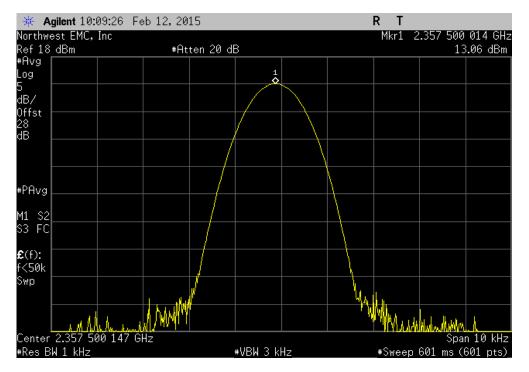





|  | Measured    | Assigned    | Error | Limit |         |
|--|-------------|-------------|-------|-------|---------|
|  | Value (MHz) | Value (MHz) | (ppm) | (ppm) | Results |
|  | 2357.500017 | 2357.5      | 0     | 1     | Pass    |

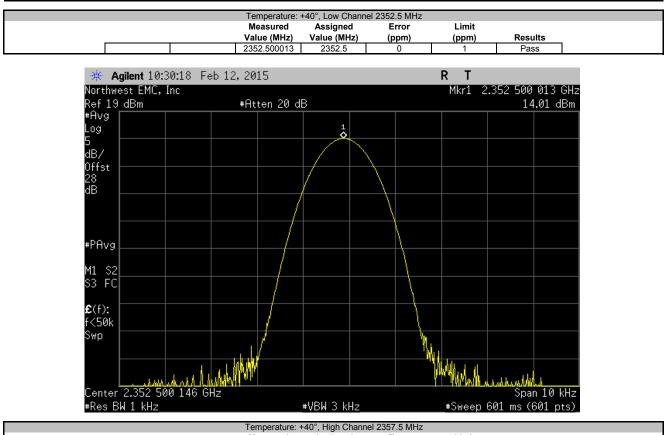


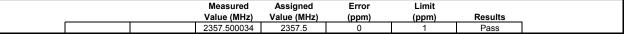


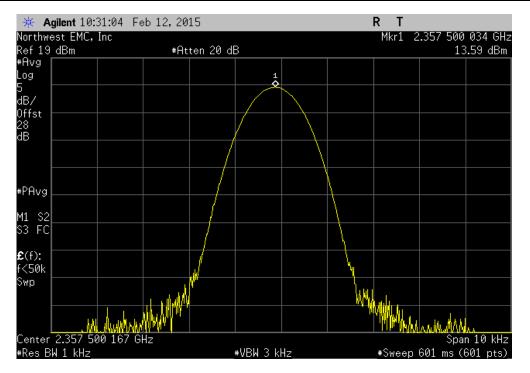


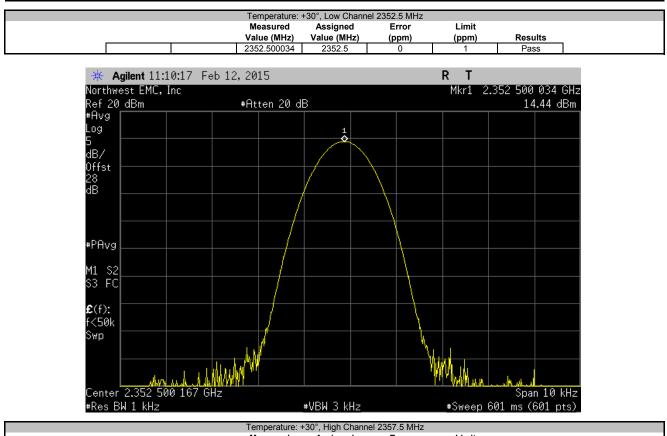


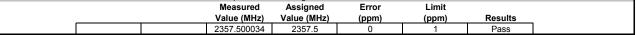



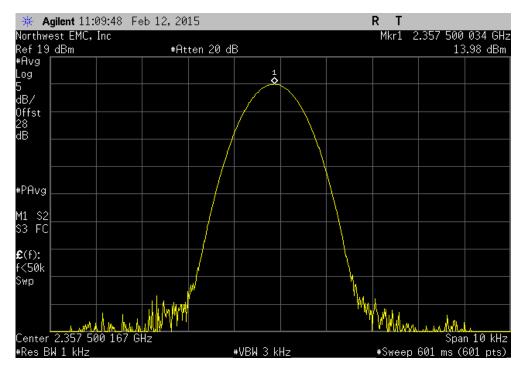





|  | Measured    | Assigned    | Error | Limit |         |
|--|-------------|-------------|-------|-------|---------|
|  | Value (MHz) | Value (MHz) | (ppm) | (ppm) | Results |
|  | 2357.500014 | 2357.5      | 0     | 1     | Pass    |

