

Project No: Report No.: TM-2310000098P TMWK2311004081KR FCC ID: NOIKB-E70P24

Page: 1 / 29 Rev.: 00

CLASS II PERMISSIVE CHANGE RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard

FCC Part 15.247

Product name

7.8" Digital Note Pad; 7.8" Color Digital Note Pad;

7.8" Digital Reader; 7.8" Color Digital Reader

Brand Name

MobiScribe

Model No.

E70P24

Test Result

Pass

Statements of

Conformity

Determination of compliance is based on the results of the

compliance measurement, not taking into account

measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

sehni. Hu

Sehni Hu Supervisor

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 29 Rev.: 00

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	November 23, 2023	Initial Issue	ALL	Peggy Tsai

Page: 3 / 29 Rev.: 00

Table of contents

1.	GENERAL INFORMATION	. 4
1.1	EUT INFORMATION	. 4
1.2	INFORMATION ABOUT THE FHSS CHARACTERISTICS	. 6
1.3	EUT CHANNEL INFORMATION	. 7
1.4	ANTENNA INFORMATION	. 7
1.5	MEASUREMENT UNCERTAINTY	. 8
	FACILITIES AND TEST LOCATION	
1.7	INSTRUMENT CALIBRATION	. 9
1.8	SUPPORT AND EUT ACCESSORIES EQUIPMENT	10
1.9	TEST METHODOLOGY AND APPLIED STANDARDS	10
2.	TEST SUMMARY	11
3.	DESCRIPTION OF TEST MODES	12
3.1	THE WORST MODE OF OPERATING CONDITION	12
3.2	THE WORST MODE OF MEASUREMENT	13
4.	TEST RESULT	14
4.1	AC POWER LINE CONDUCTED EMISSION	14
4.2	RADIATION BANDEDGE AND SPURIOUS EMISSION	19
ΛD	PENDIX 1 - PHOTOGRAPHS OF FUT	

Page: 4 / 29
Report No.: TMWK2311004081KR Rev.: 00

1. GENERAL INFORMATION

1.1 EUT INFORMATION

_	_				
,					
No. 945, Boai St., Jubei City, Hsin-Chu, 30265, Taiwan					
,					
•					
7.8" Digital Read	7.8" Digital Reader; 7.8" Color Digital Reader				
E70P24					
Please see rem	ark as below.				
MobiScribe					
October 13, 202	23				
October 26, 2023					
 Power from Host System. (DC 5V) Power from Battery. Brand / Model: EVE Energy Co., LTD. / EVE2275A7GH Rating: 3.85VDC, 9.63Wh 					
The major change filed under this application is: Product Name: 7.8" Color Digital Note Pad, Adding EPD Pane with two different configurations as follows: 1. Configured with the new Digitizer on the newly modified PCBA. 2. Configured with the old Digitizer and the old PCBA. Update Model Original Model					
	No. 945, Boai S NETRONIX, INC No. 945, Boai S 7.8" Digital Note 7.8" Digital Read E70P24 Please see rem MobiScribe October 13, 202 October 26, 202 1. Power from B Brand / Mode Rating: 3.85V The major chan Product Name: with two differer 1. Configured w 2. Configured w 2. Configured w Panel (CFA) Wacom Digitizer	NETRONIX, INC. No. 945, Boai St., Jubei City, Hsin-Chu, 3 7.8" Digital Note Pad; 7.8" Color Digital Note Pad; 7.8" Color Digital Reader; 7.8" Color Digital Note Panel (CFA) Update Model Panel (CFA) Vacom Digitizer Volor Digital Note Reader; 7.8" Color Digital Note Reader; 7.8			

Page: 5 / 29
Report No.: TMWK2311004081KR Rev.: 00

Remark:

- 1. For more details, please refer to the User's manual of the EUT.
- 2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.
- 3. Disclaimer: Variant information between/among model numbers / trademarks is provided by the applicant, test results of this report are applicable to the sample EUT received of main test model name.

