

FCC CLASS A COMPLIANCE TEST REPORT CFR 47, Part 15, Subpart B

for

Electromagnetic Emissions

of

DAS 8M-4-W

Model Number: DAS 8M-4-W Serial Number: Prototype

MJO#: SN9K-013.1

Prepared for:

LGC WIRELESS 585 E. Brokaw Road San Jose, CA 95112

Prepared by:

EMC Technology Services, Incorporated

49000 Milmont Drive Fremont, CA 94538 (510) 440-3838

REPORT DATE: NOVEMBER 24, 1999

0610B.01.1199FCCAB.DOC.GEN.

Page 1 of 45

FCC CLASS A COMPLIANCE TEST REPORT CFR 47, Part 15, Subpart B

FOR

DAS 8M-4-W MODEL DAS 8M-4-W

Prepared for:

LGC WIRELESS San Jose, CA 95112

Prepared by: EMC Technology Services, Inc.

	Signature	Date
TEST TECHNICIAN	Før Jack Plotner	12-7-99
TEST SUPERVISOR	Daryl Smith	12-7-99
Q.C. MANAGER/ FINAL RELEASE	Susan Pelletier	w 12-7-97

LIST OF REVISIONS

REVISION NUMBER AND DATE

PAGE <u>CHANGED</u> PAGE <u>SUBSTITUTED</u> PAGE <u>ADDED</u>

REPRODUCTION CLAUSE

Any reproduction of this document must be done in full. No single part of this document may be reproduced without written permission of EMC Technology Services, Inc., 49000 Milmont Drive, Fremont, CA 94538.

TABLE OF CONTENTS

<u>TITLE</u> PAG	GE
TITLE PAGE1	
SIGNATURE PAGE2	
LIST OF REVISIONS	
REPRODUCTION CLAUSE4	
TABLE OF CONTENTS	
VERIFICATION OF COMPLIANCE7	,
GENERAL INFORMATION8	1
DEVIATIONS	1
TEST RESULTS8	1
SYSTEM DESCRIPTION9	1
PRODUCT INFORMATION 10)
SUPPORT EQUIPMENT11	L
PRODUCT CABLING INFORMATION 12	2
SUMMARY14	ł

TABLE OF CONTENTS (continued)

SECTION	TITLE	PAGE
APPENDIX A	PHOTOGRAPHS AND BLOCK DIAGRAMS	16
APPENDIX B	TEST FACILITY	25
APPENDIX C	TEST EQUIPMENT	27
APPENDIX D	TEST METHODS	30
APPENDIX E	CLASS TYPES AND LIMITS	33
APPENDIX F	LABELING REQUIREMENTS	35
APPENDIX G	DATA READINGS	40
APPENDIX H	TEST PROCEDURES	45

VERIFICATION OF COMPLIANCE

Equipment Under Test:	DAS 8M-4-W
Model Number:	DAS 8M-4-W
Serial Number:	Prototype
Company:	LGC Wireless 585 E. Brokaw Rd. San Jose, CA 95112
Test Standard:	CFR 47, Part 15, Subpart B-1998 (ANSI C63.4-1992), Class A
Type of Test:	Conducted 450 kHz - 30 MHz Radiated 30 MHz - 1 GHz
Performance Criteria:	For Line Conducted test, emissions must not exceed the limits stated in CFR 47, Part 15, Subpart B, Section 107-(b). For Radiated test, emissions must not exceed the limits stated in CFR 47, Part 15, Subpart B, Section 109-(b).
Date Tested:	July 27, 1999
Test Technician:	Jack Plotner

The above equipment was tested by EMC Technology Services, Inc., for compliance with the requirements set forth in the CFR 47, Class A Rules and Regulations. This said equipment in the configuration described in the report, shows that maximum emission levels emanating from the equipment are within the compliance requirements.