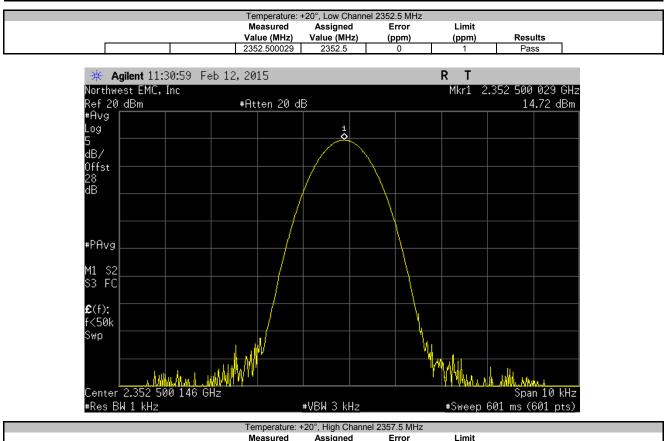




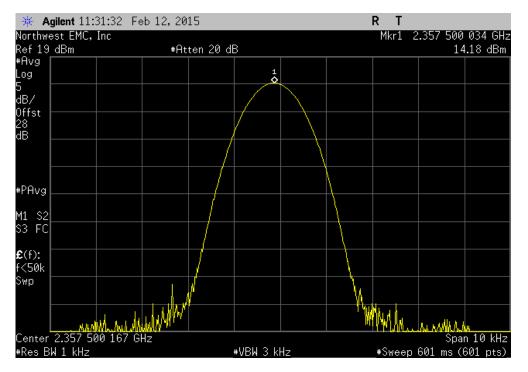



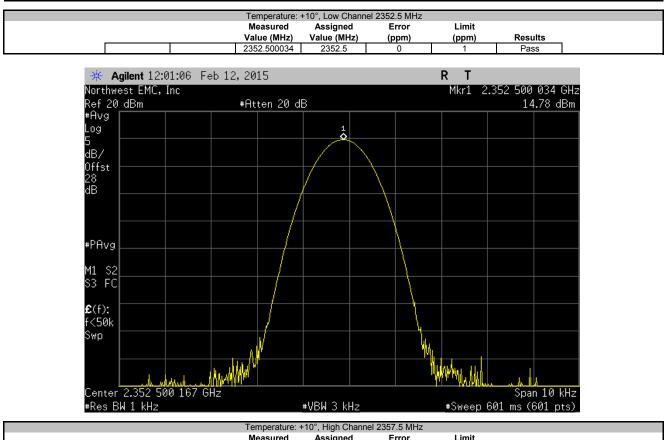


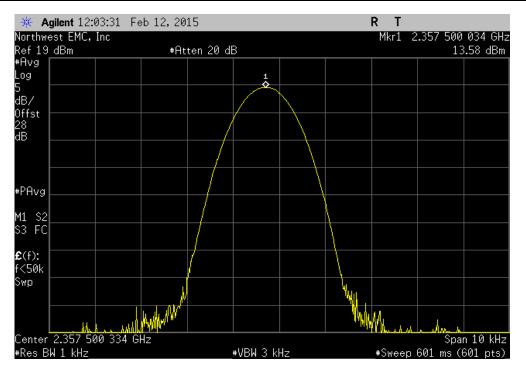


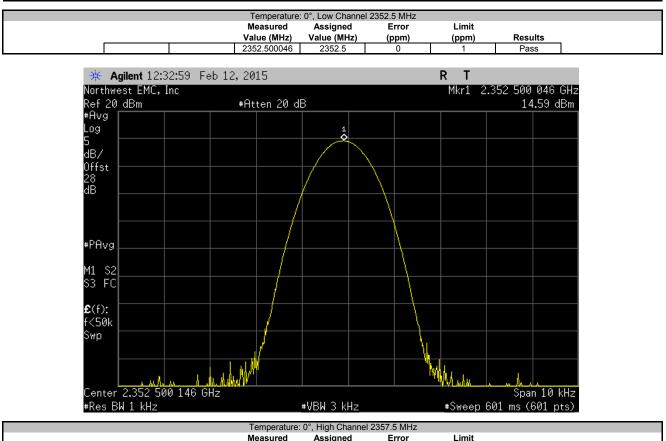


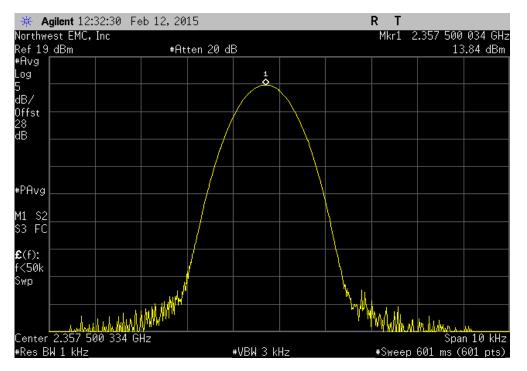




|  | Measured    | Assigned    | Error | Limit |         |
|--|-------------|-------------|-------|-------|---------|
|  | Value (MHz) | Value (MHz) | (ppm) | (ppm) | Results |
