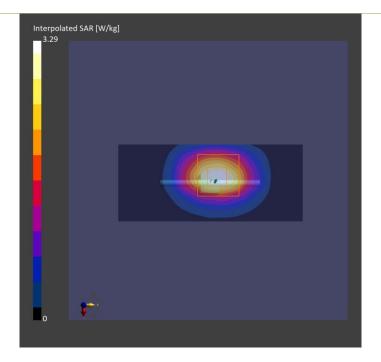
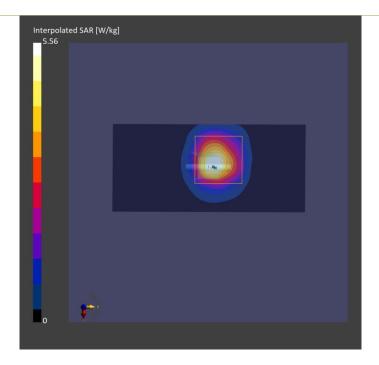


Appendix A. Plots of System Verification

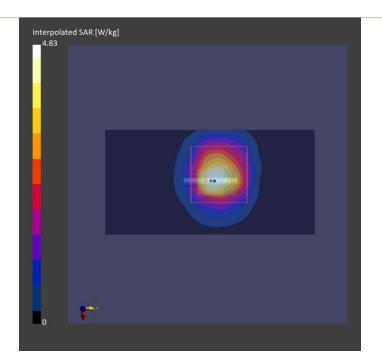

The plots for system verification are shown as follows.

Measurement Report

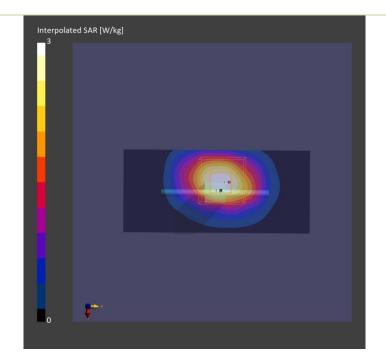
S	01	System	Check_	_H2450_	_230517


Device under 1	est Propertie						
Model, Manufactur	er	Dimensions [r	nm] IMI	1	Туре		
Dipole		10.0 x 10.0 x 3	800.0				
Exposure Cond	itions						
Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL Conductivity	TSL Permittivity
Section, TSL	Distance [mm]		UID	[MHz],	Factor	[S/m]	
				Channel Number			
Flat				2450.0	7.39	1.86	42.7
Hardware Setu Phantom	-	TSL, Measu		Probe, Calibrati		DAE, Calibratic	
	-		red Date , 2023-May-17	Probe, Calibratio EX3DV4 - SN779		DAE, Calibratio DAE4 Sn1590,	
Phantom	-				7, 2022-12-12	•	
Phantom ELI V5.0 (20deg prob	-			EX3DV4 - SN779	7, 2022-12-12	•	
Phantom ELI V5.0 (20deg prob	- pe tilt) - 2105	H06T27N6	, 2023-May-17	EX3DV4 - SN779	7, 2022-12-12	DAE4 Sn1590,	2022-09-22
Phantom ELI V5.0 (20deg prob Scan Setup	- pe tilt) - 2105	H06T27N6	, 2023-May-17 Zoom Scan	EX3DV4 - SN779 Measuremen	7, 2022-12-12 nt Results	DAE4 Sn1590, Area Scan	2022-09-22 Zoom Scan
Phantom ELI V5.0 (20deg prot Scan Setup Grid Extents [mm]	- pe tilt) - 2105	H06T27N6 Area Scan 48.0 x 96.0	, 2023-May-17 Zoom Scan 30.0 x 30.0 x 30.0	EX3DV4 - SN779 Measuremen Date	7, 2022-12-12 nt Results	DAE4 Sn1590, Area Scan 2023-05-17	2022-09-22 Zoom Scan 2023-05-17

Measurement Report


Measuremen	-						
S02 System	Check_H5250	_230517					
Device unde	r Test Propert	ies					
Model, Manufa	cturer	Dimensions [mm] IM	EI	DUT	Туре	
Dipole		10.0 x 10.0 x 3	300.0				
Exposure Co	onditions						
Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL Conductivity	TSL Permittivity
Section, TSL	Distance [mn	ן 1	UID	[MHz],	Factor	[S/m]	
				Channel Number			
Flat				5250.0	4.89	4.69	35.5
Hardware S	etup						
Phantom		TSL, Measure	ed Date	Probe, Calibration Date DAE, Calibration Date		on Date	
ELI V5.0 (20deg	probe tilt) - 2105	H51T72N6	, 2023-May-17	EX3DV4 - SN779	97, 2022-12-12	DAE4 Sn1590, 1	2022-09-22
Scan Setup				Measureme	nt Results		
-		Area Scan	Zoom Scan			Area Scan	Zoom Scan
Grid Extents [n	nm]	40.0 x 80.0	24.0 x 24.0 x 22.0	Date		2023-05-17	2023-05-17
Grid Steps [mn	n]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/k	g]	3.68	4.24
Sensor Surface		3.0	1.4	psSAR10g [W/	ˈkg]	1.17	1.22
				Power Drift [d	-	0.02	0.02

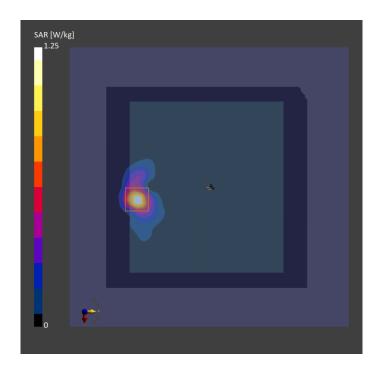
S03	System	Check_	_H5800_	_230919


Model, Manufac	turer	Dimensions [mr	n] IME	1	DUT 1	Гуре	
Dipole		10.0 x 10.0 x 300	0.0				
Exposure Co	onditions						
Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL Conductivity	TSL Permittivity
Section, TSL	Distance [mm]		UID	[MHz], Channel Number	Factor	[S/m]	
Flat				5800.0	5.16	5.18	36.5
HC							
	etup	TEL Massurad	Data	Droho, Calibrati	on Data	DAE Calibratic	n Data
Phantom	-	TSL, Measured		Probe, Calibratio		DAE, Calibratio	
Hardware Se Phantom ELI V8.0 (20deg p 2118	-	TSL, Measured H51T72N5 , 2		Probe, Calibration EX3DV4 - SN755		DAE, Calibratic DAE4 Sn1585,	
Phantom ELI V8.0 (20deg p	-	-		•	5, 2023-07-19		
Phantom ELI V8.0 (20deg p 2118	-	-		EX3DV4 - SN755	5, 2023-07-19		
Phantom ELI V8.0 (20deg p 2118	probe tilt) -	H51T72N5 , 2	023-Sep-19	EX3DV4 - SN755	5, 2023-07-19	DAE4 Sn1585,	2023-07-14
Phantom ELI V8.0 (20deg p 2118 Scan Setup	probe tilt) -	H51T72N5 , 2 Area Scan	023-Sep-19 Zoom Scan	EX3DV4 - SN755	5, 2023-07-19 nt Results	DAE4 Sn1585, Area Scan	2023-07-14 Zoom Scan
Phantom ELI V8.0 (20deg p 2118 Scan Setup Grid Extents [m	probe tilt) - nm] n]	H51T72N5 , 2 Area Scan 40.0 x 80.0	023-Sep-19 Zoom Scan 24.0 x 24.0 x 22.0	EX3DV4 - SN755 Measuremen Date	s5, 2023-07-19 nt Results	DAE4 Sn1585, Area Scan 2023-09-19	2023-07-14 Zoom Scan 2023-09-19
Phantom ELI V8.0 (20deg p 2118 Scan Setup Grid Extents [m Grid Steps [mm	probe tilt) - nm] n]	H51T72N5 , 2 Area Scan 40.0 x 80.0 10.0 x 10.0	Zoom Scan 24.0 x 24.0 x 22.0 4.0 x 4.0 x 1.4	EX3DV4 - SN755 Measuremen Date psSAR1g [W/kj	s5, 2023-07-19 nt Results g] kg]	DAE4 Sn1585, Area Scan 2023-09-19 3.38	2023-07-14 Zoom Scar 2023-09-19 3.83
Phantom ELI V8.0 (20deg p 2118 Scan Setup Grid Extents [m Grid Steps [mm Sensor Surface	probe tilt) - nm] n]	H51T72N5 , 2 Area Scan 40.0 x 80.0 10.0 x 10.0	Zoom Scan 24.0 x 24.0 x 22.0 4.0 x 4.0 x 1.4	EX3DV4 - SN755 Measuremen Date psSAR1g [W/kj psSAR10g [W/	s5, 2023-07-19 nt Results g] kg]	DAE4 Sn1585, Area Scan 2023-09-19 3.38 1.05	2023-07-14 Zoom Scar 2023-09-19 3.83 1.08

Measuremen	-	220525					
	Check_H2450_ r Test Propertie						
Model, Manufa	cturer	Dimensions [m	m] II	MEI	DUT Ty	pe	
Dipole		10.0 x 10.0 x 30	0.0				
Exposure Co	onditions						
Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL Conductivity	TSL Permittivity
Section, TSL	Distance [mm]		UID	[MHz],	Factor	[S/m]	
				Channel Numb	er	• • •	
Flat				2450.0	8.26	1.82	42.1
Hardware S	etup						
Phantom	-	TSL, Measure	ed Date	Probe, Calib	ration Date	DAE, Calibrati	on Date
ELI V5.0 (20deg	probe tilt) - 1204	H06T27N4	, 2023-May-25	EX3DV4 - SN	3971, 2023-01-20	DAE4 Sn1277,	2023-01-24
Scan Setup				Measurer	nent Results		
		Area Scan	Zoom Sca	an		Area Scan	Zoom Scan
	-						

Area Scan	Zoom Scan
2023-05-25	2023-05-25
R1g [W/kg] 2.36	2.41
R10g [W/kg] 1.14	1.13
er Drift [dB] 0.01	-0.01
Δ Δ	e 2023-05-25 AR1g [W/kg] 2.36 AR10g [W/kg] 1.14

Appendix B. Plots of Measurement


The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination are shown as follows.

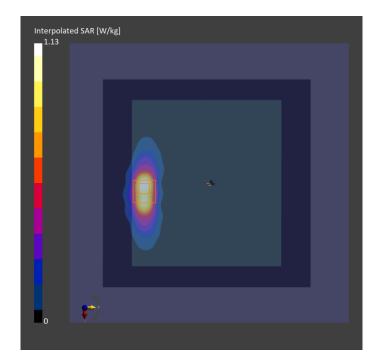
Plots of Measurement

Measurement Report P01 WLAN2.4G_802.11b_Rear Face_0mm_Ch6_Ant 0

Model, Manufac	r Test Propert	Dimensions [r	nm] IME	El	DUT	Гуре	
BEMI-WTW-P23	040655	144.0 x 160.0	x 11.0	Tablet			
Exposure Co	nditions						
Phantom Section, TSL	Position, Test Distance [mm		Group, UID	Frequency [MHz], Channel Numbe	Conversion Factor r	TSL Conductivity [S/m]	TSL Permittivity
Flat,	Rear Face, 0.00	WLAN 2.4GHz	WLAN, 10012-CAB	2437.0, 6	7.39	1.85	42.7
Hardware So Phantom	etup	TCI Margar	ad Data	Ducks Calibu	tion Data		- Dete
ELI V8.0 (20deg j	orobe tilt) - 2105	TSL, Measu H06T27N6	, 2023-May-17	Probe, Calibration Date EX3DV4 - SN7797, 2022-12-12		DAE, Calibration Date DAE4 Sn1590, 2022-09-22	
Scan Setup				Measurem	ent Results		
		Area Scan	Zoom Scan			Area Scan	Zoom Scan
	Grid Extents [mm]		30.0 x 30.0 x 30.0	Date		2023-05-17	2023-05-17
Grid Extents [n	,			psSAR1g [W	/kg]	0.905	1.14
Grid Extents [n Grid Steps [mn	-	12.0 x 12.0	5.0 x 5.0 x 5.0	poor=B [1		
•	1]	12.0 x 12.0 3.0	5.0 x 5.0 x 5.0 1.4	1		0.373	0.405
Grid Steps [mn	1]			psSAR10g [\ Power Drift	V/kg]	0.373 -0.01	0.03
Grid Steps [mn	1]			psSAR10g [\	V/kg] [dB]		0.405 0.03 67.2 5.0

4.5

Plots of Measurement

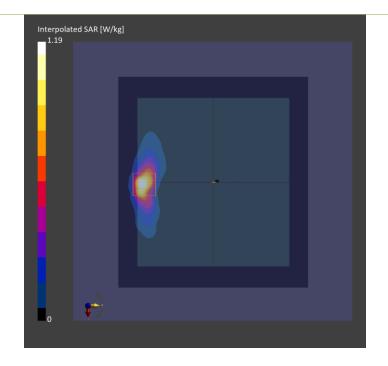

Measurement Report

P02 WLAN5.2G_802.11ac VHT80_Rear Face_0mm_Ch42_Ant 0

Device under Test Properties

Model, Manufa	cturer	Dimensions [mm] IN	IMEI DUT Type			
BEMI-WTW-P2	3040655	144.0 x 160.0 x 11.0			Tablet	:	
Exposure Co	onditions						
Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL Conductivity	TSL Permittivity
Section, TSL	Distance [mm]]	UID	[MHz], Channel Numbe	Factor	[S/m]	
Flat,	Rear Face,	WLAN	WLAN,	5210.0,	4.89	4.64	35.6
	0.00	5GHz	10544-AAC	42			
Hardware S	etup						
Phantom	-	TSL, Measu	red Date	Probe, Calibr	ation Date	DAE, Calibratio	on Date
ELI V8.0 (20deg	probe tilt) - 2105	H51T72N6	, 2023-May-17	EX3DV4 - SN7	7797, 2022-12-12	DAE4 Sn1590,	2022-09-22
Scan Setup				Measuren	nent Results		
ľ		Area Scan	Zoom Sca	n		Area Scan	Zoom Scan
Grid Extents [r	nm]	200.0 x 200.0	24.0 x 24.0 x 22.	0 Date		2023-05-17	2023-05-17
Grid Steps [mr	m]	10.0 x 10.0	4.0 x 4.0 x 1.4	4 psSAR1g [W	//kg]	0.799	1.06
Sensor Surface	e [mm]	3.0	1.4	4 psSAR10g [¹	W/kg]	0.314	0.318
				Power Drift	[dB]	0.04	0.05
				M2/M1 [%]			61.7

Dist 3dB Peak [mm]



Plots of Measurement

Measurement Report

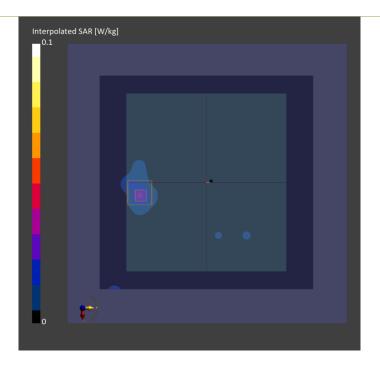
P03 WLAN5.8G_802.11ac VHT80_Rear Face_0mm_Ch155_Ant 0

Model, Manufac	cturer	Dimensions [mm] IN	MEI DUT Type				
BEMI-WTW-P23	040655	144.0 x 160.0	x 11.0	Tablet				
Exposure Co	onditions							
Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL Conductivity	TSL Permittivity	
Section, TSL	Distance [mm]]	UID	[MHz], Channel Numbe	Factor er	[S/m]		
Flat,	Rear Face,	WLAN	WLAN,	5775.0,	5.16	5.18	36.5	
	0.00	5GHz	10544-AAC	155				
Hardware So	etup							
Phantom	-	TSL, Measu	red Date	Probe, Calib	ration Date	DAE, Calibratio	on Date	
ELI V8.0 (20deg	probe tilt) - 2118	H51T72N5	, 2023-Sep-19	EX3DV4 - SN7555, 2023-07-19		DAE4 Sn1585, 2023-07-14		
Scan Setup				Measuren	nent Results			
-		Area Scan	Zoom Scar	ı		Area Scan	Zoom Scan	
Grid Extents [n	nm]	200.0 x 180.0	24.0 x 24.0 x 22.0) Date	:	2023-09-19	2023-09-19	
Grid Steps [mn	n]	10.0 x 10.0	4.0 x 4.0 x 1.4	1 psSAR1g [V	V/kg]	0.855	0.981	
Sensor Surface	[mm]	3.0	1.4	1 psSAR10g [W/kg]	0.281	0.295	
				Power Drift	t [dB]	0.06	-0.04	
				M2/M1 [%]]		57.0	
				Dist 3dB Pe			5.1	

Plots of Measurement

TSL Permittivity

Measurement Report P04 BT_BDR_Rear Face_0mm_Ch39_Ant 0 **Device under Test Properties** Model, Manufacturer Dimensions [mm] IMEI BEMI-WTW-P23040655 144.0 x 160.0 x 11.0 **Exposure Conditions** Phantom Position, Test Band Group, Frequency Conversion Section, TSL Distance [mm] UID [MHz], Factor Channel NI


				Channel Number			
Flat,	Rear Face,	ISM 2.4	Bluetooth,	2441.0,	8.26	1.81	42.1
	0.00	GHz Band	10032-CAA	39			
Hardware Set	up						
Phantom	-	TSL, Measure	d Date	Probe, Calibratior	n Date	DAE, Calib	oration Date
ELI V5.0 (20deg pr	obe tilt) - 1204	H06T27N4 ,	2023-May-25	EX3DV4 - SN3971,	, 2023-01-20	DAE4 Sn1	277, 2023-01-24
Scan Setup				Measurement	t Results		
-		Area Scan	Zoom Scan			Area Scan	Zoom Scan
Grid Extents [mn	n] :	192.0 x 192.0	30.0 x 30.0 x 30.0	Date		2023-05-25	2023-05-25
Grid Steps [mm]		12.0 x 12.0	5.0 x 5.0 x 5.0	psSAR1g [W/kg]		0.024	0.031
Sensor Surface [r	mm]	3.0	1.4	psSAR10g [W/kg	g]	0.010	0.013
				Power Drift [dB]		-0.02	-0.01
				M2/M1 [%]			43.2
				Dist 3dB Peak [m	nm]		5.9

DUT Type

TSL Conductivity

[S/m]

Tablet

Appendix D. Maximum Target Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

Tune-up Power (Full)					
	WLAN 2	2.4GHz			
Mode Channel Frequency SISO Ar Max Tun					
	1	2412	13.0		
802.11b	6	2437	13.0		
	11	2462	13.0		
	1	2412	13.0		
802.11g	6	2437	13.0		
	11	2462	13.0		
	1	2412	13.0		
802.11n HT20	6	2437	13.0		
	11	2462	13.0		

Tune-up Power (Full)				
	Bluet	ooth		
Mode	Channel	Frequency	Ant 0 Max Tune-up	
	0	2402	2.0	
BR / EDR	39	2441	2.0	
	78	2480	2.0	
	0	2402	2.0	
LE	19	2440	2.0	
	39	2480	2.0	

Tune-up Power (Full)						
	WLAN 5.2GHz					
Mode	Channel	Frequency	SISO Ant 0 Max Tune up			
	36	5180	12.5			
802.11a	40	5200	12.5			
002.114	44	5220	12.5			
	48	5240	12.5			
	36	5180	12.5			
802.11n HT20	40	5200	12.5			
002.11111120	44	5220	12.5			
	48	5240	12.5			
802.11n HT40	38	5190	12.5			
002.11111140	46	5230	12.5			
	36	5180	12.5			
802.11ac VHT20	40	5200	12.5			
	44	5220	12.5			
	48	5240	12.5			
802.11ac VHT40	38	5190	12.5			
	46	5230	12.5			
802.11ac VHT80	42	5210	12.5			

Tune-up Power (Full)						
	WLAN 5.8GHz					
Mode	Channel	Frequency	SISO Ant 0 Max Tune up			
	149	5745	12.0			
	153	5765	12.0			
802.11a	157	5785	12.0			
	161	5805	12.0			
	165	5825	12.0			
	149	5745	12.0			
	153	5765	12.0			
802.11n HT20	157	5785	12.0			
	161	5805	12.0			
	165	5825	12.0			
802.11n HT40	151	5755	12.0			
802.1111140	159	5795	12.0			
	149	5745	12.0			
	153	5765	12.0			
802.11ac VHT20	157	5785	12.0			
	161	5805	12.0			
	165	5825	12.0			
802.11ac VHT40	151	5755	12.0			
	159	5795	12.0			
802.11ac VHT80	155	5775	12.0			

Appendix E. Measured Conducted Power Result

The measuring conducted power (Unit: dBm) are shown as below.

Conducted Power (Full)				
I	NLAN2.4G	Hz Ant 0		
Mode	Channel	Frequency	SISO Ant 0 Avg. Power	
	1	2412	12.94	
802.11b	6	2437	12.95	
	11	2462	12.75	
	1	2412	12.91	
802.11g	6	2437	12.88	
	11	2462	12.78	
802.11n HT20	1	2412	12.92	
	6	2437	12.89	
	11	2462	12.79	

Conducted Power (Full) Bluetooth Ant 0				
Mode Channel Frequency SISO And Avg. Pow				
	0	2402	1.91	
BR / EDR	39	2441	1.95	
	78	2480	1.89	
	0	2402	1.87	
LE	19	2440	1.9	
	39	2480	1.85	

Conducted Power (Full)				
V	VLAN 5.2G	Hz Ant 0		
Mode	Channel	Frequency	SISO Ant 0 Avg. Power	
	36	5180	12.49	
802.11a	40	5200	12.48	
002.110	44	5220	12.45	
	48	5240	12.43	
	36	5180	12.38	
802.11n HT20	40	5200	12.41	
002.11111120	44	5220	12.41	
	48	5240	12.4	
802.11n HT40	38	5190	12.37	
002.11111140	46	5230	12.45	
	36	5180	12.46	
802.11ac VHT20	40	5200	12.44	
	44	5220	12.4	
	48	5240	12.45	
802.11ac VHT40	38	5190	12.43	
	46	5230	12.41	
802.11ac VHT80	42	5210	12.39	

Conducted Power (Full)					
WLAN 5.8GHz Ant 0					
Mode	Channel	Frequency	SISO Ant 0 Avg. Power		
	149	5745	11.22		
	153	5765	11.74		
802.11a	157	5785	11		
	161	5805	11.6		
	165	5825	11		
	149	5745	11.82		
	153	5765	11.09		
802.11n HT20	157	5785	11.46		
	161	5805	11.39		
	165	5825	11.51		
802.11n HT40	151	5755	11.84		
002.11111140	159	5795	11.72		
	149	5745	10.98		
	153	5765	11.37		
802.11ac VHT20	157	5785	11.27		
	161	5805	11.31		
	165	5825	11.38		
802.11ac VHT40	151	5755	11.86		
002.1140	159	5795	11.95		
802.11ac VHT80	155	5775	11.74		

Appendix Z. Calibration Certificate for Probe and Dipole

The SPEAG calibration certificates are shown as follows.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **B.V. ADT**

Certificate No: D2450V2-737_Feb23

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:737					
Calibration procedure(s)	QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz					
Calibration date:	February 20, 202	3				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.						
All calibrations have been conduct	ed in the closed laboratory	y facility: environment temperature (22 ± 3)°	C and humidity < 70%.			
Calibration Equipment used (M&TE	E critical for calibration)					
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23			
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23			
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23			
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23			
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23			
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24			
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23			
Secondary Standards	ID #	Check Date (in house)	Scheduled Check			

Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-24 SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-24 Power sensor HP 8481A Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-24 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-24 SN: US41080477 In house check: Oct-24 Network Analyzer Agilent E8358A 31-Mar-14 (in house check Oct-22) Name Function Signature Calibrated by: Paulo Pina Laboratory Technician

		V TIT
Approved by:	Niels Kuster	Quality Manager
		Issued: February 20, 2023
This calibration cortificate	shall not be reproduced except in full.	without written approval of the laboratory

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst
- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Accreditation No.: SCS 0108

Multilateral Agreement for the recognition of calibration certificates Glossarv:

0100001.91	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled • phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	50.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.97 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω + 4.9 jΩ
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

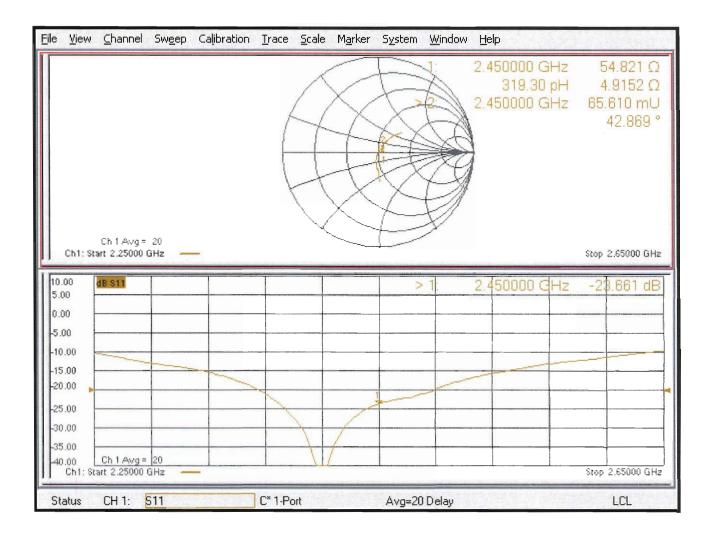
Date: 20.02.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:737


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 112.6 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 25.0 W/kg **SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.97 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.9% Maximum value of SAR (measured) = 20.9 W/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura

S

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **B.V. ADT**

Certificate No: D5GHzV2-1019_Feb23

ALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	019	
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	dure for SAR Validation Sources	between 3-10 GHz
Calibration date:	February 22, 202	3	
	-	onal standards, which realize the physical uni robability are given on the following pages an	
		y facility: environment temperature (22 ± 3)°C	
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 3503	08-Mar-22 (No. EX3-3503_Mar22)	Mar-23
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	tanthe
Approved by:	Niels Kuster	Quality Manager	17
			Issued: February 23, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

olocoulyi	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled • phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.0 ± 6 %	4.67 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.9 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.21 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	52.6 Ω - 3.4 jΩ
Return Loss	- 27.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.8 Ω + 0.1 jΩ
Return Loss	- 22.9 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.2 Ω + 4.7 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

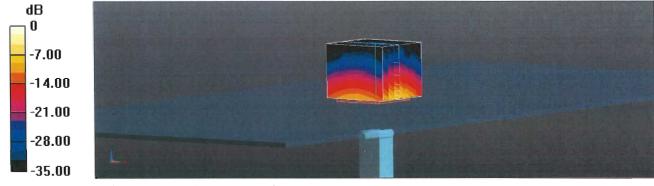
Date: 22.02.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1019

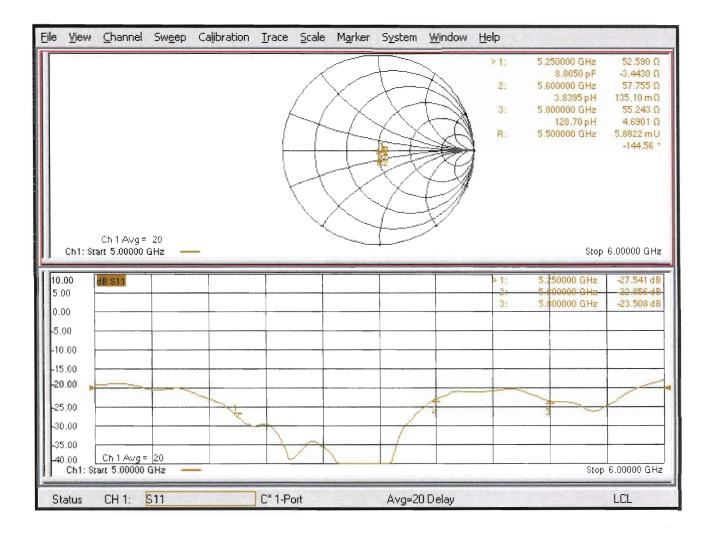
Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.67$ S/m; $\varepsilon_r = 36$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.06$ S/m; $\varepsilon_r = 35.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.21$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.93 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 71% Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.03 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 8.28 W/kg; SAR(10 g) = 2.36 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 68.4% Maximum value of SAR (measured) = 19.1 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.20 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 19.0 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

B.V. ADT (Auden)

Certificate No

EX-3971_Jan23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3971
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	January 20, 2023
This calibration certificate docum	nents the traceability to national standards, which realize the physical units of measurements (SI).

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	10-Oct-22 (No. DAE4-660_Oct22)	Oct-23
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function Signature
Calibrated by	Jeton Kastrati	Laboratory Technician
Approved by	Sven Kühn	Technical Manager S. L
This calibration certifica	te shall not be reproduced except i	Issued: February 01, 2023 full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization $arphi$	arphi rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k = 2)$
Norm $(\mu V/(V/m)^2)^A$	0.37	0.51	0.48	±10.1%
DCP (mV) ^B	96.4	99.7	100.3	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A	В	C	D	VR	Max	Max
			dB	dBõV		dB	mV	dev.	Unc ^E
									k = 2
0	CW	X	0.00	0.00	1.00	0.00	143.8	±3.3%	±4.7%
		Y	0.00	0.00	1.00	1	143.0		
		Z	0.00	0.00	1.00		145.8		
10352	Pulse Waveform (200Hz, 10%)	X	4.61	71.49	12.69	10.00	60.0	±2.9%	±9.6%
		Y	82.00	104.00	23.00		60.0	1	
		Z	20.00	88.24	18.84		60.0	1	
10353	Pulse Waveform (200Hz, 20%)	X	20.00	85.68	15.98	6.99	80.0	±1.7%	±9.6%
		Y	20.00	91.36	19.21	1	80.0		
		Z	20.00	89.10	18.22	1	80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	86.62	15.13	3.98	95.0	±1.0%	±9.6%
		Y	20.00	94.31	19.14	1	95.0		
		Z	20.00	91.57	18.17	1	95.0	1	
10355	Pulse Waveform (200Hz, 60%)	X	20.00	87.34	14.36	2.22	120.0	±1.0%	±9.6%
		Y	20.00	94.69	17.98	1	120.0		
		Z	20.00	94.14	18.21	1	120.0	1	
10387	QPSK Waveform, 1 MHz	X	1.65	69.23	15.78	1.00	150.0	±2.8%	±9.6%
		Y	1.45	64.20	13.53	1	150.0	1	
		Z	1.56	65.47	14.34	1	150.0	1	
10388	QPSK Waveform, 10 MHz	X	2.09	68.76	16.16	0.00	150.0	±1.0%	±9.6%
		Y	1.93	65.77	14.32	1	150.0	1	
		Z	2.08	67.08	15.15		150.0	1	
10396	64-QAM Waveform, 100 kHz	X	2.57	70.67	18.84	3.01	150.0	±0.8%	±9.6%
		Y	2.77	69.96	18.36	1	150.0	1	
		Z	2.86	70.58	18.82	1	150.0	1	
10399	64-QAM Waveform, 40 MHz	X	3.39	67.44	15.93	0.00	150.0	±2.1%	±9.6%
		Y	3.29	66.05	15.03	1	150.0	1	
		Z	3.41	66.72	15.48	1	150.0	1	
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.62	65.97	15.66	0.00	150.0	±4.0%	±9.6%
		Y	4.69	65.09	15.10	1	150.0	1	
		Z	4.77	65.49	15.39	1	150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	29.8	215.94	33.80	9.67	0.04	5.03	1.49	0.02	1.00
У	43.0	319.99	35.18	9.66	0.08	5.08	1.64	0.14	1.01
Z	41.7	310.30	35.26	14.45	0.00	5.06	1.45	0.16	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-108.1°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

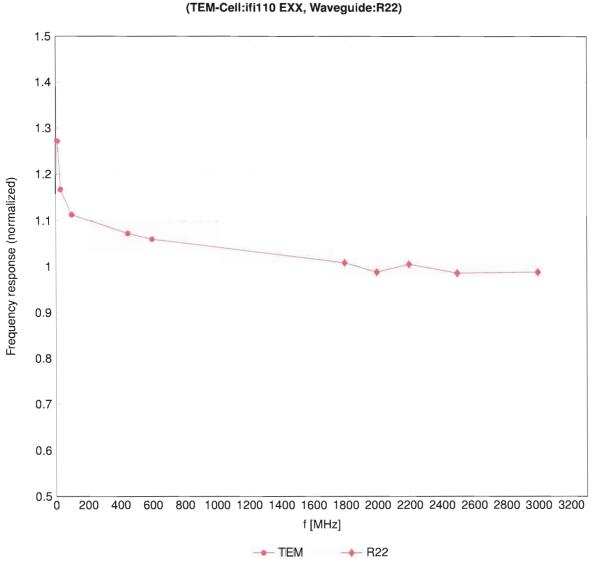
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
750	41.9	0.89	10.55	10.55	10.55	0.41	1.01	±12.0%
835	41.5	0.90	10.36	10.36	10.36	0.41	0.91	±12.0%
1450	40.5	1.20	9.14	9.14	9.14	0.40	0.80	±12.0%
1750	40.1	1.37	8.86	8.86	8.86	0.38	0.86	±12.0%
1900	40.0	1.40	8.44	8.44	8.44	0.42	0.86	±12.0%
2000	40.0	1.40	8.38	8.38	8.38	0.43	0.86	±12.0%
2300	39.5	1.67	8.35	8.35	8.35	0.37	0.90	±12.0%
2450	39.2	1.80	8.26	8.26	8.26	0.15	0.90	±12.0%
2600	39.0	1.96	7.83	7.83	7.83	0.36	0.90	±12.0%
3300	38.2	2.71	7.44	7.44	7.44	0.35	1.30	±14.0%
3500	37.9	2.91	6.99	6.99	6.99	0.35	1.30	±14.0%
3700	37.7	3.12	6.93	6.93	6.93	0.40	1.35	±14.0%
3900	37.5	3.32	6.90	6.90	6.90	0.40	1.60	±14.0%
4100	37.2	3.53	6.44	6.44	6.44	0.40	1.60	±14.0%
4200	37.1	3.63	6.42	6.42	6.42	0.40	1.70	±14.0%
4400	36.9	3.84	6.36	6.36	6.36	0.40	1.70	±14.0%
4600	36.7	4.04	6.32	6.32	6.32	0.40	1.70	±14.0%
4800	36.4	4.25	6.28	6.28	6.28	0.40	1.70	±14.0%
4950	36.3	4.40	5.97	5.97	5.97	0.40	1.80	±14.0%
5250	35.9	4.71	5.24	5.24	5.24	0.40	1.80	±14.0%
5600	35.5	5.07	4.95	4.95	4.95	0.40	1.80	±14.0%
5800	35.3	5.27	4.91	4.91	4.91	0.40	1.80	±14.0%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

For both the control action of the control action of the second state of the second s

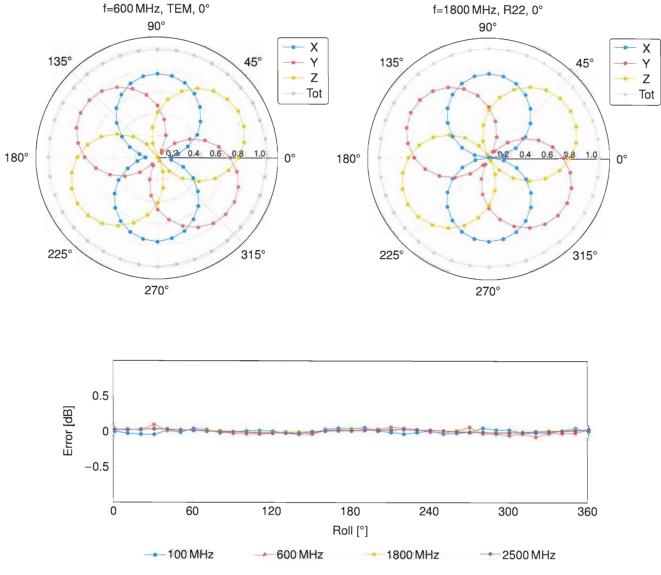
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.