GENERAL INFORMATION

Customer:	LGC Wireless 585 E. Brokaw Rd. San Jose, CA 95112
Contact Person:	John Dorsey
Phone Number:	(408) 487-2431
Equipment Under Test:	DAS 8M-4-W
Model Number:	DAS 8M-4-W
Serial Number:	Prototype
Test Standard:	CFR 47, Part 15, Subpart B-1998 (ANSI C63.4-1992), Class A
Type of Test:	Conducted 450 kHz - 30 MHz Radiated 30 MHz - 1 GHz
Performance Criteria:	For Line Conducted test, emissions must not exceed the limits stated in CFR 47, Part 15, Subpart B, Section 107-(b). For Radiated test, emissions must not exceed the limits stated in CFR 47, Part 15, Subpart B, Section 109-(b).
Deviation:	Signal generator was turned off for radiated.
Test Results:	Line ConductedLine conducted scans ranged from 450 kHz to 30 MHz on both Line 1 (hot side) and Line 2 (neutral side) in accordance with CFR 47 Class A test standard. All line conducted emissions were within the CFR 47 Class A requirements for compliance. <u>Radiated</u> Radiated scans ranged from 30 MHz to 1 GHz in both the horizontal and the vertical antenna polarization. All radiated emissions were within the CFR 47 Class A requirements for compliance.

SYSTEM DESCRIPTION

Equipment Under Test

DAS 8M-4-W

Support Equipment

Signal Generator

EUT Test Program: EUT was turned on with no input signal.

PRODUCT INFORMATION

Description Equipment Under Test: The unit consists of a main hub, expansion hub, and four antennas.

The EUT and/or support equipment was received at EMC Technology Services, Inc., in good condition, on November 17, 1999.

Housing Type: Metal

Power Supply: Internal

AC Power Requirements: 120 VAC/ 60 Hz

AC Line Cord from Outlet to Supply: Unshielded

Length: 6 ft	Gauge:	18
I/O PORT TYPE	<u>QTY</u>	TESTED WITH
Main Hub		
1) Duplex N-Type	1	1
2) Forward N-Type	1	0
3) Reverse N-Type	1	0
4) Up Optical	4	1
5) Down Optical	4	1
Expansion Hub		
1) Up Optical	1	1
2) Down Optical	1	1
3) Antenna RJ45	4	4
Antenna		
1) RJ45	1	1
2) Antenna	1	1

SUPPORT EQUIPMENT

Equipment Type: Signal Generator

Model Number: SMIQ 03

Serial Number: DE 22093

FCC ID Number: None

Manufacturer: Rohde and Schwarz

Power Line Cord Type: Unshielded

I/O PORT TYPE

RF Out

EUT (Main Hub)

TERMINATED TO

Note: This device was used to provide the EUT with a signal.

0610B.01.1199FCCAB.DOC.GEN

PRODUCT CABLING INFORMATION

Equipment Under Test (EUT): DAS 8M-4-W

Cable: Cat 5 (×4)		Unshielded		
Used	From: Antenna Ports 1,2,3,4	Port On: Expansion Hub (EUT)		
	To: Antenna	Port On: Antenna (×4) (EUT)		
Connector Type: RJ45		Length: 50 ft (15.3 meters)		
Cable use	ed during test was coiled.			

Cable: Optical		Unshielded		
Used	From: Down	Port On: Main Hub (EUT)		
	To: Up	Port On: Expansion Hub (EUT)		
Connecto	or Type: Optical	Length: 100 ft (30.6 meters)		
Cable us	ed during test was coiled.			

Cable: Optical		Unshielded		
Used	From: Up	Port On: Main Hub (EUT)		
	To: Down	Port On: Expansion Hub (EUT)		
Connect	or Type: Optical	Length: 100 ft (30.6 meters)		
Cable us	ed during test was coiled.			

PRODUCT CABLING INFORMATION

Equipment Under Test (EUT): DAS 8M-4-W

Cable: SMA

Shielded

Used From: RF Out

Port On: Signal Generator To: Duplex **Port On:** Main Hub (EUT) Connector Type: SMA **Length:** 5 ft (1.5 meters)

Cable used during test was unbundled.

Company: LGC Wireless

Equipment Under Test: DAS 8M-4-W

Test Standard: CFR 47, Part 15, Subpart B, Class A

Test Type: Line Conducted

Test Technician: Jack Plotner

EUT was scanned in the following setup(s): Mode: Standard Configuration: Standard

Support Equipment: Signal Generator

EUT Power: 120 VAC/60 Hz

Power Cord: Unshielded

Location: Test Site #4

Model Number: DAS 8M-4-W

Assistant: Leonides Agbayani

Modification(s) made to EUT: None

Test Results: Passed

(The chart below shows the six highest readings taken from the final data)

