

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Report No.: RFBEMI-WTW-P23110406-1

FCC ID: NOIKBN367

Product: Electronic Display Device

Brand: Rakuten kobo

Model No.: N367

Received Date: 2023/11/15

Test Date: 2023/12/11 ~ 2024/1/10

Issued Date: 2024/1/31

Applicant: NETRONIX, INC.

Address: No. 945, Boai St., Jubei City, Hsin-Chu, 30265, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: (1) No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kewi Shan Dist., Taoyuan City 33383, Taiwan

(2) No. 70, Wenming Rd., Guishan Dist., Taoyuan City 333, Taiwan

FCC Registration / (1) 788550 / TW0003 **Designation Number:** (2) 281270 / TW0032

Approved by:	Jeremy Lin	, Date:	2024/1/31	

Jeremy Lin / Project Engineer

This test report consists of 37 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by: Vera Huang / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at https://www.bureauveritas.com/home/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

R	elease Control Record4			
1		Certificate	5	
2		Summary of Test Results	6	
	2.1	Measurement Uncertainty	6	
	2.2	Supplementary Information		
3		General Information	7	
	3.1	General Description	7	
	3.2	Antenna Description of EUT		
	3.3	Channel List		
	3.4	Test Mode Applicability and Tested Channel Detail		
	3.5 3.6	Duty Cycle of Test Signal Test Program Used and Operation Descriptions		
	3.7	Connection Diagram of EUT and Peripheral Devices		
	3.8	Configuration of Peripheral Devices and Cable Connections		
4		Test Instruments		
_				
	4.1 4.2	RF Output PowerPower Spectral Density		
	4.2	6 dB Bandwidth		
	4.4	Conducted Out of Band Emissions		
	4.5	AC Power Conducted Emissions		
	4.6	Unwanted Emissions below 1 GHz		
	4.7	Unwanted Emissions above 1 GHz	14	
5		Limits of Test Items	15	
	5.1	RF Output Power	. 15	
	5.2	Power Spectral Density		
	5.3	6 dB Bandwidth		
	5.4	Conducted Out of Band Emissions		
	5.5	AC Power Conducted Emissions		
	5.6 5.7	Unwanted Emissions below 1 GHz		
	_			
6		Test Arrangements		
	6.1	RF Output Power		
	6.1.2	· ·		
	6.2	2 Test ProcedurePower Spectral Density		
	6.2.			
	6.2.2	·		
	6.3	6 dB Bandwidth		
	6.3.	·		
	6.3.2			
	6.4	Conducted Out of Band Emissions		
	6.4.2	· ·		
	6.5	AC Power Conducted Emissions		
	6.5.			
	6.5.2	·		
	6.6	Unwanted Emissions below 1 GHz		
	6.6.	· ·		
	6.6.2			
	6.7 6.7.	Unwanted Emissions above 1 GHz		
	6.7.2	· ·		
7		Test Results of Test Item	.23	

		VERTIAS
7.1	1 RF Output Power	23
7.2	Power Spectral Density	24
7.3		
7.4	4 Conducted Out of Band Emissions	26
7.5	5 AC Power Conducted Emissions	27
7.6	6 Unwanted Emissions below 1 GHz	29
7.7	7 Unwanted Emissions above 1 GHz	31
8	Pictures of Test Arrangements	36
9	Information of the Testing Laboratories	37

Release Control Record

Issue No.	Description	Date Issued
RFBEMI-WTW-P23110406-1	Original Release	2024/1/31

Report No.: RFBEMI-WTW-P23110406-1 Page No. 4 / 37 Report Format Version: 7.1.0

1 Certificate

Product: Electronic Display Device

Brand: Rakuten kobo

Test Model: N367

Sample Status: Engineering sample

Applicant: NETRONIX, INC.

Test Date: 2023/12/11 ~ 2024/1/10

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Measurement ANSI C63.10-2013

procedure: KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Report No.: RFBEMI-WTW-P23110406-1 Page No. 5 / 37 Report Format Version: 7.1.0

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)				
Standard / Clause	Test Item	Result	Remark	
15.247(b)	RF Output Power	Pass	Meet the requirement of limit.	
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.	
15.247(a)(2)	6 dB Bandwidth	Pass	Meet the requirement of limit.	
15.247(d)	Conducted Out of Band Emissions	Pass	Meet the requirement of limit.	
15.207	AC Power Conducted Emissions	Pass	Minimum passing margin is -11.67 dB at 0.18600 MHz	
15.205 / 15.209 / 15.247(d)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -8.9 dB at 40.67 MHz	
15.205 / 15.209 / 15.247(d)	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -6.8 dB at 2483.50 MHz	
15.203	Antenna Requirement	Pass	No antenna connector is used.	