Calibration Parameter Determined in Head Tissue Simulating Media

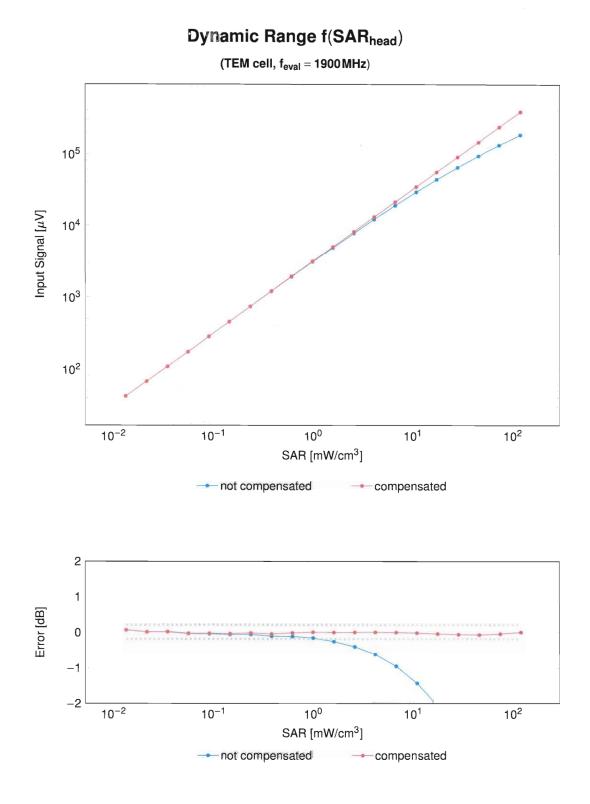
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
6500	34.5	6.07	5.65	5.65	5.65	0.20	2.50	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±10% from the target values (typically better than ±6%)

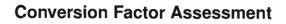
and are valid for TSL with deviations of up to $\pm 10\%.$

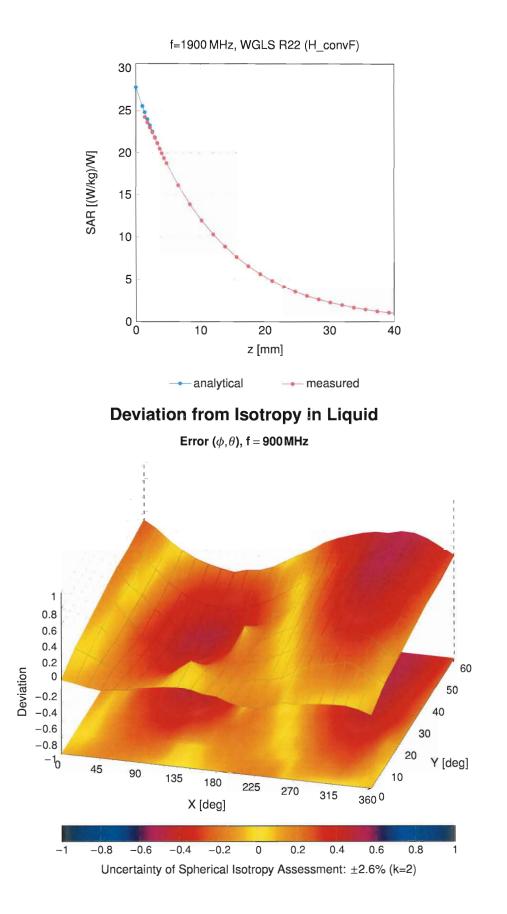

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)




Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
0		CW	CW	0.00	±4.7
10010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.12	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	10.30	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 38 Mbps)	WLAN	10.94	±9.6
10078	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	11.00	±9.6
10077	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10081	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10082	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10090	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10097	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10098	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QFSK)	LTE-FDD	6.42	±9.6
10101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.60	±9.6
10102	CAP	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 04-QAM)	LTE-TDD	9.29	±9.6
10103	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	10.01	±9.6
		LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 84-QAM)	LTE-FDD	5.80	
10108	CAH			6.43	±9.6
10109	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD		<u>+9.6</u>
10110	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6
10111	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAD	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAD	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAJ	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAF	LTE-FDD (SC-FDMA, 1 RB, 15MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	AAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	AAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195	CAD	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	CAD	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197	CAD	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10198	CAD	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAD	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220	CAD	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
10221	CAD	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
10222	CAD	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN WLAN	8.06	±9.6 ±9.6
10223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6
10224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	0.08	±9.0

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231 10232	CAE CAH	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.19	±9.6
10232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 10-QAM)	LTE-TDD	9.48	±9.6
10233	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	10.25 9.21	±9.6 ±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAE CAH	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.30	±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	10.09	±9.6 ±9.6
10243	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.29	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAH CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	9.83	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	10.16 9.23	±9.6 ±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAA	PHS (QPSK)	PHS	11.81	±9.6
10278	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAA	PHS (QPSK, BW 884 MHz, Rolioff 0.38)	PHS	12.18	±9.6
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292 10293	AAB AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000 CDMA2000	3.39	±9.6 ±9.6
10293	AAB	CDMA2000, RC3, SO3, Full Rate CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10295	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10301	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WiMAX	12.03	±9.6
10302	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WiMAX	12.57	±9.6
10303	AAA	IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	12.52	±9.6
10304	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	11.86	±9.6
10305	AAA	IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols)	WIMAX	15.24	±9.6
10306	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols)	WiMAX	14.67	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10307	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols)	WIMAX	14.49	±9.6
10308	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	Wildax	14.46	±9.6
10309	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols)	WiMAX	14.58	±9.6
10310	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols)	WiMAX	14.57	±9.6
10311	AAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAA	iDEN 1:3	IDEN	10.51	±9.6
10314	AAA	iDEN 1:6	iDEN	13.48	±9.6
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10317	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAE	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6
10401	AAE	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6
10402	AAE	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6
10403	AAB	CDIMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10417	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6
10422	AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAC	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAC	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	<u>±9.6</u>
10426	AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAC	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10431	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAB	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10447	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
10449	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10450	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
10453	AAE	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6
10457	AAB	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
10460	AAB	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	±9.6
10463	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10465	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10466	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10467					
10467 10468	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10467 10468 10469	AAG AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10467 10468	AAG				

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10474	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10475	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10477	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10478	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10480	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6
10481	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10482	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6
10483	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	±9.6
10485	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	±9.6
10486	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	±9.6
10488	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	±9.6
10489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	±9.6
10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	±9.6
10502	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	±9.6
10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	±9.6
10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	±9.6 ±9.6
10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6
10510 10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16 QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10513	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10514		IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10517	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10519	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	±9.6
10510	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6
10521	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.6
10524	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6
10525		IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.42	±9.6
10527	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.6
10528	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.36	±9.6
10529	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.36	±9.6
10531	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.43	±9.6
10532		IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10533		IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.38	±9.6
		IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6
10534		IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6
10534 10535	AAC				
10535		IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6
	AAC		WLAN WLAN	8.32 8.44	±9.6 ±9.6
10535 10536	AAC AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle)			

1954 A.C. IEEE 80.2 Tuse WF. (40 MHz. MSS. 99pc duty cycle) WLAN 8.66 193 1954 A.C. IEEE 80.2 Tuse WF. (40 MHz. MSS. 99pc duty cycle) WLAN 8.66 193 1954 A.C. IEEE 80.2 Tuse WF. (60 MHz. MSS. 99pc duty cycle) WLAN 8.47 194 1954 A.C. IEEE 80.2 Tuse WF. (60 MHz. MSS. 99pc duty cycle) WLAN 8.55 3.94 1954 A.C. IEEE 80.2 Tuse WF. (60 MHz. MSS. 99pc duty cycle) WLAN 8.55 3.94 1954 A.C. IEEE 80.2 Tuse WF. (60 MHz. MSS. 99pc duty cycle) WLAN 8.53 4.94 1956 A.C. IEEE 80.2 Tuse WF. (80 MHz. MSS. 99pc duty cycle) WLAN 8.53 4.94 1956 A.C. IEEE 80.2 Tuse WF. (80 MHz. MSS. 99pc duty cycle) WLAN 8.45 -64 1956 A.C. IEEE 80.2 Tuse WF. (80 MHz. MCSS. 99pc duty cycle) WLAN 8.45 -64 1958 A.D. IEEE 80.2 Tuse WF. (160 MHz. MCSS. 99pc duty cycle) WLAN 8.45 -64 1958 A.D. IEEE 80.2 Tuse WF. (16	UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
1948 ACC EEFE 80.21 Law WFI (40 MHz, MCS8, 98pc dury cycle) WLAN 8.67 19.97 1954 ACC IEEE 80.21 Law WFI (80 MHz, MCS8, 98pc dury cycle) WLAN 8.67 19.97 1954 ACC IEEE 80.21 Law WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.35 19.97 1954 ACC IEEE 80.21 Law WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.37 19.97 1956 ACC IEEE 80.21 Law WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.37 19.97 1956 ACC IEEE 80.21 Law WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.40 5.94 1957 ACC IEEE 80.21 Law WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.42 5.64 1958 ACC IEEE 80.21 Law WFI (180 MHz, MCS3, 98pc dury cycle) WLAN 8.42 5.64 1958 ACD IEEE 80.21 Law WFI (180 MHz, MCS3, 98pc dury cycle) WLAN 8.42 5.64 1958 ADD IEEE 80.21 Law WFI (180 MHz, MCS3, 98pc dury cycle) WLAN 8.42 5.64 1958 ADD IEEE 80.21 L	10541	AAC		WLAN		±9.6
10545 A.C. EEE 80.21 tae WFI (BOMHz, MCS), 980p cdury cycle) WLAN 8.57 9.99 10546 A.C. EEE 80.21 tae WFI (BOMHz, MCS), 980p cdury cycle) WLAN 8.45 9.99 10547 A.C. EEE 80.21 tae WFI (BOMHz, MCS2, 980p cdury cycle) WLAN 8.49 9.99 10548 A.C. IEEE 80.21 tae WFI (BOMHz, MCS2, 990p cdury cycle) WLAN 8.37 9.90 10558 A.C. IEEE 80.21 tae WFI (BOMHz, MCS3, 990p cdury cycle) WLAN 8.53 9.90 10558 A.C. IEEE 80.21 tae WFI (BOMHz, MCS3, 990p cdury cycle) WLAN 8.48 9.90 10558 A.C. IEEE 80.21 tae WFI (BOMHz, MCS3, 990p cdury cycle) WLAN 8.48 9.90 10556 A.D. IEEE 80.21 tae WFI (BOMHz, MCS3, 990p cdury cycle) WLAN 8.45 9.90 10556 A.D. IEEE 80.21 tae WFI (BOMHz, MCS3, 990p cdury cycle) WLAN 8.45 9.90 10556 A.D. IEEE 80.21 tae WFI (BOMHz, MCS3, 990p cdury cycle) WLAN 8.61 9.90 10567 A.D. I	10542	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6
1964 AC IEEE B0.2 Inta WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.55 19.97 1964 AC IEEE 80.2 Inta WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.35 19.97 1964 AC IEEE 80.2 Inta WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.37 19.97 1968 AC IEEE 80.2 Inta WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.38 19.97 1958 AC IEEE 80.2 Inta WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.45 19.97 1958 AC IEEE 80.2 Inta WFI (80 MHz, MCS3, 98pc dury cycle) WLAN 8.46 19.97 1955 AD IEEE 80.2 Inta WFI (160 MHz, MCS3, 98pc dury cycle) WLAN 8.45 19.97 1956 AD IEEE 80.2 Inta WFI (160 MHz, MCS3, 98pc dury cycle) WLAN 8.55 5.96 1956 AD IEEE 80.2 Inta WFI (160 MHz, MCS3, 98pc dury cycle) WLAN 8.55 5.96 1956 AD IEEE 80.2 Inta WFI (160 MHz, MCS3, 98pc dury cycle) WLAN 8.65 5.96 1956 AD IEEE 80.2 Inta WFI (10543	AAC		WLAN	8.65	±9.6
10546 ACC LEFE 80.21 tac WFF (80MHz, MCS2, 90pc clury cycle) WLAN 8.36 5.97 10547 ACC EEE 80.21 tac WFF (80MHz, MCS2, 90pc clury cycle) WLAN 8.37 5.97 10568 ACC EEE 80.21 tac WFF (80MHz, MCS3, 90pc clury cycle) WLAN 8.38 5.91 10561 ACC EEE 80.21 tac WFF (80MHz, MCS3, 90pc clury cycle) WLAN 8.45 3.91 10563 ACC EEE 80.21 tac WFF (80MHz, MCS3, 90pc clury cycle) WLAN 8.46 3.91 10564 ACD EEE 80.21 tac WFF (80MHz, MCS3, 90pc clury cycle) WLAN 8.46 3.91 10565 ADD EEE 80.21 tac WFF (160MHz, MCS3, 90pc clury cycle) WLAN 8.46 3.91 10566 ADD EEE 80.21 tac WFF (160MHz, MCS3, 90pc clury cycle) WLAN 8.50 3.91 10567 ADD EEE 80.21 tac WFF (160MHz, MCS3, 90pc clury cycle) WLAN 8.61 3.91 10568 ADD IEEE 80.21 tac WFF (160MHz, MCS3, 90pc clury cycle) WLAN 8.50 3.91 10568 ADD IEEE 80.21 ta	10544	AAC		WLAN	8.47	±9.6
10547 AAC IEEE 802.11 av Wirl (80.MHz, MCS3, 99pc duty cycle) WLAN 8.47 159 10558 AAC IEEE 802.11 av Wirl (80.MHz, MCS5, 99pc duty cycle) WLAN 8.37 159 10558 AAC IEEE 802.11 av Wirl (80.MHz, MCS5, 99pc duty cycle) WLAN 8.42 159 10558 AAC IEEE 802.11 av Wirl (80.MHz, MCS3, 99pc duty cycle) WLAN 8.42 159 10558 AAC IEEE 802.11 av Wirl (80.MHz, MCS3, 99pc duty cycle) WLAN 8.44 459 10558 AAD IEEE 802.11 av Wirl (160.MHz, MCS3, 99pc duty cycle) WLAN 8.47 459 10558 AAD IEEE 802.11 av Wirl (160.MHz, MCS3, 99pc duty cycle) WLAN 8.50 580 10558 AAD IEEE 802.11 av Wirl (160.MHz, MCS3, 99pc duty cycle) WLAN 8.55 580 10559 AAD IEEE 802.11 av Wirl (160.MHz, MCS3, 99pc duty cycle) WLAN 8.56 580 10559 AAD IEEE 802.11 av Wirl (160.MHz, MCS3, 99pc duty cycle) WLAN 8.57 580 10559 AAD IEEE		AAC		WLAN	8.55	±9.6
10569 AAC IEEE 80.11ac Wirl (80 MHz, MCS5, 99ec duty cycle) WAN 8.37 610 10551 AAC IEEE 80.211ac Wirl (80 MHz, MCS5, 99ec duty cycle) WIAN 8.45 431 10552 AAC IEEE 80.211ac Wirl (80 MHz, MCS5, 99ec duty cycle) WIAN 8.45 431 10552 AAC IEEE 80.211ac Wirl (80 MHz, MCS5, 99ec duty cycle) WIAN 8.44 439 10554 AAC IEEE 80.211ac Wirl (80 MHz, MCS5, 99ec duty cycle) WIAN 8.44 439 10554 AAD IEEE 80.211ac Wirl (160 MHz, MCS5, 99ec duty cycle) WIAN 8.47 439 10556 AAD IEEE 80.211ac Wirl (160 MHz, MCS5, 99ec duty cycle) WIAN 8.52 439 10558 AAD IEEE 80.211ac Wirl (160 MHz, MCS5, 99ec duty cycle) WIAN 8.56 439 10561 AAD IEEE 80.211ac Wirl (160 MHz, MCS5, 99ec duty cycle) WIAN 8.67 439 10562 AAD IEEE 80.211ac Wirl (160 MHz, MCS5, 99ec duty cycle) WIAN 8.67 439 10563 AAD IEEE 80.2119 Wir	10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6
1950 AAC IEEE Bool 11ae Wirl (ab MHz, MCSS, 99pc duty cycle) WLAN 8.50 5.97 19581 AAC IEEE Bool 11ae Wirl (ab MHz, MCSS, 99pc duty cycle) WLAN 8.42 9.97 19582 AAC IEEE Bool 11ae Wirl (ab MHz, MCSS, 99pc duty cycle) WLAN 8.44 9.97 19584 AAC IEEE Bool 11ae Wirl (ab MHz, MCSS, 99pc duty cycle) WLAN 8.44 9.97 19585 AAD IEEE Bool 11ae Wirl (ab MHz, MCSS, 99pc duty cycle) WLAN 8.47 9.97 19586 AAD IEEE Bool 11ae Wirl (160 MHz, MCSS, 99pc duty cycle) WLAN 8.50 9.97 19587 AAD IEEE Bool 11ae Wirl (160 MHz, MCSS, 99pc duty cycle) WLAN 8.56 9.97 19581 AAD IEEE Bool 11ae Wirl (160 MHz, MCSS, 99pc duty cycle) WLAN 8.56 9.92 19582 AAD IEEE Bool 11ae Wirl (160 MHz, MCSS, 99pc duty cycle) WLAN 8.56 9.92 19584 AAA IEEE Bool 11ae Wirl (160 MHz, MCSS, 99pc duty cycle) WLAN 8.57 9.92 19585 AAD		AAC		WLAN	8.49	±9.6
1955 Add EEE Baz 11ae WFI (80 MHz, MCS3, 99b duty cycle) Wi.AN 8.45 950 1958 Add LEEE Baz 11ae WFI (80 MHz, MCS3, 99b duty cycle) Wi.AN 8.44 990 1958 Add LEEE Baz 11ae WFI (80 MHz, MCS3, 99b duty cycle) Wi.AN 8.44 990 1955 Add LEEE Baz 11ae WFI (80 MHz, MCS3, 99b duty cycle) Wi.AN 8.45 990 1955 Add LEEE Baz 11ae WFI (180 MHz, MCS3, 99b duty cycle) Wi.AN 8.52 299 1958 Add LEEE Baz 11ae WFI (180 MHz, MCS3, 99b duty cycle) Wi.AN 8.56 299 1958 Add LEEE Baz 11ae WFI (180 MHz, MCS3, 99b duty cycle) Wi.AN 8.56 299 1958 Add LEEE Baz 11ae WFI (180 MHz, MCS3, 99b duty cycle) Wi.AN 8.56 299 1958 Add LEEE Baz 11ae WFI (180 MHz, MCS3, 99b duty cycle) Wi.AN 8.56 290 1958 Add LEEE Baz 11ae WFI (180 MHz, MCS3, 99b duty cycle) Wi.AN 8.57 290 1958 Add LEEE Baz 11ae WFI (180 MHz, MCS3, 9		AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
10582 AAC LEEE 802-11ae WFF (80 MHz, MCS8, 99pc duty cycle) WLAN 8.45 493 10584 AAD LEEE 802-11ae WFF (80 MHz, MCS0, 99pc duty cycle) WLAN 8.45 493 10585 AAD LEEE 802-11ae WFF (160 MHz, MCS0, 99pc duty cycle) WLAN 8.47 493 10586 AAD LEEE 802-11ae WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.52 493 10586 AAD LEEE 802-11ae WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.53 493 10586 AAD LEEE 802-11ae WFF (160 MHz, MCS4, 99pc duty cycle) WLAN 8.54 493 10561 AAD LEEE 802-11ae WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.56 493 10562 AAD LEEE 802-11ae WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.56 493 10564 AAA LEEE 802-11ae WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.57 493 10565 AAD LEEE 802-11ae WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.45 493 10564 AAA LEEE 802-11ae WFF (16	10550	AAC		WLAN	8.38	±9.6
10585 AAC IEEE 802.11ae WFI (80 MHz, MCS8. 99pc duty cycle) WLAN 8.48 993 10555 AAD IEEE 802.11ae WFI (160 MHz, MCS1. 99pc duty cycle) WLAN 8.47 493 10555 AAD IEEE 802.11ae WFI (160 MHz, MCS3. 99pc duty cycle) WLAN 8.52 493 10557 AAD IEEE 802.11ae WFI (160 MHz, MCS3. 99pc duty cycle) WLAN 8.52 493 10558 AAD IEEE 802.11ae WFI (160 MHz, MCS3. 99pc duty cycle) WLAN 8.52 493 10561 AAD IEEE 802.11ae WFI (160 MHz, MCS8. 99pc duty cycle) WLAN 8.67 493 10562 AAD IEEE 802.11ae WFI (160 MHz, MCS8. 99pc duty cycle) WLAN 8.57 493 10564 AAA IEEE 802.11ae WFI (160 MHz, MCS8. 99pc duty cycle) WLAN 8.57 493 10564 AAA IEEE 802.11ae WFI (160 MHz, MCS8. 99pc duty cycle) WLAN 8.45 493 10564 AAA IEEE 802.11ae WFI (160 MHz, MCS8. 99pc duty cycle) WLAN 8.45 493 10565 AAA IEEE 802.11ae WFI (1	10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
10554 AAD IEEE 802.11ac WFI (160 MHz, MCS0. 99pc dury cycle) WLAN 8.47 4.93 10555 AAD IEEE 802.11ac WFI (160 MHz, MCS2. 99pc dury cycle) WLAN 8.50 433 10555 AAD IEEE 802.11ac WFI (160 MHz, MCS2. 99pc dury cycle) WLAN 8.52 433 10556 AAD IEEE 802.11ac WFI (160 MHz, MCS3. 99pc dury cycle) WLAN 8.51 439 10560 AAD IEEE 802.11ac WFI (160 MHz, MCS3. 99pc dury cycle) WLAN 8.56 430 10561 AAD IEEE 802.11ac WFI (160 MHz, MCS3. 99pc dury cycle) WLAN 8.77 430 10562 AAD IEEE 802.11ac WFI (160 MHz, MCS3. 99pc dury cycle) WLAN 8.77 440 10564 AAD IEEE 802.11g WFI (260 MHz, MCS3. 99pc dury cycle) WLAN 8.45 450 10565 AAD IEEE 802.11g WFI (260 MHz, MCS3. 99pc dury cycle) WLAN 8.45 450 10566 AAD IEEE 802.11g WFI 2.4 CHZ (DSS COFDM, 260 Mbgs, 99pc dury cycle) WLAN 8.45 450 10567 AAA IEEE 80		AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6
10555 AAD IEEE 802.11ac WFF (160 MHz, MCS1, 99pc duty cycle) WLAN 8.47 5.9 10557 AAD IEEE 802.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.62 293 10557 AAD IEEE 802.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.61 293 10558 AAD IEEE 802.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.64 293 10561 AAD IEEE 802.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.66 494 10562 AAD IEEE 802.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 8.67 494 10562 AAD IEEE 802.11g WFF (24 MHz, MCS3, 99pc duty cycle) WLAN 8.45 494 10564 AAA IEEE 802.11g WFF (24 Mz (DSSS-OFDM, 18 Mbgs, 99pc duty cycle) WLAN 8.45 494 10566 AAA IEEE 802.11g WFF (24 Mz (DSSS-OFDM, 24 Mbgs, 99pc duty cycle) WLAN 8.47 494 10576 AAA IEEE 802.11g WFF (24 Mz (DSSS, 55 MDMs, 99pc duty cycle) WLAN 8.00 494 10576 AAA		AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
10565 AAD IEEE 80.21 tac WFI (100 MHz, MCS2, 99pc duty cycle) WLAN 8.50 4.93 10556 AAD IEEE 80.21 tac WFI (100 MHz, MCS4, 99pc duty cycle) WLAN 8.52 4.93 10556 AAD IEEE 80.21 tac WFI (100 MHz, MCS4, 99pc duty cycle) WLAN 8.73 4.93 10561 AAD IEEE 80.21 tac WFI (100 MHz, MCS7, 99pc duty cycle) WLAN 8.66 4.93 10562 AAD IEEE 80.21 tac WFI (100 MHz, MCS7, 99pc duty cycle) WLAN 8.67 4.93 10563 AAD IEEE 80.21 tac WFI (100 MHz, MCS3, 99pc duty cycle) WLAN 8.64 4.94 10564 AAA IEEE 80.21 tag WFI (20 MHz, MCS3, 99pc duty cycle) WLAN 8.45 4.94 10565 AAA IEEE 80.21 tag WFI 2.40 L2 (DSS COFTM, 24 Mbgs, 59pc duty cycle) WLAN 8.35 4.94 10566 AAA IEEE 80.21 tag WFI 2.40 L2 (DSS COFTM, 24 Mbgs, 59pc duty cycle) WLAN 8.33 4.94 10567 AAA IEEE 80.21 tag WFI 2.40 L2 (DSS COFTM, 24 Mbgs, 59pc duty cycle) WLAN 8.33 4.94 10576		AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6
10557 AAD LEEE 80211ac WiFI (160 MHz, MCS3, 996 duty cycle) WLAN 8.52 2.93 10568 AAD IEEE 80211ac WiFI (160 MHz, MCS3, 996 duty cycle) WLAN 8.73 4.99 10561 AAD IEEE 80211ac WiFI (160 MHz, MCS3, 896 duty cycle) WLAN 8.56 4.90 10562 AAD IEEE 80211ac WiFI (160 MHz, MCS3, 896 duty cycle) WLAN 8.77 4.94 10563 AAD IEEE 80211ac WiFI (160 MHz, MCS3, 896 duty cycle) WLAN 8.77 4.94 10564 AAA IEEE 80211g WiF1.2.0.45K (255S-OFDM, 916b, 959 duty cycle) WLAN 8.45 4.94 10565 AAA IEEE 80211g WiF1.2.0.45K (255S-OFDM, 316b, 959 duty cycle) WLAN 8.13 4.94 10566 AAA IEEE 802.11g WiF1.2.0.45K (255S-OFDM, 34 Mbps, 990 duty cycle) WLAN 8.10 4.94 10568 AAA IEEE 802.11g WiF1.2.0.45K (255S-OFDM, 34 Mbps, 990 duty cycle) WLAN 8.10 4.94 10570 AAA IEEE 802.11g WiF1.2.0.45K (255S-OFDM, 34 Mbps, 990 duty cycle) WLAN 9.99 4.94 10577<		AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
10586 AAD IEEE 8021 tac WiFI (160 MHz, MCS4, 99e outry cycle) WLAN 8.81 19.92 10560 AAD IEEE 8021 tac WiFI (160 MHz, MCS7, 99p outry cycle) WLAN 8.73 499 10561 AAD IEEE 8021 tac WiFI (160 MHz, MCS8, 99p outry cycle) WLAN 8.79 490 10562 AAD IEEE 8021 tac WiFI (160 MHz, MCS8, 99p outry cycle) WLAN 8.77 490 10564 AAA IEEE 8021 tag WiFI 2.64 Hz (DSSS-OFDM, 19 Mbps, 99p outry cycle) WLAN 8.75 490 10565 AAA IEEE 8021 tig WiFI 2.64 Hz (DSSS-OFDM, 18 Mbps, 99p outry cycle) WLAN 8.13 490 10566 AAA IEEE 8021 tig WiFI 2.64 Hz (DSSS-OFDM, 48 Mbps, 99p outry cycle) WLAN 8.30 499 10567 AAA IEEE 8021 tig WiFI 2.64 Hz (DSSS-OFDM, 48 Mbps, 99p outry cycle) WLAN 8.30 499 10574 AAA IEEE 8021 tig WiFI 2.64 Hz (DSSS-OFDM, 48 Mbps, 99p outry cycle) WLAN 8.30 499 10577 AAA IEEE 8021 tig WiFI 2.64 Hz (DSSS-OFDM, 48 Mbps, 90p outry cycle) WLAN 1.99 490			IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6
10560 AAD IEEE 80211ac WiF1 (60 MHz, MCSR, 99ac duty cycle) WLAN 8.73 159 10561 AAD IEEE 80211ac WiF1 (60 MHz, MCSR, 99ac duty cycle) WLAN 8.66 199 10562 AAD IEEE 80211ac WiF1 (60 MHz, MCSR, 99ac duty cycle) WLAN 8.77 ±34 10564 AAA IEEE 80211ac WiF1 2.4 Chtz (DSSS-OFDM, 9 Mbps, 99pc duty cycle) WLAN 8.45 ±49 10565 AAA IEEE 80211a WiF1 2.4 Chtz (DSSS-OFDM, 18 Mbps, 99pc duty cycle) WLAN 8.45 ±49 10566 AAA IEEE 80211a WiF1 2.4 Chtz (DSSS-OFDM, 24 Mbps, 99pc duty cycle) WLAN 8.13 ±50 10567 AAA IEEE 80211a WiF1 2.4 Chtz (DSSS-OFDM, 34 Mbps, 99pc duty cycle) WLAN 8.10 ±49 10570 AAA IEEE 80211b WiF1 2.4 Chtz (DSSS-OFDM, 34 Mbps, 99pc duty cycle) WLAN 8.30 ±49 10571 AAA IEEE 80211b WiF1 2.4 Chtz (DSSS-S / TSMb, 990 cuty cycle) WLAN 189 ±49 10572 AAA IEEE 80211b WiF1 2.4 Chtz (DSSS-OFDM, 34 Mbps, 90pc duty cycle) WLAN 189 ±49			IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6
10561 AAD IEEE 802 11ac WiF (160 MHz, MCS7, 996 cutry cycle) WLAN 8.66 199 10562 AAD IEEE 802 11ac WiF (160 MHz, MCS8, 996 cutry cycle) WLAN 8.69 199 10564 AAD IEEE 802 11g WiF (160 MHz, MCS8, 996 cutry cycle) WLAN 8.25 149 10564 AAA IEEE 802 11g WiF 12 AG Hz (DSSS-OFDM, 18 Mpps, 996 cutry cycle) WLAN 8.45 149 10566 AAA IEEE 802 11g WiF 12 AG Hz (DSSS-OFDM, 18 Mpps, 996 cutry cycle) WLAN 8.13 260 10567 AAA IEEE 802 11g WiF 12 AG Hz (DSSS-OFDM, 38 Mpps, 996 cutry cycle) WLAN 8.30 490 10568 AAA IEEE 802 11g WiF 12 AG Hz (DSSS-OFDM, 34 Mpps, 996 cutry cycle) WLAN 8.30 490 10577 AAA IEEE 802 11b WiF 12 AG Hz (DSSS, 1Mpps, 906 cutry cycle) WLAN 8.30 490 10571 AAA IEEE 802 11b WiF 12 AG Hz (DSSS, 1Mpps, 906 cutry cycle) WLAN 1.99 499 10572 AAA IEEE 802 11b WiF 12 AG Hz (DSSS, 15 Mpps, 906 cutry cycle) WLAN 1.86 490				WLAN	8.61	±9.6
10562 AAD IEEE 802:11se WiFI (160 MHz, MCS8, 99pc duty cycle) WLAN 8.69 19.7 10563 AAA IEEE 802:11g WiFI 24.GHz (DSSS-OFDM, 9Mbps, 99pc duty cycle) WLAN 8.25 4.94 10564 AAA IEEE 802:11g WiFI 24.GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.45 4.94 10566 AAA IEEE 802:11g WiFI 24.GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle) WLAN 8.13 4.94 10567 AAA IEEE 802:11g WiFI 24.GHz (DSSS-OFDM, 34 Mbps, 99pc duty cycle) WLAN 8.00 2.95 10576 AAA IEEE 802:11g WiFI 24.GHz (DSSS-OFDM, 34 Mbps, 99pc duty cycle) WLAN 8.10 2.99 10570 AAA IEEE 802:11g WiFI 24.GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.10 2.99 10571 AAA IEEE 802:11g WiFI 24.GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 1.99 2.94 10572 AAA IEEE 802:11g WiFI 24.GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 1.98 2.94 10573 AAA IEEE 802:11g WiFI 24.GHz (DSSS-OFDM, 14 Mbps, 90pc duty cycle) WLAN 8.60				WLAN	8.73	±9.6
10686 AAD IEEE 802:11g WIF 24 GHz (DSSS-OFDM, 9Mbps, 99pc duty cycle) WLAN 8.77 499 10564 AAA IEEE 802:11g WIF 24 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.45 491 10565 AAA IEEE 802:11g WIF 24 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.13 490 10566 AAA IEEE 802:11g WIF 24 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle) WLAN 8.13 490 10567 AAA IEEE 802:11g WIF 24 GHz (DSSS-OFDM, 34 Mbps, 99pc duty cycle) WLAN 8.07 499 10568 AAA IEEE 802:11g WIF 24 GHz (DSSS-OFDM, 44 Mbps, 99pc duty cycle) WLAN 8.30 291 10571 AAA IEEE 802:11g WIF 24 GHz (DSSS-OFDM, 44 Mbps, 90pc duty cycle) WLAN 1.99 291 10572 AAA IEEE 802:11g WIF 24 GHz (DSSS, 51 Mbps, 90pc duty cycle) WLAN 1.99 291 10573 AAA IEEE 802:11g WIF 24 GHz (DSSS-OFDM, 44 Mbps, 90pc duty cycle) WLAN 1.98 291 10574 AAA IEEE 802:11g WIF 24 GHz (DSSS-OFDM, 44 Mbps, 90pc duty cycle) WLAN 8.99				WLAN	8.56	±9.6
1064 AAA IEEE 802:11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 6.25 199 1066 AAA IEEE 802:11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 6.45 199 10567 AAA IEEE 802:11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle) WLAN 8.13 199 10567 AAA IEEE 802:11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.30 199 10570 AAA IEEE 802:11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.30 199 10571 AAA IEEE 802:11b WIFI 2.4 GHz (DSSS, OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.30 199 10572 AAA IEEE 802:11b WIFI 2.4 GHz (DSSS, 25 Mbps, 90pc duty cycle) WLAN 1.99 299 10573 AAA IEEE 802:11b WIFI 2.4 GHz (DSSS, 05 Mbp, 90pc duty cycle) WLAN 1.98 290 10574 AAA IEEE 802:11g WIFI 2.4 GHz (DSSS-OFDM, 14 Mbps, 90pc duty cycle) WLAN 8.50 290 10575 AAA IEEE 802:11g WIFI 2.4 GHz (DSSS-OFDM, 14 Mbps, 90pc duty cycle) WLAN 8.60 <td></td> <td></td> <td></td> <td></td> <td>8.69</td> <td>±9.6</td>					8.69	±9.6
10686 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.45 4.91 10566 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle) WLAN 8.13 4.91 10567 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.37 4.91 10568 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 46 Mbps, 99pc duty cycle) WLAN 8.37 4.91 10570 AAA IEEE 802.11D WIF 2.4 GHz (DSSS, 10 Mbps, 90pc duty cycle) WLAN 8.30 4.91 10571 AAA IEEE 802.11D WIF 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle) WLAN 1.99 4.91 10572 AAA IEEE 802.11D WIF 2.4 GHz (DSSS, 51 Mbps, 90pc duty cycle) WLAN 1.98 4.91 10573 AAA IEEE 802.11D WIF 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle) WLAN 8.49 4.91 10574 AAA IEEE 802.11D WIF 2.4 GHz (DSSS-OFDM, 14 Mbps, 90pc duty cycle) WLAN 8.60 4.91 10577 AAA IEEE 802.11D WIF 2.4 GHz (DSSS-OFDM, 44 Mbps, 90pc duty cycle) WLAN 8.60					8.77	±9.6
10586 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle) WLAN 8.13 4.91 10567 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.00 4.91 10568 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.10 4.91 10570 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.10 4.91 10577 AAA IEEE 802.11b WIF 2.4 GHz (DSSS, 15 Mbps, 90pc duty cycle) WLAN 1.99 4.91 10572 AAA IEEE 802.11b WIF 2.4 GHz (DSSS, 5 Mbps, 90pc duty cycle) WLAN 1.99 4.91 10573 AAA IEEE 802.11b WIF 2.4 GHz (DSSS, 5 Mbps, 90pc duty cycle) WLAN 1.98 4.91 10576 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 8.50 4.91 10576 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.60 4.91 10577 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.76					8.25	±9.6
10667 AAA IEEE 802.11g WIF1 24 GHz (DSSS-OFDM, 34 Mbps, 99pc duty cycle) WLAN 8.00 ±9.0 10568 AAA IEEE 802.11g WIF1 24 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.37 ±9.0 10569 AAA IEEE 802.11g WIF1 24 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.37 ±9.0 10571 AAA IEEE 802.11b WIF1 24 GHz (DSSS, 10 Mbps, 90pc duty cycle) WLAN 1.99 ±9.0 10572 AAA IEEE 802.11b WIF1 24 GHz (DSSS, 10 Mbps, 90pc duty cycle) WLAN 1.99 ±9.0 10573 AAA IEEE 802.11b WIF1 24 GHz (DSSS, 10 Mbps, 90pc duty cycle) WLAN 1.99 ±9.0 10574 AAA IEEE 802.11g WIF1 24 GHz (DSSS-OFDM, 4 Mbps, 90pc duty cycle) WLAN 8.59 ±9.0 10577 AAA IEEE 802.11g WIF1 24 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.60 ±9.0 10578 AAA IEEE 802.11g WIF1 24 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.36 ±9.0 10578 AAA IEEE 802.11g WIF1 24 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.36						±9.6
10568 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.37 49.9 10569 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.30 49.9 10570 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS, MDps, 90pc duty cycle) WLAN 8.30 49.9 10571 AAA IEEE 802.11b WiFI 2.4 GHz (DSSS, MDps, 90pc duty cycle) WLAN 1.99 49.9 10572 AAA IEEE 802.11b WiFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 1.98 49.9 10573 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS, OFDM, 8 Mbps, 90pc duty cycle) WLAN 8.59 49.9 10574 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 8 Mbps, 90pc duty cycle) WLAN 8.60 49.9 10576 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.60 49.9 10577 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.36 49.1 10578 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.36 <td></td> <td></td> <td></td> <td></td> <td>8.13</td> <td>±9.6</td>					8.13	±9.6
10569 AA IEEE 802.11 g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.10 ±9.4 10570 AAA IEEE 802.11 g WIFI 2.4 GHz (DSSS, TOPM, 54 Mbps, 90pc duty cycle) WLAN 8.30 ±9.4 10577 AAA IEEE 802.11 b WIFI 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) WLAN 1.99 ±9.0 10572 AAA IEEE 802.11 b WIFI 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) WLAN 1.98 ±9.0 10574 AAA IEEE 802.11 g WIFI 2.4 GHz (DSSS, OFDM, 90pc duty cycle) WLAN 8.59 ±9.0 10574 AAA IEEE 802.11 g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.50 ±9.0 10576 AAA IEEE 802.11 g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.70 ±9.0 10577 AAA IEEE 802.11 g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.0 10578 AAA IEEE 802.11 g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.76 ±9.0 10582 AAA IEEE 802.11 g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN					8.00	±9.6
10570 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.30 ±9.0 10677 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 1Mbps, 90pc duty cycle) WLAN 1.99 ±9.0 10572 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 51 Mbps, 90pc duty cycle) WLAN 1.98 ±9.0 10573 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 51 Mbps, 90pc duty cycle) WLAN 1.98 ±9.0 10574 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS OFDM, 9Mbps, 90pc duty cycle) WLAN 8.59 ±9.0 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS OFDM, 9Mbps, 90pc duty cycle) WLAN 8.60 ±9.0 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.49 ±9.1 10578 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10580 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10582 AAA IEEE 802.11a/h WIFI 64 C (OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.67					8.37	±9.6
10571 AAA LEEE 802.11b WIF 2.4 GHz (DSSS, 1Mbps, 90pc duty cycle) WLAN 1.99 ±9.4 10572 AAA LEEE 802.11b WIF 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 1.99 ±9.4 10573 AAA LEEE 802.11b WIF 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 1.98 ±9.9 10574 AAA LEEE 802.11b WIF 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 8.59 ±9.9 10576 AAA LEEE 802.11g WIF 2.4 GHz (DSSS, OFDM, 9 Mbps, 90pc duty cycle) WLAN 8.60 ±9.4 10577 AAA LEEE 802.11g WIF 2.4 GHz (DSSS, OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.70 ±9.4 10579 AAA LEEE 802.11g WIF 2.4 GHz (DSSS, OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.9 10580 AAA LEEE 802.11g WIF 2.4 GHz (DSSS, OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.67 ±9.4 10582 AAA LEEE 802.11g WIF 2.4 GHz (DSSS, OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.67 ±9.4 1058					8.10	±9.6
10572 AA LEEE 802.11b WIF 2.4 GHz (DSSS, 2Mbps, 90pc duty cycle) WLAN 1.99 ±9.4 10573 AAA LEEE 802.11b WIF 2.4 GHz (DSSS, 15.5 Mbps, 90pc duty cycle) WLAN 1.98 ±9.9 10574 AAA LEEE 802.11g WIF 2.4 GHz (DSSS, OFDM, 9 Mbps, 90pc duty cycle) WLAN 8.59 ±9.9 10576 AAA LEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.60 ±9.4 10577 AAA LEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.0 10578 AAA LEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.0 10580 AAA LEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.36 ±9.0 10581 AAC LEEE 802.11g WIF 3.2 (AHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.55 ±9.0 10582 AAC LEEE 802.11a/h WIF 15 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.60 ±9.0 10582 <						±9.6
10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 1.98 ±0.0 10574 AAA IEEE 802.119 WiFi 2.4 GHz (DSSS, 00pc duty cycle) WLAN 8.59 ±9.0 10575 AAA IEEE 802.119 WiFi 2.4 GHz (DSSS-0FDM, 90pc duty cycle) WLAN 8.60 ±9.4 10577 AAA IEEE 802.119 WiFi 2.4 GHz (DSSS-0FDM, 12 Mbps, 90pc duty cycle) WLAN 8.70 ±9.1 10577 AAA IEEE 802.119 WiFi 2.4 GHz (DSSS-0FDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.1 10579 AAA IEEE 802.119 WiFi 2.4 GHz (DSSS-0FDM, 34 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10580 AAA IEEE 802.119 WiFi 2.4 GHz (DSSS-0FDM, 44 Mbps, 90pc duty cycle) WLAN 8.57 ±9.1 10581 AAA IEEE 802.119 WiFi 3.44 (DFSS-0FDM, 44 Mbps, 90pc duty cycle) WLAN 8.60 ±9.1 10584 AAC IEEE 802.113/n WiFi 5.412 (OFDM, 90pc duty cycle) WLAN 8.60 ±9.1 10586 AAC <					1.99	<u>±9</u> .6
10574 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 1.98 ±9.1 10575 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 8.59 ±9.1 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 19 Mbps, 90pc duty cycle) WLAN 8.70 ±9.1 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.70 ±9.1 10578 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10579 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 34 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10580 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.67 ±9.1 10581 AAA IEEE 802.11a/WIFI 5 GHz (OFDM, Mbps, 90pc duty cycle) WLAN 8.67 ±9.1 10584 AAC IEEE 802.11a/WIFI 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.60 ±9.1 10585 AAC IEEE 802.11a/WIFI 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.46						±9.6
10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 8.59 ±9.4 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.60 ±9.4 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.4 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.36 ±9.4 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.36 ±9.4 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.35 ±9.4 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.59 ±9.4 10582 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.59 ±9.4 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.70 ±9.4 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.					1.98	±9.6
10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mpps, 90pc duty cycle) WLAN 8.60 ±9.4 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.70 ±9.9 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.49 ±9.9 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.9 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 38 Mbps, 90pc duty cycle) WLAN 8.35 ±9.9 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.9 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 8.60 ±9.9 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.9 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.40 ±9.9 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 34 Mbps, 90pc duty cycle) WLAN 8.35 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10577 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.70 ±9.9 10578 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.49 ±9.9 10579 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.9 10580 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 34 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10581 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.1 10582 AAC IEEE 802.11g WIF 1.2 (AHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.1 10583 AAC IEEE 802.11a/h WIF 5 GHz (OFDM, 4 Mbps, 90pc duty cycle) WLAN 8.60 ±9.1 10584 AAC IEEE 802.11a/h WIF 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.1 10586 AAC IEEE 802.11a/h WIF 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.1 10587 AAC IEEE 802.11a/h WIF 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.35						±9.6
10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.49 ±9.1 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10582 AAA IEEE 802.11a/n WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.1 10583 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 94 Mps, 90pc duty cycle) WLAN 8.60 ±9.1 10584 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.1 10585 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.49 ±9.1 10586 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10587 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.35						±9.6
10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.4 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 38 Mbps, 90pc duty cycle) WLAN 8.76 ±9.9 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.35 ±9.9 10582 AAA IEEE 802.11a/h WiFi 5 GHz (OFDM, 64 Mbps, 90pc duty cycle) WLAN 8.67 ±9.9 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 94 Mbps, 90pc duty cycle) WLAN 8.60 ±9.9 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.60 ±9.9 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.49 ±9.1 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10587 ACC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.76 ±9.1 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.76 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>±9.6</td></td<>						±9.6
10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.76 ±9.1 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.59 ±9.1 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 8.59 ±9.1 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.60 ±9.1 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.70 ±9.1 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.76 ±9.1 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.76 ±9.1 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.76 ±9.1 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.76						±9.6
10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.35 ±1.4 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.4 10583 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 8.59 ±9.4 10584 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.70 ±9.4 10585 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.70 ±9.4 10586 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.49 ±9.4 10587 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.36 ±9.4 10588 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10589 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.63 ±9.1 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.76 ±9.1						±9.6
10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.0 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 8.59 ±9.0 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 8.60 ±9.0 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.70 ±9.0 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.0 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 44 Mbps, 90pc duty cycle) WLAN 8.76 ±9.0 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 44 Mbps, 90pc duty cycle) WLAN 8.76 ±9.0 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.0 10591 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.0 10591 AAC IEEE 802.11n (HT Mixed, 20 MLz, MCS3, 90pc duty cycle) WLAN 8.64 ±9.0 <						±9.6
10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 8.59 ±9.4 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 8.60 ±9.9 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.70 ±9.9 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.49 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 14 Mbps, 90pc duty cycle) WLAN 8.36 ±9.9 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 34 Mbps, 90pc duty cycle) WLAN 8.36 ±9.9 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.61 ±9.9 10590 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 8.64 ±9.9 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.64 ±9.9 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.74 ±9.9 10595 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10584 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 8.60 ±9.0 10585 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.70 ±9.0 10586 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.49 ±9.0 10587 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.0 10588 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 34 Mbps, 90pc duty cycle) WLAN 8.36 ±9.0 10589 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.35 ±9.0 10590 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.63 ±9.0 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 8.63 ±9.0 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 8.79 ±9.0 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.0 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>±9.6</td></tr<>						±9.6
10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 8.70 ±9.1 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.49 ±9.1 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.63 ±9.1 10591 AAC IEEE 802.11a /h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.63 ±9.1 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 8.64 ±9.1 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.1 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 8.74 ±9.1 <						
10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 8.49 ±9.1 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.67 ±9.1 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 8.63 ±9.1 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 8.79 ±9.1 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 8.74 ±9.1 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.1 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.71 ±9.1						
10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 8.36 ±9.1 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.76 ±9.1 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.1 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 8.63 ±9.1 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 8.64 ±9.1 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.64 ±9.1 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 8.74 ±9.1 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.71 ±9.1 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 8.72 ±9.1 <						
10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 8.76 ±9.1 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.1 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 8.63 ±9.1 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 8.63 ±9.1 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.64 ±9.1 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.1 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.71 ±9.1 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.72 ±9.1 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.50 ±9.1 1						
10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 8.35 ±9.1 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.1 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 8.63 ±9.1 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 8.63 ±9.1 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 8.64 ±9.1 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.1 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 8.74 ±9.1 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.72 ±9.1 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 8.72 ±9.1 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.79 ±9.1 10600						
10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 8.67 ±9.1 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 8.63 ±9.1 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 8.63 ±9.1 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 8.64 ±9.1 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 8.64 ±9.1 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.1 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 8.74 ±9.1 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.72 ±9.1 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 8.72 ±9.1 10598 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.79 ±9.1 10600 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 8.63 ±9.1 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 8.79 ±9.1 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 8.64 ±9.1 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.64 ±9.1 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.1 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 8.71 ±9.1 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.72 ±9.1 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.72 ±9.1 10598 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLAN 8.79 ±9.1 10509 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 8.88 ±9.1 10600						
10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 8.79 ±9.0 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 8.64 ±9.0 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.0 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 8.74 ±9.0 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.71 ±9.0 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 8.72 ±9.0 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.72 ±9.0 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.79 ±9.0 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.82 ±9.0 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.82 ±9.0 10601						
10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 8.64 ±9.1 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.1 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 8.74 ±9.1 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.71 ±9.1 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.72 ±9.1 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.72 ±9.1 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.79 ±9.1 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 8.82 ±9.1 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN 8.82 ±9.1 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.82 ±9.1 10602						
10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.0 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 8.74 ±9.0 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.71 ±9.0 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 8.72 ±9.0 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.72 ±9.0 10599 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.79 ±9.0 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 8.85 ±9.0 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN 8.88 ±9.0 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.82 ±9.0 10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.94 ±9.0 10603						
10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 8.74 ±9.0 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.71 ±9.0 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 8.72 ±9.0 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 8.72 ±9.0 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.50 ±9.0 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 8.79 ±9.0 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 8.88 ±9.0 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN 8.82 ±9.0 10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.94 ±9.0 10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 8.76 ±9.0 10604					-	
10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 8.71 ±9.1 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 8.72 ±9.1 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.50 ±9.1 10599 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.50 ±9.1 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 8.79 ±9.1 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 8.88 ±9.1 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN 8.82 ±9.1 10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.94 ±9.1 10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) WLAN 8.76 ±9.1 10604 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 8.76 ±9.1 10605						
10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 8.72 ±9.1 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.50 ±9.1 10599 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.79 ±9.1 10509 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 8.79 ±9.1 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 8.88 ±9.1 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN 8.82 ±9.1 10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.94 ±9.1 10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) WLAN 8.94 ±9.1 10604 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 8.76 ±9.1 10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.97 ±9.1 10606						
10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 8.50 ±9.1 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 8.79 ±9.1 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 8.879 ±9.1 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 8.88 ±9.1 10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN 8.82 ±9.1 10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.94 ±9.1 10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) WLAN 8.94 ±9.1 10604 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 8.76 ±9.1 10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.97 ±9.1 10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLAN 8.82 ±9.1 10606						
10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 8.79 ±9.1 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 8.88 ±9.1 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN 8.88 ±9.1 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN 8.82 ±9.1 10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.94 ±9.1 10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) WLAN 8.94 ±9.1 10604 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 8.76 ±9.1 10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.97 ±9.1 10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLAN 8.82 ±9.1 10607 AAC IEEE 802.11a (WiFi (20 MHz, MCS0, 90pc duty cycle) WLAN 8.64 ±9.1						
10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 8.88 ±9. 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN 8.82 ±9. 10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.82 ±9. 10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.94 ±9. 10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) WLAN 9.03 ±9. 10604 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 8.76 ±9. 10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.97 ±9. 10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLAN 8.82 ±9. 10607 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) WLAN 8.64 ±9.						
10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN 8.82 ±9. 10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.94 ±9. 10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 9.03 ±9. 10604 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 9.03 ±9. 10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 8.76 ±9. 10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.97 ±9. 10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLAN 8.82 ±9. 10607 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) WLAN 8.64 ±9.						
10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 8.94 ±9. 10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) WLAN 9.03 ±9. 10604 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 8.76 ±9. 10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.76 ±9. 10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.97 ±9. 10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLAN 8.82 ±9. 10607 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) WLAN 8.64 ±9.						
10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) WLAN 9.03 ±9. 10604 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 8.76 ±9. 10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.97 ±9. 10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.82 ±9. 10607 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) WLAN 8.64 ±9.						
10604 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) WLAN 8.76 ±9. 10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.97 ±9. 10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.82 ±9. 10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLAN 8.82 ±9. 10607 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) WLAN 8.64 ±9.						
10605 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) WLAN 8.97 ±9. 10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLAN 8.82 ±9. 10607 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) WLAN 8.64 ±9.						
10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLAN 8.82 ±9. 10607 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) WLAN 8.64 ±9.						
10607 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) WLAN 8.64 ±9.						
10608 AAC IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc duty cycle) WLAN 8.77 ±9.						±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6
10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6
10611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.59	±9.6
10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10616	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
10617	AAC AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.81	±9.6
10619	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN WLAN	8.58	±9.6
10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6 ±9.6
10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
10623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
10626	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10628	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6
10629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10630	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.6
10632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10633 10634	AAC AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle) IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle)	WLAN WLAN	8.83	±9.6
10635	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6 ±9.6
10636	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10637	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10638	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.86	±9.6
10639	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10640	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
10641	AAD	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6
10643	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6
10644	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6
10645	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6
10646	AAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10647	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10648	AAA AAF	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
10652	AAF	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD LTE-TDD	6.91	±9.6 ±9.6
10654	AAE	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
10659	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
10660	AAB	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6
10661	AAB	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6
10662	AAB	Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671	AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6
10672	AAC	IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6
10673	AAC	IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6
10674 10675	AAC AAC	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle)	WLAN WLAN	8.74	±9.6
10675	AAC	IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6 ±9.6
10676	AAC	IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.73	±9.6
10678	AAC	IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.78	±9.6
10679	AAC	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.89	±9.6
10680	AAC	IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6
10681		IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6
	AAC				
10681 10682 10683	AAC AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10681 10682 10683 10684	AAC AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.26	±9.6
10681 10682 10683	AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)			