FREQ MHz	CORR'D dBµV	SITE CF	LIMIT		MAH	RGIN	LINE
			QP	AVG	QP	AVG	
0.468	26.8 PK	6.0	60.0		-33.2		L1
0.551	21.0 PK	6.0	60.0		-39.0		L1
23.410	25.0 PK	6.0	69.5		-44.5		L1
0.466	27.1 PK	6.0	60.0		-32.9		L2
0.550	19.8 PK	6.0	60.0		-40.2		L2
20.000	24.0 PK	6.0	69.5		-45.5		L2

L1 = Line One (hot side)/L2 = Line Two (neutral side)

SUMMARY

Company: LGC Wireless

Equipment Under Test: DAS 8M-4-W Model Number: DAS 8M-4-W

Test Standard: CFR 47, Part 15, Subpart B, Class A

Test Type: Radiated

Test Technician: Jack Plotner

EUT was scanned in the following setup(s): Mode: Standard Configuration: Standard

Support Equipment: Signal Generator

EUT Power: 120 VAC/60 Hz

Power Cord: Unshielded

Location: 10 Meter Test Site #4

Assistant: Leonides Agabayni

Modification(s) made to EUT: None

Test Results: Passed

(The chart below shows the six highest readings taken from the final data)

FREQ MHz	CORR'D dBµV/m	SITE CF	LIMIT		MAI	RGIN	NOTE
			QP	AVG	QP	AVG	
120.25	22.4 PK	+13.4	43.5		-21.1		Horizontal
125.00	24.6 PK	+12.6	43.5		-18.9		Horizontal
125.00	12.6 PK	+21.6	43.5		-17.9		Vertical
374.90	26.00 PK	+21.5	46.5		-20.5		Vertical
375.00	24.5 PK	+21.5	46.5		-22.0		Horizontal
400.00	24.7 PK	+22.5	46.5		-21.8		Horizontal

APPENDIX A

PHOTOGRAPHS AND BLOCK DIAGRAM

APPENDIX B

TEST FACILITY

TEST FACILITY

Location: 11825 Niles Canyon Road Sunol, CA 94586

Description: At the Sunol facility, there are four 3/10 m open area test sites, two line conducted labs and two indoor conducted/radiated engineering labs. The OATS and the LC labs are constructed and calibrated to meet the FCC requirements in documents OST-55/MP-4 and ANSI C63.4 1992.

Accreditation: EMC Technology Services, Inc. has been accredited by A2LA to do EMC testing, including FCC DoC testing on personal computers and their peripherals.

FCC has also accepted EMC Technology Services, Inc. facility site for filing applications for certification and notification.

Certification: EMC Technology Services, Inc. has the following test/lab sites certified by VCCI and Industry Canada (IC):

Open Area Test Site #1: VCCI No. R-802 and IC 2816-1

Open Area Test Site #2: VCCI No. R-376 and IC 2816-2

Open Area Test Site #3: VCCI No. R-377 and IC 2816-3

Open Area Test Site #4: VCCI No. R-378 and IC 2816-4

Line Conducted Lab #1: VCCI No. C-392

Line Conducted Lab #2: VCCI No. C-427

APPENDIX C

TEST EQUIPMENT

TEST	DETECTOR	FREQUENCY	RESOLUTION	VIDEO
ТҮРЕ		RANGE	BANDWIDTH	BANDWIDTH
Conducted	Peak/Avg	10 kHz-150 kHz	300 Hz/3 kHz	100 kHz/3 kHz
Conducted	Peak/QP/Avg	150 kHz-30 MHz	10 kHz/100 kHz	100 kHz
Radiated	Peak/Avg	60 Hz-1 kHz	10 Hz	100 kHz
Radiated	Peak/Avg	1 kHz-10 kHz	100 Hz	100 kHz
Radiated	Peak/Avg	10 kHz-150 kHz	300 Hz	100 kHz/300 Hz
Radiated	Peak/QP/Avg	150 kHz-30 MHz	10 kHz	100 kHz/10 kHz
Radiated	Peak/QP/Avg	30 MHz-1 GHz	100 kHz	100 kHz/10 kHz
Radiated	Peak/Avg	Above 1 GHz	1 MHz	1 MHz/300 kHz

MEASURING INSTRUMENT SETTINGS

Note: All readings on data pages are taken with the detector in peak mode unless otherwise stated.