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 **Measurement Uncertainty**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as

specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (±)
RF Output Power	-	1.371 dB
Power Spectral Density	-	1.017 dB
6 dB Bandwidth	-	206.5 Hz
Conducted Out of Band Emissions	9 kHz ~ 40 GHz	2.79 dB
AC Power Conducted Emissions	9 kHz ~ 30 MHz	2.88 dB
Unwanted Emissions below 1 GHz	9 kHz ~ 30 MHz	3 dB
onwanted Emissions below 1 GHZ	30 MHz ~ 1 GHz	2.93 dB
Linuxented Emissions above 1 CHz	1 GHz ~ 18 GHz	1.76 dB
Unwanted Emissions above 1 GHz	18 GHz ~ 40 GHz	1.77 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

Report No.: RFBEMI-WTW-P23110406-1 Page No. 6 / 37 Report Format Version: 7.1.0

3 General Information

3.1 General Description

Product	Electronic Display Device
Brand	Rakuten kobo
Test Model	N367
Status of EUT	Engineering sample
Davies Comply Dating	3.7 Vdc from battery
Power Supply Rating	5 Vdc from adapter or host equipment
Modulation Type GFSK	
Modulation Technology DTS	
Transfer Rate	Up to 1 Mbps
Operating Frequency	2.402 GHz ~ 2.48 GHz
Number of Channel	40
Output Power	2.301 mW (3.62 dBm)

Note:

1. The EUT uses following accessories.

LIOD OLLINA	Brand	LUXSHARE-ICT
	Model	LB93US005-1H
USB Cable 1	Material	TPE
	Signal Line	Shielded: Y, 1.0M, Core: N/A
USB Cable 2	Brand	HIGH-TEK
	Model	0UPNET23004N
	Material	TPE
	Signal Line	Shielded: Y, 1.0M, Core: N/A

2. The EUT could be supplied with three eMMC as below table.

No.	Brand	Model	Remark
1	Phison	PTE7A0YJ-16GE	1st source eMMC
2	Kinston	EMMC16G-PJ30-GA02	2nd source eMMC
3	FORESEE	FEMDNN016G-A3A55	3rd source eMMC

3. The EUT could be supplied with two DRAM LP-DDR4 as below table.

No.	Brand	Model	Remark
1	Nanya	NT6AN256M16AV-J2	1st source DRAM LP-DDR4
2	Leahkinn	LTHS0005GS4-ZPI1	2nd source DRAM LP-DDR4

4. Simultaneously transmission condition.

Condition	Technology		
1	WLAN (2.4 GHz) Bluetooth		
2	WLAN (5 GHz)	Bluetooth	
Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.			

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

Report No.: RFBEMI-WTW-P23110406-1 Page No. 7 / 37 Report Format Version: 7.1.0

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

Gain (dBi)	Antenna Type	Connector Type
3.91	Chip	N/A

^{*} Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

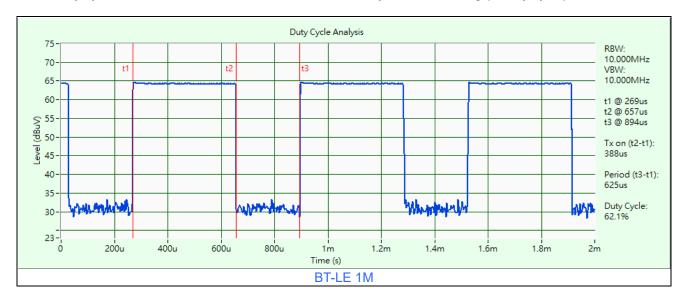
3.3 Channel List

40 channels are provided for BT-LE:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Report No.: RFBEMI-WTW-P23110406-1 Page No. 8 / 37 Report Format Version: 7.1.0

3.4 Test Mode Applicability and Tested Channel Detail

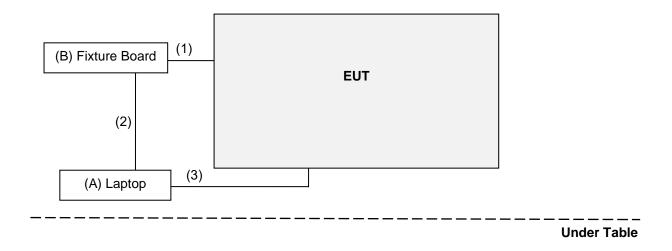

Pre-Scan:	1. The USB Cable has the following models: LB93US005-1H / 0UPNET23004N. Pre-scan these models of USB Cables and find the worst case as a representative test condition. 2. The eMMC has the following models: PTE7A0YJ-16GE / EMMC16G-PJ30-GA02 / FEMDNN016G-A3A55. Pre-scan these models of eMMC and find the worst case as a representative test condition. 3. The DRAM LP-DDR4 has the following models: NT6AN256M16AV-J2 / LTHS0005GS4-ZPI1. Prescan these models of DRAM LP-DDR4 and find the worst case as a representative test condition. 4. For Radiated, pre-scan Power from AC Adpeter via USB Cable / Laptop via USB Cable / Battery and find the worst case as a representative test condition. 5. For AC conduction, pre-scan Power from AC Adpeter via USB Cable / Laptop via USB Cable and find the worst case as a representative test condition. 6. EUT can be used in the following ways: X-axis / Y-axis / Z-axis. Pre-scan these ways and find the worst case as a representative test condition. 7. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
Worst Case:	 USB Cable Worst Condition: LB93US005-1H eMMC Worst Condition: PTE7A0YJ-16GE DRAM LP-DDR4 Worst Condition: NT6AN256M16AV-J2 For Radiated Worst Condition: Power from Laptop via USB Cable For AC conduction Worst Condition: Power from Laptop via USB Cable X-axis / Y-axis / Z-axis Worst Condition: Y-axis