UIĐ	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10687	AAC	IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.45	±9.6
10688	AAC	IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle)	WLAN	8.29	±9.6
10689	AAC	IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.55	±9.6
10690	AAC	IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10691	AAC	IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.25	±9.6
10692	AAC	IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle)	WLAN	8.29	±9.6
10693	AAC	IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle)	WLAN	8.25	±9.6
10694	AAC	IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle)	WLAN	8.57	±9.6
10695	AAC	IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.78	±9.6
10696	AAC	IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.91	±9.6
10697	AAC	IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.61	±9.6
10698	AAC	IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.89	±9.6
10699 10700	AAC AAC	IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.82	±9.6
10700	AAC	IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle)	WLAN WLAN	8.73	±9.6
10701	AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.86	±9.6
10702	AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6 ±9.6
10703	AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.56	±9.6
10705	AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle)	WLAN	8.69	±9.6
10705	AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle)	WLAN	8.66	±9.6
10700	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.32	±9.6
10708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.29	±9.6
10711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6
10713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.33	±9.6
10714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.26	±9.6
10715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.45	±9.6
10716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6
10717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.72	±9.6
10727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6
10730	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.67	±9.6
10731 10732	AAC AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN WLAN	8.42	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6 ±9.6
10733	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.6
10736	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle)	WLAN	8.27	±9.6
10737	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.6
10739	AAC	IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.29	±9.6
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.48	±9.6
10741	AAC	IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle)	WLAN	8.40	±9.6
10742	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle)	WLAN	8.43	±9.6
10743	AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.94	±9.6
10744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	9.16	±9.6
10745	AAC	IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.93	±9.6
10746	AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.6
	AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle)	WLAN	9.04	±9.6
10747				0.00	106
10747 10748	AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN	8.93	±9.6
10747 10748 10749	AAC AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN	8.90	±9.6
10747 10748 10749 10750	AAC AAC AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle)	WLAN WLAN	8.90 8.79	±9.6 ±9.6
10747 10748 10749	AAC AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN	8.90	±9.6

10758 AAC IEEE 80.2111x (100 MHz, MCS1) 0.90p duty cycle) WLAN 9.00 10756 AAC IEEE 80.2111x (100 MHz, MCS1) 90p duty cycle) WLAN 8.44 10756 AAC IEEE 80.2111x (100 MHz, MCS1) 90p duty cycle) WLAN 8.77 10757 AAC IEEE 80.2111x (100 MHz, MCS3) 90p duty cycle) WLAN 8.77 10757 AAC IEEE 80.2111x (100 MHz, MCS3, 90p duty cycle) WLAN 8.89 10768 AAC IEEE 80.2111x (100 MHz, MCS3, 90p duty cycle) WLAN 8.49 10760 AAC IEEE 80.2111x (100 MHz, MCS3, 90p duty cycle) WLAN 8.49 107782 AAC IEEE 80.2111x (100 MHz, MCS3, 90p duty cycle) WLAN 8.49 10784 AAC IEEE 80.2111x (100 MHz, MCS3, 90p duty cycle) WLAN 8.54 10787 AAC IEEE 80.211x (100 MHz, MCS3, 90p duty cycle) WLAN 8.54 10787 AAC IEEE 80.211x (100 MHz, MCS3, 90p duty cycle) WLAN 8.54 10786 AAC IEEE 80.211x (100 MHz, MCS3, 90p duty cycle) WLAN 8.54	municatio	lev	Rev Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10755 AAC IEEE 802 114x (100 MHz, MCS3, 996 duty cycle) WLAN 8.74 10767 AAC IEEE 802 114x (100 MHz, MCS3, 996 duty cycle) WLAN 8.77 10767 MAC IEEE 802 114x (100 MHz, MCS3, 996 duty cycle) WLAN 8.77 10768 MAC IEEE 802 114x (100 MHz, MCS3, 996 duty cycle) WLAN 8.69 10769 MAC IEEE 802 114x (100 MHz, MCS3, 996 duty cycle) WLAN 8.69 10761 MAC IEEE 802 114x (100 MHz, MCS3, 996 duty cycle) WLAN 8.69 10761 MAC IEEE 802 114x (100 MHz, MCS3, 996 duty cycle) WLAN 8.64 10762 MAC IEEE 802 114x (100 MHz, MCS3, 1996 duty cycle) WLAN 8.54 10766 MAC IEEE 802 114x (100 MHz, MCS1, 1996 duty cycle) WLAN 8.54 10766 MAC IEEE 802 114x (100 MHz, MCS1, 1996 duty cycle) WLAN 8.54 10767 MAD S6 NR (CP OFOM H, 188, 5MHz, OPSK, 154Hz) S6 NR FFR 17DD 6.01 10777 MAD S6 NR (CP OFOM H, 188, 5MHz, OPSK, 154Hz) S6 NR FFR 17DD 6.02				WLAN	9.00	±9.6
10767 AAC IEEE 802 114 (100 MHz, MCS3, 1996 outry cycle) WLAN 8.77 10787 AAC IEEE 802 114 (100 MHz, MCS3, 1996 outry cycle) WLAN 8.59 10789 AAC IEEE 802 114 (100 MHz, MCS3, 1996 outry cycle) WLAN 8.59 10789 AAC IEEE 802 114 (100 MHz, MCS3, 1996 outry cycle) WLAN 8.59 10761 AAC IEEE 802 114 (100 MHz, MCS3, 1996 outry cycle) WLAN 8.58 10761 AAC IEEE 802 114 (100 MHz, MCS3, 1996 outry cycle) WLAN 8.53 10763 AAC IEEE 802 114 (100 MHz, MCS3, 1996 outry cycle) WLAN 8.54 10764 AAC IEEE 802 114 (100 MHz, MCS1) 990 outry cycle) WLAN 8.54 10767 AAC IEEE 802 114 (100 MHz, MCS1) 990 outry cycle) WLAN 8.54 10767 AAC IEEE 802 114 (100 MHz, MCS1) 990 outry cycle) WLAN 8.54 10776 AAC IEEE 802 114 (100 MHz, MCS1) 990 outry cycle) WLAN 8.54 10776 AAC IEEE 802 114 (100 MHz, MCS1, 990 outry cycle) WLAN 8.54 <td></td> <td></td> <td></td> <td></td> <td>8.94</td> <td>±9.6</td>					8.94	±9.6
10757 AAC IEEE 802 11at (160 MHz, MCS2, 896 cJury cycle) WLAN 6.57 10759 AAC IEEE 802 11at (160 MHz, MCS3, 896 cJury cycle) WLAN 6.58 10769 AAC IEEE 802 11at (160 MHz, MCS3, 896 cJury cycle) WLAN 6.58 10761 AAC IEEE 802 11at (160 MHz, MCS3, 896 cJury cycle) WLAN 8.59 10762 AAC IEEE 802 11at (160 MHz, MCS3, 896 cJury cycle) WLAN 8.59 10762 AAC IEEE 802 11at (160 MHz, MCS3, 896 cJury cycle) WLAN 8.54 10764 AAC IEEE 802 11at (160 MHz, MCS3, 896 cJury cycle) WLAN 8.54 10765 AAC IEEE 802 11at (160 MHz, MCS11, 896 cJury cycle) WLAN 8.51 10766 AAC IEEE 802 11at (160 MHz, MCS11, 896 cJury cycle) WLAN 8.51 10776 AAC IEEE 802 11at (160 MHz, MCS11, 896 cJury cycle) WLAN 8.51 10776 AAC IEEE 802 11at (160 MHz, MCS11, 896 cJury cycle) WLAN 8.51 10776 AAD IS0 NR (100 GPG)Hz, MS18, 896 cJury cycle) S0 NR (100 GPG)Hz, MS18, 896 cJury	_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			±9.6
10759 AAC IEEE 802.11x (100 MHz, IXOS, 996 outy cycle) WLAN 6.58 10760 AAC IEEE 802.11x (100 MHz, IXOS, 996 outy cycle) WLAN 6.49 10761 AAC IEEE 802.11x (100 MHz, IXOS, 996 outy cycle) WLAN 6.49 10761 AAC IEEE 802.11x (100 MHz, IXOS, 996 outy cycle) WLAN 6.49 10763 AAC IEEE 802.11x (100 MHz, IXOS, 996 outy cycle) WLAN 6.43 10764 AAC IEEE 802.11x (100 MHz, IXOS, 996 outy cycle) WLAN 6.44 10765 AAC IEEE 802.11x (100 MHz, IXOS, 996 outy cycle) WLAN 6.54 10766 AAC IEEE 802.11x (100 MHz, IXOS, 996 outy cycle) WLAN 6.54 10776 AAD 63 NR (CP-OFDM, 1 R8, 100 Mz, CPSK, 15 ktz) 56 NR FR TDD 6.01 10776 AAD 63 NR (CP-OFDM, 1 R8, 100 Mz, CPSK, 15 ktz) 56 NR FR TDD 6.02 10777 AAD 63 NR (CP-OFDM, 1 R8, 100 Mz, CPSK, 15 ktz) 56 NR FR TDD 6.02 10777 AAD 50 NR (CP-OFDM, 1 R8, 100 Mz, CPSK, 15 ktz) 56 NR FR TDD 6.02 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10799 AAC IEEE 802 118 (190 MHz, MCS8, 996 olury grole) WLAN 8.49 10781 AAC IEEE 802 118 (190 MHz, MCS8, 996 olury grole) WLAN 8.58 10782 AAC IEEE 802 118 (190 MHz, MCS8, 996 olury grole) WLAN 8.53 10782 AAC IEEE 802 118 (190 MHz, MCS8, 996 olury grole) WLAN 8.54 10784 AAC IEEE 802 118 (190 MHz, MCS8, 996 olury grole) WLAN 8.54 10785 AAC IEEE 802 118 (190 MHz, MCS8, 996 olury grole) WLAN 8.54 10786 AAC IEEE 802 118 (190 MHz, MCS8, 996 olury grole) WLAN 8.54 10786 AAC IEEE 802 118 (190 MHz, MCS1, 996 olury grole) WLAN 8.54 10787 AAE S0 NR (CP-OFM, 178, 500 MLY, GPSK, 154Hz) S0 NR FR 1TDD 8.01 10786 AAD S0 NR (CP-OFM, 178, 300 MLY, GPSK, 154Hz) S0 NR FR 1TDD 8.02 10771 AAD S0 NR (CP-OFM, 178, 300 MLY, GPSK, 154Hz) S0 NR FR 1TDD 8.30 10775 AAD S0 NR (CP-OFM, 178, 300 MLY, GPSK, 154Hz) S0 NR FR 1TDD 8.30		-				±9.6
10760 AAC IEEE 802.118 (190 MHz, MCSS 98pc duty grule) WLAN 8.48 10761 AAC IEEE 802.118 (190 MHz, MCSS 98pc duty grule) WLAN 8.49 10762 AAC IEEE 802.118 (190 MHz, MCSS 98pc duty grule) WLAN 8.53 10764 AAC IEEE 802.118 (190 MHz, MCSS 98pc duty grule) WLAN 8.54 10765 AAC IEEE 802.118 (190 MHz, MCSS 198pc duty grule) WLAN 8.54 10767 AAE IEEE 802.118 (190 MHz, MCSS 198pc duty grule) WLAN 8.54 10767 AAE IEEE 802.118 (190 MHz, MCSS 198pc duty grule) WLAN 8.51 10767 AAE SG NR (190 PCPK, 188, 154Hz) SG NR FR1 TDD 8.01 10768 AAD SG NR (190 PCPK, 188, 29MHz, QPSK, 154Hz) SG NR FR1 TDD 8.01 10772 AAD SG NR (190 PCPK, 188, 29MHz, QPSK, 154Hz) SG NR FR1 TDD 8.01 10774 AAD SG NR (190 PCPK, 188, 29MHz, QPSK, 154Hz) SG NR FR1 TDD 8.02 10777< <aad< td=""> SG NR (190 PCPK, 188, 29MHz, QPSK, 154Hz) SG NR FR1 TDD 8.02</aad<>						±9.6
10761 AAC IEEE 802.11m (180 MHz, MCS5) Spec duty cycle) WLAN 8.86 10782 AAC IEEE 802.11m (180 MHz, MCS5) Spec duty cycle) WLAN 8.53 10764 AAC IEEE 802.11m (180 MHz, MCS5) Spec duty cycle) WLAN 8.54 10764 AAC IEEE 802.11m (180 MHz, MCS10, Spec duty cycle) WLAN 8.54 10766 AAC IEEE 802.11m (160 MHz, MCS10, Spec duty cycle) WLAN 8.54 10766 AAC IEEE 802.11m (160 MHz, MCS11, Spec duty cycle) WLAN 8.51 10767 AAE SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 MHz) SG NR FR1 TDD 8.01 10776 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 MHz) SG NR FR1 TDD 8.02 10777 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 MHz) SG NR FR1 TDD 8.02 10777 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 MHz) SG NR FR1 TDD 8.03 10778 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 MHz) SG NR FR1 TDD 8.30 10777 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 MHz) SG NR FR						±9.6
10762 AAC IEEE 802.11ax (160 MHz, MCSP, 99pc duty cycle) WLAN 5.43 10763 AAC IEEE 802.11ax (160 MHz, MCSP, 99pc duty cycle) WLAN 8.54 10764 AAC IEEE 802.11ax (160 MHz, MCSP, 99pc duty cycle) WLAN 8.54 10765 AAC IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle) WLAN 8.51 10766 AAC IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle) WLAN 8.51 10776 AAD SG NR (PC-POTM, 1 RB, 5MHz, QPSK, 154Hz) SG NR FRITDD 8.01 10776 AAD SG NR (PC-POTM, 1 RB, 5MHz, QPSK, 154Hz) SG NR FRITDD 8.02 10777 AAD SG NR (PC-POTM, 1 RB, 20Hz, QPSK, 154Hz) SG NR FRITDD 8.02 10777 AAD SG NR (PC-POTM, 1 RB, 30HHz, QPSK, 154Hz) SG NR FRITDD 8.03 10777 AAD SG NR (PC-POTM, 1 RB, 30HHz, QPSK, 154Hz) SG NR FRITDD 8.03 10777 AAD SG NR (PC-POTM, 59% RB, 5MHz, QPSK, 154Hz) SG NR FRITDD 8.32 10777 AAD SG NR (PC-POTM, 59% RB, 5MHz, QPSK, 154Hz) SG NR FRITDD						±9.6 ±9.6
10763 AAC IEEE 802 11ax (160 MHz, MCS8) 9gen duty cycle) WLAN 5.53 10764 AAC IEEE 802 11ax (160 MHz, MCS8) 9gen duty cycle) WLAN 8.54 10765 AAC IEEE 802 11ax (160 MHz, MCS10, 9gen duty cycle) WLAN 8.54 10767 AAE SG NR FCP-OPDM, 1R, B, SIMLZ, OPSK, 154Hz) SG NR FRIT DD 8.01 10767 AAE SG NR (CP-OPDM, 1R, B, SIMLZ, OPSK, 154Hz) SG NR FRIT DD 8.01 10776 AAD SG NR (CP-OPDM, 1R, B, SIMLZ, OPSK, 154Hz) SG NR FRIT DD 8.02 10776 AAD SG NR (CP-OPDM, 1R, B, SIMHz, OPSK, 154Hz) SG NR FRIT DD 8.02 10777 AAD SG NR (CP-OPDM, 1R, B, SIMHz, OPSK, 154Hz) SG NR FRIT DD 8.02 10777 AAD SG NR (CP-OPDM, 1R, SIMHz, OPSK, 154Hz) SG NR FRIT DD 8.30 10777 AAD SG NR (CP-OPDM, SNR, B, SIMHz, OPSK, 154Hz) SG NR FRIT DD 8.30 10777 AAD SG NR (CP-OPDM, SNR, B, SIMHz, OPSK, 154Hz) SG NR FRIT DD 8.30 10777 AAD SG NR (CP-OPDM, SNR, B, SIMHz, OPSK, 154Hz) <						±9.6
1074 AAC IEEE 802:11xx (160 MHz, MCS), 99pc duy cycle) WLAN 8.54 10765 AAC IEEE 802:11xx (160 MHz, MCS11, 99pc duy cycle) WLAN 8.51 10767 AAC IEEE 802:11xx (160 MHz, MCS11, 99pc duy cycle) WLAN 8.51 10767 AAC SG NR (CP-OFDM, 1R8, 5MHz, OPSK, 15kHz) SG NR FR1 TDD 8.01 10770 AAD SG NR (CP-OFDM, 1R8, 5MHz, OPSK, 15kHz) SG NR FR1 TDD 8.02 10771 AAD SG NR (CP-OFDM, 1R8, 20Hz, OPSK, 15kHz) SG NR FR1 TDD 8.02 10771 AAD SG NR (CP-OFDM, 1R8, 20Hz, OPSK, 15kHz) SG NR FR1 TDD 8.03 10772 AAD SG NR (CP-OFDM, 1R8, 20Hz, OPSK, 15kHz) SG NR FR1 TDD 8.03 10774 AAD SG NR (CP-OFDM, 59%, R8, 10Hz, OPSK, 15kHz) SG NR FR1 TDD 8.31 10776 AAD SG NR (CP-OFDM, 59%, R8, 10Hz, OPSK, 15kHz) SG NR FR1 TDD 8.30 10777 AAC SG NR (CP-OFDM, 59%, R8, 10Hz, OPSK, 15kHz) SG NR FR1 TDD 8.30 10776 AAD SG NR (CP-OFDM, 59%, R8, 20Hz, OPSK, 15kHz) SG NR FR1 T						±9.6
10766 AAC IEEE BO211st/(160.MHz, MOS11, 996, 404/y cyle) WUAN 851 10767 AAE SG NR (CP-OFDM, 1 RB, 5MHz, OPSK, 154kz) SG NR FR1 TDD 8.01 10768 AAD SG NR (CP-OFDM, 1 RB, 10MHz, OPSK, 154kz) SG NR FR1 TDD 8.01 10770 AAD SG NR (CP-OFDM, 1 RB, 20MHz, OPSK, 154kz) SG NR FR1 TDD 8.02 10771 AAD SG NR (CP-OFDM, 1 RB, 20MHz, OPSK, 154kz) SG NR FR1 TDD 8.02 10771 AAD SG NR (CP-OFDM, 1 RB, 20MHz, OPSK, 154kz) SG NR FR1 TDD 8.02 10774 AAD SG NR (CP-OFDM, 1 RB, 20MHz, OPSK, 154kz) SG NR FR1 TDD 8.03 10775 AAD SG NR (CP-OFDM, 598, RB, 10MHz, OPSK, 154kz) SG NR FR1 TDD 8.03 10776 AAD SG NR (CP-OFDM, 598, RB, 10MHz, OPSK, 154kz) SG NR FR1 TDD 8.30 10777 AAD SG NR (CP-OFDM, 598, RB, 10MHz, OPSK, 154kz) SG NR FR1 TDD 8.34 10778 AAD SG NR (CP-OFDM, 598, RB, 10MHz, OPSK, 154kz) SG NR FR1 TDD 8.34 10778 AAD SG NR (CP-OFDM, 598, RB, 10MHz, OPSK, 154kz) <td>802.11ax</td> <td>AC</td> <td>AAC IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)</td> <td>WLAN</td> <td></td> <td>±9.6</td>	802.11ax	AC	AAC IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)	WLAN		±9.6
10767 AAE SG NN (CP-OFDM, 1 RB, 5MHz, OPSK, 154Hz) SG NN FR1 TDD F 399 10768 AAD SG NN (CP-OFDM, 1 RB, 15MHz, OPSK, 154Hz) SG NN FR1 TDD 8.01 10770 AAD SG NN (CP-OFDM, 1 RB, 20MHz, OPSK, 154Hz) SG NN FR1 TDD 8.02 10771 AAD SG NN (CP-OFDM, 1 RB, 20MHz, OPSK, 154Hz) SG NN FR1 TDD 8.02 10772 AAD SG NN (CP-OFDM, 1 RB, 30MHz, OPSK, 154Hz) SG NN FR1 TDD 8.02 10774 AAD SG NN (CP-OFDM, 1 RB, 30MHz, OPSK, 154Hz) SG NN FR1 TDD 8.03 10774 AAD SG NN (CP-OFDM, 1 RB, 30MHz, OPSK, 154Hz) SG NN FR1 TDD 8.31 10776 AAD SG NN (CP-OFDM, 50% RB, 30MHz, OPSK, 154Hz) SG NN FR1 TDD 8.30 10777 AAC SG NN (CP-OFDM, 50% RB, 30MHz, OPSK, 154Hz) SG NN FR1 TDD 8.30 10778 AAD SG NN (CP-OFDM, 50% RB, 30MHz, OPSK, 154Hz) SG NN FR1 TDD 8.30 10783 AAC SG NN (CP-OFDM, 50% RB, 30MHz, OPSK, 154Hz) SG NN FR1 TDD 8.31 10784 AAD SG NN (CP-OFDM, 50% RB, 30MHz, OPSK, 154Hz) <td>802.11ax</td> <td>AAC</td> <td>AAC IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle)</td> <td>WLAN</td> <td>8.54</td> <td>±9.6</td>	802.11ax	AAC	AAC IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle)	WLAN	8.54	±9.6
10768 AAD 5G NR (CP-OFDM, 1 RB, 10MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.01 10779 AAD SG NR (CP-OFDM, 1 RB, 50MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.02 10771 AAD SG NR (CP-OFDM, 1 RB, 20MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.02 10771 AAD SG NR (CP-OFDM, 1 RB, 20MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.02 10772 AAD SG NR (CP-OFDM, 1 RB, 30MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.03 10774 AAD SG NR (CP-OFDM, 1 RB, 30MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.03 10774 AAD SG NR (CP-OFDM, 59% RB, 10MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.03 10777 AAC SG NR (CP-OFDM, 59% RB, 10MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.30 10777 AAC SG NR (CP-OFDM, 59% RB, 20MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.34 10778 AAD SG NR (CP-OFDM, 59% RB, 20MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.34 10781 AAD SG NR (CP-OFDM, 59% RB, 20MHz, OPSK, 15kHz) 5G NR FR 1TDD 8.34 10783 AAD SG NR (CP-OFDM, 59% RB, 20MHz, OPSK, 15kHz)<	802.11ax	AAC	AAC IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle)	WLAN	8.51	±9.6
10769 AAD SG NR (CP-OFDM, 18B, 20MHz, QPSK, 15H4z) SG NR FR1 TDD 8.01 10770 AAD SG NR (CP-OFDM, 18B, 20MHz, QPSK, 15H4z) SG NR FR1 TDD 8.02 10771 AAD SG NR (CP-OFDM, 18B, 20MHz, QPSK, 15H4z) SG NR FR1 TDD 8.02 10772 AAD SG NR (CP-OFDM, 18B, 20MHz, QPSK, 15H4z) SG NR FR1 TDD 8.03 10774 AAD SG NR (CP-OFDM, 18B, 20MHz, QPSK, 15H4z) SG NR FR1 TDD 8.03 10775 AAD SG NR (CP-OFDM, 50%, RB, 15MHz, QPSK, 15H4z) SG NR FR1 TDD 8.30 10777 AAC SG NR (CP-OFDM, 50%, RB, 20MHz, QPSK, 15H4z) SG NR FR1 TDD 8.30 10777 AAC SG NR (CP-OFDM, 50%, RB, 20MHz, QPSK, 15H4z) SG NR FR1 TDD 8.30 10778 AAC SG NR (CP-OFDM, 50%, RB, 20MHz, QPSK, 15H4z) SG NR FR1 TDD 8.34 10780 AAD SG NR (CP-OFDM, 50%, RB, 20MHz, QPSK, 15H4z) SG NR FR1 TDD 8.34 10781 AAD SG NR (CP-OFDM, 50%, RB, 20MHz, QPSK, 15H4z) SG NR FR1 TDD 8.34 10784 AAD SG NR (CP-OFDM, 100%, RB, 5MHz, QPSK, 15H	<u> </u>			5G NR FR1 TDD	7.99	±9.6
10770 AAD SG NR (CP-OFDM, 11 RB, 25MHz, QPSK, 15KHz) SG NR FR1 TDD 8.02 10771 AAD SG NR (CP-OFDM, 11 RB, 25MHz, QPSK, 15KHz) SG NR FR1 TDD 8.02 10773 AAD SG NR (CP-OFDM, 11 RB, 20MHz, QPSK, 15KHz) SG NR FR1 TDD 8.02 10773 AAD SG NR (CP-OFDM, 11 RB, 30MHz, QPSK, 15KHz) SG NR FR1 TDD 8.03 10774 AAD SG NR (CP-OFDM, 11 RB, 30MHz, QPSK, 15KHz) SG NR FR1 TDD 8.03 10775 AAD SG NR (CP-OFDM, 50%, BL, 5MHz, QPSK, 15KHz) SG NR FR1 TDD 8.30 10777 AAC SG NR (CP-OFDM, 50%, BL, 20MHz, QPSK, 15KHz) SG NR FR1 TDD 8.30 10778 AAD SG NR (CP-OFDM, 50%, BL, 20MHz, QPSK, 15KHz) SG NR FR1 TDD 8.34 1078 AAD SG NR (CP-OFDM, 50%, BL, 20MHz, QPSK, 15KHz) SG NR FR1 TDD 8.34 1078 AAD SG NR (CP-OFDM, 50%, BL, 20MHz, QPSK, 15KHz) SG NR FR1 TDD 8.38 10782 AAD SG NR (CP-OFDM, 100%, BL, 20MHz, QPSK, 15KHz) SG NR FR1 TDD 8.34 10783 AAD SG NR (CP-OFDM, 100%, BL, 15MHz,	<u> </u>				8.01	±9.6
10777 AAD 5G NR (CP-OFDM, 188, 20MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.02 10772 AAD 5G NR (CP-OFDM, 188, 20MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.03 10774 AAD 5G NR (CP-OFDM, 188, 20MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.03 10774 AAD 5G NR (CP-OFDM, 59%, 85, 5MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.03 10775 AAD 5G NR (CP-OFDM, 59%, 85, 15MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.30 10776 AAD 5G NR (CP-OFDM, 59%, 85, 20MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.30 10777 AAD 5G NR (CP-OFDM, 59%, 85, 20MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.30 10778 AAD 5G NR (CP-OFDM, 59%, 85, 20MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.31 1078 AAD 5G NR (CP-OFDM, 59%, 85, 50MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.31 1078 AAD 5G NR (CP-OFDM, 59%, 85, 50MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.34 10786 AAD 5G NR (CP-OFDM, 100%, 81, 50MHz, QPSK, 15Hz) 5G NR FR1 TDD 8.43 10786 AAD 5G NR (CP-OFDM, 100%, 81, 20MHz, QPSK, 15Hz) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10772 AAD 5G NR (CP-OFDM, 1B, 30MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.23 10774 AAD 5G NR (CP-OFDM, 1B, 30MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.03 10774 AAD 5G NR (CP-OFDM, 1B, 30MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.31 10776 AAD 5G NR (CP-OFDM, 50% RB, 10MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.30 10777 AAC 5G NR (CP-OFDM, 50% RB, 15MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.30 10777 AAC 5G NR (CP-OFDM, 50% RB, 20MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.34 10778 AAC 5G NR (CP-OFDM, 50% RB, 20MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.34 1078 AAD 5G NR (CP-OFDM, 50% RB, 20MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.38 1078 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.34 1078 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.34 1078 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 15kHz) 5G NR FR1 TDD 8.49 1078 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 15kHz) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10773 AAD SG NR (CP-OFDM, 1B, 40MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.03 10774 AAD SG NR (CP-OFDM, 18B, 50 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.02 10775 AAD SG NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.30 10776 AAD SG NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.30 10777 AAD SG NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.34 10778 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.42 10780 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.38 10781 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.43 10783 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.43 10788 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.44 10788 AAD SG NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.44 10788 AAD SG NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.44						±9.6
10774 AD SG NR (CP-OFDM, 198, S0MHz, QPSK, 15kHz) SG NR FR1 TDD 8.02 10775 AAD SG NR (CP-OFDM, 50% RB, 10MHz, QPSK, 15kHz) SG NR FR1 TDD 8.30 10777 AAC SG NR (CP-OFDM, 50% RB, 15MHz, QPSK, 15kHz) SG NR FR1 TDD 8.30 10777 AAC SG NR (CP-OFDM, 50% RB, 15MHz, QPSK, 15kHz) SG NR FR1 TDD 8.34 10779 AAC SG NR (CP-OFDM, 50% RB, 25MHz, QPSK, 15kHz) SG NR FR1 TDD 8.34 10778 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15kHz) SG NR FR1 TDD 8.38 10781 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15kHz) SG NR FR1 TDD 8.38 10782 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15kHz) SG NR FR1 TDD 8.43 10784 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15kHz) SG NR FR1 TDD 8.42 10786 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15kHz) SG NR FR1 TDD 8.39 10787 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15kHz) SG NR FR1 TDD 8.39 10787 AAD SG NR (CP-OFDM, 100% RB, 50	_ `					±9.6
10775 AAD SG NR (CP-OFDM, 59% RB, 50Hiz, OPSK, 15Hiz) SG NR FRI TDD 8.31 10776 AAD SG NR (CP-OFDM, 59% RB, 10Miz, OPSK, 15Hiz) SG NR FRI TDD 8.30 10777 AAD SG NR (CP-OFDM, 59% RB, 20Miz, OPSK, 15Hiz) SG NR FRI TDD 8.30 10778 AAD SG NR (CP-OFDM, 59% RB, 20Miz, OPSK, 15Hiz) SG NR FRI TDD 8.34 10780 AAD SG NR (CP-OFDM, 59% RB, 20Miz, OPSK, 15Hiz) SG NR FRI TDD 8.38 10781 AAD SG NR (CP-OFDM, 59% RB, 50Miz, OPSK, 15Hiz) SG NR FRI TDD 8.38 10782 AAD SG NR (CP-OFDM, 59% RB, 50Miz, OPSK, 15Hiz) SG NR FRI TDD 8.38 10783 AAE SG NR (CP-OFDM, 100% RB, 50Miz, OPSK, 15Hiz) SG NR FRI TDD 8.43 10784 AAD SG NR (CP-OFDM, 100% RB, 50Miz, OPSK, 15Hiz) SG NR FRI TDD 8.40 10785 AAD SG NR (CP-OFDM, 100% RB, 20Miz, OPSK, 15Hiz) SG NR FRI TDD 8.34 10786 AAD SG NR (CP-OFDM, 100% RB, 20Miz, OPSK, 15Hiz) SG NR FRI TDD 8.34 10787 AAD SG NR (CP-OFDM, 109% RB, 20M	<u> </u>					±9.6 ±9.6
10776 AAD SG NR (PC-OFDM, 50%, RB, 10 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.30 10777 AAC SG NR (CP-OFDM, 50%, RB, 15 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.30 10778 AAC SG NR (CP-OFDM, 50%, RB, 20 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.42 10780 AAD SG NR (CP-OFDM, 50%, RB, 30 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.38 10781 AAD SG NR (CP-OFDM, 50%, RB, 30 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.38 10782 AAD SG NR (CP-OFDM, 50%, RB, 50 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.43 10784 AAD SG NR (CP-OFDM, 100%, RB, 50 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.43 10785 AAD SG NR (CP-OFDM, 100%, RB, 50 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.43 10786 AAD SG NR (CP-OFDM, 100%, RB, 20 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.44 10787 AAD SG NR (CP-OFDM, 100%, RB, 30 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.37 10789 AAD SG NR (CP-OFDM, 100%, RB, 30 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.39 10789 AAD SG NR (CP-OFDM, 100%, RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.37 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10777 AAC SG NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 HHz) SG NR FR1 TDD 8.30 10778 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 HHz) 5G NR (CP Ner DPM, 50% RB, 25 MHz, QPSK, 15 HHz) 5G NR (CP Ner DPM, 50% RB, 30 MHz, QPSK, 15 HHz) 5G NR (CP Ner DPM, 50% RB, 30 MHz, QPSK, 15 HHz) 5G NR FR1 TDD 8.38 10781 AAD 5G NR (CP OFDM, 50% RB, 50 MHz, QPSK, 15 HHz) 5G NR FR1 TDD 8.39 10782 AAD 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 HHz) 5G NR FR1 TDD 8.43 10783 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 15 HHz) 5G NR FR1 TDD 8.40 10784 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 HHz) 5G NR FR1 TDD 8.40 10785 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 HHz) 5G NR FR1 TDD 8.40 10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 HHz) 5G NR FR1 TDD 8.31 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 HHz) 5G NR FR1 TDD 8.33 10788 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 HHz) 5G NR FR1 TDD 8.37 10784 AAD						±9.6
10778 AAD 5G NR (CP-OFDM, 50%, RB, 20MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 10779 AAC 5G NR (CP-OFDM, 50%, RB, 20MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 10780 AAD 5G NR (CP-OFDM, 50%, RB, 30MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 10781 AAD 5G NR (CP-OFDM, 50%, RB, 30MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 10782 AAD 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 10784 AAD 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 10785 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 10788 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 10789 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 10789 AAD 5G NR (<u> </u>		(±9.6
10780 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 10781 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 10782 AAE 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 10783 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 10784 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 10785 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 10788 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 10789 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 10791 AAE 5G NR (CP-OFDM, 1RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10793 AAD 5G NR	R (CP-OF	AD	AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)			±9.6
10781 AAD 5G NR (CP-OFDM, 50% RB, 50MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 10782 AAD 5G NR (CP-OFDM, 50% RB, 50MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 10783 AAD 5G NR (CP-OFDM, 100% RB, 10MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.23 10784 AAD 5G NR (CP-OFDM, 100% RB, 10MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 10785 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 10787 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 10788 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 10791 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 10792 AAD 5G NR (CP-OFDM, 1 RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10793 AAD 5G NR (CP-OFDM, 1 RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10794 AAD 5G NR (CP-OFDM,	R (CP-OF	AAC	AAC 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6
10782 AAD 5G NR (CP-OFDM, 50% RB, 50MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 10783 AAE 5G NR (CP-OFDM, 100% RB, 50MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 10784 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 10785 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 10789 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.33 10790 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 7.83 10791 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10792 AAD 5G NR (CP-OFDM, 1RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10793 AAD 5G NR (CP-OFDM, 1RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10794 AAD 5G NR (CP-	R (CP-OF	٩AD	AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10783 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.31 10784 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.40 10785 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.40 10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.44 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.35 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.39 10789 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.39 10790 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.83 10791 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.92 10793 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.82 10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-	_ `			5G NR FR1 TDD	8.38	±9.6
10784 AAD SG NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 HHz) SG NR FR1 TDD 8.29 10785 AAD SG NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 HHz) SG NR FR1 TDD 8.40 10786 AAD SG NR (CP-OFDM, 100% RB, 20 HHz, QPSK, 15 HHz) SG NR FR1 TDD 8.44 10787 AAD SG NR (CP-OFDM, 100% RB, 20 HHz, QPSK, 15 HHz) SG NR FR1 TDD 8.33 10789 AAD SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 HHz) SG NR FR1 TDD 8.39 10789 AAD SG NR (CP-OFDM, 100% RB, 30 HHz, QPSK, 15 HHz) SG NR FR1 TDD 8.39 10790 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 HHz) SG NR FR1 TDD 8.39 10791 AAE SG NR (CP-OFDM, 18, 50 MHz, QPSK, 30 HHz) SG NR FR1 TDD 7.32 10792 AAD SG NR (CP-OFDM, 1 RB, 10 HHz, QPSK, 30 HHz) SG NR FR1 TDD 7.32 10793 AAD SG NR (CP-OFDM, 1 RB, 20 HHz, QPSK, 30 HHz) SG NR FR1 TDD 7.82 10794 AAD SG NR (CP-OFDM, 1 RB, 30 HHz, QPSK, 30 HHz) SG NR FR1 TDD 7.82 10796 AAD SG NR (CP-OFD	<u>`</u>				8.43	±9.6
10785 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.40 10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.35 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.39 10789 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.39 10789 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.39 10790 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 7.33 10791 AAD 5G NR (CP-OFDM, 1 RB, 5MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.32 10793 AAD 5G NR (CP-OFDM, 1 RB, 5MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.92 10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.84 10796 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.89 10799 AAD 5G NR (CP-OFDM, 1						±9.6
10786 AAD 5G NR (CP-OFDM, 100% RB, 20MHz, QPSK, 15KHz) 5G NR FR1 TDD 8.35 10787 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15KHz) 5G NR FR1 TDD 8.44 10788 AAD 5G NR (CP-OFDM, 100% RB, 30MHz, QPSK, 15KHz) 5G NR FR1 TDD 8.37 10790 AAD 5G NR (CP-OFDM, 100% RB, 40MHz, QPSK, 15KHz) 5G NR FR1 TDD 8.37 10790 AAD 5G NR (CP-OFDM, 100% RB, 40MHz, QPSK, 30KHz) 5G NR FR1 TDD 8.39 10791 AAE 5G NR (CP-OFDM, 100% RB, 40MHz, QPSK, 30KHz) 5G NR FR1 TDD 7.83 10792 AAD 5G NR (CP-OFDM, 1 RB, 10MHz, QPSK, 30KHz) 5G NR FR1 TDD 7.92 10793 AAD 5G NR (CP-OFDM, 1 RB, 10MHz, QPSK, 30KHz) 5G NR FR1 TDD 7.82 10794 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30KHz) 5G NR FR1 TDD 7.82 10795 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, QPSK, 30KHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, QPSK, 30KHz) 5G NR FR1 TDD 7.89 10798 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, QPSK, 3	_ `					±9.6
10787 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.44 10788 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.39 10789 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.37 10790 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 7.83 10791 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.83 10792 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.92 10793 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.82 10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.82 10795 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.89 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.83 <td< td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td>±9.6</td></td<>	<u> </u>					±9.6
10788 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 10789 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 10790 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 7.83 10791 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 10792 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 10793 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10795 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 10799 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 10799 AAD 5G NR (CP-OFDM, 1 RB, 9	· ·					±9.6
10789 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.37 10790 AAD 5G NR (CP-OFDM, 10% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 7.83 10791 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 10792 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 10793 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10795 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10796 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10798 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10802 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10804<	<u>`</u>					±9.6 ±9.6
10790 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.39 10791 AAE 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 10792 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 10733 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 10734 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10795 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10799 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10801 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 10805 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10791 AAE 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 10792 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 10793 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10795 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 10796 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10798 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10801 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10802 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10802 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10805	·					±9.6
10793 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10795 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10801 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10802 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 10802 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10805 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>±9.6</td>		_				±9.6
10794 AAD SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 10795 AAD SG NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.84 10796 AAD SG NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 10797 AAD SG NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 10797 AAD SG NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.89 10798 AAD SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.89 10799 AAD SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.89 10801 AAD SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.89 10802 AAD SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.87 10802 AAD SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.87 10803 AAD SG NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 10806 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 10806 </td <td>R (CP-OF</td> <td>AAD</td> <td>AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)</td> <td>5G NR FR1 TDD</td> <td>7.92</td> <td>±9.6</td>	R (CP-OF	AAD	AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10795 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10801 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10802 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10804 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 60	R (CP-OF	AAD	AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6
10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.01 10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10799 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10801 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10802 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB,	R (CP-OF	٩AD	AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.01 10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10802 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10803 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10804 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10805 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10812 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 <t< td=""><td></td><td>٩AD</td><td></td><td>5G NR FR1 TDD</td><td>7.84</td><td>±9.6</td></t<>		٩AD		5G NR FR1 TDD	7.84	±9.6
10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10802 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.37 10806 AAD 5G NR (CP-OFDM, 50% RB, 00 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35	_ ·					±9.6
10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.37 10806 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 00 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10810 AAD 5G NR (CP-OFDM, 10	<u>,</u>					±9.6
10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10805 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10817 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33	,					±9.6
10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10805 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.37 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10812 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10817 AAE 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10818 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 10820 AAD 5G NR (CP-OF		_				±9.6
10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.37 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10812 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10817 AAE 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 10821 AAD 5G NR (C	<u>,</u>					±9.6
10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.37 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10812 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10818 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 10821 AAD 5G NR (C	<u>`</u>					±9.6 ±9.6
10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.37 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10812 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10818 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10819 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 10821 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10822 AAD 5G NR	<u> </u>					±9.6
10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10818 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 10824 AAD 5G NR						±9.6
10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10822 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 10824 AAD 5G						±9.6
10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10822 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39	<u> </u>					±9.6
10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 10821 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10823 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39	<u> </u>	AD				±9.6
10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 10821 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10823 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39	IR (CP-OF	AAE	AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39	IR (CP-OF				8.34	±9.6
10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39	<u> </u>					±9.6
10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39	·					±9.6
10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39						±9.6
10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39						±9.6
						±9.6
						±9.6 ±9.6
10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42	·				-	±9.6
10828 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 10828 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.43	<u> </u>					±9.6