|  | 2357.500034 | 2357.5      | 0     | 1     | Pass    |

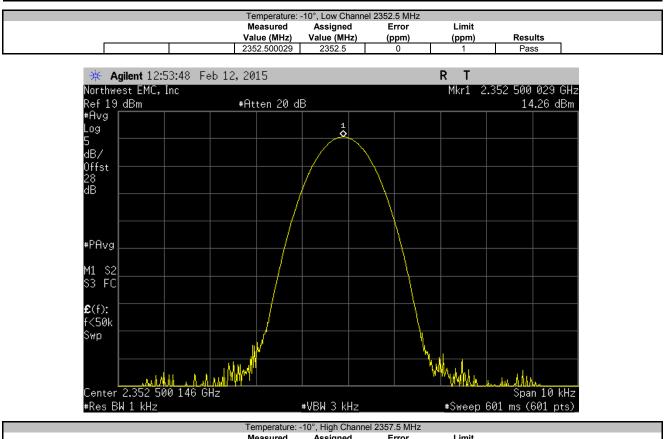




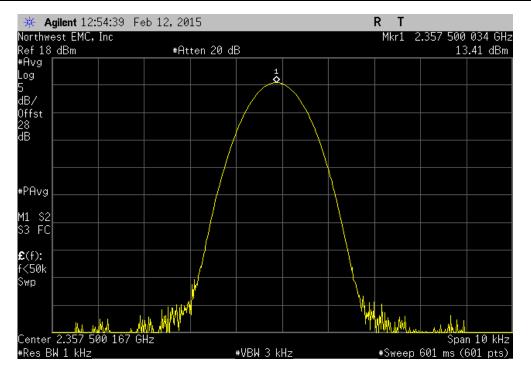




|  | Measured    | Assigned    | Error | Limit |         |
|--|-------------|-------------|-------|-------|---------|
|  | Value (MHz) | Value (MHz) | (ppm) | (ppm) | Results |
|  | 2357.500034 | 2357.5      | 0     | 1     | Pass    |