Following channel(s) was (were) selected for the final test as listed below:

Test Item	Mode	Tested Channel	Modulation	Data Rate Parameter
RF Output Power / Power Spectral Density	BT-LE 1M	0, 19, 39	GFSK	1Mb/s
6 dB Bandwidth / Conducted Out of Band Emissions	BT-LE 1M	0, 19, 39	GFSK	1Mb/s
AC Power Conducted Emissions	BT-LE 1M	39	GFSK	1Mb/s
Unwanted Emissions below 1 GHz	BT-LE 1M	39	GFSK	1Mb/s
Unwanted Emissions above 1 GHz	BT-LE 1M	0, 19, 39	GFSK	1Mb/s

3.5 Duty Cycle of Test Signal

BT-LE 1M: Duty cycle = 0.388 ms / 0.625 ms x 100% = 62.1%, duty factor = 10 * log (1/Duty cycle) = 2.07 dB



3.6 Test Program Used and Operation Descriptions

Controlling software teraterm v4.80 has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.7 Connection Diagram of EUT and Peripheral Devices

3.8 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	Lenovo	20J4 MD A003TW	PF-11H9AK	N/A	Provided by Lab
B.	Fixture Board	N/A	N/A	N/A	N/A	Supplied by applicant

No.	Cable Descriptions	Qty.	Length (m)	Shielded (Yes/ No)	Cores (Qty.)	Remark
1.	Console Cable	1	0.6	No	0	Supplied by applicant (for RF Setup)
2.	USB Cable	1	1	Yes	0	Supplied by applicant
3.	USB Cable	1	1	Yes	0	Accessory of EUT

Report No.: RFBEMI-WTW-P23110406-1 Page No. 10 / 37 Report Format Version: 7.1.0

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Peak Power Analyzer Keysight	8990B	MY51000485	2023/1/19	2024/1/18
Wideband Power Sensor	N1923A	MY58020002	2023/1/18	2024/1/17
Keysight	NIBZSA	MY58140009	2023/1/18	2024/1/17

Notes:

1. The test was performed in Oven room.

2. Tested Date: 2024/1/10

4.2 Power Spectral Density

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Signal & Spectrum Analyzer R&S	FSV3044	101504	2023/6/5	2024/6/4
Software BV	ADT_RF Test Software V7.6.5.4	N/A	N/A	N/A

Notes:

1. The test was performed in Oven room.

2. Tested Date: 2024/1/10

4.3 6 dB Bandwidth

Refer to section 4.2 to get information of the instruments.

4.4 Conducted Out of Band Emissions

Refer to section 4.2 to get information of the instruments.

Report No.: RFBEMI-WTW-P23110406-1 Page No. 11 / 37 Report Format Version: 7.1.0

4.5 AC Power Conducted Emissions

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
50	E1-011276	01	2023/2/1	2024/1/31
50 ohm terminal resistance HUBER+SUHNER	E1-011312	10	2023/1/30	2024/1/29
IOBER+301 INER	E1-011591	17	2023/2/1	2024/1/31
DC-LISN Schwarzbeck	NNBM 8126G	8126G-069	2023/11/7	2024/11/6
EMI Test Receiver R&S	ESCI	100613	2023/12/4	2024/12/3
Fixed Attenuator Mini-Circuits	HAT-10+	PAD-COND1-01	2023/1/7	2024/1/6
LISN	ENV216	101826	2023/3/23	2024/3/22
R&S	ESH3-Z5	100311	2023/9/6	2024/9/5
RF Coaxial Cable Woken	5D-FB	Cable-cond1-01	2023/1/7	2024/1/6
Software BVADT	BVADT_Cond_ V7.3.7.4	N/A	N/A	N/A
V-LISN Schwarzbeck	NNBL 8226-2	8226-142	2023/8/31	2024/8/30

Notes:

1. The test was performed in HY - Conduction 1.

2. Tested Date: 2023/12/12

4.6 Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower Max-Full	MFT-151SS-0.5T	N/A	N/A	N/A
Bi_Log Antenna Schwarzbeck	VULB 9168	9168-1213	2023/10/13	2024/10/12
EMI Test Receiver R&S	ESR3	102782	2023/12/7	2024/12/6
Loop Antenna Electro-Metrics	EM-6879	269	2023/9/23	2024/9/22
Loop Antenna TESEQ	HLA 6121	45745	2023/8/8	2024/8/7
Preamplifier	EMC330N	980782	2023/1/16	2024/1/15
EMCI	EMC001340	980201	2023/9/27	2024/9/26
	5D-NM-BM	140903+140902	2023/1/7	2024/1/6
RF Coaxial Cable	EMCCFD400-NM-NM- 500	201233	2023/1/16	2024/1/15
EMCI	EMCCFD400-NM-NM- 3000	201235	2023/1/16	2024/1/15
	EMCCFD400-NM-NM- 9000	201236(with PAD)	2023/1/16	2024/1/15
Signal & Spectrum Analyzer R&S	FSW43	101866	2023/1/10	2024/1/9
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table Max-Full	MF-7802BS	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802BS	MF780208674	N/A	N/A

Notes:

1. The test was performed in WM - 966 chamber 8.

2. Tested Date: 2023/12/11

4.7 Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower Max-Full	MFT-151SS-0.5T	N/A	N/A	N/A
EMI Test Receiver R&S	ESR3	102782	2023/12/7	2024/12/6
Horn Antenna RFSPIN	DRH18-E	210103A18E	2023/11/12	2024/11/11
Horn Antenna Schwarzbeck	BBHA 9170	9170-1049	2023/11/12	2024/11/11
Preamplifier	EMC118A45SE	980808	2023/12/28	2024/12/27
EMCI	EMC184045SE	980788	2023/1/16	2024/1/15
	EMC101G-KM-KM-2000	201254	2023/1/16	2024/1/15
	EMC101G-KM-KM-3000	201257	2023/1/16	2024/1/15
RF Coaxial Cable	EMC101G-KM-KM-5000	201260	2023/1/16	2024/1/15
EMCI	EMC104-SM-SM-1000	210102	2023/1/16	2024/1/15
	EMC104-SM-SM-3000	201231	2023/1/16	2024/1/15
	EMC104-SM-SM-9000	201243	2023/1/16	2024/1/15
Signal & Spectrum Analyzer R&S	FSW43	101866	2023/1/10	2024/1/9
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table Max-Full	MF-7802BS	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802BS	MF780208674	N/A	N/A

Notes:

1. The test was performed in WM - 966 chamber 8.

2. Tested Date: 2023/12/29

5 Limits of Test Items

5.1 RF Output Power

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

5.2 Power Spectral Density

The Maximum of Power Spectral Density Measurement is 8 dBm in any 3 kHz.

5.3 6 dB Bandwidth

The minimum of 6 dB Bandwidth Measurement is 0.5 MHz.

5.4 Conducted Out of Band Emissions

Below 20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

5.5 AC Power Conducted Emissions

Frequency (MHz)	Conducted Limit (dBuV)		
Frequency (MHZ)	Quasi-peak	Average	
0.15 - 0.5	66 - 56	56 - 46	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

Report No.: RFBEMI-WTW-P23110406-1 Page No. 15 / 37 Report Format Version: 7.1.0

5.6 Unwanted Emissions below 1 GHz

Radiated emissions up to 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

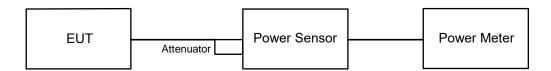
5.7 Unwanted Emissions above 1 GHz

Radiated emissions above 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.


Report No.: RFBEMI-WTW-P23110406-1 Page No. 16 / 37 Report Format Version: 7.1.0

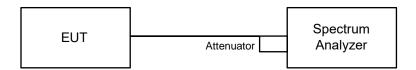
6 Test Arrangements

6.1 RF Output Power

6.1.1 Test Setup

6.1.2 Test Procedure

Peak Power:


A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

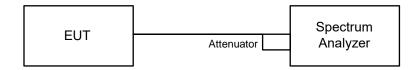
Average Power:

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

6.2 Power Spectral Density

6.2.1 Test Setup

6.2.2 Test Procedure


- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: 3 kHz.
- d. Set the VBW ≥ 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

Report No.: RFBEMI-WTW-P23110406-1 Page No. 17 / 37 Report Format Version: 7.1.0

6.3 6 dB Bandwidth

6.3.1 Test Setup

6.3.2 Test Procedure

- a. Set resolution bandwidth (RBW) = 100 kHz.
- b. Set the video bandwidth (VBW) ≥ 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

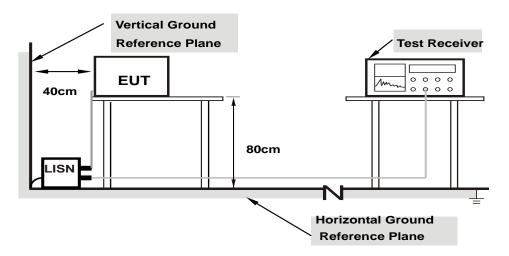
6.4 Conducted Out of Band Emissions

6.4.1 Test Setup

6.4.2 Test Procedure

MEASUREMENT PROCEDURE REF

- a. Set the RBW = 100 kHz.
- b. Set the VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.