10829 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10830 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 10831 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10833 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10833 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10831 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1		10.0
10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1	TDD 7.63	±9.6
		±9.6
	TDD 7.74	±9.6
	TDD 7.70	±9.6
10834 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1	TDD 7.75	±9.6
10835 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) 5G NR FR1	TDD 7.70	±9.6
10836 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1	TDD 7.66	±9.6
10837 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1	TDD 7.68	±9.6
10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1	TDD 7.70	±9.6
10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10841 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10859 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10861 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10863 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10865 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1		±9.6
10866 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10868 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10869 AAE 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2		±9.6
10870 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2		±9.6
10871 AAE 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10872 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10873 AAE 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2		±9.6
10874 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2		±9.6
10875 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2		±9.6
10876 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2		±9.6
10877 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10878 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10879 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2		±9.6
10880 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10881 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2		±9.6
		±9.6
10882 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2		±9.6
10883 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10885 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2		±9.6
10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 120 kHz) 5G NR FR2		±9.6
		±9.6
10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2		±9.6
10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2		±9.6
		±9.6
		±9.6
10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
		±9.6
		±9.6
		±9.6
10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
		±9.6
10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 10910 AAB 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10910 AAB 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1	TDD 5.83	±9.6

10911 10912		Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
10915	AAB	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAB	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917 10918	AAB AAC	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.86	±9.6
10919	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86 5.87	±9.6 ±9.6
10921	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10926	AAB	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10927	AAB	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10928	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10929	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10930	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10931	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10932	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10934	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAD AAC	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10937 10938	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.90 5.82	±9.6 ±9.6
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10948	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
10953 10954	AAA AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	8.23 8.42	±9.6 ±9.6
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	±9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6
10960	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.6
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	±9.6
10964	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	±9.6
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.6
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972 10973	AAB AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	11.59 9.06	±9.6
109/3	AAB	5G NR (DF-S-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	10.28	±9.6 ±9.6
	AAB	ULLA BDR	ULLA	1.16	±9.6
10974			0100	1.10	0.0
10974 10978		ULLA HDB4		8.58	+9.6
10974	AAA	ULLA HDR4 ULLA HDR8	ULLA	8.58 10.32	±9.6 ±9.6
10974 10978 10979	AAA			8.58 10.32 3.19	+9.6 +9.6 +9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

B.V. ADT

Taoyuan City

Certificate No.

EX-7555_Jul23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7555
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	July 19, 2023
	(\mathbf{C})

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	10		
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeffrey Katzman	Laboratory Technician	d.to
Approved by	Sven Kühn	Technical Manager	9.6
The international constitution to the line of the second second second second second second second second second	and has a second second second to faill a dat		Issued: July 19, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., ϑ = 0 is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \text{ MHz}$.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> = 2)
Norm $(\mu V/(V/m)^2)^A$	0.48	0.55	0.66	±10.1%
DCP (mV) B	96.0	99.0	100.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E
				•••					<i>k</i> = 2
0	CW	Х	0.00	0.00	1.00	0.00	126.5	±2.6%	±4.7%
		Y	0.00	0.00	1.00		118.4		
		Z	0.00	0.00	1.00	1	125.4		
10352	Pulse Waveform (200Hz, 10%)	Х	20.00	88.46	18.58	10.00	60.0	±4.0%	±9.6%
		Y	1.63	61.20	6.71	-	60.0		
		Z	20.00	88.05	18.67	1	60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	89.41	17.70	6.99	80.0	±3.1%	±9.6%
		Y	0.91	60.00	5.18		80.0	1	
		Z	20.00	89.80	18.35		80.0		
10354	Pulse Waveform (200Hz, 40%)	Х	20.00	89.34	16.12	3.98	95.0	±2.0%	±9.6%
		Y	0.53	60.00	4.28	1	95.0	1	
		Z	20.00	93.36	18.63		95.0	1	
10355	Pulse Waveform (200Hz, 60%)	X	20.00	83.05	12.02	2.22	120.0	±1.4%	±9.6%
		Y	0.34	60.00	3.58		120.0		
		Z	20.00	94.38	17.75		120.0	1	
10387	QPSK Waveform, 1 MHz	Х	1.56	65.19	14.20	1.00	150.0	±2.9%	±9.6%
		Y	1.57	67.72	15.05	-	150.0		
		Z	1.49	65.92	14.36	1	150.0	1	
10388	QPSK Waveform, 10 MHz	Х	2.11	67.10	15.07	0.00	150.0	±1.1%	±9.6%
		Y	2.06	67.98	15.73	1	150.0		
		Z	2.00	67.04	15.20	1	150.0		
10396	64-QAM Waveform, 100 kHz	X	2.60	68.18	17.73	3.01	150.0	±1.1%	±9.6%
		Y	2.38	68.66	18.13		150.0	-	
		Z	2.22	66.69	17.17	-	150.0		
10399	64-QAM Waveform, 40 MHz	X	3.46	66.75	15.53	0.00	150.0	±2.3%	±9.6%
		Y	3.40	67.13	15.78	-	150.0	1	
		Z	3.34	66.60	15.49	1	150.0	1	
10414	WLAN CCDF, 64-QAM, 40 MHz	Х	4.88	65.56	15.52	0.00	150.0	±4.3%	±9.6%
		Y	4.67	65.82	15.63	1	150.0	-	
		Z	4.65	65.33	15.37	-	150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ^{−1}	T6
x	46.5	359.75	37.72	7.11	0.00	5.09	0.00	0.46	1.01
у	31.1	231.78	35.37	8.40	0.00	4.92	0.81	0.14	1.01
z	37.0	278.49	36.04	10.76	0.00	5.08	0.00	0.31	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-31.2°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

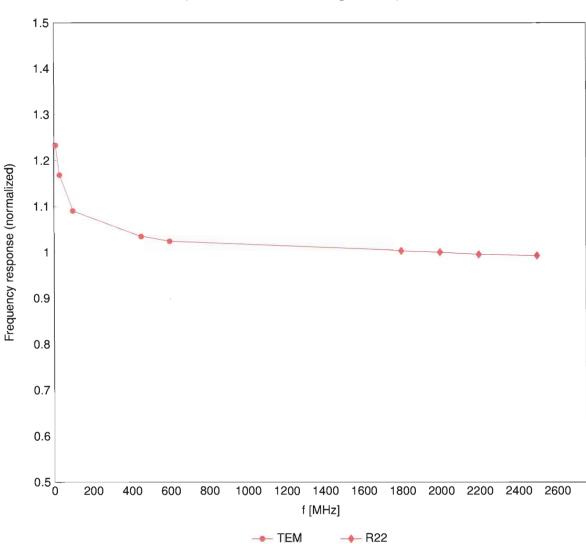
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
450	43.5	0.87	11.65	11.65	11.65	0.16	1.30	±13.3%
750	41.9	0.89	10.05	9.89	10.12	0.40	1.27	±12.0%
835	41.5	0.90	9.55	9.65	9.93	0.38	1.27	±12.0%
1450	40.5	1.20	8.51	8.46	8.89	0.48	1.27	±12.0%
1640	40.2	1.31	8.35	8.39	8.82	0.45	1.27	±12.0%
1750	40.1	1.37	8.38	8.32	8.61	0.27	1.27	±12.0%
1900	40.0	1.40	8.05	8.05	8.41	0.28	1.27	±12.0%
2000	40.0	1.40	7.85	7.82	8.17	0.30	1.27	±12.0%
2300	39.5	1.67	7.79	7.70	8.10	0.30	1.27	±12.0%
2450	39.2	1.80	7.67	7.61	8.04	0.30	1.27	±12.0%
2600	39.0	1.96	7.46	7.41	7.83	0.28	1.27	±12.0%
3300	38.2	2.71	7.02	6.97	7.31	0.32	1.27	±14.0%
3500	37.9	2.91	6.94	6.90	7.29	0.33	1.27	±14.0%
3700	37.7	3.12	6.90	6.85	7.22	0.33	1.27	±14.0%
3900	37.5	3.32	6.85	6.83	7.23	0.34	1.27	±14.0%
4100	37.2	3.53	6.68	6.65	7.05	0.35	1.27	±14.0%
4200	37.1	3.63	6.47	6.44	6.83	0.35	1.27	±14.0%
5250	35.9	4.71	5.67	5.48	5.70	0.38	1.53	±14.0%
5600	35.5	5.07	4.91	4.75	4.95	0.38	1.67	±14.0%
5800	35.3	5.27	5.16	4.91	5.33	0.33	1.86	±14.0%

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

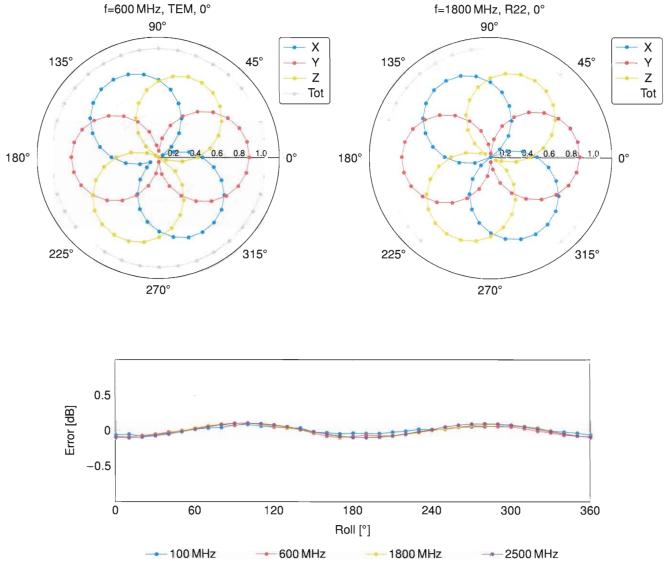
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.


Calibration Parameter Determined in Head Tissue Simulating Media

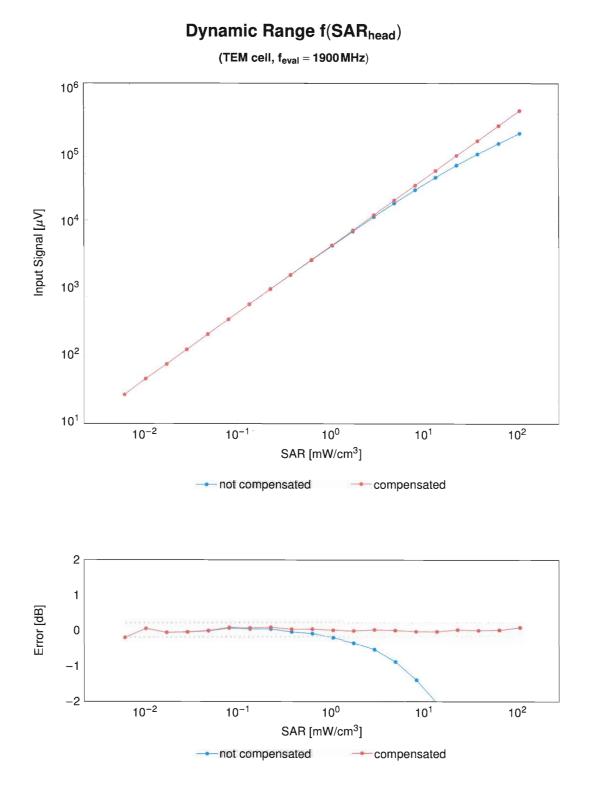
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
6500	34.5	6.07	5.52	5.28	5.59	0.20	2.00	±18.6%
8000	32.7	7.84	5.69	5.36	5.66	0.44	1.41	±18.6%
9000	31.6	9.08	5.47	5.14	5.66	0.45	1.60	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ± 700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$)

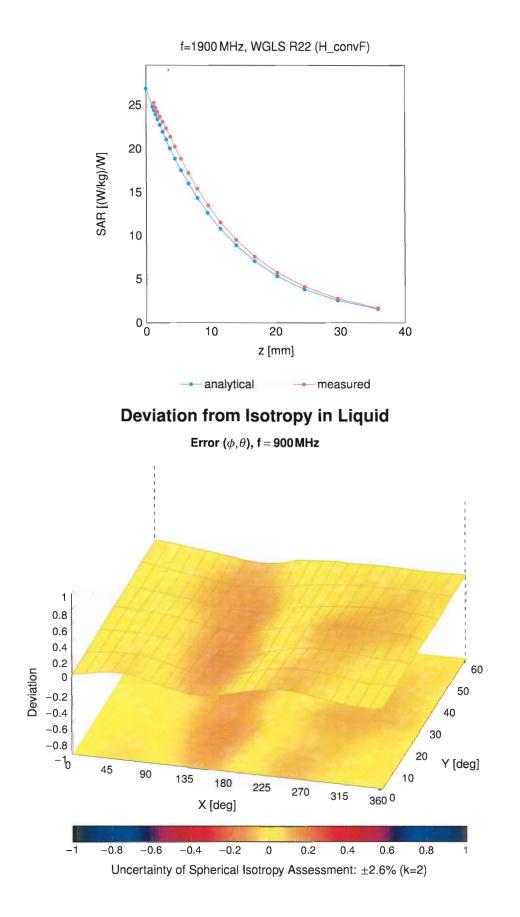
and are valid for TSL with deviations of up to ±10%.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E <i>k</i> = 2
0		CW	CW	0.00	±4.7
10010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10020	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	4.53	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
-			Bluetooth	8.01	±9.6
10036	CAA CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1) IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
				_	
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10105	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10108	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6
10109	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10110	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6
10111	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAD	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAD	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAJ	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAH	LTE-FDD (SC-FDMA, 1 RB, 5MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	AAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	AAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195	CAD	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	CAD	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197	CAD	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10198	CAD	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAD	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220	CAD	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
10221	CAD	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
10222	CAD	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6
10223	CAD CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN WLAN	8.48	±9.6
10224	CAD	TEEE 002.1111 (TT WIXED, 150 WIDPS, 04-QAW)	WLAN	8.08	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	<u>±9.6</u>
10249	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255 10256	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	10.08 9.34	±9.6
10258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, CFSK)	LTE-TDD	9.34	±9.6 ±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAA	PHS (QPSK)	PHS	11.81	±9.6
10278	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10297	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299		LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)		6.60	±9.6
10301	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC) IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WIMAX WIMAX	12.03	±9.6 ±9.6
10302	AAA	IEEE 802.16e WIMAX (29.16, 5115, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WIMAX	12.57	±9.6
10303	AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10 MHz, 64QAM, PUSC)	WIMAX	11.86	±9.6
10304	AAA	IEEE 802.16e WIMAX (23.18, 5115, 10 MHz, 64QAM, FUSC)	WIMAX	15.24	±9.6
10305	AAA	IEEE 802.16e WIMAX (31.15, 10 MIS, 10 MHz, 64QAM, PUSC, 18 symbols)	WIMAX	14.67	±9.6
10000	,,,,,,			14.07	10.0