EQUIPMENT	* MFR	MODEL	SERIAL	LAST	CAL.
ТҮРЕ		NUMBER	NUMBER	** CAL.	DUE
Biconical Antenna	Compliance	B100	109	09-20-99	09-20-00
	Design				
Biconical Antenna	Compliance	B200	128	08-24-99	09-04-00
	Design				
Receiver RF	HP	85462A	3807A00456	06-02-99	06-02-00
Section/Display					
Horn Antenna	EMCO	3115	9104-3647	08-16-99	08-16-00
LISN	FCC	LISN-2	VDE 5/FCC 5	05-05-99	03-05-00
Log Periodic	Schwarzbeck	UHALP 9107	9107384	09-04-99	09-04-00
Antenna					
Preamplifier	HP	8449B	3008A00272	02-17-99	02-17-00
RF Filter Section	HP	85460A	3704A00424	06-02-99	06-02-00
Spectrum	Tektronix	2782	B020370	06-18-99	06-18-00
Analyzer					

TEST EQUIPMENT LIST

* MFR = Manufacturer

**** CAL.** = Calibration

APPENDIX D

TEST METHODS

TEST METHODS (LINE CONDUCTED TEST)

- 1) The equipment will be set up according to the test standard to simulate typical actual usage. When the EUT is a table-top system, a wooden table with a height of 0.8 meters is used which is placed on the ground plane according to the test standard. When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, will be placed according to the test standard.
- 3) All I/O cables are positioned to simulate typical actual usage according to the test standard.
- 4) The EUT receives AC power through a Line Impedance Stabilization Network (LISN) which is grounded to the ground plane.
- 5) Support equipment, if used, will receive AC power through a second LISN.
- 6) Emissions are measured on each current carrying line of the EUT using a spectrum analyzer connected to the LISN powering the EUT.
- 7) During the emission measurement, the I/O cable placement position is adjusted in order to maximize the emission measurement level.
- 8) Emission frequency and amplitude are recorded into a computer in which correction factors are used to calculate the emission level and compare the reading to the applicable limit.

Data Sample:

Freq.	Corr'd	Site	Limit	Margin	Line
MHz	dBµV	CF	dBµV	dBµV	
2.47	46.0	6.0	48.0	-2.0	L1

Freq.	= Emission frequency in MHz
Corr'd dBµV	= RAW reading converted to $dB\mu V$ and CF added
Site CF	= Correction Factors for pad/cable losses
Limit dBµV	= Limit stated in standard
Margin dBµV	= Reading in reference to limit
Note	= Current carrying line of reading

TEST METHODS (RADIATED TEST)

- 1) The equipment will be set up according to the test standard to simulate typical actual usage. When the EUT is a table-top system, a wooden table with a height of 0.8 meters is used which is placed on the ground plane according to the test standard. When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, will be placed according to the test standard.
- 3) All I/O cables are positioned to simulate typical actual usage according to the test standard.
- 4) The antenna is placed at some given distance away from the EUT as stated in the test standard. The antenna connects to the analyzer via a cable and at times a preamp is used.
- 5) Emissions are scanned and measured rotating the EUT to 360 degrees, positioning cable placement, and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarizations in order to maximize the emission reading level.
- 6) Emission frequency, amplitude, antenna position, polarization, and table position are recorded into a computer in which correction factors are used to calculate the emission level and compare the reading to the applicable limit.

Freq.	Corr'd	Site	Limit	Margin	Table	Ant
MHz	dBµV	CF	dBµV	dBµV	Pos.	Pos.
76.57	44.2	-12.8	40.0	-5.3	180	1.5V

Data Sample:

Freq.	= Emission frequency in MHz
Corr'd dBµV	= RAW reading converted to $dB\mu V$ and CF added
Site CF	= Correction Factors for pad/cable losses
Limit dBµV	= Limit stated in standard
Margin dBµV	= Reading in reference to limit
Table Position	= EUT placement in reference to antenna
Antenna Position	= Antenna polarization and height above ground plane

APPENDIX E

CLASS TYPES AND LIMITS

FCC CLASS TYPES AND LIMITS

CLASS A COMPUTING DEVICE

A computing device which is marketed for use in a commercial or business environment; exclusive of a device which is marketed for use by the general public, or which is intended to be used in the home. Reference: Section 15.3 (h).

CLASS B COMPUTING DEVICE

A computing device that is marketed for use in a residential environment notwithstanding use in a commercial, business, or industrial environment. Examples of such devices include, but are not limited to: electronic games, personal computers, calculators, and similar devices that are marketed for the general public. Reference: Section 15.3 (i).