MEASUREMENT PROCEDURE OOBE

- a. Set RBW = 100 kHz.
- b. Set VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep = auto couple.
- e. Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

6.5 AC Power Conducted Emissions

6.5.1 Test Setup

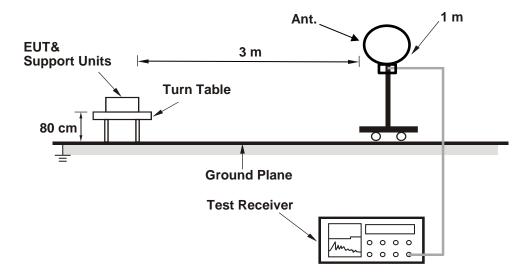
Note: 1.Support units were connected to second LISN.

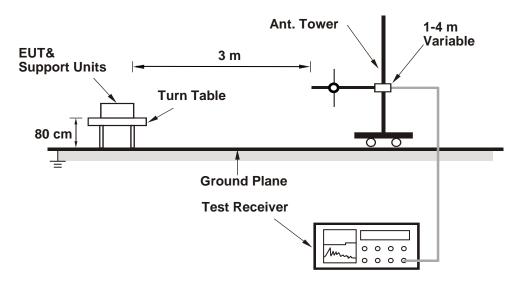
For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.5.2 Test Procedure

- a. The EUT was placed on a 0.8 meter to the top of table and placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz-30 MHz.


Report No.: RFBEMI-WTW-P23110406-1 Page No. 19 / 37 Report Format Version: 7.1.0


6.6 Unwanted Emissions below 1 GHz

6.6.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.6.2 Test Procedure

For Radiated emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

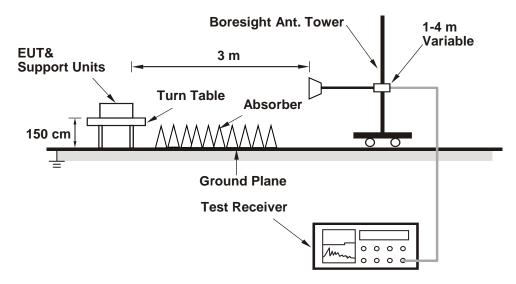
Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Notes:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

Report No.: RFBEMI-WTW-P23110406-1 Page No. 21 / 37 Report Format Version: 7.1.0

6.7 Unwanted Emissions above 1 GHz

6.7.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.7.2 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver/spectrum analyzer was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- 2. For emissions in restricted frequency bands (2390 MHz & 2483.5 MHz), fundamental and harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10 Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1 GHz. Test method refer to FCC response on 07/25/2017

FCC response on 07/25/2017

As for duty cycle of less than 98% and 2% variation in duty cycle, both methods described in 12.7.7.3 and 11.12.2.5.3 are technically the same and either one can be used. Please keep in mind that proper justification needs to be provided that explains why duty cycle of greater than 98% was not achievable.

All modes of operation were investigated and the worst-case emissions are reported.

7 Test Results of Test Item

7.1 RF Output Power

Input Power:	120 Vac, 60 Hz	Environmental Conditions:	25°C, 60% RH	Tested By:	Frank Fl Liu	
--------------	----------------	---------------------------	--------------	------------	--------------	--

For Peak Power

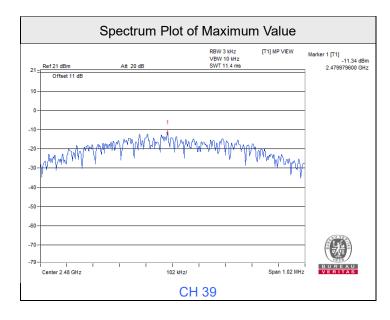
Chan.	Chan. Freq. (MHz) Peak Power (mW) Peak Power (dBm)		Peak Power (dBm)	Power Limit (dBm)	Test Result
0	2402	2.109	3.24	30	Pass
19	2440	2.023	3.06	30	Pass
39	2480	2.301	3.62	30	Pass

Note: The antenna gain is 3.91 dBi < 6 dBi, so the output power limit shall not be reduced.

For Average Power

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	1.941	2.88
19	2440	1.862	2.70
39	2480	2.113	3.25