19307 AAA LEEE 80.2 Lie WurkAX (2016; 100m; 10M-L, 10GAX, MAC 201; 8 gymbos) WMAX 11.4.5 12.6.6 19388 AAA LEEE 80.2 Lie WurkAX (2015; 100m; 10M-L; 10GAX, MAC 201; 8 gymbos) WMAX 14.4.5 14.5.6 1938 MAA LEEE 80.2 Lie WurkAX (2015; 100m; 10M-L; 10GAX, MAC 201; 8 gymbos) WMAX 14.5.7 14.5.6 1931 MAA LEEE 80.2 Lie WurkAX (2015; 100m; 10M-L; 0PGAX, MAC 201; 18 gymbos) WMAX 14.5.7 14.5.6 1931 MAA LIE-FOD (5.6.7 MAA 100F1 3 14.5.7 14.5.6 1931 MAA LIE-FOD (5.6.7 MAA 100F1 3 14.5.8 14.5.6 1931 MAA LIE-FOD (5.6.7 MAA 100F1 3 14.5.6 14.5.6 1931 MAA LIE-FOD (5.6.7 MAA 100F1 3 14.5.6 14.5.6 1935 MAA LIE-FOD (5.6.7 MAA 100F1 3 14.5.6 14.5.6 1938 MAA LIE-FOD (5.6.7 MAA 100F1 4 15.6 15.5 1938 MAA	UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
1936 AAA LEEE 80.2 Lee Wurks (201-16, cms, 10.MeJ, 190AM, PUSC) WINAX 14.45 14.56 1930 AAA LEEE 80.2 Lee Wurks (201-16, cms, 10.MeJ, 029K, AMC 23, 18 symbols) WINAX 14.58 14.56 1931 AAA LEEE 80.2 Lee Wurks (201-16, cms, 10.MeJ, 029K) UEF-DD 6.06 4.88 1931 AAA LEEF 80.2 Lee Wurks (201-16, cms, 10.MeJ, 029K) UEF-DD 6.06 4.88 1931 AAA LEEF 80.2 LIB WH 2.4 CH2 (25KS), 1Mbps, %Bpc clury cycle) WLAN 1.37 4.84 1.85 1931 AAB LEEF 80.2 LIB WH 2.4 CH2 (25KS), 1Mbps, %Bpc clury cycle) WLAN 8.36 4.85 1931 AAB LEEE 80.2 LIB WH 2.4 CH2 (25KS), 1Mbps, %Bpc clury cycle) WLAN 8.36 4.85 1938 AAA Pube Warderm (200-4, 27%), Generic 6.27 4.95 1938 AAA Pube Warderm (200-4, 27%), Generic 6.27 4.95 1938 AAA OPSK Warderm (200-4, 27%), Generic 6.27 4.95 1938 AAA OPSK Warderm (1				<u>·</u>	. ,	
1309 AAA IEEE 802.169 WIAAX 124.82 asso 1301 AAA IEEE 802.169 WIAAX 14.67 ±9.6 1301 AAA IEEE 802.169 WIAAX 14.67 ±9.6 1301 AAA IDEN 13 IDEN 14 IDEN 14 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
10310 AAA LEE 802.169 WIIAX (2218.10ms, 10.MHz, OPSK, AMC 23.18 symbols) WMAX 11.57 #58. 10311 AAE LET-EPD (3C-FDM, 100% RB, 15MHz, OPSK) DEN 10.66 #9.8 10314 AAA DEN 16 DEN 10.84 A DEN 11.84 #9.6 10314 AAA DEN 15 DEN 13.44 #9.6 10315 AAB IEEE 80.21 UWE 2.4014; (ERP-OFM, Mosps, 96pc.du/ cycle) WLAN 8.38 #9.6 10315 AAB IEEE 80.21 UWE 2.4014; (ERP-OFM, Mosps, 96pc.du/ cycle) WLAN 8.38 #9.6 10385 AAA Pulse Waveform (20044, 20%) Generic 3.98 #9.6 10385 AAA Pulse Waveform (20044, 20%) Generic 2.22 #9.6 10385 AAA Pulse Waveform (10044, 20%) Generic 6.27 #9.6 10386 AAA Pulse Waveform, 100442 Generic 6.27 #9.6 10387 AAA Pulse Waveform, 100442 Generic 6.27 #9.8						
10311 AAE LTE-FDD (SG-FDMA, 100% FB, 15 MHz, 0PSK) LTE-FDD 0.61 198 10331 AAA DEN 13 DEN 13 105 MAB IEEE 802.110 WIF12.4 GHz (DSSS, 1Mpp, 96pc duy cycle) WLAN 8.38 19.86 10331 AAB IEEE 802.110 WIF12.4 GHz (DSSS, 1Mpp, 96pc duy cycle) WLAN 8.38 4.96 10381 AAA PLEE 802.110 WIF12.4 GHz (DSSS, 1Mpp, 96pc duy cycle) WLAN 8.38 4.96 10383 AAA PLue Waveform (200Hz, 20%) Generic 6.99 2.96 10385 AAA PLue Waveform (200Hz, 20%) Generic 2.22 2.96 10385 AAA PLue Waveform (200Hz, 20%) Generic 2.22 2.96 10386 AAA PLue Waveform (200Hz, 20%) Generic 6.97 2.86 10386 AAA PLue Waveform (200Hz, 60%) Generic 6.97 2.86 10386 AAA PLue Waveform (200Hz, 64-0AM, 990c duy cycle) WLAN 8.97 2.96 10386 AAA PLUE Waveform (200Hz, 64-0A						
10313 AAA DEN 10.51 498 10314 AAA DEN 16 10.84 10.84 10.84 19.86 10315 AAB IEEE 80.21 (bw IFI2 4.64/cr (ERP-CPOL) WLAN 8.36 19.86 10316 AAB IEEE 80.21 (bw IFI2 4.64/cr (ERP-CPOL) WLAN 8.36 19.86 10317 AAD IEEE 80.21 (bw IFI2 4.64/cr (ERP-CPOL) Generic 10.00 19.86 10338 AAA Pulse Waveform (2004z, 20%) Generic 0.37 19.86 10385 AAA Pulse Waveform (2004z, 20%) Generic 0.37 19.86 10385 AAA Pulse Waveform (2004z, 20%) Generic 5.22 19.86 10385 AAA Pulse Waveform, 1004z Generic 5.22 19.86 10386 AAA 0.95K Waveform, 1004z Generic 6.27 19.66 10386 AAA 0.96K Waveform, 1004z Generic 6.27 19.66 10410 AAE IEEE 80.211 kw IFI (20MHz, 46-40M, 990c outy cycle)						
10314 AAA DEN 13.48 ±96 10315 AAB IEEE 802.119 WIF12.4.0Hz (DSS), Mobel, 98pc.duty cycle) WLAN 8.36 ±9.6 10316 AAB IEEE 802.119 WIF12.4.0Hz (DEP-CPM, 6Mps, 98pc.duty cycle) WLAN 8.36 ±9.6 10337 AAD ILEE 802.119 WIF12.4.0Hz (DSH, 50%) Generic 6.99 ±9.6 10383 AAA Pulse Waveform (200Hz, 50%) Generic 6.99 ±9.6 10385 AAA Pulse Waveform (200Hz, 60%) Generic 5.10 ±9.6 10385 AAA Pulse Waveform (200Hz, 60%) Generic 6.27 ±9.6 10385 AAA Pulse Waveform, 100Hz Generic 6.27 ±9.6 10389 AAA 64-OAM Waveform, 100Hz Generic 6.27 ±9.6 10389 AAA 64-OAM Waveform, 100Hz Generic 6.27 ±9.6 10404 AAE IEEE 802.118 wWF16.0MHz, 64-OAM, 990c duty cycle) WLAN 8.53 ±9.6 10444 AAE CDMA20000 (112FV-O						
10315 AB IEEE B0.21 (by WF12 4 GHz (SOSS); Mbps, 99pc duty cycle) WLAN 8.36 9.96 10316 AB IEEE B0.21 (by WF12 4 GHz (SOFP) (CM) (by Mps, 99pc duty cycle) WLAN 8.36 9.96 10337 AA PLEE B0.21 (by WF12 GHz, 105%) Generic 0.00 9.96 10338 AA Puise Waveform (200Hz, 20%) Generic 0.39 9.96 10336 AAA Puise Waveform (200Hz, 20%) Generic 0.39 9.98 10336 AAA Puise Waveform (200Hz, 20%) Generic 0.39 2.22 9.96 10387 AAA Puise Waveform (200Hz, 60%) Generic 5.22 9.96 10388 AAA 0.95K Waveform, 100 Hz Generic 6.27 9.96 10389 AAA 9.40 AW Waveform, 100 Hz Generic 6.27 9.96 10404 AAE IEEE 80.21 Iaw WF1 (20 MHz, 64-OAM, 990c duty cycle) WLAN 8.60 9.96 10404 AAE IEEE 80.21 Iaw WF1 (20 MHz, 64-OAM, 990c duty cycle) WLAN 8.60 9						
10316 AAB IEEE B0.211 (gr WFL 24 GHz (ERP-OFDM & Mops, 98pc duty cycle) WLAN 8.36 9.96 10337 AAD Fulze Waveform (200Hz, 10%) Generic 10.00 12.96 10338 AAA Fulze Waveform (200Hz, 10%) Generic 6.99 12.96 10335 AAA Fulze Waveform (200Hz, 20%) Generic 2.22 19.8 10335 AAA Fulze Waveform (200Hz, 20%) Generic 5.07 4.95 10385 AAA Pulze Waveform (200Hz, 20%) Generic 5.10 4.95 10387 AAA OPSK Waveform, 10 MHz Generic 6.27 4.95 10389 AAA 64-CAM Waveform, 100 MHz Generic 6.27 4.95 10400 AAE IEEE 80.211 ark WFI (20 MHz, 46-CAM, 99pc duty cycle) WLAN 8.83 4.95 10404 AAE IEEE 80.211 ark WFI (20 MHz, 46-CAM, 99pc duty cycle) WLAN 8.83 4.96 10404 AAE CDMA2000 (13EV-400, Rev 0) CDMA2000 3.76 4.96 10444						
10317 AAD IEEE 802.11a WFF 5GHz (OPDM, 6 Mpp, 86pc duty cycle) WLAN 8.36 9.96 10382 AAA Pulee Waveform (200Hz, 20%) Generic 10.06 9.96 10383 AAA Pulee Waveform (200Hz, 20%) Generic 3.86 4.96 10385 AAA Pulee Waveform (200Hz, 20%) Generic 2.22 4.96 10385 AAA Pulee Waveform (200Hz, 20%) Generic 2.22 4.96 10386 AAA OPSK Waveform, 10Hz Generic 5.27 4.96 10388 AAA 64-QAM Waveform, 10Hz Generic 6.27 4.96 10389 AAA 64-QAM Waveform, 40Hz, 64-QAM, 89pc duty cycle) WLAN 8.53 9.8 10401 AAE IEEE 802.11a WFI (20 HMZ, 44-QAM, 89pc duty cycle) WLAN 8.53 9.8 10440 AAE IEEE 802.11a WFI (20 HMZ, 44-QAM, 89pc duty cycle) WLAN 8.53 2.9.6 10440 AAB CDMA2000 6.52 2.9.6 1.9.6 1.9.6 1.9.6 1.9.						
10382 AAA Pulse Navedorm (200Hz, 10%) Cemeric 6.98 19.86 10385 AAA Pulse Waveform (200Hz, 20%) Cemeric 2.98 19.86 10385 AAA Pulse Waveform (200Hz, 20%) Cemeric 2.92 19.86 10385 AAA Pulse Waveform (200Hz, 20%) Cemeric 2.92 19.86 10385 AAA Pulse Waveform (200Hz, 20%) Cemeric 1.97 19.86 10385 AAA OPSK Waveform, 10.MHz Cemeric 6.22 1.96 10386 AAA 64-OAM Waveform, 10.0HHz Cemeric 6.27 1.96 10400 AAE IEEE 80.211 at WiF1 (20.MHz, 64-OAM, 95pc duty cycle) WLAN 8.80 +8.5 10401 AAE IEEE 80.211 at WiF1 (20.MHz, 64-OAM, 95pc duty cycle) WLAN 8.80 +8.5 10402 AAE IEEE 80.211 at WiF1 (20.MHz, 64-OAM, 95pc duty cycle) WLAN 8.80 +8.5 10404 AAB COMA20000 (1FEV-DO, Rev. 0) COMA20000 (1FEV-DO, Rev. 0) COMA20000 (1FEV-DO, Rev. 0) COMA20000						
10383 AAA Pulse Waveform (20014; 20%) Generic 9.89 9.86 10385 AAA Pulse Waveform (20014; 20%) Generic 9.27 9.86 10385 AAA Pulse Waveform (20014; 20%) Generic 9.27 9.86 10387 AAA OPSK Waveform, 10MHz Generic 5.27 2.96 10388 AAA OPSK Waveform, 10MHz Generic 6.27 2.96 10388 AAA 64-OAM Waveform, 10MHz Generic 6.27 2.96 10401 AAE IEEE 802.11a; WIF (20MHz, 64-OAM, 89p; duty cycle) WLAN 8.53 1.96 10402 AAE IEEE 802.11a; WIF (20MHz, 64-OAM, 89p; duty cycle) WLAN 8.53 1.96 10402 AAE IEEE 802.11a; WIF (20MHz, 64-OAM, 89p; duty cycle) WLAN 8.53 1.96 10404 AAB CDMA2000 (1XE-DO, Rev. 0) CDMA2000 3.77 1.96 10444 AAB CDMA2000 (1XE-DO, Rev. 0) CDMA2000 3.77 1.96 10445 AAA						
10385 AAA Pulse Navedrom (20014; 60%) Ceneric 2.22 ±9.6 10385 AAA Pulse Navedrom (20014; 60%) Generic 0.27 ±9.6 10385 AAA Pulse Navedrom (20014; 60%) Generic 0.27 ±9.6 10386 AAA OPSK Waveform, 10MHz Generic 6.22 ±9.6 10389 AAA 64-OAM Waveform, 100Hz Generic 6.27 ±9.6 10400 AAE 1EEE 80211a Wirl (2001Hz, 64-OAM, 99pc duty cycle) WLAN 8.50 ±9.6 10401 AAE IEEE 80211a Wirl (2001Hz, 64-OAM, 99pc duty cycle) WLAN 8.50 ±9.6 10402 AAE IEEE 80211a Wirl (2001Hz, 64-OAM, 99pc duty cycle) WLAN 8.50 ±9.6 10404 AAE COMA20000 14.77 ±9.6 10.44 AAB COMA20000 5.22 ±9.6 10416 AAH IEEE 802119 Wirl AV CAOL 64-OAM, 40MHz Comacoo COMA20000 5.22 ±9.6 10416 AAH						
10355 AAA Pulse Waveform (200Hz, 69%) Generic 222 29.6 10366 AAA OPSK Waveform, 10MHz Generic 5.10 29.8 10388 AAA OPSK Waveform, 10MHz Generic 6.27 29.6 10399 AAA 64-OAM Waveform, 10MHz Generic 6.27 29.6 10399 AAA 64-OAM Waveform, 40MHz, 64-OAM, 98pc duty cycle) Wit AN 6.87 29.6 10401 AAE IEEE 802.11se WHF (20MHz, 64-OAM, 98pc duty cycle) Wit AN 6.87 29.6 10402 AAE IEEE 802.11se WHF (20MHz, 64-OAM, 99pc duty cycle) Wit AN 6.87 29.6 10403 AAE CDMA2000 (1/EV-DO. Rev. 0)						
10386 AAA Pulse Waveform (200Hz, 2005) Generic 0.97 29.6 10387 AAA OPSK Waveform, 10MHz Generic 6.22 29.6 10388 AAA OPSK Waveform, 10MHz Generic 6.27 29.6 10389 AAA 64-OAM Waveform, 10MHz Generic 6.27 29.6 10400 AAE IEEE 802.11ac WiF (40MHz, 64-OAM, 99c duty cycle) WLAN 8.37 19.6 10410 AAE IEEE 802.11ac WiF (40MHz, 64-OAM, 99c duty cycle) WLAN 8.53 49.6 10424 AAE IEEE 802.11ac WiF (40MHz, 64-OAM, 99c duty cycle) WLAN 8.53 49.6 10446 AAB COMA2000 (1%EV-DO, Rev. 0) COMA2000 3.77 49.6 10446 AAB COMA2000 (1%EV-DO, Rev. 0) COMA2000 3.77 49.6 10446 AAB IEEE 80.2110 WiFi 2.44 L(2DSS), 1Mps, 99pc duty cycle) WLAN 1.54 4.95 10441 AAA IEEE 80.2110 WiFi 2.44 L(2DSS-DFDM, Mbps, 99pc duty cycle) WLAN 8.23 4.95 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
10387 AAA OPSK Waveform, 10MHz Generic 5.10 ±9.8 10388 AAA 64-OAM Waveform, 10MHz Generic 6.27 ±9.6 10399 AAA 64-OAM Waveform, 10MHz Generic 6.27 ±9.6 10399 AAA 64-OAM Waveform, 10MHz Generic 6.27 ±9.6 10400 AAE IEEE 802.11ac WFI (20MHz, 64-OAM, 99c duty cycle) WLAN 8.60 ±9.6 10401 AAE IEEE 802.11ac WFI (20MHz, 64-OAM, 99c duty cycle) WLAN 8.53 ±9.6 10402 AAE IEEE 802.11ac WFI (20MHz, 64-OAM, 99c duty cycle) WLAN 8.53 ±9.6 10404 AAB CDMA2000 (1KEV-SO, Rev. 0) CDMA2000 5.22 ±9.6 10444 AAB CDMA2000 (1KEV-SO, Rev. 0) CDMA2000 5.22 ±9.6 10444 AAB ICEE 802.110 WFI 2.4 OHz (DSS). Mbps, 99c duty cycle) WLAN 8.14 ±9.6 10444 AAA IEEE 802.110 WFI 2.4 OHz (DSSS). OFDM, 6Mbps, 99c duty cycle) WLAN 8.19 ±9.6						
10388 AAA OPSK Waveform, 10 MHz Generic 6.22 9.68 10398 AAA 64-OAM Waveform, 100 HHz Generic 6.27 9.68 10399 AAA 64-OAM Waveform, 100 HHz Generic 6.27 9.68 10400 AAE IEEE 802.11 tac WRF (20 HHz, 64-OAM, 99pc duty cycle) WLAN 6.30 2.96 10401 AAE IEEE 802.11 tac WRF (80 HHz, 64-OAM, 99pc duty cycle) WLAN 6.30 2.96 10402 AAE IEEE 802.11 tac WRF (80 HHz, 64-OAM, 99pc duty cycle) WLAN 6.33 2.96 10446 AAB COMA2000 (1:EV-00, Rev. 0) CDMA2000 5.22 4.96 10446 AAB COMA2000 (1:EV-00, Rev. 0) WLAN 1.54 4.96 10446 AAB COMA2000 (1:EV-00, Rev. 0) S.22 4.96 1.44 AA 1.54 4.96 10441 AAA IEEE 802.110 WIFI 2.44 (210 SSS, 1Mbps, 99pc duty cycle) WLAN 8.54 4.96 10441 AAA IEEE 802.110 WIFI 2.44 (210 SSS-OFDM, Mbps, 99pc duty cycle)					_	
10389 AAA 64-CAM Wavekorm, 100H/rz Generic 6.27 1.96 10399 AAA IEEE 602:11ac WIFI; 200H/rz, 64-CAM, 99pc duty cycle) WLAN 8.57 1.96 10401 AAE IEEE 602:11ac WIFI; 200H/rz, 64-CAM, 99pc duty cycle) WLAN 8.60 1.98 10402 AAE IEEE 602:11ac WIFI; 800H/rz, 64-CAM, 99pc duty cycle) WLAN 8.60 1.98 10403 AAB CDMA2000 (TXC+DO, Rev. 0) CDMA2000 3.77 1.96 10404 AAB CDMA2000, TXC+DO, Rev. 0) CDMA2000 5.22 1.96 10416 AAH IET-TDD (SC-FDMA; TAB; 10M/rz, OPSK, UL Subframe-2,3.4.7,8.9, Subframe Conf–8 5.44 1.96 10414 AAA WLAN REE 802:110 WFI 2.40 Hz (CSSS. 1Mbps, 99pc duty cycle) WLAN 8.23 1.96 10416 AAA IEEE 802:110 WFI 2.40 Hz (CSSS - FDM, 6Mbp, 99pc duty cycle) WLAN 8.23 1.96 10417 AAC IEEE 802:110 WFI 2.40 Hz (CSSS - FDM, 6Mbp, 99pc duty cycle) WLAN 8.14 1.96 10418 AAA IEEEE 802:110						
10399 AAA 64-OAM Waveform, 40 MHz Cenaric 6.27 ± 9.6 10400 AAE IEEE 802.11ac WiF (20 MHz, 64-OAM, 99pc duty cycle) WILAN 8.57 ± 9.6 10401 AAE IEEE 802.11ac WiF (20 MHz, 64-OAM, 99pc duty cycle) WILAN 8.53 ± 9.6 10402 AAE IEEE 802.11ac WiF (20 MHz, 64-OAM, 99pc duty cycle) WILAN 8.53 ± 9.6 10403 AAB CDMA2000 (1XEV-DO, Rev. 0) CDMA2000 3.77 ± 9.6 10404 AAB CDMA2000 (1XEV-DO, Rev. 0) CDMA2000 5.22 ± 9.6 10416 AAA IEEE 802.119 WiF 2.404E (DSSS, 1Mbgs, 99pc duty cycle) WILAN 1.54 ± 9.6 10416 AAA IEEE 802.119 WiF 2.404E (DSSS, 0FDM, 6Mps, 99pc duty cycle) WILAN 8.22 ± 9.6 10417 AAC IEEE 802.119 WiF 2.404E (DSSS OFDM, 6Mps, 99pc duty cycle) WILAN 8.23 ± 9.6 10418 AAA IEEE 802.119 WiF 2.404E (DSSS OFDM, 6Mps, 99pc duty cycle), Snort preambule) WILAN 8.14 ± 9.6 10424 AAC IEEE 8						
10400 AAE IEEE B02.11ac WIFI (20MHz, 64-OAM, 99pc duty cycle) WLAN 8.37 1.96 10401 AAE IEEE B02.11ac WIFI (20MHz, 64-OAM, 99pc duty cycle) WLAN 8.60 ±9.9 10402 AAE IEEE B02.11ac WIFI (20MHz, 64-OAM, 99pc duty cycle) WLAN 8.63 ±9.9 10403 AAB CDMA2000 (TXE-VDO, Rev. 0) CDMA2000 3.77 ±9.6 10404 AAB CDMA2000 (TXE-VDO, Rev. 0) CDMA2000 5.22 ±9.6 10416 AAH IET-TDO (SC-FDMA, 1RB, 10MHz, QPSK, UL Subfame=2,3,4,7,8,9, Subframe Conf=0 ITE-TDO 7.82 ±9.6 10416 AAA IEEE 802.119 WIF 2.4 OHz (CDSS.1 Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10417 AAC IEEE 802.119 WIF 2.4 OHz (CDSS.0 FDM, 6Mbps, 99pc duty cycle), Long preambule) WLAN 8.14 ±9.6 10418 AAA IEEE 802.119 WIF 2.4 OHz (CDSS.0 FDM, 6Mbps, 99pc duty cycle), Short preambule) WLAN 8.14 ±9.6 10422 AAC IEEE 802.119 WIF 2.4 OHz (CDSS.0 FDM, 6Mbps, 99pc duty cycle), Short preambule) WLAN 8.41 ±9.6						
10401 AAE IEEE 802.118: WIF (40MHz, 64-OAM, 99pc duty cycle) WLAN 8.60						
10402 AAE IEEE 802 11ac WIFF (00MHz, 64-OAM, 99pc duty cycle) WLAN 8.53 19.6 10403 AAB CDMA2000 (1xEV-DO, Rev. 0) CDMA2000 3.76 19.6 10404 AAB CDMA2000 (1xEV-DO, Rev. 0) CDMA2000 3.77 19.6 10404 AAB CDMA2000 (1xEV-DO, Rev. 0) CDMA2000 5.22 19.6 10410 AAH UTE-TDD (5C-FDMA: 1RB, 10MHz, OPSK, UL Subframe-2,3,4,7,8,9, Subframe Conf-4) ITE-TDD (5C-FDMA: 1RB, 10MHz, OPSK, UL Subframe-2,3,4,7,8,9, Subframe Conf-4) ITE-TDD (5C-FDMA: 1RB, 10PD, 6Mbps, 99pc duty cycle) WLAN 15.4 19.6 10414 AAA IEEE 802.11G WIFI 2.4 GHz (DSSS OFDM, 6Mbps, 99pc duty cycle) WLAN 8.23 19.6 10417 AAA IEEE 802.11G WIFI 2.4 GHz (DSSS OFDM, 6Mbps, 99pc duty cycle, Short preambule) WLAN 8.14 19.6 10422 AAC IEEE 802.11G (HT Greenfield, 3.3 Mbps, 16-OAM) WLAN 8.42 19.6 10424 AAC IEEE 802.11G (HT Greenfield, 7.2 Mbps, 64-OAM) WLAN 8.41 19.6 10424 AAC IEEE 802.11G (HT Greenfield, 90 Mbps, 16-O						
10403 AAB CDMA2000 3.76 19.6 10404 AAB CDMA2000, RC3, SO32, SCH0, Full Rate CDMA2000 5.22 19.6 10406 AAB CDMA2000, RC3, SO32, SCH0, Full Rate CDMA2000 5.22 19.6 10410 AAH LTE-TDD (SC-FDMA, TBE, 10 MHz, OPSK, UL Subframe-2,3,4,7,8,9, Subframe Cont-4) TE-TDD 7.82 19.6 10414 AAA IEEE 802.116 WIFI 2.4 GHz (DSSS, TMbps, 99pc duty cycle) WLAN 1.54 19.6 10415 AAA IEEE 802.116 WIFI 2.4 GHz (DSSS, OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 19.6 10416 AAA IEEE 802.116 WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 19.6 10417 AAC IEEE 802.116 WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle), Long preambule) WLAN 8.14 19.6 10422 AAC IEEE 802.116 WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.41 19.6 10423 AAC IEEE 802.111 WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.41 19.6 10423						
10404 AAB CDMA2000 3.77 19.6 10406 AAB COMA2000, RG3, SO22, SCH0, Full Rate CDMA2000 5.22 19.6 10410 AAH LTE-TDD (SC-FDMA, 1 RB, 10MHz, QPSK, UL Subframe-2,3,4,7,6,9, Subframe Conf-4) LTE-TDD (TE-20) 7.82 19.6 10414 AAA WLAN CCDF, 64-OAM, 40MHz Generic 8.54 19.6 10415 AAA IEEE 802.116 WIF1 2.4 GHz (DSSS, 1Mbps, 99pc duty cycle) WLAN 8.23 19.6 10416 AAA IEEE 802.116 WIF1 2.4 GHz (DSSS-OFDM, 6Mbps, 99pc duty cycle) WLAN 8.23 19.6 10417 AAC IEEE 802.116 WIF1 2.4 GHz (DSSS-OFDM, 6Mbps, 99pc duty cycle, Long preambule) WLAN 8.14 19.6 10422 AAC IEEE 802.116 (HT Greenfield, 7.2 Mbps, 6H-OAM) WLAN 8.32 19.6 10423 AAC IEEE 802.111 (HT Greenfield, 7.2 Mbps, 6H-OAM) WLAN 8.44 19.6 10424 AAC IEEE 802.111 (HT Greenfield, 90 Mbps, 16-OAM) WLAN 8.45 19.6 10424 AAC IEEE 802.111 (HT Greenfield, 90 Mbps						
10406 AAB CDMA2000, RC3, S032, SCH0, Full Rate CDMA2000 5.22 1.9.6 10410 AAH LTE-TDD (SC-FDMA, 1 RB, 10 MHz, OPSK, UL Subframe-2,3,4,7,8,9, Subframe Confield) LTE-TDD 7.82 1.9.6 10410 AAA WLAN COCF, 64-CAM, 40 MHz Generic 8.54 1.9.6 10415 AAA IEEE 802.119 WFI 2.4 GHz (DSSS, 1Mbps, 99pc duty cycle) WLAN 8.23 1.9.6 10417 AAC IEEE 802.119 WFI 2.4 GHz (DSSS-OFDM, 6Mbps, 99pc duty cycle), ong preambule) WLAN 8.23 1.9.6 10418 AAA IEEE 802.110 WFI 2.4 GHz (DSSS-OFDM, 6Mbps, 99pc duty cycle), ong preambule) WLAN 8.14 .9.6 10422 AAC IEEE 802.11n (HT Greenfield, 3.3 Mbps, 16-OAM) WLAN 8.41 .9.6 10424 AAC IEEE 802.11n (HT Greenfield, 1.5Mbps, BPSK) WLAN 8.41 .9.6 10425 AAC IEEE 802.11n (HT Greenfield, 1.5Mbps, 84-OAM) WLAN 8.41 .9.6 10426 AAC IEEE 802.11n (HT Greenfield, 1.5Mbps, 84-OAM) WLAN 8.41 .9.6 10427						
10410 AAH LTE-TDD 7.82 ±9.6 10414 AAA WLAN CODF, 64-QAM, 40 MHz QBRCI 8.54 ±9.6 10415 AAA IEEE 802.110 WFI 2.4 GHz (DSSS, 1 Mbps, 99pc duy cycle) WLAN 8.23 ±9.6 10416 AAA IEEE 802.110 WFI 2.4 GHz (CFDM, 6 Mbps, 99pc duy cycle) WLAN 8.23 ±9.6 10417 AAC IEEE 802.110 WFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duy cycle, Long preambule) WLAN 8.23 ±9.6 10418 AAA IEEE 802.110 WFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duy cycle, Short preambule) WLAN 8.14 ±9.6 10422 AAC IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.40 ±9.6 10424 AAC IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-OAM) WLAN 8.41 ±9.6 10424 AAC IEEE 802.11n (HT Greenfield, 50 Mbps, 64-OAM) WLAN 8.41 ±9.6 10424 AAC IEEE 802.11n (HT Greenfield, 50 Mbps, 64-OAM) WLAN 8.41 ±9.6 10424 AAC IEEEE 802.11n (HT Greenfield, 50 Mbps, 64-OAM)						
10414 AAA WLAN CCDF, 64-CMM, 40 MHz Generic 8.54 19.6 10415 AAA IEEE 802.110 WIF12.4 GHz (DSS), 1Mbps, 99pc duty cycle) WLAN 8.23 19.6 10416 AAA IEEE 802.110 WIF12.4 GHz (DSS), 0Mbps, 99pc duty cycle) WLAN 8.23 19.6 10417 AAC IEEE 802.110 WIF12.4 GHz (DSS)-OFDM, 6Mbps, 99pc duty cycle, long preambule) WLAN 8.14 19.6 10418 AAA IEEE 802.110 WIF12.4 GHz (DSS)-OFDM, 6Mbps, 99pc duty cycle, Short preambule) WLAN 8.14 19.6 10422 AAC IEEE 802.11n (HT Greenfield, 7.2 Mbps, BFSK) WLAN 8.47 19.6 10424 AAC IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-CAM) WLAN 8.41 19.6 10425 AAC IEEE 802.11n (HT Greenfield, 15Mbps, BFSK) WLAN 8.41 19.6 10426 AAC IEEE 802.11n (HT Greenfield, 15Mbps, BFSK) WLAN 8.41 19.6 10426 AAC IEEE 802.11n (HT Greenfield, 15Mbps, BFSK) WLAN 8.41 19.6 10426 AAC IE						
10415 AAA IEEE 802.119 WiFi 2.4 GHz (DSSS, IMbps, 99pc duty cycle) WLAN 1.54 19.6 10416 AAA IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 19.6 10417 AAC IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle). Long preambule) WLAN 8.14 19.6 10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Snort preambule) WLAN 8.14 19.6 10422 AAC IEEE 802.11n (HT Greentield, 7.2 Mbps, 6PSK) WLAN 8.47 19.6 10422 AAC IEEE 802.11n (HT Greentield, 7.2 Mbps, 6P-GAM) WLAN 8.41 19.6 10424 AAC IEEE 802.11n (HT Greentield, 7.2 Mbps, 6P-GAM) WLAN 8.41 19.6 10425 AAC IEEE 802.11n (HT Greentield, 15 Mbps, 6P-GAM) WLAN 8.41 19.6 10427 AAC IEEE 802.11n (HT Greentield, 15 Mbps, 6P-GAM) WLAN 8.41 19.6 10428 AAC IEEE 802.11n (HT Greentield, 15 Mbps, 6P-GAM) WLAN 8.41 19.6 10424 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10416 AAA IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10417 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule) WLAN 8.14 19.6 10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) WLAN 8.14 19.6 10422 AAC IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) WLAN 8.12 19.6 10422 AAC IEEE 802.11n (HT Greenfield, 72 Mbps, 99pc duty cycle, Short preambule) WLAN 8.47 ±9.6 10422 AAC IEEE 802.11n (HT Greenfield, 72 Mbps, 98pc duty cycle, Short preambule) WLAN 8.47 ±9.6 10424 AAC IEEE 802.11n (HT Greenfield, 72 Mbps, 98pc duty cycle, Nuch N WLAN 8.41 ±9.6 10425 AAC IEEE 802.11n (HT Greenfield, 15 Mbps, 199K) WLAN 8.41 ±9.6 10427 AAC IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.41 ±9.6 10433 AAD IEFE-FDD (OFDMA, 5MHz, E-TM 3.1) IEFE-FDD						
10417 AAC LEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10418 AAA IEEE 802.11g WiFi 2 4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) WLAN 8.14 ±9.6 10419 AAA IEEE 802.11n (HT Greenfield, 72 Mbps, BPSK) WLAN 8.32 ±9.6 10422 AAC IEEE 802.11n (HT Greenfield, 72 Mbps, BC-AM) WLAN 8.47 ±9.6 10424 AAC IEEE 802.11n (HT Greenfield, 72 Mbps, BC-AM) WLAN 8.41 ±9.6 10425 AAC IEEE 802.11n (HT Greenfield, 50 Mbps, 64-QAM) WLAN 8.41 ±9.6 10426 AAC IEEE 802.11n (HT Greenfield, 50 Mbps, 64-QAM) WLAN 8.41 ±9.6 10427 AAC IEEE 802.11n (HT Greenfield, 50 Mbps, 64-QAM) WLAN 8.41 ±9.6 10432 AAD ITE-FDD (OFDMA, 50 MHz, E-TM 3.1) ITE-FDD 8.28 ±9.6 10433 AAB ITE-FDD (OFDMA, 10 MHz, E-TM 3.1) ITE-FDD 8.34 ±9.6 10434 AAB ITE-FDD (OFDMA, 10 MHz, E-TM 3.1, C						
10418 AAA LEEE 802.11g WIFI 2.4 GHz (DSSS OFDM, 6 Mbps, 99p duty cycle, Long preambule) WLAN 8.14 ±9.6 10419 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS OFDM, 6 Mbps, 99p duty cycle, Short preambule) WLAN 8.19 ±9.6 10422 AAC IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.47 ±9.6 10423 AAC IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-OAM) WLAN 8.47 ±9.6 10424 AAC IEEE 802.11n (HT Greenfield, 15 Mbps, 8PSK) WLAN 8.41 ±9.6 10425 AAC IEEE 802.11n (HT Greenfield, 15 Mbps, 64-OAM) WLAN 8.41 ±9.6 10426 AAC IEEE 802.11n (HT Greenfield, 50 Mbps, 64-OAM) WLAN 8.41 ±9.6 10427 AAC IEEE 802.11n (HT Greenfield, 50 Mbps, 64-OAM) WLAN 8.41 ±9.6 10430 AAE ITE-FDD (OFDMA, 5MHz, E-TM 3.1) ITE-FDD 8.38 ±9.6 10431 AAB ITE-FDD (OFDMA, 5MHz, E-TM 3.1) ITE-FDD 8.34 ±9.6 10432 AAB ITE-FDD (OFDMA, 5M						
10419 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS OFDM, 6 Mbps, 99pc duty cycle, Short preambule) WLAN 8.19 ±9.6 10422 AAC IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.32 ±9.6 10423 AAC IEEE 802.11n (HT Greenfield, 7.3 Mbps, BPSK) WLAN 8.47 ±9.6 10424 AAC IEEE 802.11n (HT Greenfield, 7.3 Mbps, 64-QAM) WLAN 8.41 ±9.6 10425 AAC IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.41 ±9.6 10426 AAC IEEE 802.11n (HT Greenfield, 90 Mbps, 64-QAM) WLAN 8.41 ±9.6 10427 AAC IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.41 ±9.6 10428 AAD ITE-FDD (OFDMA, 50 Mbz, E-TM 3.1) ITE-FDD 8.28 ±9.6 10430 AAE ITE-FDD (OFDMA, 10 Mbz, E-TM 3.1) ITE-FDD 8.34 ±9.6 10433 AAD ITE-FDD (OFDMA, 50 Mbz, E-TM 3.1, Clipping 44%) ITE-FDD 7.58 ±9.6 10447 AAE ITE-FDD (OFDMA, 50 Mbz, E-TM 3.1, Clipp						
10422 AAC LEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.32 ±9.6 10423 AAC IEEE 802.11n (HT Greenfield, 7.2 Mbps, 16-OAM) WLAN 8.40 ±9.6 10424 AAC IEEE 802.11n (HT Greenfield, 15 Mbps, 64-OAM) WLAN 8.40 ±9.6 10425 AAC IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 ±9.6 10426 AAC IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 ±9.6 10427 AAC IEEE 802.11n (HT Greenfield, 15 Mbps, 64-OAM) WLAN 8.41 ±9.6 10430 AAE ITE-FDD (OFDMA, 5 MHz, E-TM 3.1) ITE-FDD 8.324 ±9.6 10433 AAD ITE-FDD (OFDMA, 15 MHz, E-TM 3.1) ITE-FDD 8.34 ±9.6 10433 AAD ITE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) ITE-FDD 7.82 ±9.6 10447 AAE ITE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) ITE-FDD 7.53 ±9.6 10447 AAE ITE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) ITE-FDD 7.51 ±9.6 104						
10423 AAC IEEE 802.11n (HT Greenfield, 43.3 Mps, 16-QAM) WLAN 8.47 ±9.6 10424 AAC IEEE 802.11n (HT Greenfield, 22.2 Mps, 64-QAM) WLAN 8.40 ±9.6 10425 AAC IEEE 802.11n (HT Greenfield, 50 Mps, 8FSK) WLAN 8.41 ±9.6 10426 AAC IEEE 802.11n (HT Greenfield, 50 Mps, 8F2K) WLAN 8.41 ±9.6 10426 AAC IEEE 802.11n (HT Greenfield, 50 Mps, 84-QAM) WLAN 8.41 ±9.6 10430 AAE ITE-FDD (OFDMA, 10 MHz, E-TM 3.1) ITE-FDD 8.28 ±9.6 10431 AAE ITE-FDD (OFDMA, 10 MHz, E-TM 3.1) ITE-FDD 8.34 ±9.6 10432 AAD ITE-FDD (OFDMA, 10 MHz, E-TM 3.1) ITE-FDD 8.34 ±9.6 10433 AAB WCDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 ±9.6 10444 AAE ITE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) ITE-FDD 7.56 ±9.6 10447 AAE ITE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) ITE-FDD 7.56	10422	AAC				
10424 AAC IEEE 802:11n (HT Greenfield, 72.2 Mbps, 64-QAM) WLAN 8.40 ±9.6 10425 AAC IEEE 802:11n (HT Greenfield, 15 Mbps, BFSK) WLAN 8.41 ±9.6 10426 AAC IEEE 802:11n (HT Greenfield, 150 Mbps, 16-QAM) WLAN 8.45 ±9.6 10427 AAC IEEE 802:11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 ±9.6 10430 AAE LTE-FDD (OFDMA, 5MHz, E-TM 3.1) ITE-FDD 8.28 ±9.6 10431 AAE LTE-FDD (OFDMA, 10Hz, E-TM 3.1) ITE-FDD 8.34 ±9.6 10432 AAD LTE-FDD (OFDMA, 10Hz, E-TM 3.1) ITE-FDD 8.34 ±9.6 10433 AAB WCDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 ±9.6 10443 AAB LTE-FDD (OFDMA, 10Hz, E-TM 3.1, Clipping 44%) ITE-FDD 7.53 ±9.6 10444 AAE LTE-FDD (OFDMA, 10Hz, E-TM 3.1, Clipping 44%) ITE-FDD 7.51 ±9.6 10449 AAD LTE-FDD (OFDMA, 10Hz, E-TM 3.1, Clipping 44%) ITE-FDD 7.48 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10425 AAC IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 ±9.6 10426 AAC IEEE 802.11n (HT Greenfield, 190 Mbps, 10-QAM) WLAN 8.45 ±9.6 10427 AAC IEEE 802.11n (HT Greenfield, 190 Mbps, 64-QAM) WLAN 8.41 ±9.6 10430 AAE LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 ±9.6 10431 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10432 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10433 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10434 AAB W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 ±9.6 10447 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.53 ±9.6 10448 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.54 ±9.6 10451 AAB W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) LTE-FDD 7.48 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10426 AAC IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.45 ±9.6 10427 AAC IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 ±9.6 10430 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.28 ±9.6 10431 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10432 AAD LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10433 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10434 AAB W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 ±9.6 10435 AAG LTE-FDD (OFDMA, 10 Hz, E-TM 3.1, Clippin 44%) LTE-FDD 7.56 ±9.6 10447 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.51 ±9.6 10448 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.51 ±9.6 10448 AAB V-EFDD (APCHA, 20 ARV,		AAC				
10427 AAC IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 ±9.6 10430 AAE LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 ±9.6 10431 AAE LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.38 ±9.6 10432 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10433 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10434 AAB W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 ±9.6 10447 AAE LTE-FDD (OFDMA, 17 BL, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-FDD 7.56 ±9.6 10447 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.51 ±9.6 10448 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.51 ±9.6 10451 AAB W-CDMA (8S Test Model 1, 64 DPCH, Clipping 44%) LTE-FDD 7.48 ±9.6 10453 AAC Lass dode 1, 64 DPCH, Clipping 44%) WCDMA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
10430 AAE LTE-FDD (OFDMA, 5MHz, E-TM 3.1) LTE-FDD 8.28 ±9.6 10431 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10432 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10433 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10434 AAB W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 ±9.6 10435 AAG LTE-FDD (OFDMA, 1 RB, 20 MHz, CPSK, UL Subframe=2,3,4,7,8,9) LTE-FDD 7.82 ±9.6 10447 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.53 ±9.6 10448 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.51 ±9.6 10449 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.51 ±9.6 10451 AAB WCDMA (BS Test Model 1, 64 DPCH, Clipping 44%) LTE-FDD 7.59 ±9.6 10451 AAE Val						
10431 AAE LTE-FDD 8.38 ±9.6 10432 AAD LTE-FDD (OFDMA, 15MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10433 AAD LTE-FDD (OFDMA, 15MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10433 AAD LTE-FDD (OFDMA, 20MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10434 AAB W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 ±9.6 10435 AAG LTE-FDD (OFDMA, 5MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.58 ±9.6 10448 AAE LTE-FDD (OFDMA, 10MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.51 ±9.6 10449 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.51 ±9.6 10450 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.48 ±9.6 10451 AAB W-CDMA (BS Test Model 1, 64 -DPCH, Clipping 44%) LTE-FDD 7.48 ±9.6 10452 AAC IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99c duty cycle) WLAN 8.63 ±9.6	10430	AAE				
10432 AAD LTE-FDD 8.34 ±9.6 10433 AAD LTE-FDD (OFDMA, 20MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10433 AAD LTE-FDD (SC-FDMA, 20MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10434 AAB W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 ±9.6 10447 AAE LTE-FDD (SC-FDMA, 1 RB, 20MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-FDD 7.56 ±9.6 10447 AAE LTE-FDD (OFDMA, 10MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.53 ±9.6 10449 AAD LTE-FDD (OFDMA, 20MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.51 ±9.6 10450 AAD LTE-FDD (OFDMA, 20MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.48 ±9.6 10451 AAB W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 ±9.6 10453 AAE Validation (Square, 10 ms, 1 ms) Test 10.00 ±9.6 10453 AAE Validation (Square, 10 ms, 1 ms) CDMA2000 6.55 ±9.6						
10433 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 ±9.6 10434 AAB W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 ±9.6 10435 AAG LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.62 ±9.6 10447 AAE LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56 ±9.6 10448 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.51 ±9.6 10440 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.48 ±9.6 10451 AAB W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) UTE-FDD 7.48 ±9.6 10453 AAE Validation (Square, 10 ms, 1 ms) Test 10.00 ±9.6 10453 AAC IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99c duty cycle) WLAN 8.63 ±9.6 10454 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10455 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	10432	AAD				
10434 AAB W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 ±9.6 10435 AAG LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10447 AAE LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56 ±9.6 10448 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.51 ±9.6 10449 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.51 ±9.6 10450 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.48 ±9.6 10451 AAB W-CDMA (BS Test Model 1, 64 OPCH, Clipping 44%) WCDMA 7.59 ±9.6 10453 AAE Validation (Square, 10 ms, 1 ms) Test 10.00 ±9.6 10456 AAC IEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) WLAN 8.63 ±9.6 10457 AAB UMTS-FDD (DC-HSDPA) WCDMA 6.62 ±9.6 10457 AAB CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CD						
10435 AAG LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10447 AAE LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.56 ±9.6 10448 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.53 ±9.6 10449 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.51 ±9.6 10450 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.48 ±9.6 10451 AAB W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) LTE-FDD 7.48 ±9.6 10453 AAE Validation (Square, 10 ms, 1 ms) Test 10.00 ±9.6 10454 AAC IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) WLAN 8.63 ±9.6 10455 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10458 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10458 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10463 <td>10434</td> <td>AAB</td> <td></td> <td></td> <td></td> <td></td>	10434	AAB				
10447 AAE LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56 ±9.6 10448 AAE LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.53 ±9.6 10449 AAD LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.51 ±9.6 10450 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.48 ±9.6 10451 AAB W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 ±9.6 10453 AAE Validation (Square, 10 ms, 1 ms) Test 10.00 ±9.6 10454 AAC IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99c duty cycle) WLAN 8.63 ±9.6 10457 AAB UMTS-FDD (DC-HSDPA) WCDMA 6.55 ±9.6 10458 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10459 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10460 AAB UMTS-FDD (WCDMA, AMR) WCDMA 2.39						
10448 AAE LTE-FDD 7.53 ±9.6 10449 AAD LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.51 ±9.6 10450 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.48 ±9.6 10451 AAB W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 ±9.6 10453 AAE Validation (Square, 10 ms, 1 ms) Test 10.00 ±9.6 10456 AAC IEEE 802.11ac WiFi (160 MHz, 64-OAM, 99pc duty cycle) WLAN 8.63 ±9.6 10457 AAB UMTS-FDD (DC-HSDPA) WCDMA 6.62 ±9.6 10458 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10459 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10461 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30						
10449 AAD LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) LTE-FDD 7.51 ±9.6 10450 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.48 ±9.6 10451 AAB W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 ±9.6 10453 AAE Validation (Square, 10 ms, 1 ms) Test 10.00 ±9.6 10456 AAC IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99c duty cycle) WLAN 8.63 ±9.6 10457 AAB UMTS-FDD (DC-HSDPA) WCDMA 6.62 ±9.6 10458 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10459 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10460 AAB UMTS-FDD (WCDMA, AMR) WCDMA 2.39 ±9.6 10461 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 0FSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 04-QAM, UL Subframe=2,3,4,7,8,9) LTE-						
10450 AAD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.48 ±9.6 10451 AAB W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 ±9.6 10453 AAE Validation (Square, 10 ms, 1 ms) Test 10.00 ±9.6 10456 AAC IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) WLAN 8.63 ±9.6 10457 AAB UMTS-FDD (DC-HSDPA) WCDMA 6.62 ±9.6 10458 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10459 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10461 AAC LTE-TDD (WCDMA, AMR) WCDMA 2.39 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 0PSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 0PSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 0PSK, UL Subframe=2,3,4,7,8,9)						
10451 AAB W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 ±9.6 10453 AAE Validation (Square, 10 ms, 1 ms) Test 10.00 ±9.6 10456 AAC IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) WLAN 8.63 ±9.6 10456 AAC IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) WLAN 8.63 ±9.6 10457 AAB UMTS-FDD (DC-HSDPA) WCDMA 6.62 ±9.6 10458 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10459 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10460 AAB UMTS-FDD (WCDMA, AMR) WCDMA 2.39 ±9.6 10461 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)<		AAD				
10453 AAE Validation (Square, 10 ms, 1 ms) Test 10.00 ±9.6 10456 AAC IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) WLAN 8.63 ±9.6 10457 AAB UMTS-FDD (DC-HSDPA) WCDMA 6.62 ±9.6 10458 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10459 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10460 AAB UMTS-FDD (WCDMA, AMR) WCDMA 2.39 ±9.6 10461 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10464 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK		AAB				
10456 AAC IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) WLAN 8.63 ±9.6 10457 AAB UMTS-FDD (DC-HSDPA) WCDMA 6.62 ±9.6 10458 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10459 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10460 AAB UMTS-FDD (WCDMA, AMR) WCDMA 2.39 ±9.6 10461 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 3MHz, GPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10464 AAD LTE-TDD (SC-FDMA, 1 RB, 3MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3MHz, G4-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10466 AAD LTE-T						
10457 AAB UMTS-FDD (DC-HSDPA) WCDMA 6.62 ±9.6 10458 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10459 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10460 AAB UMTS-FDD (WCDMA, AMR) WCDMA 2.39 ±9.6 10461 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10464 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 04-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.57 ±9.6 10466 AAD <td></td> <td>AAC</td> <td></td> <td></td> <td></td> <td></td>		AAC				
10458 AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 10459 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10460 AAB UMTS-FDD (WCDMA, AMR) WCDMA 2.39 ±9.6 10461 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10464 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10466 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.57 ±9.6 10467 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 04-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6						
10459 AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 ±9.6 10460 AAB UMTS-FDD (WCDMA, AMR) WCDMA 2.39 ±9.6 10461 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10464 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10466 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.57 ±9.6 10467 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10468 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 0,QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9						
10460 AAB UMTS-FDD (WCDMA, AMR) WCDMA 2.39 ±9.6 10461 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10464 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10466 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.57 ±9.6 10467 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10468 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
10461 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10464 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10466 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.57 ±9.6 10467 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10468 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8		AAB				
10462 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.30 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10463 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10464 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10466 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.57 ±9.6 10467 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10468 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8						
10463 AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10464 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10466 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.57 ±9.6 10467 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10468 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10470 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10470 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) <td></td> <td></td> <td>• • • • • • • • • • • • • • • • • • • •</td> <td></td> <td></td> <td></td>			• • • • • • • • • • • • • • • • • • • •			
10464 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10466 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.57 ±9.6 10467 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10468 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10470 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6	10463	AAC				
10465 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10466 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.57 ±9.6 10467 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10468 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10470 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6						
10466 AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.57 ±9.6 10467 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10468 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10470 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6		AAD				
10467 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6 10468 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10470 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6						
10468 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.32 ±9.6 10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10470 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6						
10469 AAG LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.56 ±9.6 10470 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6						
10470 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 ±9.6						
			LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6