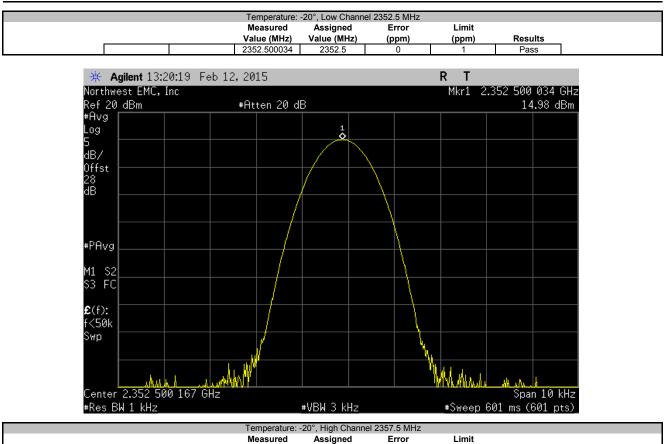




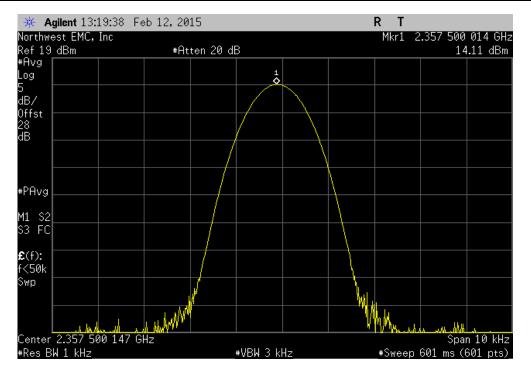




|  | Measured    | Assigned    | Error | Limit |         |
|--|-------------|-------------|-------|-------|---------|
|  | Value (MHz) | Value (MHz) | (ppm) | (ppm) | Results |
|  | 2357.500034 | 2357.5      | 0     | 1     | Pass    |

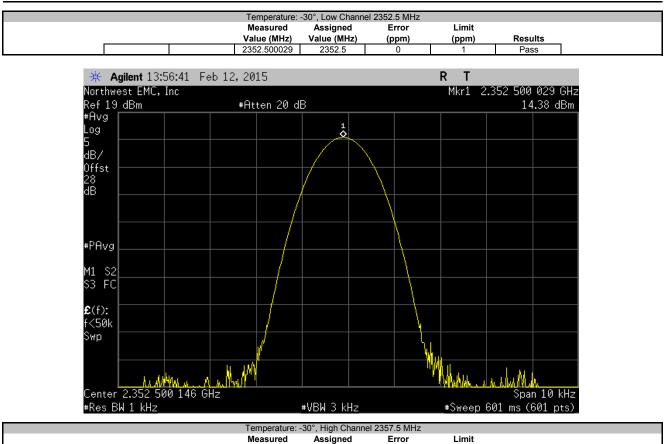




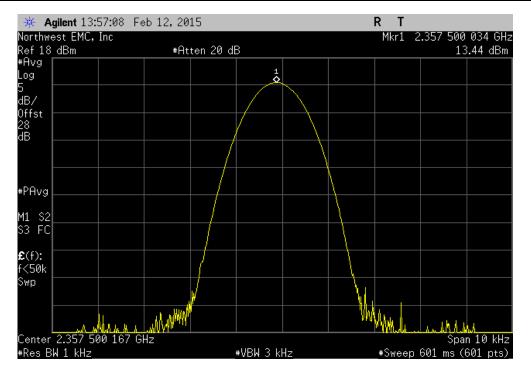




|  | Measured    | Assigned    | Error | Limit |         |
|--|-------------|-------------|-------|-------|---------|
|  | Value (MHz) | Value (MHz) | (ppm) | (ppm) | Results |
|  | 2357.500034 | 2357.5      | 0     | 1     | Pass    |