Report No.: RFBEMI-WTW-P23110406-1 Page No. 23 / 37 Report Format Version: 7.1.0

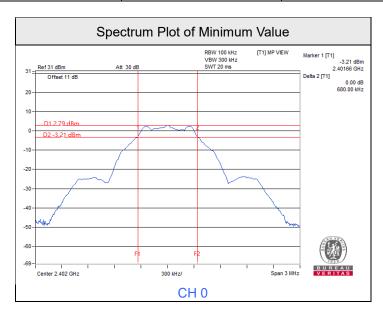


7.2 Power Spectral Density

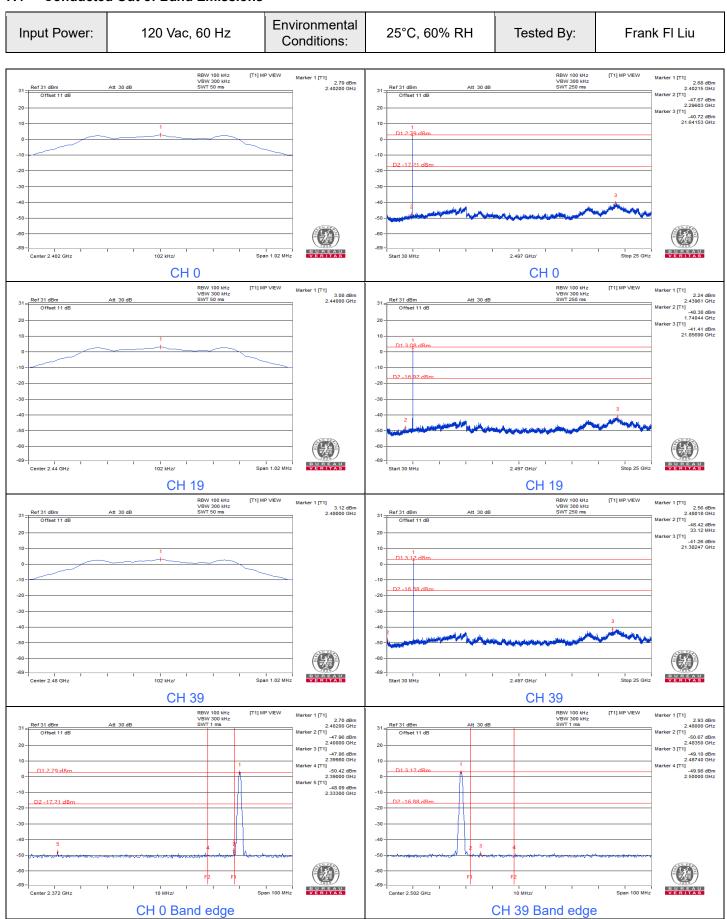
Input Power:	120 Vac, 60 Hz	Environmental Conditions:	25°C, 60% RH	Tested By:	Frank Fl Liu
--------------	----------------	---------------------------	--------------	------------	--------------

Chan.	Chan. Freq. (MHz)	PSD (dBm/3kHz)	PSD Limit (dBm/3kHz)	Test Result
0	2402	-11.67	8	Pass
19	2440	-11.77	8	Pass
39	2480	-11.34	8	Pass

Note: The antenna gain is 3.91 dBi < 6 dBi, so the power density limit shall not be reduced.

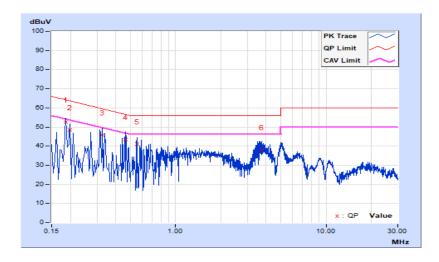


7.3 6 dB Bandwidth


Input Power:	120 Vac, 60 Hz	Environmental Conditions:	25°C, 60% RH	Tested By:	Frank FI Liu
--------------	----------------	---------------------------	--------------	------------	--------------

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Test Result
0	2402	0.68	0.5	Pass
19	2440	0.68	0.5	Pass
39	2480	0.68	0.5	Pass

7.4 Conducted Out of Band Emissions

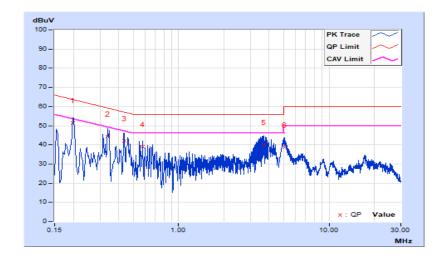


7.5 AC Power Conducted Emissions

RF Mode	BT-LE 1M	Channel	CH 39: 2480 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	Rex Wang		

	Phase Of Power : Line (L)										
	Frequency	Correction		Reading Value		n Level		nit	Margin		
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.18600	9.63	42.91	26.54	52.54	36.17	64.21	54.21	-11.67	-18.04	
2	0.19800	9.64	38.88	26.62	48.52	36.26	63.69	53.69	-15.17	-17.43	
3	0.32600	9.66	36.18	21.74	45.84	31.40	59.55	49.55	-13.71	-18.15	
4	0.46600	9.67	33.86	17.70	43.53	27.37	56.58	46.58	-13.05	-19.21	
5	0.55800	9.68	31.51	16.01	41.19	25.69	56.00	46.00	-14.81	-20.31	
6	3.73000	9.74	28.37	15.00	38.11	24.74	56.00	46.00	-17.89	-21.26	

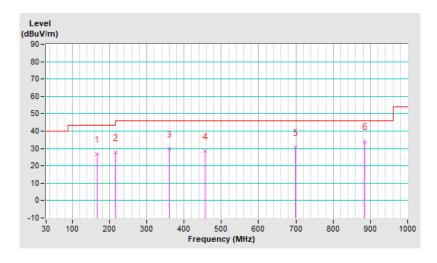
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