10727 AAG ITE-TDD (SC-PDMA, IPR, 15MHz, 19CAAU, UL Subfarme-23,47,8,0) ITE-TDD 7.82 43.6 10747 AAF ITE-TDD (SC-PDMA, IPR, 15MHz, 19CAAU, UL Subfarme-23,47,8,0) ITE-TDD 8.52 43.8 10747 AAF ITE-TDD (SC-PDMA, IPR, 15MHz, 19CAAU, UL Subfarme-23,47,8,0) ITE-TDD 8.57 4.98 1077 AAG ITE-TDD (SC-PDMA, IPR, 20MHz, 19CAAU, UL Subfarme-23,47,8,0) ITE-TDD 8.57 4.98 1078 AAG ITE-TDD (SC-PDMA, 19R, 20MHz, 19CAAU, UL Subfarme-23,47,8,0) ITE-TDD 8.57 4.98 1078 AAG ITE-TDD (SC-PDMA, 59K, R1, 14MHz, 19CAAU, UL Subfarme-23,47,8,0) ITE-TDD 8.18 2.84 1078 AAG ITE-TDD (SC-PDMA, 59K, R1, 20MHz, 19CAAU, Subfarme-23,47,8,0) ITE-TDD 7.71 2.86 1078 AAG ITE-TDD (SC-PDMA, 59K, R1, 20MHz, 19CAAU, Subfarme-23,47,8,0) ITE-TDD 7.71 2.86 1078 AAG ITE-TDD (SC-PDMA, 59K, R1, 50MHz, 19CAAU, UL Subfarme-23,47,8,0) ITE-TDD 7.70 2.86 1078 AAG ITE-TDD (SC-PDMA, 59K, R1, 50MHz, 19CAAU, UL Subfarme-23,47,8,0) ITE-	UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
1977 AMF ITE-TDD 7.82 4.96 10474 AMF ITE-TDD (SC-FDMA, FIR, 15MHz, 64-OAM, U. Subhamo-23, 4.7,8.9) ITE-TDD 8.32 4.96 10475 AMF ITE-TDD (SC-FDMA, FIR, 15MHz, 64-OAM, U. Subhamo-23, 4.7,8.9) ITE-TDD 8.52 4.96 10477 AMG ITE-TDD (SC-FDMA, FIR, 15MHz, 64-OAM, U. Subhamo-23, 4.7,8.9) ITE-TDD 8.52 4.98 10478 AMG ITE-TDD (SC-FDMA, 198, 2004 Hz, 64-OAM, U. Subhamo-23, 4.7,8.9) ITE-TDD 8.45 4.98 10480 AMC ITE-TDD (SC-FDMA, 99K, RE, 14 MHz, 16-OAM, U. Subhamo-23, 4.7,8.9) ITE-TDD 8.45 4.98 10481 AMC ITE-TDD (SC-FDMA, 99K, RE, 14 MHZ, 16-OAM, U. Subhamo-23, 4.7,8.9) ITE-TDD 8.45 4.98 10484 AMD ITE-TDD (SC-FDMA, 99K, RE, 14 MHZ, 16-OAM, U. Subhamo-23, 4.7,8.9) ITE-TDD 8.45 4.96 10484 AMD ITE-TDD (SC-FDMA, 59K, RE, 16 MHZ, 56-OAM, U. Subhamo-23, 4.7,8.9) ITE-TDD 8.45 4.96 10484 AMD ITE-TDD (SC-FDMA, 59K, RE, 16 MHZ, 56-OAM, U. Subhamo-23, 4.7,8.9) ITE-TDD 8.47 4.96 <td></td> <td></td> <td>•</td> <td>·</td> <td>. ,</td> <td></td>			•	·	. ,	
10472 AAF [LTE-TDD (SC-FDMA, HB, 15MHz, 16-AM, LL Sublama-23, 47, 8,9) LTE-TDD 8.57 4.96 10473 AAG [LTE-TDD (SC-FDMA, HB, 20MHz, 16-AM, LL Sublama-23, 47, 8,9) LTE-TDD 8.57 4.96 10474 AAG [LTE-TDD (SC-FDMA, HB, 20MHz, 16-AM, LL Sublama-23, 47, 8,9) LTE-TDD 8.57 4.96 10475 AAG [LTE-TDD (SC-FDMA, SON, RB, 1-MHz, 16-AM, LL Sublama-23, 47, 8,9) LTE-TDD 8.18 4.98 10480 AAC [LTE-TDD (SC-FDMA, SON, RB, 1-MHz, 16-AM, LL Sublama-23, 47, 8,9) LTE-TDD 8.49 4.98 10488 AAD [LTE-TDD (SC-FDMA, SON, RB, 3-MHz, 16-AM, LL Sublama-23, 47, 8,9) LTE-TDD 8.49 4.98 10488 AAD [LTE-TDD (SC-FDMA, SON, RB, 3-MHz, 16-AM, LL Sublama-23, 47, 8,9) LTE-TDD 8.49 4.98 10488 AAG [LTE-TDD (SC-FDMA, SON, RB, 3-MHz, 16-AM, LL Sublama-23, 47, 8,9) LTE-TDD 8.49 4.98 10488 AAG [LTE-TDD (SC-FDMA, SON, RB, 3-MHZ, 16-AM, LL Sublama-23, 47, 8,9) LTE-TDD 8.49 4.94 10488 AAG [LTE-TDD (SC-FDMA, SON, RB, 3-MHZ, 16-AM, LL Sublama-23, 47			· · · · · · · · · · · · · · · · · · ·			
10476 AAF ITE TDD (SC-FDMA, IPB, 30 MHz, 54-OAM, UL Subframe-23, 47,8,9) ITE TDD 8.52 1.96 10477 AAG ITE TDD (SC-FDMA, IPB, 20 MHz, 54-OAM, UL Subframe-23, 47,8,9) ITE TDD 8.52 1.96 10470 AAG ITE TDD (SC-FDMA, SOV, RE, 1.4 MHz, 16-OAM, UL Subframe-23, 47,8,9) ITE TDD 8.45 4.96 10480 AAC ITE-TDD (SC-FDMA, 50V, RE, 1.4 MHz, 16-OAM, UL Subframe-23, 47,8,9) ITE TDD 8.45 4.98 10488 AAD ITE-TDD (SC-FDMA, 50V, RE, 8.5 MHz, 16-OAM, UL Subframe-23, 47,8,9) ITE TDD 8.45 4.98 10488 AAD ITE-TDD (SC-FDMA, 50V, RE, 8.5 MHz, 16-OAM, UL Subframe-23, 47,8,9) ITE TDD 8.46 4.98 10488 AAD ITE-TDD (SC-FDMA, 50V, RE, 8.5 MHz, 16-OAM, UL Subframe-23, 47,8,9) ITE TDD 8.46 4.98 10488 AAG ITE TDD (SC-FDMA, 50V, RE, 8.5 MHz, 16-OAM, UL Subframe-23, 47,8,9) ITE TDD 8.66 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98 <td>10474</td> <td>AAF</td> <td></td> <td>LTE-TDD</td> <td>8.32</td> <td></td>	10474	AAF		LTE-TDD	8.32	
10479 AAG ITE TDD (SC FDMA, I BB, 20MHz, 94-OAM, UL Subframe-23,47,8.9) ITE-TDD 7.44 9.97 10490 AAC ITE TDD (SC FDMA, 50%, BR, 1.4MHz, 16-OAM, UL Subframe-23,47,8.9) ITE-TDD 8.46 1.98 10481 AAC ITE-TDD (SC FDMA, 50%, BR, 1.4MHz, 16-OAM, UL Subframe-23,47,8.9) ITE-TDD 8.45 10482 AAD ITE-TDD (SC FDMA, 50%, BR, 3.MHz, 04-CAM, UL Subframe-23,47,8.9) ITE-TDD 8.30 10483 AAD ITE-TDD (SC FDMA, 50%, BR, 3.MHz, 04-CAM, UL Subframe-23,47,8.9) ITE-TDD 8.30 10484 AAD ITE-TDD (SC FDMA, 50%, BR, 3.MHz, 04-CAM, UL Subframe-23,47,8.9) ITE-TDD 8.30 10487 AAG ITE-TDD (SC FDMA, 50%, BR, 5.MHz, 16-CAM, UL Subframe-23,47,8.9) ITE-TDD 8.30 10487 AAG ITE-TDD (SC FDMA, 50%, BR, 5.MHz, 16-CAM, UL Subframe-23,47,8.9) ITE-TDD 8.51 4.84 10487 AAG ITE-TDD (SC FDMA, 50%, BR, 5.MHZ, 16-CAM, UL Subframe-23,47,8.9) ITE-TDD 8.51 4.84 10487 AAG ITE-TDD (SC FDMA, 50%, BR, 5.MHZ, 16-CAM, UL Subframe-23,47,8.9) ITE-TDD 8.51 4.84	10475	AAF	•	LTE-TDD	8.57	
10479 AAG ITE TDD (3C, FDMA), I BB, 20MHz, 94-QAM, UL Subfame-23,47,8,9) ITE-TDD 7.4 49.6 10470 AAC ITE TDD (3C, FDMA), 50%, BB, 1.4MHz, 16-QAM, UL Subfame-23,47,8,9) ITE-TDD 8.48 19.8 10481 AAC ITE-TDD (SC, FDMA, 50%, BB, 1.4MHz, 16-QAM, UL Subfame-23,47,8,9) ITE-TDD 8.49 10482 AAD ITE-TDD (SC, FDMA, 50%, BB, 3MHz, QPSK, UL Subfame-23,47,8,9) ITE-TDD 8.49 10483 AAD ITE TDD (SC, FDMA, 50%, BB, 3MHz, QPSK, UL Subfame-23,47,8,9) ITE-TDD 8.49 10484 AAG ITE TDD (SC, FDMA, 50%, BB, 3MHz, 04 CAM, UL Subfame-23,47,8,9) ITE-TDD 8.50 4.98 10485 AAG ITE TDD (SC, FDMA, 50%, BB, 5MHz, 16 CAM, UL Subfame-23,47,8,9) ITE-TDD 8.30 4.98 10487 AAG ITE-TDD (SC, FDMA, 50%, BB, 5MHz, 16 CAM, UL Subfame-23,47,8,9) ITE-TDD 8.51 4.98 10487 AAG ITE-TDD (SC, FDMA, 50%, BB, 10MHz, 0FSK, UL Subfame-23,47,8,9) ITE-TDD 8.51 4.98 10488 AAG ITE-TDD (SC, FDMA, 50%, BB, 10MHz, 0FSK, UL Subfame-23,47,8,9) ITE-TDD 8.51 4.9		AAG		LTE-TDD	8.32	±9.6
10470 AAC ITE TDD (SC-FDMA, SOY, RB, 1.4MHz, OPSK, UL, Subfarme-23, 47, 89) ITE-TDD 8.18 10481 AAC ITE TDD (SC-FDMA, SOY, RB, 1.4MHz, 64-QAM, UL, Subfarme-23, 47, 89) ITE-TDD 8.18 10482 AAD ITE-TDD (SC-FDMA, SOY, RB, 1.4MHz, 64-QAM, UL, Subfarme-23, 47, 89) ITE-TDD 7.71 4.99 10482 AAD ITE-TDD (SC-FDMA, SOY, RB, 3.MHz, 16 QAM, UL, Subfarme-23, 47, 89) ITE-TDD 8.47 4.99 10484 AAD ITE-TDD (SC-FDMA, SOY, RB, 3.MHz, 16 QAM, UL, Subfarme-23, 47, 89) ITE-TDD 8.49 4.99 10484 IAG ITE-TDD (SC-FDMA, SOY, RB, 5.MHz, 16 QAM, UL, Subfarme-23, 47, 89) ITE-TDD 8.80 4.99 10484 IAG ITE-TDD (SC-FDMA, SOY, RB, 5.MHz, 46 QAM, UL, Subfarme-23, 47, 89) ITE-TDD 7.74 4.98 10484 IAG ITE-TDD (SC-FDMA, SOY, RB, 15MHz, 46 QAM, UL, Subfarme-23, 47, 89) ITE-TDD 8.54 4.98 10484 IAG ITE-TDD (SC-FDMA, SOY, RB, 15MHz, 46 QAM, UL, Subfarme-23, 47, 89) ITE-TDD 8.54 4.98 10484 IAG ITE-TDD (SC-FDMA, SOY, RB, 15MHz, 46 QAM, UL, Subfarme-23, 47, 89)	10478			LTE-TDD	8.57	
10480 AAC ITE-TDD 8:18 4:96 10481 AAC ITE-TDD 8:45 4:96 10482 AAD ITE-TDD 8:45 4:96 10482 AAD ITE-TDD 8:45 4:96 10482 AAD ITE-TDD 8:49 4:96 10484 AAD ITE-TDD 8:49 4:96 10484 AAD ITE-TDD 8:56 9:49 10484 AAD ITE-TDD 8:56 9:49 10485 AAG ITE-TDD 8:56 9:49 10486 AAG ITE-TDD 8:56 9:49 10487 AAG ITE-TDD 8:56 9:56 10488 AAG ITE-TDD 8:56 9:56 10481 AAG ITE-TDD 8:57 9:56 10481 AAG ITE-TDD 8:54 9:56 10491 AAF ITE-TDD 8:54 9:56 10491 AAG <td< td=""><td></td><td></td><td></td><td></td><td>7.74</td><td></td></td<>					7.74	
1048 A.C. ITE-TDD 8.45 9.85 10482 A.D. ITE-TDD 8.75 9.95 17.77 9.95 10482 A.D. ITE-TDD 8.77 9.95 17.77 9.97 10483 A.D. ITE-TDD 8.77 19.95 17.75 19.96 10484 A.D. ITE-TDD 8.77 19.95 19.95 17.75 19.95 10485 A.G. ITE-TDD 8.75 19.95 19						
10482 AAD ITE-TDD (SC-FDMA, 50% RB, 3MHz, 0CAM, UL Subfarme-23, 47, 89) ITE-TDD 8, 49 10484 AAD ITE-TDD (SC-FDMA, 50% RB, 3MHz, 0CAM, UL Subfarme-23, 47, 89) ITE-TDD 8, 47 29.6 10485 AAD ITE-TDD (SC-FDMA, 50% RB, 5MHz, 0C9K, UL Subfarme-23, 47, 89) ITE-TDD 8, 58 49.6 10485 AAG ITE-TDD (SC-FDMA, 50% RB, 5MHz, 16-CAM, UL Subfarme-23, 47, 89) ITE-TDD 8, 58 49.6 10486 AAG ITE-TDD (SC-FDMA, 50% RB, 5MHz, 16-CAM, UL Subfarme-23, 47, 89) ITE-TDD 8, 50 49.6 10487 AAG ITE-TDD (SC-FDMA, 50% RB, 10MHz, 16-CAM, UL Subfarme-23, 47, 89) ITE-TDD 8, 51 49.6 10484 AAG ITE-TDD (SC-FDMA, 50% RB, 15MHz, 16-CAM, UL Subfarme-23, 47, 89) ITE-TDD 8, 51 49.6 10494 AAG ITE-TDD (SC-FDMA, 50% RB, 15MHz, 16-CAM, UL Subfarme-23, 47, 89) ITE-TDD 8, 54 49.6 10494 AAG ITE-TDD (SC-FDMA, 50% RB, 15MHz, 16-CAM, UL Subfarme-23, 47, 89) ITE-TDD 7, 74 49.6 10495 AAG ITE-TDD (SC-FDMA, 50% RB, 20MHz, 40-KAM, UL Subfarme-23, 47, 8.9)					8.45	
10482 AAD ITE-TDD (SC-PDA, 50% RB, 3MHz, 16-OAM, UL Subrame-2,3,47,5,9) ITE-TDD 8,49 10484 AAD ITE-TDD (SC-PDA, 50% RB, 3MHz, 0e-CAM, UL Subrame-2,3,47,8,9) ITE-TDD 8,49 10485 AAG ITE-TDD (SC-PDA, 50% RB, 5MHz, 0e-CAM, UL Subrame-2,3,47,8,9) ITE-TDD 8,49 10487 AAG ITE-TDD (SC-PDA, 50% RB, 5MHz, 0e-CAM, UL Subrame-2,3,47,8,9) ITE-TDD 8,40 10487 AAG ITE-TDD (SC-PDA, 50% RB, 15MHz, 0e-CAM, UL Subrame-2,3,47,8,9) ITE-TDD 8,54 +9.6 10488 AAG ITE-TDD (SC-PDA, 50% RB, 15MHz, 0e-CAM, UL Subrame-2,3,47,8,9) ITE-TDD 8,54 +9.6 10491 AAG ITE-TDD (SC-PDA, 50% RB, 15MHz, 0e-CAM, UL Subrame-2,3,47,8,9) ITE-TDD 8,54 +9.6 10492 AAF ITE-TDD (SC-PDA, 50% RB, 15MHz, 0e-CAM, UL Subrame-2,3,47,8,9) ITE-TDD 8,45 +9.6 10493 AAG ITE-TDD (SC-PDA, 50% RB, 15MHz, 0e-CAM, UL Subrame-2,3,47,8,9) ITE-TDD 8,45 +9.6 10494 AAG ITE-TDD (SC-PDA, 50% RB, 14MHz, 0e-CAM, UL Subrame-2,3,47,8,9) ITE-TDD 8,45 +9.6 14.96						
1048 AAD [TETDD ISCFDMA, 50% BB, 3MHz, 0PSA, UL, Subframe-23, 47, 8.9] ITETDD 7.59 ±9.6 1048 AAG ITETDD ISCFDMA, 50% BB, 5MHz, 16-OAM, UL, Subframe-23, 47, 8.9] ITETDD 8.38 ±9.6 10487 AAG ITETDD ISCFDMA, 50% BB, 5MHz, 16-OAM, UL, Subframe-23, 47, 8.9] ITETDD 8.60 ±9.6 10487 AAG ITETDD ISCFDMA, 50% BB, 10MHz, 0PSAU, UL, Subframe-23, 47, 8.9] ITETDD 8.54 ±9.6 10489 AAG ITETDD ISCFDMA, 50% BB, 10MHz, 0PSAU, UL, Subframe-23, 47, 8.9] ITETDD 8.54 ±9.6 10491 AAF ITETDD ISCFDMA, 50% BB, 15MHz, 0PSAU, UL, Subframe-23, 47, 8.9] ITETDD 8.54 ±9.6 10482 AAF ITETDD ISCFDMA, 50% BB, 15MHz, 0PSAU, UL, Subframe-23, 47, 8.9] ITETDD 8.54 ±9.6 10484 AAG ITETDD ISCFDMA, 50% BB, 20MHz, 0PSAU, UL, Subframe-23, 47, 8.9] ITETDD 8.54 ±9.6 10484 AAG ITETDD ISCFDMA, 50% BB, 20MHz, 0PSAU, UL, Subframe-23, 47, 8.9] ITETDD 7.74 ±9.6 10484 AAG ITETDD ISCFDMA, 50% BB, 20MHz, 16-QAM, UL, Subframe-23, 47, 8.9]			LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	
1046 A.40 LTF-TDD (SC-FDMA, 50% RB, 5M+E, 16-OAM, UL Subtrame-23,47,8,9) LTF-TDD 8.88 ±9.6 10487 A.61 LTF-TDD (SC-FDMA, 50% RB, 5M+E, 4C-OAM, UL Subtrame-23,47,8,9) LTF-TDD 8.64 ±9.6 10489 A.62 LTF-TDD (SC-FDMA, 50% RB, 10M+E, 4C-OAM, UL Subtrame-23,47,8,9) LTF-TDD 8.54 ±9.6 10491 A.64 LTF-TDD (SC-FDMA, 50% RB, 10M+E, 4C-OAM, UL Subtrame-23,47,8,9) LTF-TDD 8.54 ±9.6 10492 A.67 LTF-TDD (SC-FDMA, 50% RB, 15M+E, QPSK (UL Subtrame-23,47,8,9) LTF-TDD 8.54 ±9.6 10493 A.67 LTF-TDD (SC-FDMA, 50% RB, 20M+z, QPSK, UL Subtrame-23,47,8,0) LTF-TDD 8.54 ±9.6 10494 A.63 LTE-TDD (SC-FDMA, 50% RB, 20M+z, QPSK, UL Subtrame-23,47,7,8,0) LTF-TDD 8.54 ±9.6 10494 A.61 LTE-TDD (SC-FDMA, 50% RB, 20M+z, QPSK, UL Subtrame-23,47,7,8,0) LTF-TDD 8.54 ±9.6 10494 A.61 LTE-TDD (SC-FDMA, 50% RB, 20M+z, QPSK, UL Subtrame-23,47,7,8,0) LTF-TDD 8.54 ±9.6 10494 A.61 LTE-TDD (SC-FDMA, 100% RB, 14M+L, 16-QAM, UL Subtrame-23,47		AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)		8.47	±9.6
10467 AAG ITE-TDD (SC-FDMA, 50%, RB, 50M-2, 64-20M, UL Subframe-2.3,47,8.9) ITE-TDD 8.60 ±9.6 10489 AAG ITE-TDD (SC-FDMA, 50%, RB, 10M+2, 64-20M, UL Subframe-2.3,47,8.9) ITE-TDD 8.31 ±9.6 10490 AAG ITE-TDD (SC-FDMA, 50%, RB, 15M+2, 64-20M, UL Subframe-2.3,47,8.9) ITE-TDD 8.41 ±9.6 10491 AAF ITE-TDD (SC-FDMA, 50%, RB, 15M+2, 64-20M, UL Subframe-2.3,47,8.9) ITE-TDD 8.41 ±9.6 10492 AAF ITE-TDD (SC-FDMA, 50%, RB, 15M+2, 64-20M, UL Subframe-2.3,47,8.9) ITE-TDD 8.41 ±9.6 10493 AAF ITE-TDD (SC-FDMA, 50%, RB, 20M+2, 64-20M, UL Subframe-2.3,47,8.9) ITE-TDD 8.41 ±9.6 10494 AAG ITE-TDD (SC-FDMA, 50%, RB, 20M+2, 64-20M, UL Subframe-2.3,47,8.9) ITE-TDD 8.41 ±9.6 10494 AAG ITE-TDD (SC-FDMA, 10%, RB, 14M+2, 64-20M, UL Subframe-2.3,47,8.9) ITE-TDD 8.41 ±9.6 10494 AAG ITE-TDD (SC-FDMA, 10%, RB, 14M+2, 64-20M, UL Subframe-2.3,47,8.9) ITE-TDD 7.67 ±9.6 10494 AAG ITE-TDD (SC-FDMA, 10%, RB, 14M+2, 64-20M, UL	10485	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	±9.6
10488 AAG LTE-TDD (SC-FDMA, 50% RB, 10.MHz, (26-XM, ULS. Ubrlame-23, 47, 8.9) LTE-TDD 7.70 ±9.8 10499 AAG LTE-TDD (SC-FDMA, 50% RB, 10.MHz, 62-AM, ULS. Ubrlame-23, 47, 8.9) LTE-TDD 8.41 ±9.6 10491 AAF LTE-TDD (SC-FDMA, 50% RB, 15.MHz, 16.CAM, ULS. Ubrlame-23, 47, 8.9) LTE-TDD 8.41 ±9.6 10482 AAF LTE-TDD (SC-FDMA, 50% RB, 15.MHz, 16.CAM, ULS. Ubrlame-23, 47, 8.9) LTE-TDD 8.41 ±9.6 10482 AAF LTE-TDD (SC-FDMA, 50% RB, 20.MHz, 16-CAM, ULS. Ubrlame-23, 47, 8.9) LTE-TDD 8.54 ±9.6 10484 AAG LTE-TDD (SC-FDMA, 50% RB, 20.MHz, 16-CAM, ULS. Ubrlame-23, 47, 8.9) LTE-TDD 8.54 ±9.6 10485 AAG LTE-TDD (SC-FDMA, 100% RB, 1.4MHz, 16-CAM, ULS. Ubrlame-23, 47, 8.9) LTE-TDD 8.64 ±9.6 10489 AAG LTE-TDD (SC-FDMA, 100% RB, 1.4MHz, 16-CAM, ULS. Ubrlame-23, 47, 8.9) LTE-TDD 8.44 ±9.6 10494 AAG LTE-TDD (SC-FDMA, 100% RB, 1.4MHz, 16-CAM, ULS. Ubrlame-23, 47, 8.9) LTE-TDD 8.44 ±9.6 10506 AAG LTE-TDD (SC-FDMA, 100% R	10486	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
10489 AAG ITE-TDD (SC-FDMA, 50% RB, 10.MHz, 16-AM, UL Subframe-2.3.4.7.8.9) ITE-TDD 8.51 49.6 1049 AAG ITE-TDD (SC-FDMA, 50% RB, 15.MHz, 64-AM, UL Subframe-2.3.4.7.8.9) ITE-TDD 7.4 49.6 1049 AAG ITE-TDD (SC-FDMA, 50% RB, 15.MHz, 64-AM, UL Subframe-2.3.4.7.8.9) ITE-TDD 7.4 49.6 1048 AAG ITE-TDD (SC-FDMA, 50% RB, 25.MHz, 64-AM, UL Subframe-2.3.4.7.8.9) ITE-TDD 7.74 42.6 1048 AAG ITE-TDD (SC-FDMA, 50% RB, 20.MHz, 64-AM, UL Subframe-2.3.4.7.8.9) ITE-TDD 8.54 42.6 1048 AAG ITE-TDD (SC-FDMA, 50% RB, 20.MHz, 64-AM, UL Subframe-2.3.4.7.8.9) ITE-TDD 8.64 42.6 1048 AAG ITE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-AM, UL Subframe-2.3.4.7.8.9) ITE-TDD 8.64 42.6 1048 AAC ITE-TDD (SC-FDMA, 100% RB, 3.MHz, 16-AM, UL Subframe-2.3.4.7.8.9) ITE-TDD 8.64 42.6 1048 AAC ITE-TDD (SC-FDMA, 100% RB, 3.MHz, 16-AM, UL Subframe-2.3.4.7.8.9) ITE-TDD 7.67 49.6 10504 AAD ITE-TDD (SC-FDMA, 100% RB, 16.MHz, 16-AM, UL Subfram	10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	±9.6
10480 AAC LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-OAM, UL Subrame-23,47,8.9) LTE-TDD 8.54 4.95 10491 AAF LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-OAM, UL Subrame-23,47,8.9) LTE-TDD 8.51 4.95 10482 AAF LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-OAM, UL Subrame-23,47,8.9) LTE-TDD 8.55 4.96 10484 AAG LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-OAM, UL Subrame-23,47,8.9) LTE-TDD 8.54 4.96 10485 AAG LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-OAM, UL Subrame-23,47,8.9) LTE-TDD 8.54 4.98 10486 AAG LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 20-FSK, UL Subrame-23,47,8.9) LTE-TDD 7.67 4.98 10489 AAC LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 10-FAM, UL Subrame-23,47,8.9) LTE-TDD 8.40 4.96 10500 AAD LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 20-FSK, UL Subrame-23,47,8.9) LTE-TDD 8.44 4.96 10501 AAD LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 40-AM, UL Subrame-23,47,8.9) LTE-TDD 8.44 4.96 10502 AAD LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 40-AM, UL Subrame-2	10488	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	±9.6
10491 AAF LITE-TDD (SC-FDMA, 50%, RE, 15 MHz, 0PSK, UL Subtrame-2,3,4,7,8,9) LITE-TDD 7.74 ±9.6 10482 AAF LITE-TDD (SC-FDMA, 50%, RB, 15 MHz, 84-A0M, UL Subtrame-2,3,4,7,8,9) LITE-TDD 8,41 +9.6 10483 AAF LITE-TDD (SC-FDMA, 50%, RB, 20 MHz, 16-A0M, UL Subtrame-2,3,4,7,8,9) LITE-TDD 7,74 ±9.6 10484 AAG LITE-TDD (SC-FDMA, 50%, RB, 20 MHz, 16-A0M, UL Subtrame-2,3,4,7,8,9) LITE-TDD 8,54 ±9.6 10487 AAG LITE-TDD (SC-FDMA, 100%, RB, 14 MHz, 16 QAM, UL Subtrame-2,3,4,7,8,9) LITE-TDD 7,67 ±9.8 10498 AAC LITE-TDD (SC-FDMA, 100%, RB, 3 MHz, 16 QAM, UL Subtrame-2,3,4,7,8,9) LITE-TDD 7,67 ±9.8 10499 AAC LITE-TDD (SC-FDMA, 100%, RB, 3 MHz, 16 QAM, UL Subtrame-2,3,4,7,8,9) LITE-TDD 7,67 ±9.8 10501 AAD LITE-TDD (SC-FDMA, 100%, RB, 3 MHz, 16 QAM, UL Subtrame-2,3,4,7,8,9) LITE-TDD 7,72 ±9.6 10502 AAG LITE-TDD (SC-FDMA, 100%, RB, 5 MHz, 16-QAM, UL Subtrame-2,3,4,7,8,9) LITE-TDD 7,72 ±9.6 10504 AAG LITE-TDD	10489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10482 AAF LTE-TDD (SC-FDMA, 50%, RB, 15 MHz, 16 CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8,41 ±9,6 10483 AAF LET-DD (SC-FDMA, 50%, RB, 15 MHz, 64 CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8,55 ±9,6 10484 AAG LTE-TDD (SC-FDMA, 50%, RB, 20 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50%, RB, 20 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50%, RB, 20 MHz, 40-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 1,4 MHz, 10-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 1,4 MHz, 10-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 1,4 MHz, 4,0-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 3 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 3 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 3 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 5 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 5 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 5 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 5 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 5 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 5 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 10 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 10 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100%, RB, 10 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TD	10490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10483 AAF LTE-TDD (SC-FDMA, 50% R, B.15 MHz, 64-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8,55 ±9,6 10494 AAG LTE-TDD (SC-FDMA, 50%, RB, 20 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8,37 ±9,6 10495 AAG LTE-TDD (SC-FDMA, 50%, RB, 20 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8,54 ±9,6 10496 AAG LTE-TDD (SC-FDMA, 100%, RB, 14 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8,64 ±9,6 10497 AAC LTE-TDD (SC-FDMA, 100%, RB, 14 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8,64 ±9,6 10498 AAC LTE-TDD (SC-FDMA, 100%, RB, 3 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7,67 ±9,6 10501 AAD LTE-TDD (SC-FDMA, 100%, RB, 3 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8,41 ±9,6 10502 AAD LTE-TDD (SC-FDMA, 100%, RB, 5 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8,51 ±9,6 10504 AAG LTE-TDD (SC-FDMA, 100%, RB, 5 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8,51 ±9,6 105054 AAG LTE-TDD (SC-FDMA, 100%,	10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
1044 AAG LTE-TDD (SC-FDMA, 59% BB, 20 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 59% BB, 20 MHz, 64-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1,4 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1,4 MHz, GPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1,4 MHz, 64-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3,4MZ, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 24-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 26-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 26-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 26-QAM, UL Subframe-2,3,4,7,8,9)	10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	±9.6
10486 AAG LTE-TDD (SC-FDMA, 59% PB, 20 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.37 ± 9.6 10496 AAG LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 0-FSK, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.40 ± 9.6 10497 AAC LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 0-FSK, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.40 ± 9.6 10498 AAC LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 4-GAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.64 ± 9.6 10500 AAD LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.67 ± 9.8 10501 AAD LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.52 ± 9.6 10502 AAD LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.72 ± 9.6 10504 AAG LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 6-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.74 ± 9.8 10506 AAG LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 0-RSK, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.74 ± 9.8 10506 AAG LTE-TDD (SC-FDMA, 100% R	10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10488 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, G4-OAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10497 AAC LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.40 ±9.6 10498 AAC LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-OAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.68 ±9.6 10500 AAD LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 24-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.64 ±9.6 10501 AAD LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-OAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.52 ±9.6 10503 AAG LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-OAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10505 AAG LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-OAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10505 AAG LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 20-SK, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10506 AAG LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 20-SK, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10507 AAG LTE-TDD (SC-FDMA, 100% RB, 10 MHz	10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10497 AAC LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 6PSK, UL Subrame-2,3,4,7,8,9) LTE-TDD 8.40 ±9.6 10498 AAC LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 6ACAM, UL Subrame-2,3,4,7,8,9) LTE-TDD 8.40 ±9.6 10500 AAD LTE-TDD (SC-FDMA, 100% RB, 3.4 MHz, 6ACAM, UL Subrame-2,3,4,7,8,9) LTE-TDD 8.44 ±9.6 10501 AAD LTE-TDD (SC-FDMA, 100% RB, 3.4 MLz, 6A-CAM, UL Subrame-2,3,4,7,8,9) LTE-TDD 8.44 ±9.6 10502 AAQ LTE-TDD (SC-FDMA, 100% RB, 5.4 MLz, 6A-CAM, UL Subrame-2,3,4,7,8,9) LTE-TDD 8.52 ±9.6 10504 AAC LTE-TDD (SC-FDMA, 100% RB, 5.4 MLz, 6A-CAM, UL Subrame-2,3,4,7,8,9) LTE-TDD 8.31 ±9.6 10505 AAG LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-CAM, UL Subrame-2,3,4,7,8,9) LTE-TDD 8.34 ±9.6 10506 AAG LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-CAM, UL Subrame-2,3,4,7,8,9) LTE-TDD 8.34 ±9.6 10507 AAG LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-CAM, UL Subrame-2,3,4,7,8,9) LTE-TDD 8.35 ±9.6 10508 AAG LTE-TDD (SC-FDMA, 100% RB, 15 MHz	10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10489 AAC LTE-TDD (SC-FDMA, 100% RB, 1.4MHz, 16-QAM, UL Subframe-2.3,47,8.9) LTE-TDD 8.40 ±9.6 10499 AAC LTE-TDD (SC-FDMA, 100% RB, 3.4MLz, CPSK, UL Subframe-2.3,47,8.9) LTE-TDD 7.67 ±9.6 10500 AAD LTE-TDD (SC-FDMA, 100% RB, 3.4MLz, 16-QAM, UL Subframe-2.3,47,8.9) LTE-TDD 8.44 ±9.6 10501 AAD LTE-TDD (SC-FDMA, 100% RB, 3.4MLz, 16-QAM, UL Subframe-2.3,47,8.9) LTE-TDD 8.42 ±9.6 10502 AAD LTE-TDD (SC-FDMA, 100% RB, 5.4MLz, 0.6-QAM, UL Subframe-2.3,47,8.9) LTE-TDD 8.52 ±9.6 10505 AAG LTE-TDD (SC-FDMA, 100% RB, 5.4MLz, 0.6-QAM, UL Subframe-2.3,47,8.9) LTE-TDD 8.54 ±9.6 10505 AAG LTE-TDD (SC-FDMA, 100% RB, 15.4ML2, 0.6-QAM, UL Subframe-2.3,47,8.9) LTE-TDD 8.54 ±9.6 10506 AAG LTE-TDD (SC-FDMA, 100% RB, 15.4ML2, 0.6-QAM, UL Subframe-2.3,47,8.9) LTE-TDD 8.54 ±9.6 10507 AAG LTE-TDD (SC-FDMA, 100% RB, 15.4ML2, 0.6-QAM, UL Subframe-2.3,47,8.9) LTE-TDD 8.54 ±9.6 10506 AAG LTE-TDD (SC-FDMA, 100% RB, 15	10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10499 AAC LTE-TDD (SC-FDMA, 100% RB, 3 MHz, Q+GAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.68 ±9.8 10500 AAD LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.44 ±9.6 10501 AAD LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.44 ±9.6 10502 AAG LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.52 ±9.6 10504 AAG LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10505 AAG LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10506 AAG LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.55 ±9.6 10507 AAG LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.74 ±9.6 10510 AAF LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.74 ±9.6 10511 AAF LTE-TDD (SC-FDMA, 100% RB, 20 MH	10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
16500 AAD LTE-TDD 7.67 ±9.6 10501 AAD LTE-TDD (SC-FDMA, 100% RB, SMHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.44 ±9.6 10502 AAD LTE-TDD (SC-FDMA, 100% RB, SMHz, 26-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.52 ±9.6 10502 AAG LTE-TDD (SC-FDMA, 100% RB, SMHz, 26-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.72 ±9.6 10504 AAG LTE-TDD (SC-FDMA, 100% RB, 5MHz, 26-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10505 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10507 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.55 ±9.6 10507 AAG LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.55 ±9.6 10508 AAF LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.51 ±9.6 10510 AAF LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.49	10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	±9.6
10501 AAD LTE-TDD 8.44 ±9.6 10502 AAD LTE-TDD (SC-FDMA, 100% RB, SMHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.52 ±9.6 10503 AAG LTE-TDD (SC-FDMA, 100% RB, SMHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.31 ±9.6 10504 AAG LTE-TDD (SC-FDMA, 100% RB, SMHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.31 ±9.6 10506 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.34 ±9.6 10507 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, 16-QAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 8.36 ±9.6 10508 AAG LTE-TDD (SC-FDMA, 100% RB, 15MHz, 0-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.99 ±9.6 10510 AAF LTE-TDD (SC-FDMA, 100% RB, 15MHz, 0-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.74 ±9.6 10511 AAF LTE-TDD (SC-FDMA, 100% RB, 15MHz, 0-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.74 ±9.6 10512 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 0-CAM, UL Subframe-2,3,4,7,8,9) LTE-TDD 7.74 ±9.6 10512 AAG LTE-TDD (SC-FDMA, 100% R	10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	±9.6
10502 AAD LTE-TDD 8.52 ±9.6 10503 AAG LTE-TDD (SC-FDMA, 100% RB, SMH2, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.72 ±9.6 10504 AAG LTE-TDD (SC-FDMA, 100% RB, SMH2, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.31 ±9.6 10505 AAG LTE-TDD (SC-FDMA, 100% RB, 10MH2, 40-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10507 AAG LTE-TDD (SC-FDMA, 100% RB, 10MH2, 40-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.55 ±9.6 10508 AAG LTE-TDD (SC-FDMA, 100% RB, 10MH2, 40-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.55 ±9.6 10509 AAF LTE-TDD (SC-FDMA, 100% RB, 15MH2, 40-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.51 ±9.6 10510 AAF LTE-TDD (SC-FDMA, 100% RB, 15MH2, 40-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.41 ±9.6 10511 AAG LTE-TDD (SC-FDMA, 100% RB, 15MH2, 40-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10511 AAG LTE-TDD (SC-FDMA, 100% RB, 20MH2, 40-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100	10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10503 AAG LTE-TDD (SC-FDMA, 100% RB, 5MHz, OPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.72 ±9.6 10504 AAG LTE-TDD (SC-FDMA, 100% RB, 5MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10505 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, 0PSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.54 ±9.6 10507 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, 0PSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.36 ±9.6 10508 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.36 ±9.6 10509 AAG LTE-TDD (SC-FDMA, 100% RB, 15MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.49 ±9.6 10510 AAF LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.49 ±9.6 10511 AAF LTE-TDD (SC-FDMA, 100% RB, 20MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.74 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 4-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10516	10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	±9.6
10504 AAG LTE-TDD 8.31 ±9.6 10505 AAG LTE-TDD 8.54 ±9.6 10506 AAG LTE-TDD 8.54 ±9.6 10507 AAG LTE-TDD 8.54 ±9.6 10508 AAG LTE-TDD 8.54 ±9.6 10508 AAG LTE-TDD 8.36 ±9.6 10508 AAG LTE-TDD 8.36 ±9.6 10508 AAG LTE-TDD 8.55 ±9.6 10509 AAF LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM, UL Subtrame=2,3.4,7.8,9) LTE-TDD 8.45 ±9.6 10511 AAF LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM, UL Subtrame=2,3.4,7.8,9) LTE-TDD 8.45 ±9.6 10512 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, QPSK, UL Subtrame=2,3.4,7.8,9) LTE-TDD 8.45 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 4G-QAM, UL Subtrame=2,3.4,7.8,9) LTE-TDD 8.45 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 4G-QAM, UL Subtrame=2,3.4,7	10502	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	±9.6
10505 AAG LTE-TDD 8.54 ±9.6 10505 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.74 ±9.6 10506 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.36 ±9.6 10508 AAG LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.55 ±9.6 10510 AAF LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.49 ±9.6 10511 AAF LTE-TDD (SC-FDMA, 100% RB, 20MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10511 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 16	10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	±9.6
10506 AAG LTE-TDD 7.74 ±9.8 10507 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, 16-QAM, UL Subrame=2,3,4,7,8,9) LTE-TDD 8.36 ±9.6 10508 AAG LTE-TDD (SC-FDMA, 100% RB, 10MHz, 64-QAM, UL Subrame=2,3,4,7,8,9) LTE-TDD 8.55 ±9.6 10509 AAF LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM, UL Subrame=2,3,4,7,8,9) LTE-TDD 8.49 ±9.6 10511 AAF LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM, UL Subrame=2,3,4,7,8,9) LTE-TDD 8.49 ±9.6 10512 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 64-QAM, UL Subrame=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10512 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 64-QAM, UL Subrame=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 64-QAM, UL Subrame=2,3,4,7,8,9) LTE-TDD 8.44 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20MHz, 64-QAM, UL Subrame=2,3,4,7,8,9) LTE-TDD 8.45 ±9.6 10515 AAA IEEE 802,1110, NWFI S,40Hz (DSS, 11 Mbgs, 99pc duty cycle)	10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10507 AAG LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.36 ±9.6 10508 AAG LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 04-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.55 ±9.6 10509 AAF LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 0PSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.49 ±9.6 10510 AAF LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 0FSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.41 ±9.6 10512 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 0FSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 0FSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 0FA QML) UL Subframe=2,3,4,7,8,9) LTE-TDD 8.45 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 0FA QML) US Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10515 AAA IEEE ADD ISC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10516 AAA IEEE ADD ISC-FDMA, 100% RB, 20	10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10508 AAG LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.55 ±9.6 10509 AAF LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 0PSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.99 ±9.6 10510 AAF LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.49 ±9.6 10511 AAF LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10515 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle) WLAN 1.57 ±9.6 10516 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) WLAN 1.57 ±9.6 10517 AAA IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10518 AAC IEEE 802.11a/h WIFI 5 GHz (OFDM, 44 Mbps, 99pc duty cycle)	10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10509 AAF LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.99 ±9.6 10510 AAF LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.49 19.6 10511 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 0PSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.51 ±9.6 10512 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 0PSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 0PSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 0PSK, 0L Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10515 AAA IEEE 802.110 WiFI 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) WLAN 1.57 ±9.6 10516 AAA IEEE 802.11a/b WiFI 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 1.57 ±9.6 10517 AAC IEEE 802.11a/b WiFI 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.33 ±9.6 10519 AAC IEEE 802.11a/b WiFI 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	±9.6
10510 AAF LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.49 ±9.6 10511 AAF LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.51 ±9.6 10512 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.45 ±9.6 10516 AAA IEEE 802.11b WiFI 2.4 GHz (DSSS, 55 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10517 AAA IEEE 802.11a/WiFI 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10519 AAC IEEE 802.11a/WiFI 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) WLAN 8.39 ±9.6 10520 AAC IEEE 802.11a/WiFI 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10521 AAC IEEE 802.11a/WiFI 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN	10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10511 AAF LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.51 ±9.6 10512 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.74 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10515 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.45 ±9.6 10515 AAA IEEE 802.11b WiF12.4 GHz (DSSS, 2 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10516 AAA IEEE 802.11a/h WiF12.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10517 AAA IEEE 802.11a/h WiF15 GHz (OFDM, 9 Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10519 AAC IEEE 802.11a/h WiF15 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10520 AAC IEEE 802.11a/h WiF15 GHz (OFDM, 24 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10522 AAC IEEE 802.11a/h WiF15 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10522 AAC IEEE	10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6
10512 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.74 ±9.6 10513 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.42 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.45 ±9.6 10515 AAA IEEE 802.11b WiF1 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10516 AAA IEEE 802.11b WiF1 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) WLAN 1.57 ±9.6 10517 AAA IEEE 802.11a/th WiF1 5 GHz (OFDM, 9Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10518 AAC IEEE 802.11a/th WiF1 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10520 AAC IEEE 802.11a/th WiF1 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10521 AAC IEEE 802.11a/th WiF1 5 GHz (OFDM, 34 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10524 AAC IEEE 802.11a/th WiF1 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN <td< td=""><td>10510</td><td>AAF</td><td>LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)</td><td>LTE-TDD</td><td>8.49</td><td>±9.6</td></td<>	10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6
10513 AAG LTE-TDD 8.42 ±9.6 10514 AAG LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD 8.45 ±9.6 10515 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10516 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) WLAN 1.57 ±9.6 10517 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1.1 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10518 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10520 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10521 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 34 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10522 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10522 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10522 AAC	10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6
10514 AAG LTE-TDD 8.45 ±9.6 10515 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2Mps, 99pc duty cycle) WLAN 1.58 ±9.6 10515 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2Mps, 99pc duty cycle) WLAN 1.57 ±9.6 10516 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mps, 99pc duty cycle) WLAN 1.58 ±9.6 10517 AAA IEEE 802.11a/h WiFi 5 GHz (OFDM, 9Mps, 99pc duty cycle) WLAN 8.23 ±9.6 10518 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mps, 99pc duty cycle) WLAN 8.39 ±9.6 10520 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mps, 99pc duty cycle) WLAN 8.12 ±9.6 10521 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mps, 99pc duty cycle) WLAN 8.45 ±9.6 10522 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mps, 99pc duty cycle) WLAN 8.45 ±9.6 10523 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mps, 99pc duty cycle) WLAN 8.42 ±9.6 10524 AAC IEEE 802.11ac Wi	10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10515 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10516 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) WLAN 1.57 ±9.6 10517 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10518 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10520 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10521 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 34 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10522 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10523 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10525 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.36 ±9.6 <	10513	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10516 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) WLAN 1.57 ±9.6 10517 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10518 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10519 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10520 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10521 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10522 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10523 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.42 ±9.6 10525 AAC IEEE 802.11a/h WiFi 20 MHz, MCS1, 99pc duty cycle) WLAN 8.42 ±9.6 10526 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) <td>10514</td> <td>AAG</td> <td>LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)</td> <td>LTE-TDD</td> <td>8.45</td> <td>±9.6</td>	10514	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10517 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle) WLAN 1.58 ±9.6 10518 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10519 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.39 ±9.6 10520 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10521 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10522 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10523 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.08 ±9.6 10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.27 ±9.6 10525 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.21 ±9.6 10526 AAC IEEE 802.11a WiFi (20 MHz, MCS1, 99pc duty cycle) WLAN 8.42 ±9.6	10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10518 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) WLAN 8.23 ±9.6 10519 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.39 ±9.6 10520 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10521 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) WLAN 7.97 ±9.6 10522 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10523 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.27 ±9.6 10525 AAC IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle) WLAN 8.21 ±9.6 10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.21 ±9.6	L					
10519 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) WLAN 8.39 ±9.6 10520 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10521 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) WLAN 7.97 ±9.6 10522 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10523 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.08 ±9.6 10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.27 ±9.6 10525 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle) WLAN 8.21 ±9.6 10526 AAC IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle) WLAN 8.42 ±9.6 10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.21 ±9.6 10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.21 ±9.6 10527						
10520 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) WLAN 8.12 ±9.6 10521 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) WLAN 7.97 ±9.6 10522 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10523 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.08 ±9.6 10523 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.27 ±9.6 10524 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.27 ±9.6 10525 AAC IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle) WLAN 8.36 ±9.6 10526 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.42 ±9.6 10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.21 ±9.6 10528 AAC IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) WLAN 8.36 ±9.6 10531						±9.6
10521 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) WLAN 7.97 ±9.6 10522 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10523 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.08 ±9.6 10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.27 ±9.6 10525 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.27 ±9.6 10526 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle) WLAN 8.42 ±9.6 10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.42 ±9.6 10528 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.36 ±9.6 10529 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.43 ±9.6 10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle) WLAN 8.43 ±9.6 10532		-				
10522 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) WLAN 8.45 ±9.6 10523 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.08 ±9.6 10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.27 ±9.6 10525 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle) WLAN 8.36 ±9.6 10526 AAC IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle) WLAN 8.42 ±9.6 10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.21 ±9.6 10528 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.36 ±9.6 10529 AAC IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) WLAN 8.36 ±9.6 10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.43 ±9.6 10533 AAC <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10523 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) WLAN 8.08 ±9.6 10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.27 ±9.6 10525 AAC IEEE 802.11a wiFi (20 MHz, MCS0, 99pc duty cycle) WLAN 8.36 ±9.6 10526 AAC IEEE 802.11a wiFi (20 MHz, MCS1, 99pc duty cycle) WLAN 8.42 ±9.6 10527 AAC IEEE 802.11a wiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.42 ±9.6 10527 AAC IEEE 802.11a wiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.42 ±9.6 10528 AAC IEEE 802.11a wiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.36 ±9.6 10529 AAC IEEE 802.11a wiFi (20 MHz, MCS4, 99pc duty cycle) WLAN 8.36 ±9.6 10531 AAC IEEE 802.11a wiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11a wiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.43 ±9.6 10533 AAC IEEE 802.11a wiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.38 ±9.6						
10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) WLAN 8.27 ±9.6 10525 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle) WLAN 8.36 ±9.6 10526 AAC IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle) WLAN 8.42 ±9.6 10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.42 ±9.6 10528 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.21 ±9.6 10529 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.36 ±9.6 10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) WLAN 8.36 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) WLAN 8.45 ±9.6 10533 AAC I						
10525 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle) WLAN 8.36 ±9.6 10526 AAC IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle) WLAN 8.42 ±9.6 10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.21 ±9.6 10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.21 ±9.6 10528 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.36 ±9.6 10529 AAC IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) WLAN 8.36 ±9.6 10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.43 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) WLAN 8.38 ±9.6 10534 AAC IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 ±9.6 10535 AAC IEEE 802.						
10526 AAC IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle) WLAN 8.42 ±9.6 10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.21 ±9.6 10528 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.36 ±9.6 10529 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.36 ±9.6 10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.38 ±9.6 10533 AAC IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle) WLAN 8.34 ±9.6 10534 AAC IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) WLAN 8.45 ±9.6 10535 AAC IEEE 802.						
10527 AAC IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) WLAN 8.21 ±9.6 10528 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.36 ±9.6 10529 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.36 ±9.6 10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) WLAN 8.43 ±9.6 10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.43 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.38 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) WLAN 8.38 ±9.6 10534 AAC IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 ±9.6 10535 AAC IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) WLAN 8.45 ±9.6 10536 AAC IEEE 802.		_				
10528 AAC IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) WLAN 8.36 ±9.6 10529 AAC IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) WLAN 8.36 ±9.6 10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) WLAN 8.43 ±9.6 10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.29 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.38 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) WLAN 8.38 ±9.6 10534 AAC IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 ±9.6 10535 AAC IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) WLAN 8.45 ±9.6 10536 AAC IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) WLAN 8.32 ±9.6 10537 AAC IEEE 802.						
10529 AAC IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) WLAN 8.36 ±9.6 10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.29 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.38 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.38 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) WLAN 8.38 ±9.6 10534 AAC IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 ±9.6 10535 AAC IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) WLAN 8.45 ±9.6 10536 AAC IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) WLAN 8.32 ±9.6 10537 AAC IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle) WLAN 8.44 ±9.6 10538 AAC IEEE 802.						
10531 AAC IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle) WLAN 8.43 ±9.6 10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.29 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.38 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) WLAN 8.38 ±9.6 10534 AAC IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 ±9.6 10535 AAC IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) WLAN 8.45 ±9.6 10536 AAC IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) WLAN 8.32 ±9.6 10537 AAC IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle) WLAN 8.44 ±9.6 10538 AAC IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle) WLAN 8.54 ±9.6						
10532 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.29 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) WLAN 8.38 ±9.6 10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) WLAN 8.38 ±9.6 10534 AAC IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle) WLAN 8.45 ±9.6 10535 AAC IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) WLAN 8.45 ±9.6 10536 AAC IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) WLAN 8.32 ±9.6 10537 AAC IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle) WLAN 8.44 ±9.6 10538 AAC IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle) WLAN 8.54 ±9.6						
10533 AAC IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) WLAN 8.38 ±9.6 10534 AAC IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle) WLAN 8.45 ±9.6 10535 AAC IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle) WLAN 8.45 ±9.6 10536 AAC IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) WLAN 8.32 ±9.6 10536 AAC IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) WLAN 8.32 ±9.6 10537 AAC IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle) WLAN 8.44 ±9.6 10538 AAC IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle) WLAN 8.54 ±9.6						
10534 AAC IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle) WLAN 8.45 ±9.6 10535 AAC IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) WLAN 8.45 ±9.6 10536 AAC IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) WLAN 8.32 ±9.6 10537 AAC IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle) WLAN 8.44 ±9.6 10538 AAC IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle) WLAN 8.44 ±9.6						
10535 AAC IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) WLAN 8.45 ±9.6 10536 AAC IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) WLAN 8.32 ±9.6 10537 AAC IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle) WLAN 8.44 ±9.6 10538 AAC IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle) WLAN 8.44 ±9.6						
10536 AAC IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) WLAN 8.32 ±9.6 10537 AAC IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) WLAN 8.44 ±9.6 10538 AAC IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle) WLAN 8.54 ±9.6						
10537 AAC IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle) WLAN 8.44 ±9.6 10538 AAC IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle) WLAN 8.54 ±9.6						
10538 AAC IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle) WLAN 8.54 ±9.6						
10540 AAC IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc duty cycle) WLAN 8.39 ±9.6						
	10540	AAC	IEEE 802.11ac WIFI (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.39	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E <i>k</i> = 2
10541	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6
10542	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
10544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.47	±9.6
10545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
10554	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6
10555	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
10556	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6
10557	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6
10558	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.61	±9.6
10560	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.73	±9.6
10561	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.56	±9.6
10562	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.6
10563	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.77	±9.6
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	±9.6
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	±9.6
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	±9.6
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	±9.6
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6 -
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10583	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10584	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10585	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10586	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10587 10588	AAC AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN WLAN	8.36	±9.6 ±9.6
	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10589	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.35	
10590	AAC	IEEE 802.11 a/h WIFI 5 GHZ (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.63	±9.6 ±9.6
		IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	
10592 10593		IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.64	±9.6 ±9.6
10593		IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle)	WLAN	8.74	±9.6
10594	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10595		IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6
10596	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCSS, 90pc duty cycle)	WLAN	8.71	±9.6
10597		IEEE 802.11n (HT Mixed, 20 MHz, MCS8, 90pc duty cycle)	WLAN	8.50	±9.6
10598			WLAN	8.50	±9.6
10333		IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
		IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.82	±9.6
10600		IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)	WLAN	8.94	±9.6
10600 10601	AAC		VVLAIN	0.94	
10600 10601 10602	AAC		10/1 A N	0.02	
10600 10601 10602 10603	AAC AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.6
10600 10601 10602 10603 10604	AAC AAC AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.6
10600 10601 10602 10603 10604 10605	AAC AAC AAC AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle)	WLAN WLAN	8.76 8.97	±9.6 ±9.6
10600 10601 10602 10603 10604	AAC AAC AAC AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6
10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6
10611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.59	±9.6
10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10616	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
10617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN WLAN	8.81	±9.6
10618	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6 ±9.6
10619 10620	AAC AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6
10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.77	±9.6
10622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
10623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
10626	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10628	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6
10629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10630	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN WLAN	8.81	±9.6 ±9.6
10632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10633 10634	AAC AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.80	±9.6
10634	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6
10636	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10637	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10638	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.86	±9.6
10639	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10640	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
10641	AAD	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6
10643	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6
10644	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6
10645	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6
10646 10647	AAH AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD LTE-TDD	11.96	±9.6 ±9.6
10648	AAG	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
10652	AAF	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
10653	AAF	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAE	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
10659	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
10660	AAB	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6
10661	AAB	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6
10662	AAB	Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671	AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6
10672 10673	AAC AAC	IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN WLAN	8.57	±9.6
10673	AAC	IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6
10674	AAC	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.90	±9.6
10676	AAC	IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10677	AAC	IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6
10678	AAC	IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.78	±9.6
10679	AAC	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.89	±9.6
10680	AAC	IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6
10681	AAC	IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6
10682	-	IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6
10683	AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10684	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.26	±9.6
10685	AAC	IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10686	AAC	IEEE 802.11ax (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10687	AAC	IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.45	±9.6
10688	AAC	IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle)	WLAN	8.29	±9.6
10689	AAC	IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.55	±9.6 -
10690	AAC	IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10691	AAC	IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.25	±9.6
10692	AAC	IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle)	WLAN	8.29	±9.6
10693	AAC	IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle)	WLAN	8.25	±9.6
10694	AAC	IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle)	WLAN	8.57	±9.6
10695	AAC	IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.78	±9.6
10696	AAC	IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.91	±9.6
10697	AAC	IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.61	±9.6
10698	AAC	IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.89	±9.6
10699	AAC	IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.82	±9.6
10700	AAC	IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.73	±9.6
10701	AAC	IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.86	±9.6
10702	AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.70	±9.6
10703	AAC	IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10704	AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.56	±9.6
10705	AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle)	WLAN	8.69	±9.6
10706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle)	WLAN	8.66	±9.6
10707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.32	±9.6
10708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.29	±9.6
10711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6
10713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.33	±9.6
10714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.26	±9.6
10715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.45	±9.6
10716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6
10717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.72	±9.6
10727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6
10730	AAC	IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle)	WLAN	8.67	±9.6
10731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10732	AAC AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.46	±9.6
10733	AAC	IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.40	±9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN WLAN	8.25	±9.6
10735	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle)	WLAN	8.33	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.27	±9.6 ±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.6
10739	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.29	±9.6
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.48	±9.6
10741	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle)	WLAN	8.40	±9.6
10742	AAC	IEEE 802.11ax (60 MHz, MCS1, 99c duty cycle)	WLAN	8.43	±9.6
10740	AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle)	WLAN	9.16	±9.6
10744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.93	±9.6
10744		IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN	9.11	±9.6
10745					±0.0
10745 10746	AAC				
10745 10746 10747	AAC AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle)	WLAN	9.04	±9.6
10745 10746 10747 10748	AAC AAC AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN WLAN	9.04 8.93	±9.6 ±9.6
10745 10746 10747 10748 10749	AAC AAC AAC AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN WLAN WLAN	9.04 8.93 8.90	+9.6 +9.6 +9.6
10745 10746 10747 10748	AAC AAC AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN WLAN	9.04 8.93	±9.6 ±9.6