NOTE: A manufacturer may also qualify a device intended to be marketed in a commercial, business, or industrial environment as a Class B computing device, and in fact is encouraged to do so, provided the device complies with the technical standards for a Class B computing device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a computing device as a Class B computing device, regardless of its intended use.

APPENDIX F

LABELING REQUIREMENTS

FCC CLASS A LABELING REQUIREMENT

Section 15.19 of the Code of Federal Regulation

A) The Class A computing device subject to **verification** by the Commission shall be identified pursuant to par. 2.925 et seq of this Chapter. In addition, the label shall include the following statement:

THIS DEVICE COMPLIES WITH PART 15 OF THE FCC RULES. OPERATION IS SUBJECT TO THE FOLLOWING TWO CONDITIONS: (1) THIS DEVICE MAY NOT CAUSE HARMFUL INTERFERENCE, AND (2) THIS DEVICE MUST ACCEPT ANY INTERFERENCE RECEIVED, INCLUDING INTERFERENCE THAT MAY CAUSE UNDESIRED OPERATION.

- **B)** Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified in this section is required to be affixed only to the main control unit.
- C) When the device is so small or for such use that it is not practicable to place the statement specified in this section on it, the information required by these paragraphs shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.
- **D)** The label shall not be a stick-on paper label. The label on these products shall be permanently affixed to the product and shall be readily visible to the purchaser at the time of purchase. "Permanently affixed" means that the label is etched, engraved, stamped, silkscreened, indelibly printed, or otherwise permanently marked on a permanently attached part of the equipment or a nameplate of metal, plastic, or other material fastened to the equipment by welding, riveting, or use of a permanent adhesive. The label must be designed to last the expected lifetime of the equipment in the environment in which the equipment may be operated and must not be readily detachable.

FCC CLASS B LABELING REQUIREMENT

Section 15.19 of the Code of Federal Regulation

A) The Class B computing device subject to **certification** by the Commission shall be identified pursuant to par. 2.925 et seq of this Chapter. In addition, the label shall include the following statement:

FCC ID: XXXXXXXXXXXXXXXXXXXX

THIS DEVICE COMPLIES WITH PART 15 OF THE FCC RULES. OPERATION IS SUBJECT TO THE FOLLOWING TWO CONDITIONS:
(1) THIS DEVICE MAY NOT CAUSE HARMFUL INTERFERENCE, AND (2) THIS DEVICE MUST ACCEPT ANY INTERFERENCE RECEIVED, INCLUDING INTERFERENCE THAT MAY CAUSE UNDESIRED OPERATION.

- **B)** Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified in this section is required to be affixed only to the main control unit.
- C) When the device is so small or for such use that it is not practicable to place the statement specified in this section on it, the information required by these paragraphs shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.
- **D)** The label shall not be a stick-on paper label. The label on these products shall be permanently affixed to the product and shall be readily visible to the purchaser at the time of purchase. "Permanently affixed" means that the label is etched, engraved, stamped, silkscreened, indelibly printed, or otherwise permanently marked on a permanently attached part of the equipment or a nameplate of metal, plastic, or other material fastened to the equipment by welding, riveting, or use of a permanent adhesive. The label must be designed to last the expected lifetime of the equipment in the environment in which the equipment may be operated and must not be readily detachable.

DoC LABELING REQUIREMENTS

A) The Class B computing device, subject to authorization under a **Declaration of Conformity** (**DoC**), shall be labeled in a conspicuous location on the device and shall contain the following information:

Use the following label if product is authorized based on testing of the product or system:

DoC LABELING REQUIREMENTS (continued)

Use the following label if product is based on assembly using separately authorized components and the resulting product is not separately tested:

FOR HOME OR OFFICE USE				
	(Complete System Not Tested)			
	Iested Components			
	Assembled From			
Trade Nam	e Model Number			
1				

- **B)** When a device is so small or for such use that it is not practicable to place the statement specified on it, such as for a CPU board or plug-in circuit board peripheral device, the text associated with the logo may be placed in a prominent location in the instruction manual or pamphlet supplied to the user. However, the unique identification (trade name and model number) and the logo must be displayed on the device.
- C) The label shall not be a stick-on paper label. The label on these products shall be permanently affixed to the product and shall be readily visible to the purchaser at the time of purchase. "Permanently affixed" means that the label is etched, engraved, stamped, silkscreened, indelibly printed, or otherwise permanently marked on a permanently attached part of the equipment or a nameplate of metal, plastic, or other material fastened to the equipment by welding, riveting, or use of a permanent adhesive. The label must be designed to last the expected lifetime of the equipment in the environment in which the equipment may be operated and must not be readily detachable.