			VERITAS
RF Mode	BT-LE 1M	Channel	CH 39: 2480 MHz
Frequency Range	150 kHz ~ 30 MHz		Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	Rex Wang		

	Phase Of Power : Neutral (N)											
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)			
INO	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.19800	9.64	41.87	25.26	51.51	34.90	63.69	53.69	-12.18	-18.79		
2	0.33800	9.66	34.82	18.22	44.48	27.88	59.25	49.25	-14.77	-21.37		
3	0.43400	9.67	32.43	15.92	42.10	25.59	57.18	47.18	-15.08	-21.59		
4	0.57400	9.68	29.21	11.28	38.89	20.96	56.00	46.00	-17.11	-25.04		
5	3.69000	9.75	30.41	15.30	40.16	25.05	56.00	46.00	-15.84	-20.95		
6	5.08600	9.76	28.92	19.77	38.68	29.53	60.00	50.00	-21.32	-20.47		

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

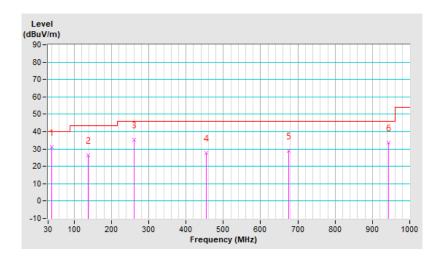


7.6 Unwanted Emissions below 1 GHz

RF Mode	BT-LE 1M	Channel	CH 39: 2480 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	21°C, 69% RH
Tested By	Greg Lin		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	167.74	26.7 QP	43.5	-16.8	1.50 H	253	39.8	-13.1		
2	216.24	27.9 QP	46.0	-18.1	1.25 H	155	44.5	-16.6		
3	359.80	29.9 QP	46.0	-16.1	1.00 H	326	41.2	-11.3		
4	455.83	28.7 QP	46.0	-17.3	1.00 H	107	37.1	-8.4		
5	698.33	30.6 QP	46.0	-15.4	1.50 H	11	34.5	-3.9		
6	885.54	33.9 QP	46.0	-12.1	1.25 H	171	35.0	-1.1		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



			VERITAS
RF Mode	BT-LE 1M	Channel	CH 39: 2480 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	21°C, 69% RH
Tested By	Greg Lin		

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	40.67	31.1 QP	40.0	-8.9	1.00 V	234	44.5	-13.4		
2	136.70	26.3 QP	43.5	-17.2	1.50 V	167	40.0	-13.7		
3	259.89	35.5 QP	46.0	-10.5	1.00 V	2	49.6	-14.1		
4	453.89	27.6 QP	46.0	-18.4	1.00 V	207	36.0	-8.4		
5	675.05	29.1 QP	46.0	-16.9	1.00 V	77	33.5	-4.4		
6	943.74	33.7 QP	46.0	-12.3	1.25 V	63	34.4	-0.7		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

7.7 Unwanted Emissions above 1 GHz

RF Mode	BT-LE 1M	Channel	CH 0: 2402 MHz	
Frequency Range	1 GHz ~ 25 GHz		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak	
Input Power	120 Vac, 60 Hz	Environmental Conditions	21°C, 69% RH	
Tested By	Greg Lin			

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	57.3 PK	74.0	-16.7	1.36 H	327	25.1	32.2	
2	2390.00	46.7 AV	54.0	-7.3	1.36 H	327	14.5	32.2	
3	*2402.00	100.5 PK			1.36 H	327	68.4	32.1	
4	*2402.00	95.3 AV			1.36 H	327	63.2	32.1	
5	4804.00	47.7 PK	74.0	-26.3	1.16 H	257	44.3	3.4	
6	4804.00	34.6 AV	54.0	-19.4	1.16 H	257	31.2	3.4	
			Antenna Pola	rity & Test Dis	tance : Vertica	l at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	57.7 PK	74.0	-16.3	1.59 V	79	25.5	32.2	
2	2390.00	47.0 AV	54.0	-7.0	1.59 V	79	14.8	32.2	
3	*2402.00	104.5 PK			1.59 V	79	72.4	32.1	
4	*2402.00	99.2 AV			1.59 V	79	67.1	32.1	
5	4804.00	48.2 PK	74.0	-25.8	1.42 V	223	44.8	3.4	
6	4804.00	35.1 AV	54.0	-18.9	1.42 V	223	31.7	3.4	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

Report No.: RFBEMI-WTW-P23110406-1 Page No. 31 / 37 Report Format Version: 7.1.0

			VERTIAS
RF Mode	BT-LE 1M	Channel	CH 19: 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	21°C, 69% RH
Tested By	Greg Lin		