UID Rev Communication System Name Group 10753 AAC IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle) WLAN 10754 AAC IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle) WLAN 10755 AAC IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle) WLAN 10755 AAC IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle) WLAN 10756 AAC IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle) WLAN 10757 AAC IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle) WLAN 10758 AAC IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle) WLAN 10759 AAC IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle) WLAN	PAR (dB) 9.00 8.94 8.64	$\frac{Unc^{E} \mathbf{k} = 2}{\pm 9.6}$
10755 AAC IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle) WLAN 10756 AAC IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle) WLAN 10757 AAC IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle) WLAN 10757 AAC IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle) WLAN 10758 AAC IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle) WLAN 10759 AAC IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle) WLAN		10.0
10756 AAC IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle) WLAN 10757 AAC IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle) WLAN 10758 AAC IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle) WLAN 10759 AAC IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle) WLAN	8.64	±9.6
10757 AAC IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle) WLAN 10758 AAC IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle) WLAN 10759 AAC IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle) WLAN	0.04	±9.6
10758 AAC IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle) WLAN 10759 AAC IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle) WLAN	8.77	±9.6
10759 AAC IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle) WLAN	8.77	±9.6
	8.69	±9.6
	8.58	±9.6
10760 AAC IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle) WLAN	8.49	±9.6
10761 AAC IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle) WLAN	8.58	±9.6
10762 AAC IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle) WLAN	8.49	±9.6
10763 AAC IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle) WLAN	8.53	±9.6
10764 AAC IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle) WLAN	8.54	±9.6
10765 AAC IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle) WLAN	8.54	±9.6
10766 AAC IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle) WLAN	8.51	±9.6
10767 AAE 5G NR (CP-OFDM, 1 RB, 5MHz, QPSK, 15kHz) 5G NR FR1 TDD	7.99	±9.6
10768 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.01	±9.6
10769 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.01	±9.6
10770 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.02	±9.6
10771 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 10772 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.02	±9.6
10772 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 10773 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.23	±9.6
10773 AAD 5G NR (CF-OFDM, 1 RB, 40 MHz, QFSK, 15 kHz) 5G NR FR1 TDD 10774 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.03 8.02	±9.6
10774 AAD 5G NR (CF-OFDM, TRB, 50 MIZ, QFSK, 15 kHz) 5G NR FR TDD 10775 AAD 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR TDD	8.02	±9.6 ±9.6
10775 AAD 5G NR (CP-OFDM, 50% RB, 5 MHZ, QPSK, 15 KHZ) 5G NR FR1 TDD 10776 AAD 5G NR (CP-OFDM, 50% RB, 10 MHZ, QPSK, 15 kHz) 5G NR FR1 TDD	8.31	±9.6
10777 AAC 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.30	±9.6
10778 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.34	±9.6
10779 AAC 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.42	±9.6
10780 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.38	±9.6
10781 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.38	±9.6
10782 AAD 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.43	±9.6
10783 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.31	±9.6
10784 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.29	±9.6
10785 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.40	±9.6
10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.35	±9.6
10787 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.44	±9.6
10788 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.39	±9.6
10789 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.37	±9.6
10790 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD	8.39	±9.6
10791 AAE 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	7.83	±9.6
10792 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	7.92	±9.6
10793 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	7.95	±9.6
10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	7.82	±9.6
10795 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	7.84	±9.6
10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	7.82	±9.6
	8.01 7.89	±9.6
10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	7.89	±9.6 ±9.6
10733 AAD Sci NR (CI-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) Sci NR FR 1 TDD 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	7.93	±9.6
10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	7.87	±9.6
10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	7.93	±9.6
10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.34	±9.6
10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.37	±9.6
10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.34	±9.6
10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.34	±9.6
10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.35	±9.6
10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.35	±9.6
10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.34	±9.6
10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.33	±9.6
10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.30	±9.6
10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.41	±9.6
10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.41	±9.6
10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.36	±9.6
10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.39	±9.6
10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.41	±9.6
10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.42	±9.6
10828 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	8.43	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10836	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
10837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.41 8.34	±9.6 ±9.6
10854 10855	AAD AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 13 Minz, QPSK, 60 KHz)	5G NR FR1 TDD	8.30	±9.6
10850	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10864	AAD	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
10869	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10870	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	±9.6
10871	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10872	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10874 10875	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	6.65 7.78	±9.6 ±9.6
10875	AAE AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 KHz)	5G NR FR2 TDD	8.39	±9.6
10870	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	±9.6
10878	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10879	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	±9.6
10880	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10881	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10882	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10883	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6
10884	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6
10885	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10886	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10887	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10888	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	±9.6
10889	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	8.02 8.40	±9.6 ±9.6
10890 10891	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.40	±9.6
10891	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10892	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6
10898	AAB	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10899	AAB	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10900	AAB	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10901	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902	AAB	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10903	AAB	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10904	AAB	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10905	AAB	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10906	AAB	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10907	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	±9.6
10908	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10909	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	±9.6
10910	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
10915	AAB	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAB	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAB	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAB AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.86 5.87	±9.6 ±9.6
10920	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10921	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10926	AAB	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10927	AAB	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10928	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10929	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10930	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10931	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10932	AAC AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.51 5.51	±9.6 ±9.6
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 KHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
10938	AAC	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945 10946	AAC AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.85 5.83	±9.6 ±9.6
10940	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10948	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10957 10958	AAA AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	8.31	±9.6
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 KHz)	5G NR FR1 FDD	8.61 8.33	±9.6 ±9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 HHz)	5G NR FR1 FDD	9.32	±9.6
10960	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.6
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	±9.6
10964	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	±9.6
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.6
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	±9.6
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	±9.6
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.6
10978 10979	AAA AAA	ULLA BDR ULLA HDR4	ULLA	1.16 8.58	±9.6 ±9.6
10979	AAA	ULLA HDR8	ULLA	10.32	±9.6
10980	AAA	ULLA HDRp4	ULLA	3.19	±9.6
10982	AAA	ULLA HDRp8	ULLA	3.43	±9.6
	1.201		1	1 30	

- .--

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	10.24	±9.6
11004	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	±9.6
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	±9.6
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	±9.6
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.46	±9.6
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	±9.6
11009	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.76	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.95	±9.6
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.96	±9.6
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	±9.6
11013	AAA	IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
11014	AAA	IEEE 802.11be (320 MHz, MCS2, 99pc duty cycle)	WLAN	8.45	±9.6
11015	AAA	IEEE 802.11be (320 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
11016	AAA	IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle)	WLAN	8.44	±9.6
11017	AAA	IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle)	WLAN	8.41	±9.6
11018	AAA	IEEE 802.11be (320 MHz, MCS6, 99pc duty cycle)	WLAN	8.40	±9.6
11019	AAA	IEEE 802.11be (320 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
11020	AAA	IEEE 802.11be (320 MHz, MCS8, 99pc duty cycle)	WLAN	8.27	±9.6
11021	AAA	IEEE 802.11be (320 MHz, MCS9, 99pc duty cycle)	WLAN	8.46	±9.6
11022	AAA	IEEE 802.11be (320 MHz, MCS10, 99pc duty cycle)	WLAN	8.36	±9.6
11023	AAA	IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle)	WLAN	8.09	±9.6
11024	AAA	IEEE 802.11be (320 MHz, MCS12, 99pc duty cycle)	WLAN	8.42	±9.6
11025	AAA	IEEE 802.11be (320 MHz, MCS13, 99pc duty cycle)	WLAN	8.37	±9.6
11026	AAA	IEEE 802.11be (320 MHz, MCS0, 99pc duty cycle)	WLAN	8.39	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

B.V. ADT (Auden)

Certificate No

EX-7797_Dec22

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7797
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	December 12, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	10-Oct-22 (No. DAE4-660_Oct22)	Oct-23
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013 Dec21)	Dec-22

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technician	= Ve
Approved by	Sven Kühn	Technical Manager	ala
This calibration certificate sha	I not be reproduced except in full wi	thout written approval of the labora	Issued: December 14, 2022 tory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	arphi rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y,z = NORMx, y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> = 2)
Norm $(\mu V/(V/m)^2)^A$	0.49	0.49	0.49	±10.1%
DCP (mV) ^B	103.2	103.3	102.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		Α	В	С	D	VR	Max	Max
			dB	dBõV		dB	mV	dev.	Unc ^E
									<i>k</i> = 2
0	CW	X	0.00	0.00	1.00	0.00	143.6	±3.5%	±4.7%
		Y	0.00	0.00	1.00	1	143.5		
		Z	0.00	0.00	1.00	1	143.3		
10352	Pulse Waveform (200Hz, 10%)	X	1.40	60.03	5.83	10.00	60.0	±2.6%	±9.6%
		Y	1.57	61.12	6.80	1	60.0	1	
		Z	1.37	60.00	5.84	1	60.0	1	
10353	Pulse Waveform (200Hz, 20%)	X	20.00	74.00	9.00	6.99	80.0	±2.4%	±9.6%
		Y	0.81	60.00	5.16	1	80.0		
		Z	20.00	74.00	9.00	1	80.0	1	
10354	Pulse Waveform (200Hz, 40%)	X	0.10	144.37	0.10	3.98	95.0	±2.6%	±9.6%
		Y	0.02	121.95	0.20	1	95.0	1	
		Z	0.04	135.38	0.05	1	95.0	1	
10355	Pulse Waveform (200Hz, 60%)	X	0.00	149.87	55.73	2.22	120.0	±1.6%	±9.6%
		Y	9.20	125.18	1.31	1	120.0	1	
		Z	3.63	69.63	0.10	1	120.0	1	
10387	QPSK Waveform, 1 MHz	X	0.60	70.44	17.00	1.00	150.0	±2.7%	±9.6%
		Y	0.49	64.70	12.92	1	150.0	1	
		Z	0.55	67.66	15.35	1	150.0	1	
10388	QPSK Waveform, 10 MHz	X	1.61	71.24	15.93	0.00	150.0	±0.8%	±9.6%
		Y	1.32	66.91	14.07	-	150.0	1	
		Z	1.47	69.29	15.34	1	150.0	1	
10396	64-QAM Waveform, 100 kHz	X	1.65	64.78	16.33	3.01	150.0	±1.1%	±9.6%
		Y	1.77	65.65	16.48	1	150.0	1	
		Z	1.61	64.12	15.91		150.0	1	
10399	64-QAM Waveform, 40 MHz	X	2.80	67.65	15.91	0.00	150.0	±2.2%	±9.6%
		Y	2.78	66.71	15.31	1	150.0	1	
		Z	2.89	67.65	15.93	1	150.0	1	
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.72	67.43	15.89	0.00	150.0	±3.4%	±9.6%
		Y	3.70	66.32	15.37	1	150.0	1	
		Z	3.77	67.07	15.81	1	150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Linearization parameter uncertainty for maximum specified field strength.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
х	6.7	48.53	33.84	3.38	0.00	4.90	0.26	0.03	1.00
У	8.1	59.52	34.09	4.23	0.00	4.95	0.60	0.00	1.00
Z	7.5	54.93	34.41	3.32	0.00	4.90	0.18	0.04	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-134.3°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

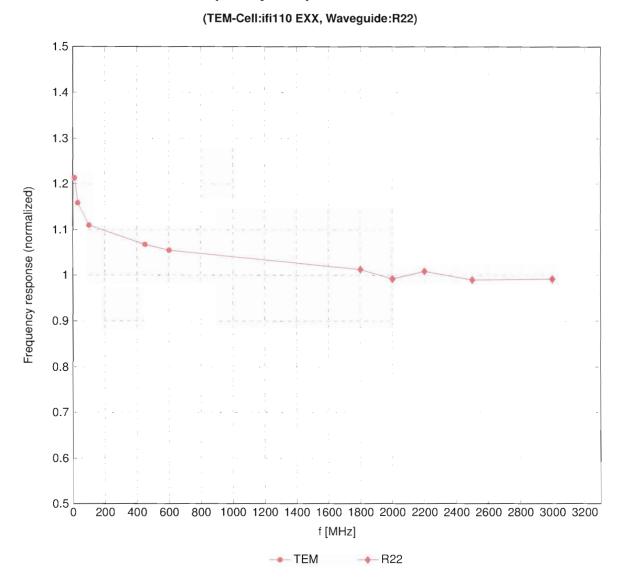
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
750	41.9	0.89	9.09	9.09	9.09	0.52	0.80	±12.0%
835	41.5	0.90	8.87	8.87	8.87	0.44	0.80	±12.0%
1450	40.5	1.20	8.24	8.24	8.24	0.44	0.80	±12.0%
1750	40.1	1.37	8.03	8.03	8.03	0.33	0.86	±12.0%
1900	40.0	1.40	7.65	7.65	7.65	0.32	0.86	±12.0%
2000	40.0	1.40	7.60	7.60	7.60	0.30	0.86	±12.0%
2300	39.5	1.67	7.57	7.57	7.57	0.32	0.90	±12.0%
2450	39.2	1.80	7.39	7.39	7.39	0.38	0.90	±12.0%
2600	39.0	1.96	7.32	7.32	7.32	0.38	0.90	±12.0%
3300	38.2	2.71	6.35	6.35	6.35	0.30	1.35	±14.0%
3500	37.9	2.91	6.29	6.29	6.29	0.30	1.35	±14.0%
3700	37.7	3.12	6.27	6.27	6.27	0.30	1.40	±14.0%
3900	37.5	3.32	6.02	6.02	6.02	0.40	1.60	±14.0%
4100	37.2	3.53	5.84	5.84	5.84	0.40	1.60	±14.0%
4200	37.1	3.63	5.65	5.65	5.65	0.40	1.60	±14.0%
4400	36.9	3.84	5.48	5.48	5.48	0.40	1.70	±14.0%
4600	36.7	4.04	5.42	5.42	5.42	0.40	1.70	±14.0%
4800	36.4	4.25	5.40	5.40	5.40	0.40	1.80	±14.0%
4950	36.3	4.40	5.35	5.35	5.35	0.40	1.80	±14.0%
5250	35.9	4.71	4.89	4.89	4.89	0.40	1.80	±14.0%
5600	35.5	5.07	4.34	4.34	4.34	0.40	1.80	±14.0%
5750	35.4	5.22	4.39	4.39	4.39	0.40	1.80	±14.0%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

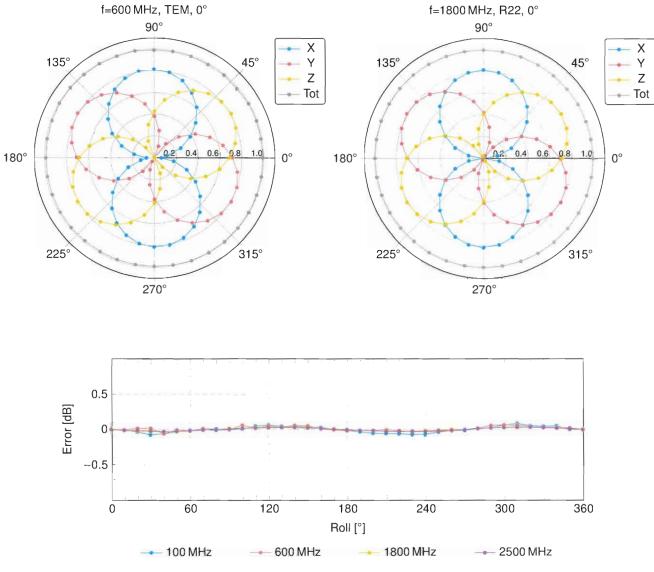
assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

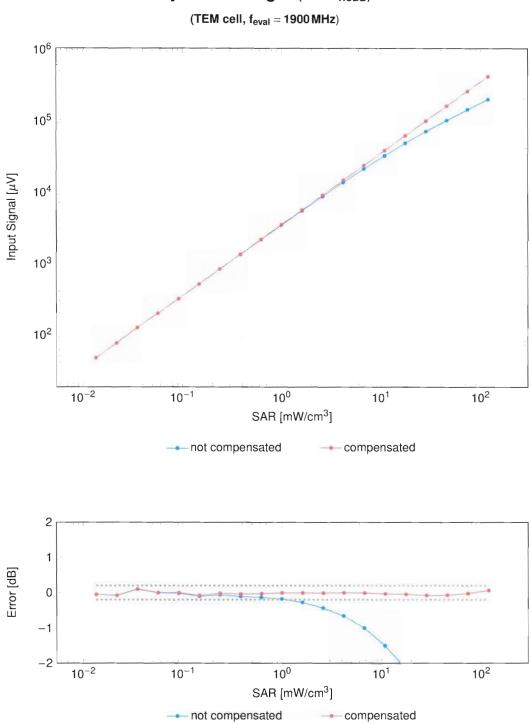

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
6500	34.5	6.07	4.70	4.70	4.70	0.25	2.50	±18.6%

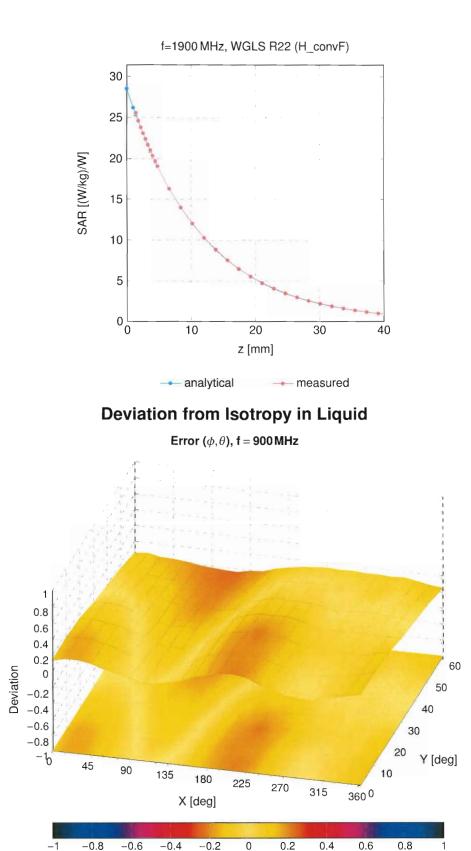
^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies 6–10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR


values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Certificate No: EX-7797_Dec22