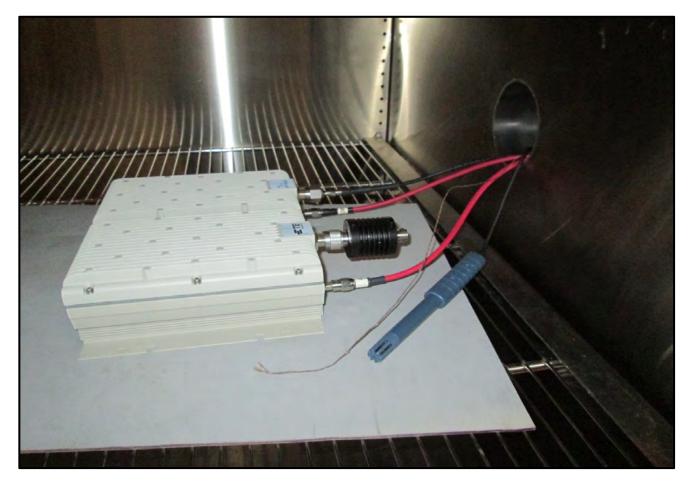








|  | Measured    | Assigned    | Error | Limit |         |
|--|-------------|-------------|-------|-------|---------|
|  | Value (MHz) | Value (MHz) | (ppm) | (ppm) | Results |
|  | 2357.500014 | 2357.5      | 0     | 1     | Pass    |








|  | Measured    | Assigned    | Error | Limit |         |
|--|-------------|-------------|-------|-------|---------|
|  | Value (MHz) | Value (MHz) | (ppm) | (ppm) | Results |
|  | 2357.500034 | 2357.5      | 0     | 1     | Pass    |









## FIELD STRENGTH OF SPURIOUS EMISSIONS

Stop Frequency 26500 MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### MODES OF OPERATION

Transmitting LTE 5MHz low channel (2352.5 MHz) and high channel (2357.5 MHz)

### POWER SETTINGS INVESTIGATED

## 110VAC/60Hz

### CONFIGURATIONS INVESTIGATED

TECO0024 - 2

## FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

## SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

### TEST EQUIPMENT

| Description             | Manufacturer     | Model                     | ID  | Last Cal.  | Interval |
|-------------------------|------------------|---------------------------|-----|------------|----------|
| Low Pass Filter         | Micro-Tronics    | LPM50004                  | HGK | 5/15/2014  | 12 mo    |
| High Pass Filter        | Micro-Tronics    | HPM50111                  | HGQ | 5/15/2014  | 12 mo    |
| Attenuator, 10db, 'SMA' | S.M. Electronics | SA18H-10                  | REN | 5/15/2014  | 12 mo    |
| Pre-Amplifier           | Miteg            | JSD4-18002600-26-8P       | APU | 10/3/2014  | 12 mo    |
| FIE-Ampiller            | wineq            |                           | APU | 10/3/2014  | 12 110   |
|                         |                  | 18-26GHz Standard Gain    |     |            | 10       |
| MN05 Cable              | N/A              | Horn Cable                | MNP | 10/3/2014  | 12 mo    |
| Antenna, Horn           | ETS              | 3160-09                   | AHG | NCR        | 0 mo     |
| Pre-Amplifier           | Miteq            | AMF-6F-12001800-30-10P    | AVW | 3/14/2014  | 12 mo    |
| Antenna, Horn           | ETS Lindgren     | 3160-08                   | AIQ | NCR        | 0 mo     |
| MN05 Cables             | ESM Cable Corp.  | Standard Gain Horn Cables | MNJ | 3/14/2014  | 12 mo    |
| Pre-Amplifier           | Miteq            | AMF-6F-08001200-30-10P    | AVV | 3/14/2014  | 12 mo    |
| Antenna, Horn           | ETS              | 3160-07                   | AXP | NCR        | 0 mo     |
| Pre-Amplifier           | Miteq            | AMF-3D-00100800-32-13P    | AVX | 3/14/2014  | 12 mo    |
|                         |                  | Double Ridge Guide Horn   |     |            |          |
| MN05 Cables             | ESM Cable Corp.  | Cables                    | MNI | 3/14/2014  | 12 mo    |
| Antenna, Horn           | ETS              | 3115                      | AJA | 6/3/2014   | 24 mo    |
| Pre-Amplifier           | Miteg            | AM-1616-1000              | PAD | 3/14/2014  | 12 mo    |
| MN05 Cables             | ESM Cable Corp.  | Bilog Cables              | MNH | 3/14/2014  | 12 mo    |
| Antenna, Biconilog      | Teseq            | CBL 6141B                 | AYD | 12/17/2013 | 24 mo    |
| Signal Generator MXG    | Agilent          | N5183A                    | TIK | 10/17/2014 | 36 mo    |
| Power Sensor            | Agilent          | N8481A                    | SQN | 8/22/2014  | 12 mo    |
| Power Meter             | Agilent          | N1913A                    | SQL | 8/22/2014  | 12 mo    |
| Antenna, Horn (DRG)     | ETS Lindgren     | 3115                      | AIP | 6/26/2014  | 24 mo    |
| Spectrum Analyzer       | Agilent          | N9010A                    | AFI | 1/27/2015  | 12 mo    |