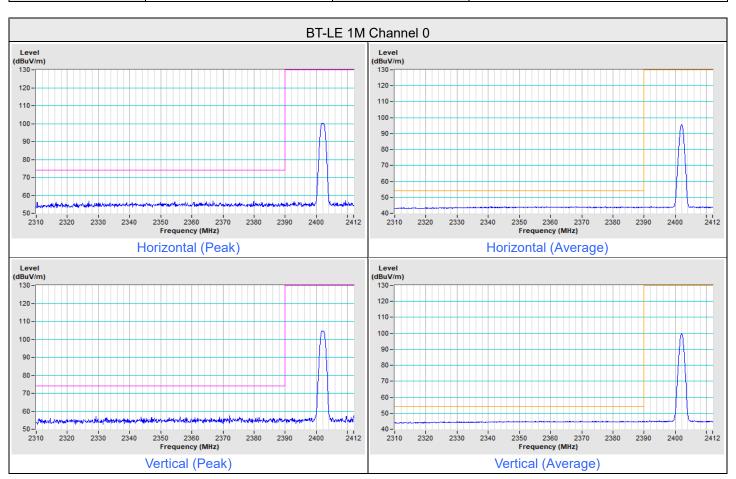
	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2440.00	100.7 PK			1.27 H	314	68.6	32.1	
2	*2440.00	95.2 AV			1.27 H	314	63.1	32.1	
3	4880.00	47.6 PK	74.0	-26.4	1.14 H	306	44.1	3.5	
4	4880.00	34.6 AV	54.0	-19.4	1.14 H	306	31.1	3.5	
			Antenna Pola	rity & Test Dis	tance : Vertica	l at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2440.00	104.9 PK			1.55 V	82	72.8	32.1	
2	*2440.00	99.5 AV			1.55 V	82	67.4	32.1	
3	4880.00	48.9 PK	74.0	-25.1	1.48 V	228	45.4	3.5	
4	4880.00	35.7 AV	54.0	-18.3	1.48 V	228	32.2	3.5	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

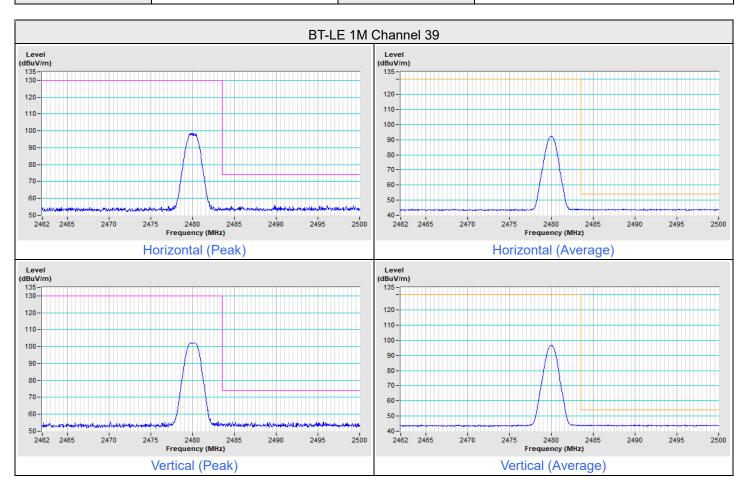
			VERTIAS
RF Mode	BT-LE 1M	Channel	CH 39: 2480 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	21°C, 69% RH
Tested By	Greg Lin		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2480.00	100.0 PK			1.28 H	316	67.8	32.2	
2	*2480.00	94.6 AV			1.28 H	316	62.4	32.2	
3	2483.50	59.1 PK	74.0	-14.9	1.28 H	316	26.8	32.3	
4	2483.50	46.6 AV	54.0	-7.4	1.28 H	316	14.3	32.3	
5	4960.00	47.5 PK	74.0	-26.5	1.14 H	258	43.6	3.9	
6	4960.00	34.4 AV	54.0	-19.6	1.14 H	258	30.5	3.9	
			Antenna Pola	rity & Test Dis	tance : Vertica	l at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2480.00	103.8 PK			1.34 V	49	71.6	32.2	
2	*2480.00	98.5 AV			1.34 V	49	66.3	32.2	
3	2483.50	60.0 PK	74.0	-14.0	1.34 V	49	27.7	32.3	
4	2483.50	47.2 AV	54.0	-6.8	1.34 V	49	14.9	32.3	
5	4960.00	48.5 PK	74.0	-25.5	1.47 V	224	44.6	3.9	
6	4960.00	35.5 AV	54.0	-18.5	1.47 V	224	31.6	3.9	

Remarks:


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

Report No.: RFBEMI-WTW-P23110406-1 Page No. 33 / 37 Report Format Version: 7.1.0


Plot of Band Edge

Frequency Range 2.31 GHz ~ 2.412 GHz Detector Function & PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak

Frequency Range 2.462 GHz ~ 2.5 GHz Detector Function & PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=1 kHz, DET=Peak

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

Report No.: RFBEMI-WTW-P23110406-1 Page No. 36 / 37 Report Format Version: 7.1.0

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@bureauveritas.com</u> **Web Site:** <u>http://ee.bureauveritas.com.tw</u>

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RFBEMI-WTW-P23110406-1 Page No. 37 / 37 Report Format Version: 7.1.0