 $^{-1}$

Uncertainty of Spherical Isotropy Assessment: ±2.6% (k=2)

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
0		CW	CW	0.00	±4.7
10010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	ĊAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3) IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.77	±9.6
10038	CAA		Bluetooth	4.10	±9.6
10039	CAB CAB	CDMA2000 (1xRTT, RC1) IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	CDMA2000 AMPS	4.57	±9.6
10042	CAB	IS-94/ IS-136 FDD (IDMA/FDM, F//4-DQFSK, Halifale)	AMPS	0.00	±9.6
10044	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6 ±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10049	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD LTE-TDD	6.60	±9.6
10103	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.29	±9.6 ±9.6
	CAH CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	10.01	±9.6
10105	CAH	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	5.80	±9.6
10108	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10109	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 10-QAM)	LTE-FDD	5.75	±9.6
10110	CAH		LTE-FDD	6.44	±9.6
	0AIT				

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAD	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAD	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	<u>±9.6</u>
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAH CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.28	±9.6
10152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	10.05	±9.6 ±9.6
10153	CAH	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	5.75	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAJ	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	5.72 6.52	±9.6
10182 10183	AAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 ±9.6
10183	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10184		LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10185	AAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195	CAD	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	CAD	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197	CAD	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10198	CAD	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAD	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220	CAD	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
	CAD	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
10221	0,0				
10222	CAD	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6
		IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN WLAN WLAN	8.06 8.48 8.08	±9.6 ±9.6 ±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6
10249	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAA	PHS (QPSK)	PHS	11.81	±9.6
10278	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10297	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10301	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WiMAX	12.03	±9.6
10302	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WiMAX	12.57	±9.6
10303	AAA	IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	12.52	±9.6
10304	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	11.86	±9.6
1 10005	AAA	IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols)	WiMAX	15.24	±9.6
10305 10306	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols)	WiMAX	14.67	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10307	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols)	WiMAX	14.49	±9.6
10308	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6
10309	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols)	WIMAX	14.58	±9.6
10310	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols)	WIMAX	14.57	±9.6
10311	AAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAA	iDEN 1:3	IDEN	10.51	<u>+9.6</u>
10314	AAA	IDEN 1:6	IDEN	13.48	±9.6
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10317	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	<u>+9.6</u>
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10399	AAE	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6
10400	AAE	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6
10401	AAE	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6
10402	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10417	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	<u>±9.6</u>
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6
10413	AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	<u>+9.6</u>
10422	AAC	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10423	AAC	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10424	AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16 QAM)	WLAN	8.45	±9.6
10420	AAC	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10427	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10431	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAD	LTE-FDD (OFDMA, 15MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAD	LTE-FDD (OFDMA, 20MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	1	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10447	AAE	LTE-FDD (OFDMA, 5MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10447	AAE	LTE-FDD (OFDMA, 10MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.53	±9.6
10448	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10449	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10450	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.48	±9.6
10451	AAB	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10455	AAE	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6
10456	AAC	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10457	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	8.25	±9.6
10459	AAB	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10460	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 10-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10463	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, 0L Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
		ן בדבידעם (סטירטועוא, ד הם, סועורצ, דסיעאועו, טב סטטונאווופ=2,3,4,7,8,9)			
10465	AAD	TE TOD (SC EDMA 1 DD 2MUS CA OAM UI Subtrans 0.04700)		0 57	
10465 10466	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10465 10466 10467	AAD AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10465 10466 10467 10468	AAD AAG AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD LTE-TDD	7.82 8.32	±9.6 ±9.6
10465 10466 10467 10468 10469	AAD AAG AAG AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD LTE-TDD LTE-TDD	7.82 8.32 8.56	±9.6 ±9.6 ±9.6
10465 10466 10467 10468	AAD AAG AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD LTE-TDD	7.82 8.32	±9.6 ±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10474	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10475	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10477	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10478	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10480	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6
10481	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10482	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6
10483	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	±9.6
10485	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	±9.6
10486	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	±9.6
10488	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	±9.6
10489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	±9.6
10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	±9.6
10502	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	±9.6
10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	±9.6
10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	<u>+</u> 9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	<u>+9.6</u>
10513	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10514	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10518	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10519	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	±9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6
10521	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN WLAN	7.97	±9.6
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10523 10524	AAC	IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6
10524	AAC AAC	IEEE 802.11a/n WiFi 5 GHZ (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.6 ±9.6
10525		IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6
10526	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle)	WLAN		
10527	AAC AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.6 ±9.6
10528	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.36	±9.6
10529	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.43	±9.6
10531	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.29	±9.6
10532	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10533	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.38	±9.6
10534	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6
10535	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.32	±9.6
10538	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.44	±9.6
10537	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6
10538	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.39	±9.6
10040	1110			0.00	

10541 AAC IEEE 802:118: WIFi (40 MHz, MCS8, 99pc dury cycle) WLAN 10542 AAC IEEE 802:118: WIFi (40 MHz, MCS8, 99pc dury cycle) WLAN 10544 AAC IEEE 802:118: WIFi (40 MHz, MCS9, 99pc dury cycle) WLAN 10545 AAC IEEE 802:118: WIFi (80 MHz, MCS1, 99pc dury cycle) WLAN 10546 AAC IEEE 802:118: WIFi (80 MHz, MCS3, 99pc dury cycle) WLAN 10547 AAC IEEE 802:118: WIFi (80 MHz, MCS3, 99pc dury cycle) WLAN 10550 AAC IEEE 802:118: WIFi (80 MHz, MCS3, 99pc dury cycle) WLAN 10551 AAC IEEE 802:118: WIFi (80 MHz, MCS3, 99pc dury cycle) WLAN 10552 AAC IEEE 802:118: WIFi (80 MHz, MCS3, 99pc dury cycle) WLAN 10553 AAD IEEE 802:118: WIFi (160 MHz, MCS3, 99pc dury cycle) WLAN 10554 AAD IEEE 802:118: WIFi (160 MHz, MCS3, 99pc dury cycle) WLAN 10556 AAD IEEE 802:118: WIFi (160 MHz, MCS3, 99pc dury cycle) WLAN 10556 AAD IEEE 802:118: WIFi (160 MHz, MCS3, 99pc dury cycle) WLAN 10556 AAD <th>PAR (dB)</th> <th>Unc^E $k = 2$</th>	PAR (dB)	Unc ^E $k = 2$
10484 AAC IEEE 802.11ac WIFI (40 MHz, MCS9, 98pc duty cycle) WLAN 10544 AAC IEEE 802.11ac WIFI (80 MHz, MCS9, 98pc duty cycle) WLAN 10545 IAC IEEE 802.11ac WIFI (80 MHz, MCS1, 99pc duty cycle) WLAN 10546 AAC IEEE 802.11ac WIFI (80 MHz, MCS3, 99pc duty cycle) WLAN 10547 AAC IEEE 802.11ac WIFI (80 MHz, MCS3, 99pc duty cycle) WLAN 10550 AAC IEEE 802.11ac WIFI (80 MHz, MCS3, 99pc duty cycle) WLAN 10551 AAC IEEE 802.11ac WIFI (80 MHz, MCS3, 99pc duty cycle) WLAN 10552 AAC IEEE 802.11ac WIFI (80 MHz, MCS3, 99pc duty cycle) WLAN 10555 AAD IEEE 802.11ac WIFI (100 MHz, MCS3, 99pc duty cycle) WLAN 10555 AAD IEEE 802.11ac WIFI (100 MHz, MCS3, 99pc duty cycle) WLAN 10556 AAD IEEE 802.11ac WIFI (100 MHz, MCS3, 99pc duty cycle) WLAN 10556 AAD IEEE 802.11ac WIFI (100 MHz, MCS3, 99pc duty cycle) WLAN 10556 AAD IEEE 802.11ac WIFI (100 MHz, MCS3, 99pc duty cycle) WLAN 10566 AAA <td>8.46</td> <td>±9.6</td>	8.46	±9.6
10544 AAC IEEE B02.11ac WFF (80 MHz, MCS1.99ec duty cycle) WLAN 10545 AAC IEEE B02.11ac WFF (80 MHz, MCS2, 98pc duty cycle) WLAN 10546 AAC IEEE B02.11ac WFF (80 MHz, MCS3, 98pc duty cycle) WLAN 10547 AAC IEEE B02.11ac WFF (80 MHz, MCS4, 98pc duty cycle) WLAN 10548 AAC IEEE B02.11ac WFF (80 MHz, MCS4, 99pc duty cycle) WLAN 10551 AAC IEEE B02.11ac WFF (80 MHz, MCS4, 99pc duty cycle) WLAN 10552 AAC IEEE B02.11ac WFF (80 MHz, MCS3, 99pc duty cycle) WLAN 10553 AAD IEEE B02.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10556 AAD IEEE B02.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10556 AAD IEEE B02.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10557 AAD IEEE B02.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10558 AAD IEEE B02.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10568 AAD IEEE B02.11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10568 AAD <t< td=""><td>8.65</td><td>±9.6</td></t<>	8.65	±9.6
10454 AAC IEEE 802 11ac WFF (80 MHz, MCS2, 98pc duty cycle) WLAN 10547 AAC IEEE 802 11ac WFF (80 MHz, MCS3, 98pc duty cycle) WLAN 10547 AAC IEEE 802 11ac WFF (80 MHz, MCS3, 98pc duty cycle) WLAN 10550 AAC IEEE 802 11ac WFF (80 MHz, MCS3, 98pc duty cycle) WLAN 10550 AAC IEEE 802 11ac WFF (80 MHz, MCS3, 99pc duty cycle) WLAN 10552 AAC IEEE 802 11ac WFF (80 MHz, MCS3, 99pc duty cycle) WLAN 10553 AAC IEEE 802 11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10555 AAD IEEE 802 11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10555 AAD IEEE 802 11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10556 AAD IEEE 802 11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10566 AAD IEEE 802 11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10567 AAD IEEE 802 11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10568 AAD IEEE 802 11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10568 AAD	8.65	±9.6
10546 AAC IEEE 802:11ac WFF (80 MHz, MCS3, 98pc duty cycle) WLAN 10547 AAC IEEE 802:11ac WFF (80 MHz, MCS4, 98pc duty cycle) WLAN 10550 AAC IEEE 802:11ac WFF (80 MHz, MCS4, 98pc duty cycle) WLAN 10551 AAC IEEE 802:11ac WFF (80 MHz, MCS4, 98pc duty cycle) WLAN 10552 AAC IEEE 802:11ac WFF (80 MHz, MCS4, 98pc duty cycle) WLAN 10552 AAC IEEE 802:11ac WFF (160 MHz, MCS9, 99pc duty cycle) WLAN 10554 AAD IEEE 802:11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10555 AAD IEEE 802:11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10556 AAD IEEE 802:11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10556 AAD IEEE 802:11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10560 AAD IEEE 802:11ac WFF (160 MHz, MCS3, 99pc duty cycle) WLAN 10564 AAA IEEE 802:11ac WFF (160 MHz, MCS8, 99pc duty cycle) WLAN 10564 AAA IEEE 802:11ac WFF (160 MHz, MCS8, 99pc duty cycle) WLAN 10566 AAA	8.47	±9.6
10547 AAC IEEE 802 11ac WIF (80 MHz, MCS3, 99pc dur, oycle) WLAN 10548 AAC IEEE 802 11ac WIF (80 MHz, MCS4, 99pc dur, oycle) WLAN 10557 AAC IEEE 802.11ac WIF (80 MHz, MCS4, 99pc dur, oycle) WLAN 10558 AAC IEEE 802.11ac WIF (80 MHz, MCS4, 99pc dur, oycle) WLAN 10552 AAC IEEE 802.11ac WIF (80 MHz, MCS4, 99pc dur, oycle) WLAN 10558 AAD IEEE 802.11ac WIF (160 MHz, MCS4, 99pc dur, oycle) WLAN 10555 AAD IEEE 802.11ac WIF (160 MHz, MCS4, 99pc dur, oycle) WLAN 10556 AAD IEEE 802.11ac WIF (160 MHz, MCS4, 99pc dur, oycle) WLAN 10560 AAD IEEE 802.11ac WIF (160 MHz, MCS4, 99pc dur, oycle) WLAN 10561 AAD IEEE 802.11ac WIF (160 MHz, MCS4, 99pc dur, oycle) WLAN 10562 AAD IEEE 802.11ac WIF (160 MHz, MCS5, 99pc dur, oycle) WLAN 10568 AAD IEEE 802.11ac WIF (160 MHz, MCS5, 99pc dur, oycle) WLAN 10568 AAA IEEE 802.11ac WIF (160 MHz, MCS5, 99pc dur, oycle) WLAN 10568 AAA	8.55	±9.6
10540 AAC IEEE 802:11ac WIF (80 MHz, MCS4, 99pc duty cycle) WLAN 10550 AAC IEEE 802:11ac WIF (80 MHz, MCS7, 99pc duty cycle) WLAN 10552 AAC IEEE 802:11ac WIF (80 MHz, MCS9, 99pc duty cycle) WLAN 10553 AAC IEEE 802:11ac WIF (160 MHz, MCS9, 99pc duty cycle) WLAN 10554 AAD IEEE 802:11ac WIF (160 MHz, MCS9, 99pc duty cycle) WLAN 10555 AAD IEEE 802:11ac WIF (160 MHz, MCS9, 99pc duty cycle) WLAN 10556 AAD IEEE 802:11ac WIF (160 MHz, MCS9, 99pc duty cycle) WLAN 10557 AAD IEEE 802:11ac WIF (160 MHz, MCS9, 99pc duty cycle) WLAN 10558 AAD IEEE 802:11ac WIF (160 MHz, MCS9, 99pc duty cycle) WLAN 10562 AAD IEEE 802:11ac WIF (160 MHz, MCS9, 99pc duty cycle) WLAN 10564 AAA IEEE 802:11ac WIF (160 MHz, MCS9, 99pc duty cycle) WLAN 10564 AAA IEEE 802:11ac WIF (160 MHz, MCS9, 99pc duty cycle) WLAN 10564 AAA IEEE 802:11g WIF 2:4 GHz (DSS-OFDM, 18 Mbps, 99pc duty cycle) WLAN 10564 AAA	8.35	±9.6
10550 AAC IEEE 802.11ac WFI (80 MHz, MCS8, 99pc duty cycle) WLAN 10551 AAC IEEE 802.11ac WFI (80 MHz, MCS8, 99pc duty cycle) WLAN 10552 AAC IEEE 802.11ac WFI (80 MHz, MCS8, 99pc duty cycle) WLAN 10553 AAC IEEE 802.11ac WFI (80 MHz, MCS8, 99pc duty cycle) WLAN 10554 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10555 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10555 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10554 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10561 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10564 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10564 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10564 AAA IEEE 802.11g WFI 2.4 GHz (DSSS-OFDM, 9Mbps, 90pc duty cycle) WLAN 10565 AAA IEEE 802.11g WFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10566	8.49	±9.6
10551 AAC IEEE 802.11ac WFI (80 MHz, MCS8, 99pc duty cycle) WLAN 10552 AAC IEEE 802.11ac WFI (80 MHz, MCS8, 99pc duty cycle) WLAN 10554 AAD IEEE 802.11ac WFI (80 MHz, MCS9, 99pc duty cycle) WLAN 10555 AAD IEEE 802.11ac WFI (160 MHz, MCS9, 99pc duty cycle) WLAN 10556 AAD IEEE 802.11ac WFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10557 AAD IEEE 802.11ac WFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10568 AAD IEEE 802.11ac WFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10560 AAD IEEE 802.11ac WFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10561 AAD IEEE 802.11ac WFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10564 AAA IEEE 802.11g WFI 2.4 GHz (DSSS OFDM, 9Mps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WFI 2.4 GHz (DSSS OFDM, 48 Mps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WFI 2.4 GHz (DSSS OFDM, 48 Mps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WFI 2.4 GHz (DSSS OFDM, 48 Mps, 99pc duty cycle) WLAN	8.37	±9.6
10552 AAC IEEE 802.11ac WFI (80 MHz, MCS8, 99pc duty cycle) WLAN 10553 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10554 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10555 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10556 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10557 ADD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10560 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10561 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10562 AAD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10564 AAA IEEE 802.11g WFI 2.4GHz (DSSS-OFDM, 18 Mpps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WFI 2.4GHz (DSSS-OFDM, 18 Mpps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WFI 2.4GHz (DSSS-OFDM, 36 Mpps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WFI 2.4GHz (DSSS-OFDM, 48 Mpps, 90pc duty cycle) WLAN	8.38	±9.6
10553 AAC IEEE 802:11 ac WFF (80 MHz, MCS0, 99c duty cycle) WLAN 10554 AAD IEEE 802:11 ac WFF (160 MHz, MCS0, 99c duty cycle) WLAN 10555 AAD IEEE 802:11 ac WFF (160 MHz, MCS2, 99c duty cycle) WLAN 10556 AAD IEEE 802:11 ac WFF (160 MHz, MCS3, 99c duty cycle) WLAN 10557 AAD IEEE 802:11 ac WFF (160 MHz, MCS4, 99c duty cycle) WLAN 10560 AAD IEEE 802:11 ac WFF (160 MHz, MCS3, 99c duty cycle) WLAN 10561 AAD IEEE 802:11 ac WFF (160 MHz, MCS9, 99c duty cycle) WLAN 10562 AAD IEEE 802:11 ac WFF (160 MHz, MCS9, 99c duty cycle) WLAN 10564 AAA IEEE 802:11 ac WFF (160 MHz, MCS9, 99c duty cycle) WLAN 10564 AAA IEEE 802:11 gWFF 2: 4GHz (DSSS-OFDM, 12 Mbps, 99c duty cycle) WLAN 10566 AAA IEEE 802:11 gWFF 2: 4GHz (DSSS-OFDM, 24 Mbps, 99c duty cycle) WLAN 10566 AAA IEEE 802:11 gWFF 2: 4GHz (DSSS-OFDM, 48 Mbps, 99c duty cycle) WLAN 10568 AAA IEEE 802:11 gWFF 2: 4GHz (DSSS-OFDM, 48 Mbps, 90c duty cycle) WLAN	8.50	±9.6
10554 AD IEEE 802.11ac WiFI (160 MHz, MCS0, 99pc duty cycle) WLAN 10555 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10557 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10558 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10560 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10561 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10562 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10564 AAA IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10569 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLA	8.42	±9.6
10555 AD IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle) WLAN 10556 AD IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle) WLAN 10557 AAD IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle) WLAN 10558 AAD IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle) WLAN 10560 AD IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle) WLAN 10561 AAD IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle) WLAN 10563 AAD IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle) WLAN 10564 AAA IEEE 802.11ac WiFi (24 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10565 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 10571 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS OFDM, 54 Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS .5 Mbps, 90pc duty cycle) <t< td=""><td>8.45</td><td>±9.6</td></t<>	8.45	±9.6
10556 AAD IEEE 802.11ac WiFI (160 MHz, MCS2, 99pc duty cycle) WLAN 10557 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10560 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10561 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10562 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10563 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10564 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10569 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS.OFDM, 48 Mbps, 90pc duty cycle) WLAN 10570 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS.OFDM, 48 Mbps, 90pc duty cycle) WLAN 10571 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS.OFDM, 48 Mbps, 90pc duty cy	8.48	±9.6
10557 AD IEEE 802.11ac WFI (160 MHz, MCS3, 99pc duty cycle) WLAN 10568 AAD IEEE 802.11ac WFI (160 MHz, MCS4, 99pc duty cycle) WLAN 10560 AD IEEE 802.11ac WFI (160 MHz, MCS6, 99pc duty cycle) WLAN 10561 AD IEEE 802.11ac WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10562 AAD IEEE 802.11a WFI (160 MHz, MCS8, 99pc duty cycle) WLAN 10563 AAD IEEE 802.11g WFI 2.4 GHz (DSSS-OFDM, 9Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 10570 AAA IEEE 802.11g WFI 2.4 GHz (DSSS, 5 Mbps, 90pc duty cycle) WLAN 10571 AAA IEEE 802.11b WFI 2.4 GHz (DSSS, 5 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WFI 2.4 GHz (DSSS, 5 Mbps, 90pc duty cycle) WLA	8.47	±9.6
10558 AAD IEEE 802.11ac WIFI (160 MHz, MCS6, 99pc duty cycle) WLAN 10560 AAD IEEE 802.11ac WIFI (160 MHz, MCS6, 99pc duty cycle) WLAN 10561 AAD IEEE 802.11ac WIFI (160 MHz, MCS9, 99pc duty cycle) WLAN 10562 AAD IEEE 802.11g WIFI (24 GHz (DSSS-OFDM, 90pc, 90pc duty cycle) WLAN 10564 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 34 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 10577 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 14 Mbps, 90pc duty cycle) WLAN 10571 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 55 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS-0FDM, 48 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS-0FDM	8.50	±9.6
10560 AAD IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle) WLAN 10561 AAD IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle) WLAN 10562 AAD IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle) WLAN 10563 AAD IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle) WLAN 10564 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle) WLAN 10565 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 10569 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 10570 AAA IEEE 802.116 WiFi 2.4 GHz (DSSS, 10 Mbps, 90pc duty cycle) WLAN 10571 AAA IEEE 802.116 WiFi 2.4 GHz (DSSS, 10 Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.116 WiFi 2.4 GHz (DSSS, 10 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.116 WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.116 WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90p	8.52	±9.6
10561 AAD IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle) WLAN 10562 AAD IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle) WLAN 10563 AAA IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle) WLAN 10564 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 34 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 34 Mbps, 99pc duty cycle) WLAN 10569 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle) WLAN 10570 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5Mbps, 90pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS-OFDM, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 90pc duty cycle	8.61	±9.6
10562 AAD IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle) WLAN 10563 AAD IEEE 802.11a WiFi (160 MHz, MCS9, 99pc duty cycle) WLAN 10564 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9Mbps, 99pc duty cycle) WLAN 10565 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10569 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10570 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10571 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 70 Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 55 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 40 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 40 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GH	8.73	±9.6
10563 AAD IEEE 802.11ac WiFI (160 MHz, MCS9, 99pc duty cycle) WLAN 10564 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 32 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 38 Mbps, 99pc duty cycle) WLAN 10570 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFI 2.4 GHz (DSSS, OFDM, 54 Mbps, 99pc duty cycle) WLAN 10572 AAA IEEE 802.11b WiFI 2.4 GHz (DSSS, 55 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFI 2.4 GHz (DSSS, 55 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11b WiFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g	8.56	±9.6
10564 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle) WLAN 10565 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 38 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 38 Mbps, 99pc duty cycle) WLAN 10570 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10577 AAA IEE	8.69	±9.6
10565 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) WLAN 10566 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 14 Mbps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 10570 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, OFDM, 6 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10578 AAA <td< td=""><td>8.77</td><td>±9.6</td></td<>	8.77	±9.6
10566 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle) WLAN 10567 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10570 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 55 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10579 AAA IEEE	8.25	±9.6
10567 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle) WLAN 10568 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10570 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 0FDM, 6 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10579 AAA <t< td=""><td>8.45</td><td>±9.6</td></t<>	8.45	±9.6
10568 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) WLAN 10569 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, OFDM, 54 Mbps, 99pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10580 AAA IEE	8.13	±9.6
10569 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle) WLAN 10570 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 8	8.00	±9.6
10570 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle) WLAN 10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.	8.37	±9.6
10571 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) WLAN 10572 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g WiFi 2.4 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10582 AAC IEEE 802.11g W	8.10	±9.6
10572 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) WLAN 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g/WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10581 AAC IEEE 802.11g/WiFi 2.4 GHz (DSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.11g/WiFi 5.4 GHz (OFDM, 64 Mbps, 90pc duty cycle) WLAN 10584 AAC IEEE 802	8.30	±9.6
10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) WLAN 10574 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11g WiFi 5.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.11g WiFi 5.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10584 AAC IEEE 802.11g /WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE	1.99	±9.6
10574 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle) WLAN 10575 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10579 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10579 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g /WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11g /W WIFI 5.6 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 10584 AAC IEEE 802.11a /W WIFI 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a /W WIFI 5 GHz (OFDM, 36 Mbps, 90pc	1.99	±9.6
10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) WLAN 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.1	1.98	±9.6
10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) WLAN 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.	1.98	±9.6
10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) WLAN 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11n (HT M	8.59	±9.6
10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) WLAN 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11a/n WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/n WiFi 5 GH	8.60	±9.6
10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) WLAN 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11g/WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OF	8.70	±9.6
10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) WLAN 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10580 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 5	8.49	±9.6
10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) WLAN 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc	8.36	±9.6
10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) WLAN 10583 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycl	8.76	±9.6
10583 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) WLAN 10584 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	8.35	±9.6
10584 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) WLAN 10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	8.67	±9.6
10585 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) WLAN 10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	8.59	±9.6
10586 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) WLAN 10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle)	8.60	±9.6
10587 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) WLAN 10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) <td< td=""><td>8.70</td><td>±9.6</td></td<>	8.70	±9.6
10588 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) WLAN 10589 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLA	8.49	±9.6
10589 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) WLAN 10590 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11a/n WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN	8.36	±9.6
10590 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) WLAN 10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN	8.76	±9.6
10591 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.35	±9.6
10592 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) WLAN 10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.67	±9.6
10593 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) WLAN 10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.63	±9.6
10594 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) WLAN 10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.79	±9.6
10595 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) WLAN 10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.64	±9.6
10596 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) WLAN 10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.74	±9.6
10597 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) WLAN 10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.74	±9.6
10598 AAC IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) WLAN 10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.71	±9.6
10599 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) WLAN 10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.72	±9.6
10600 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) WLAN 10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.50	±9.6
10601 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) WLAN	8.79	±9.6
	8.88	±9.6
	8.82	±9.6
10602 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) WLAN 10603 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) WLAN	9.03	±9.6
	8.76	±9.6
		±9.6
10606 AAC IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) WLAN 10607 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) WLAN	8.82	<u>±9.6</u> ±9.6
10607 AAC IEEE 802.11ac WIFI (20 MHz, MCS0, 90pc duty cycle) WLAN 10608 AAC IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc duty cycle) WLAN	8.64	±9.6

10610 10611 10612 10613 10614 10615 10616 10617	AAC AAC AAC AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle) IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle) IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	Group WLAN WLAN WLAN	PAR (dB) 8.57 8.78	Unc ^E $k = 2$ ± 9.6 ± 9.6
10611 10612 10613 10614 10615 10616 10617	AAC AAC			8.78	
10612 10613 10614 10615 10616 10617	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)			
10613 10614 10615 10616 10617			VVLAN	8.70	±9.6
10614 10615 10616 10617	A A C	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10615 10616 10617	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.6
10616 10617	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.59	±9.6
10617	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.81	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	<u>±9.6</u>
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.96	<u>±9.6</u>
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	<u>±9.6</u>
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
	AAC AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle) IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.85	±9.6
	AAC	IEEE 802.11ac WiFI (80 MHz, MCS4, 90pc duty cycle)	WLAN WLAN	8.72	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.74	±9.6 ±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.86	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
10641	AAD	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6
10643	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6
10644	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6
10645	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6
10646	AAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
	AAF	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
	AAF	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAE	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
10659	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
10660	AAB	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6
10661	AAB	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6
10662	AAB	Pulse Waveform (200Hz, 80%) Bluetooth Low Energy	Test	0.97	±9.6
10670	AAA AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	Bluetooth	2.19	±9.6 ±9.6
10671	AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN WLAN	8.57	±9.6
10672	AAC	IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6
10673	AAC	IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.74	±9.6
10674	AAC	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.90	±9.6
10676	AAC	IEEE 802.11ax (20 MHz, MCS4, 300c duty cycle)	WLAN	8.77	±9.6
10677	AAC	IEEE 802.11ax (20 MHz, MCS3, 30pc duty cycle)	WLAN	8.73	±9.6
10678	AAC	IEEE 802.11ax (20 MHz, MCSO, 30pc duty cycle)	WLAN	8.78	±9.6
10679	AAC	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.89	±9.6
10680	AAC	IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6
10681	AAC	IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6
10681 10682	AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10681 10682 10683					
10682	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.26	±9.6
10682 10683		IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN WLAN	8.26	±9.6 ±9.6

10688 AAC 10689 AAC 10690 AAC 10691 AAC 10692 AAC 10693 AAC 10694 AAC 10695 AAC 10696 AAC 10697 AAC 10698 AAC 10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 </th <th>IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle)</th> <th>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</th> <th>8.45 8.29 8.55 8.29 8.25 8.29 8.25 8.29 8.25 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.82 8.73 8.82 8.73 8.82 8.73 8.66 8.32 8.55 8.33 8.29 8.33 8.29 8.33 8.26 8.45 8.30 8.48</th> <th>± 9.6 ± 9.6 =</th>	IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.45 8.29 8.55 8.29 8.25 8.29 8.25 8.29 8.25 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.82 8.73 8.82 8.73 8.82 8.73 8.66 8.32 8.55 8.33 8.29 8.33 8.29 8.33 8.26 8.45 8.30 8.48	± 9.6 ± 9.6 =
10689 AAC 10690 AAC 10691 AAC 10692 AAC 10693 AAC 10694 AAC 10695 AAC 10696 AAC 10697 AAC 10698 AAC 10699 AAC 10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 </td <td>IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.55 8.29 8.25 8.29 8.25 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.82 8.70 8.82 8.70 8.82 8.70 8.82 8.70 8.82 8.66 8.33 8.29 8.33 8.29 8.33 8.26 8.45 8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.55 8.29 8.25 8.29 8.25 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.82 8.70 8.82 8.70 8.82 8.70 8.82 8.70 8.82 8.66 8.33 8.29 8.33 8.29 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10690 AAC 10691 AAC 10692 AAC 10693 AAC 10694 AAC 10695 AAC 10696 AAC 10697 AAC 10698 AAC 10699 AAC 10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 </td <td>IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.1</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.29 8.25 8.29 8.25 8.78 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.1	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.29 8.25 8.29 8.25 8.78 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10691 AAC 10692 AAC 10693 AAC 10694 AAC 10695 AAC 10696 AAC 10697 AAC 10698 AAC 10699 AAC 10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10702 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10717 AAC 10718 AAC 10720 AAC 10721 </td <td>IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.25 8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.25 8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10692 AAC 10693 AAC 10694 AAC 10695 AAC 10696 AAC 10697 AAC 10698 AAC 10699 AAC 10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10702 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 </td <td>IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11a</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.55 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11a	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.55 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10693 AAC 10694 AAC 10695 AAC 10696 AAC 10697 AAC 10698 AAC 10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10702 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10720 </td <td>IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.55 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.55 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10694 AAC 10695 AAC 10696 AAC 10697 AAC 10698 AAC 10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 </td <td>IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.57 8.78 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.70 8.82 8.70 8.82 8.70 8.82 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.57 8.78 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.70 8.82 8.70 8.82 8.70 8.82 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10695 AAC 10696 AAC 10697 AAC 10698 AAC 10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 </td <td>IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.86 8.70 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10696 AAC 10697 AAC 10698 AAC 10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.86 8.70 8.82 8.70 8.82 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10697 AAC 10698 AAC 10709 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.61 8.89 8.82 8.73 8.86 8.70 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \end{array}$
10698 AAC 10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.89 8.82 8.73 8.86 8.70 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \end{array}$
10699 AAC 10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.33 8.29 8.33 8.29 8.33 8.29 8.33 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \end{array}$
10700 AAC 10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.73 8.86 8.70 8.82 8.56 8.69 8.65 8.32 8.55 8.33 8.29 8.33 8.29 8.33 8.29 8.33 8.29 8.33 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10701 AAC 10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 107010 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.86 8.70 8.82 8.56 8.69 8.55 8.33 8.29 8.33 8.29 8.33 8.29 8.33 8.29 8.33 8.45 8.33	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10702 AAC 10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 107010 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.70 8.82 8.56 8.69 8.65 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.33	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10703 AAC 10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 107010 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.33	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10704 AAC 10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.56 8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.33	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10705 AAC 10706 AAC 10707 AAC 10708 AAC 10709 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.69 8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.33	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10706 AAC 10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.66 8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10707 AAC 10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10708 AAC 10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.45 8.30	$ \begin{array}{r} \pm 9.6 \\ \end{array} $
10709 AAC 10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.30	$ \begin{array}{r} \pm 9.6 \\ \pm 9.6 \end{array} $
10710 AAC 10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.29 8.39 8.67 8.33 8.26 8.45 8.30	$ \begin{array}{r} \pm 9.6 \\ \end{array} $
10711 AAC 10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.39 8.67 8.33 8.26 8.45 8.30	$ \pm 9.6 $
10712 AAC 10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN	8.67 8.33 8.26 8.45 8.30	$ \pm 9.6 \pm 9.6 \pm 9.6 \pm 9.6 \pm 9.6 \pm 9.6 $
10713 AAC 10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN	8.33 8.26 8.45 8.30	±9.6 ±9.6 ±9.6
10714 AAC 10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN WLAN WLAN WLAN	8.26 8.45 8.30	±9.6 ±9.6
10715 AAC 10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN WLAN WLAN	8.45 8.30	±9.6
10716 AAC 10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN WLAN	8.30	
10717 AAC 10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN		±9.6
10718 AAC 10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)		8.48	
10719 AAC 10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN	0.01	±9.6
10720 AAC 10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC			8.24	±9.6
10721 AAC 10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC	IEEE 802.11av (80 MHz, MCS1, 900c duty cycle)	WLAN	8.81	±9.6
10722 AAC 10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC		WLAN	8.87	±9.6
10723 AAC 10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6
10724 AAC 10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6
10725 AAC 10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10726 AAC 10727 AAC 10728 AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle)	WLAN WLAN	8.90	±9.6
10727 AAC 10728 AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN WLAN	8.72	±9.6 ±9.6
10728 AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.66	±9.6
	IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6
10729 AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.64	±9.6
	IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle)	WLAN	8.67	±9.6
	IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
	IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.46	±9.6
	IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.40	±9.6
	IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.25	±9.6
	IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.33	±9.6
10736 AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.27	±9.6
	IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6
	IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
	IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.29	±9.6
	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.48	±9.6
	IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle)	WLAN	8.40	±9.6
	IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle)	WLAN	8.43	±9.6
10742 AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.94	±9.6
10746 AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	9.16	±9.6
10745 AAC	IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.93	±9.6
10746 AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.6
10740 AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle)	WLAN	9.04	±9.6
		WLAN	8.93	±9.6
10749 AAC			8.90	±9.6
	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN		±9.6
	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN WLAN	8.79	
10752 AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)		8.79 8.82	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle)	WLAN	9.00	±9.6
10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle)	WLAN	8.94	±9.6
10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.64	±9.6
10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.77	±9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.77	±9.6
10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.69	±9.6
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.58	±9.6
10760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle)	WLAN	8.49	±9.6
10761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.58	±9.6
10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.49	±9.6
10763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.53	±9.6
10764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.54	±9.6
10765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle)	WLAN	8.54	±9.6
10766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle)	WLAN	8.51	±9.6
10767	AAE	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	±9.6
10768	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10769	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10770	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10771	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10772	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
10773	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
10774	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10775	AAD	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10776	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10778	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6
10780	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10781	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10782	AAD	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6
10783	AAE	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10784	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.6
10785	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6
10786	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6
10787	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6
10788	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10789	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6
10790	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10791	AAE	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6
10792	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10793	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6
10794	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10795	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6
10796	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10797	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	±9.6
10798	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10799	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10802	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6
10803	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	±9.6
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10817	AAE	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
1	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
10819		5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	±9.6
10820	AAD			0.44	±9.6
10820 10821	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	
10820 10821 10822	AAD AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10820 10821 10822 10823	AAD AAD AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.41 8.36	±9.6 ±9.6
10820 10821 10822	AAD AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD	8.41	±9.6 ±9.6 ±9.6
10820 10821 10822 10823 10824 10825	AAD AAD AAD AAD AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD	8.41 8.36 8.39 8.41	± 9.6 ± 9.6 ± 9.6 ± 9.6
10820 10821 10822 10823 10824	AAD AAD AAD AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD	8.41 8.36 8.39	±9.6 ±9.6 ±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10834 10835	AAD AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.75	±9.6
10835	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6 ±9.6
10830	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
10858 10859	AAD AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.36 8.34	±9.6
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	8.34	±9.6 ±9.6
10860	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
10864	AAD	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
10869	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10870	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	±9.6
10871	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10872	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10874	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10875 10876	AAE AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	7.78	±9.6 ±9.6
10878	AAE	5G NR (CP-OFDM, 100% RB, 100MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	7.95	±9.6
10878	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10879	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	±9.6
10880	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10881	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10882	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10883	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6
10884	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6
10885	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10886	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10887	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10888 10889	AAE AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	8.35 8.02	±9.6 ±9.6
10889	AAE	5G NR (CP-OFDM, 1 HB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	8.40	±9.6
10890	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 KHz)	5G NR FR2 TDD	8.13	±9.6
10892	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10897	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6
10898	AAB	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10899	AAB	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10900	AAB	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10901	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902	AAB	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10903	AAB	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10904	AAB	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10905	AAB	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10906		5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.68	±9.6 ±9.6
10907 10908	AAC AAB	5G NR (DFT-S-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	±9.6
10908	AAB	5G NR (DFT-S-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10909	AAB	5G NR (DFT-S-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10010	1.000				

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
10915	AAB	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAB	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAB	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10920	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10921	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924 10925	AAB AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10920	AAB	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10927	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD 5G NR FR1 FDD	5.94	±9.6 ±9.6
10929	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)			
10929	AAC	5G NR (DF1-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.52 5.52	±9.6 ±9.6
10930	AAC	5G NR (DFT-s-OFDM, 1 RB, 20MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10931	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 KHz)	5G NR FR1 FDD	5.51	±9.6
10932	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 KHz)	5G NR FR1 FDD	5.51	±9.6
10934	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
10938	AAC	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10948	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	<u>±9</u> .6
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10957 10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAA AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	8.61 8.33	±9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20MHz, 64-QAM, 30 KHz)	5G NR FR1 FDD	9.32	±9.6 ±9.6
10960	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 KHz)	5G NR FR1 TDD	9.32	±9.6
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.30	±9.6
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 KHz)	5G NR FR1 TDD	9.55	±9.6
10963	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	±9.6
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.6
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	±9.6
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	±9.6
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.6
10978	AAA	ULLA BDR	ULLA	1.16	±9.6
103/0				0 50	±9.6
10979	AAA	ULLA HDR4	ULLA	8.58	±3.0
	AAA AAA	ULLA HDR8	ULLA	10.32	±9.6
10979					

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.