#### MEASUREMENT BANDWIDTHS

| F | requency Range | Peak Data | Quasi-Peak Data | Average Data |
|---|----------------|-----------|-----------------|--------------|
|   | (MHz)          | (kHz)     | (kHz)           | (kHz)        |
|   | 0.01 - 0.15    | 1.0       | 0.2             | 0.2          |
|   | 0.15 - 30.0    | 10.0      | 9.0             | 9.0          |
|   | 30.0 - 1000    | 100.0     | 120.0           | 120.0        |
|   | Above 1000     | 1000.0    | N/A             | 1000.0       |

#### TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest and the highest transmit frequency. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.



## FIELD STRENGTH OF SPURIOUS EMISSIONS

PSA-ESCI 2015.01.16

EmiR5 2014.11.19.2

Work Order: TECO0024 Date: 02/25/15 0 2 21.9 °C Project: None Temperature: ins Job Site: **MN05** 13% RH Humidity: Serial Number: SPT-S3-2323-12-HP **Barometric Pres.:** 1018 mbar Tested by: Dustin Sparks EUT: Spectrum 2300 MHz WCS Secondary RAU Configuration: Customer: TE Connectivity / ADC Telecommunications Attendees: None EUT Power: 110VAC/60Hz Transmitting LTE 5MHz low channel (2352.5 MHz) and high channel (2357.5 MHz) **Operating Mode:** None **Deviations:** None Comments: Test Specifications **Test Method** FCC 27:2015 ANSI/TIA/EIA-603-C:2004 Test Distance (m) Antenna Height(s) Results Pass Run # 18 3 1 to 4(m) 0 -10 -20 -30 dBm -40 ٠ -50 ł \$ ٠ -60 ž -70 -80 10 100 1000 10000 100000 MHz PK AV QP Polarity/ Transducer Type Compared to EIRP EIRP Spec. Limit Frea Antenna Heigh Azimuth Detector Spec. Comments (Watts) (dBm) (meters) (degrees) (dBm) (dB) (MHz) 4704.892 211.0 AV 1.88E-08 -47.3 -45.0 -2.3 LTE 5MHz, low ch, EUT horz 1.1 Horz 87.1 4705.083 1.0 Horz AV 8.78E-09 -50.6 -45.0 -5.6 LTE 5MHz, low ch, EUT on side 4704.950 1.6 186.0 Vert AV 8.19E-09 -50.9 -45.0 -5.9 LTE 5MHz, low ch, EUT horz 4704.833 7.30E-09 -45.0 LTE 5MHz, low ch, EUT on side 1.2 97.0 Vert AV -51.4 -6.4 7057.325 1.0 58.1 Vert AV 6.37E-09 -52.0 -45.0 -7.0 LTE 5MHz, low ch, EUT horz