APPENDIX G

DATA READINGS

LINE CONDUCTED DATA

	CON	IPANY:	LGC	Wireless
EQUIP.	UNDER	TEST:	DAS	8M-4-W

MODEL NUMBER:	DAS 8M-4-W
TEST PROCEDURE:	FCC Part 15 Class A
MEASUREMENT SETUP:	LISN #942 120Vac 60Hz
SUPPORT EQUIPMENT:	Signal Generator

TEST SITE:			
TESTED BY:	Jack Plotner		
DATE:	November 17	1999	4:14pm

		Contr EUT	ol Rm 1 Room 1	Temp: 72 Temp: 66	Deg.F Deg.F	Humidity Humidity	7: 31 7: 42	%RH %RH
FREQ	RAW	SITE C	CORR'D	LI	MIT	EUT M	1ARG I N	NOTE
MHz	dBuV	CF	dBuV	А	в	A	В	
Expa	nsion Hub							
0.468	+20.8PK	6.0	26.8	60.0	48.0	-33.2	-21.2	L1
0.551	+15.0PK	6.0	21.0	60.0	48.0	-39.0	-27.0	L1
23.410	+19.0PK	6.0	25.0	69.5	48.0	-44.5	-23.0	L1
0.466	+21.1PK	6.0	27.1	60.0	48.0	-32.9	-20.9	L2
0.550	+13.8PK	6.0	19.8	60.0	48.0	-40.2	-28.2	L2
5.210	+12.0PK	6.0	18.0	69.5	48.0	-51.5	-30.0	L2
14.600	+10.3PK	6.0	16.3	69.5	48.0	-53.2	-31.7	L2
20.000	+18.0PK	6.0	24.0	69.5	48.0	-45.5	-24.0	L2
29.990	+10.0PK	6.0	16.0	69.5	48.0	-53.5	-32.0	L2
	L1 =	LINE ONE	(HOT SI	IDE)				
	L2 =	LINE TWO	(NEUTRA	AL SIDE)				

====== END OF CONDUCTED TEST ======

LINE CONDUCTED DATA

EQUIP.	COMPAN UNDER TES	NY: LGC ST: DAS	Wireless 8M-4-W	i				
MOI TEST MEASUREN SUPPORT	DEL NUMBH PROCEDUR MENT SETU EQUIPMEN	ER: DAS RE: FCC JP: LISN NT: Sign	8M-4-W Part 15 V #942 Mal Gener	Class A 120Vac ator	60Hz			
	TEST SIT TESTED E DAT	TE: BY: Jack TE: Nove	Plotner mber 17	1999	3:55pm			
		Cont EUT	rol Rm T Room T	emp: 74 emp: 66	Deg.F Deg.F	Humidit Humidit	y: 31 y: 42	%RH %RH
FREQ MHz	RAW dBuV	SITE CF	CORR'D dBuV	LI A	MIT B	EUT A	MARGIN B	NOTE
Main 5.230 20.000 28.478 29.999	Hub +2.0PK +22.0PK +10.5PK +7.5PK	6.0 6.0 6.0 6.0	8.0 28.0 16.5 13.5	69.5 69.5 69.5 69.5	48.0 48.0 48.0 48.0	-61.5 -41.5 -53.0 -56.0	-40.0 -20.0 -31.5 -34.5	L1 L1 L1 L1
4.000 20.000 29.988	+3.0PK +22.5PK +16.0PK	6.0 6.0 6.0	9.0 28.5 22.0	69.5 69.5 69.5	48.0 48.0 48.0	-60.5 -41.0 -47.5	-39.0 -19.5 -26.0	L2 L2 L2
	L1 = L2 =	LINE ONE LINE TWO	(HOT SI	DE) L SIDE)				

 ========		
 END OF	CONDUCTED TEST	*******

RADIATED EMISSION DATA

.

COMPANY: EQUIP. UNDER TEST:	LGC Wireless DAS8M-4-W		
MODEL NUMBER: TEST PROCEDURE: SUPPORT EQUIPMENT:	DAS8M-4-W FCC Class A Signal Generator		
TESTED BY: DATE:	Jack Plotner TEST SITE November 18 1999	4	
TIME: 9:59am	Control RM Temp: 64 Deg.F EUT Room Temp: 62 Deg.F	Humidity: Humidity:	60 %RH 62 %RH

30MHz TO 200MHz Biconical Antenna at 10 meters Horz.

	FREQ	RAW	SITE	CORR'D	LIM	IT	EUT 1	MARGIN	POSI	TION
]	MHz	dBuV	CF	dBuV/m	А	В	А	В	TBL.	ANT
	30MHz	TO 200	WHZ BIO	onical Ar	tenna	a+ 10	motore 1	1		
	50 00	10 100	110 0	12 0	20 0	at 10 .	meters	norz.		
Ì	75 00	+10 OPK	+10.5	14.9	39.0	29.0	-26.1	-16.6	195	4,00
,	10.00	TU.UPK	+0.0	10.0	39.0	29.5	-22.2	-12.7	180	4.00
	00.94	+0.0PK	+8.0	16.5	39.0	29.5	-22.5	-13.0	345	4.00
1	20.25	+9.0PK	+13.4	22.4	43.5	33.0	-21.1	-10.6	65	4.00
1	25.00	+12.0PK	+12.6	24.6	43.5	33.0	-18.9	-8.4	125	4.00
1	25.00	+12.0PK	+12.6	24.6	43.5	33.0	-18.9	-8.4	125	4.00
1	50.00	+2.0PK	+13.7	15.7	43.5	33.0	-27.8	-17.3	180	4.00
	30MHz	TO 200	MHz Bico	onical Ar	itenna a	at 10 g	meters \	Vart		
1	50.00	+2.0PK	+10.9	12 9	39 0	20 5	-26 1	-16 6	100	1 50
	83.78	+1.0PK	+8.5	95	30.0	20 5	-20.1	-10.0	100	1.50
1 :	20.25	+5.0PK	+13 4	18 /	43 5	22 0	-45.0	-20.0	145	1.50
1	25.00 .	+13 OPK	+12 6	25 6	40.0	33.0	-25.1	-14.6	90	1.50
19	50 00	+4 0PK	+13 7	17 7	40.0	33.0	-17.9	-7.4	180	1.50
- '	00.00	· 4.01 K	+10.7	17.7	43.5	33.0	-25.8	-15.3	180	1.50
	200MH;	z to 400	OMHz Bid	conical A	Intenna	at 10	meters	Vert.		
2(00.00	+2.0PK	+15.6	17.6	43.5	33.0	-25.9	-15.4	145	1 50
2	50.00	+3.0PK	+17.8	20.8	46.5	35.5	-25 7	-14 7	145	1 75
3′	74.98	+4.5PK	+21.5	26.0	46.5	35.5	-20.5	-9 5	180	1 50
							=0.0	0.0	100	1.00
	200MH2	z to 400	OMHz Bio	conical A	Intenna	at 10	meters	Horz.		
2(00.00	+1.0PK	+15.6	16.6	43.5	33.0	-26.9	-16.4	100	4.00

RADIATED EMISSION DATA

COMPANY: LGC Wireless EQUIP. UNDER TEST: DAS 8M-4-W

MODEL NUMBER: DAS 8M-4-W TEST PROCEDURE: FCC Part 15 Class A SUPPORT EQUIPMENT: Signal Generator

- TESTED BY:Jack PlotnerTEST SITE 4DATE:November 17 1999
- TIME: 12:15pm Control RM Temp: 71 Deg.F Humidity: 38 %RH EUT Room Temp: 66 Deg.F Humidity: 46 %RH

200MHz to 400MHz Biconical Antenna at 10 meters Horz.

FREQ	RAW	SITE	CORR'D	D LIMIT		EUT MARGIN		POSITION	
MHz	dBuV	CF	dBuV/m	Α	В	Α	В	TBL	ANT
250.00	+4.5PK	+17.8	22.3	46.5	35.5	-24.2	-13.2	180	4.00
375.00	+3.0PK	+21.5	24.5	46.5	35.5	-22.0	-11.0	270	4.00
400.00	+2.5PK	+22,2	24.7	46.5	35.5	-21.8	-10.8	195	4.00

END OF RADAITED TEST

======= END OF RADIATED TEST ========

APPENDIX H

TEST PROCEDURES

For a Copy, Contact John Dorsey:

LGC WIRELESS

585 E. Brokaw Road San Jose, CA 95112