# PEAK TO AVERAGE RATIO



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## **TEST EQUIPMENT**

|                           |                    |                 |     |            | Interval |
|---------------------------|--------------------|-----------------|-----|------------|----------|
| Description               | Manufacturer       | Model           | ID  | Last Cal.  | (mo)     |
| MN08 Direct Connect Cable | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 10/2/2014  | 12       |
| Attenuator - 20db, 'SMA'  | SM Electronics     | SA26B-20        | RFW | 4/3/2014   | 12       |
| 40 GHz DC Block           | Fairview Microwave | SD3379          | AMI | 10/2/2014  | 12       |
| Signal Generator MXG      | Agilent            | N5183A          | TIK | 10/17/2014 | 36       |
| Spectrum Analyzer         | Agilent            | E4440A          | AAX | 4/28/2014  | 12       |

## **TEST DESCRIPTION**

Because the conducted Output Power was measured using a RMS Average detector, the Peak to Average Ratio was measured to show that the maximum peak-max-hold spectrum to the maximum of the average spectrum does not exceed 13 dB.

A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

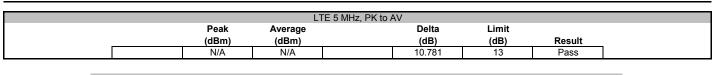
The spectrum analyzer settings were as follows:

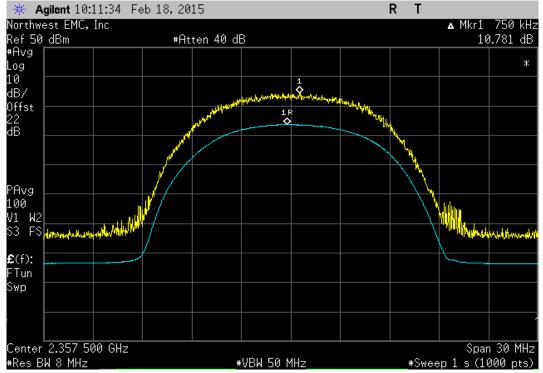
Span set to encompass the entire emission bandwidth, centered on the transmit channel.

The largest difference between the following two screen captures/traces was calculated:

> 1st Screen Capture/Trace: Peak detector and trace max-hold.

> 2nd Screen Capture/Trace: The same procedure and settings as was used for conducted Output Power.


# PEAK TO AVERAGE RATIO




| EUT               | Spectrum 2300 MHz WC    | S Secondary RAU   |          |                       |         | Work Order:       | TECO0024 |        |
|-------------------|-------------------------|-------------------|----------|-----------------------|---------|-------------------|----------|--------|
| Serial Number     | GR223E8E                |                   |          |                       |         | Date:             | 02/19/15 |        |
| Customer          | TE Connectivity / ADC T | elecommunications |          |                       |         | Temperature       | 23.1°C   |        |
| Attendees         | None                    |                   | Humidity | 9%                    |         |                   |          |        |
| Project           | None                    |                   |          |                       |         | Barometric Pres.: | 1031.8   |        |
| Tested by         | Trevor Buls             |                   | Power: 1 | 10VAC/60Hz            |         | Job Site:         | MN08     |        |
| TEST SPECIFICAT   | IONS                    |                   | ٦        | est Method            |         |                   |          |        |
| FCC 27:2015       |                         |                   | A        | ANSI/TIA/EIA-603-C-20 | 004     |                   |          |        |
|                   |                         |                   |          |                       |         |                   |          |        |
| COMMENTS          |                         |                   |          |                       |         |                   |          |        |
| Port 1 was determ | ined to be worst case.  |                   |          |                       |         |                   |          |        |
|                   |                         |                   |          |                       |         |                   |          |        |
|                   | M TEST STANDARD         |                   |          |                       |         |                   |          |        |
| None              |                         |                   |          |                       |         |                   |          |        |
| Configuration #   | 1                       | Signature         | revor    | Buls                  |         |                   |          |        |
|                   |                         |                   |          | Peak                  | Average | Delta             | Limit    |        |
|                   |                         |                   |          | (dBm)                 | (dBm)   | (dB)              | (dB)     | Result |
| LTE 5 MHz         |                         |                   |          |                       |         |                   |          |        |
|                   | PK to AV                |                   |          | N/A                   | N/A     | 10.781            | 13       | Pass   |
|                   |                         |                   |          |                       |         |                   |          |        |

# PEAK TO AVERAGE RATIO