4. Model Discrepancy:

T. MOGCI DISCIC	parioy.			
Product	7.8" Digital Note	7.8" Color Digital Note	7.8" Digital	7.8" Color Digital
Name	Pad	Pad	Reader	Reader
Model Name		E70P:	24	
Button	N/A	N/A	Yes	Yes
Touch Pen	Yes	Yes	N/A	N/A
Panel display	Black and White	Color	Black and White	Color
Appearance				

Page: 6 / 29
Report No.: TMWK2311004081KR Rev.: 00

1.2 INFORMATION ABOUT THE FHSS CHARACTERISTICS

1.2.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.2.2 Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.2.3 Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.2.4 System Receiver Input Bandwidth

Each channel bandwidth is 1MHz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.2.5 Equipment Description

15.247(a)(1) that the Rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Page: 7 / 29 Rev.: 00

1.3 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BDR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 for test channels

Refer as ANSI Cos. 10. 2013 clause 5.6.1 Table 4 for test charmers					
Number of frequencies to be tested					
Frequency range in Number of Location in frequency which device operates frequencies range of operation					
1 MHz or less	1	Middle			
1 MHz to 10 MHz 2 1 near top and 1 near bottom					
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.4 ANTENNA INFORMATION

Antenna Specification	☐ PIFA ☑ PCB ☐ Dipole ☐ Coils
Antenna Gain	Gain: 2.64 dBi
Brand / Model	INPAQ Technology Co., Ltd. / RFPCA310710EMLB301

Notes:

^{1.}The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203.

Page: 8 / 29 Report No.: TMWK2311004081KR

1.5 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	± 2.213 dB
Radiated Emission_9kHz-30MHz	± 3.761 dB
Radiated Emission_30MHz-200MHz	± 3.473 dB
Radiated Emission_200MHz-1GHz	± 3.946 dB

Remark:

Rev.: 00

^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

^{2.} ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 9 / 29 Rev.: 00

Report No.: TMWK2311004081KR

1.6 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

No. 12, Ln. 116, Wugong 3rd Rd., Wugu Dist., New Taipei City, Taiwan.

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	Tony Chao	-
Radiation	Tony Chao	-

Remark: The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No.:444940, the FCC Designation No.:TW1309

1.7 INSTRUMENT CALIBRATION

966A_Radiated_30M~1G							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Bi-Log Antenna	Sunol Sciences	JB3	A030105	2023-08-08	2024-08-07		
Signal Analyzer	KEYSIGHT	N9010A	MY54200716	2023-10-13	2024-10-12		
Thermo-Hygro Meter	WISEWIND	1206	D07	2022-12-19	2023-12-18		
Preamplifier	EMEC	EM330	060609	2023-02-22	2024-02-21		
Cable	Huber+Suhner	104PEA	20995+21000+ 182330	2023-02-22	2024-02-21		
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R		
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R		
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R		
Software	e3 V9-210616c						

RF_Conduction(RF)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
EMI Test Receiver	R&S	ESCI	100064	2023-06-07	2024-06-06		
LISN	TESEQ	LN2-16N	22012	2023-03-08	2024-03-07		
Cable	EMCI	CFD300-NL	CERF	2023-06-27	2024-06-26		
Software	EZ-EMC(CCS-3A1-CE-WUKU)						

Remark

- 1. Each piece of equipment is scheduled for calibration once a year.
- 2. N.C.R. = No Calibration Required.

Page: 10 / 29
Report No.: TMWK2311004081KR Rev.: 00

1.8 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment							
No. Equipment Brand Model Series No. FCC ID IC						IC		
	N/A							

Support Equipment									
No.	No. Equipment Brand Model Series No. FCC ID IC								
1	NB	Lenovo	IBM 7663	N/A	N/A	N/A			
2	NB(D)	Lenovo	ThinkPad X260	N/A	N/A	N/A			

1.9 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247.

Page: 11 / 29

Report No.: TMWK2311004081KR Rev.: 00

2. TEST SUMMARY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a)	4.1	AC Conducted Emission	Pass
15.247(d) 15.209 15.205	4.2	Radiation Spurious Emission	Pass

Note:

Per check with the RF output power, the RF parameters are same with the certified device. So the changesare not affect the test result of RF conducted tests. Therefore, the AC Line conducted test, Radiation Below 1GHz test were performed. other test items please refer to the original FCC ID report.

Page: 12 / 29

Report No.: TMWK2311004081KR Rev.: 00

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BDR-1Mbps (DH5) π/4-DQPSK for 2Mbps (2DH5) 8DPSK for EDR-3Mbps (3DH5)
Test Channel Frequencies	GFSK for BDR-1Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz π/4-DQPSK for 2Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz 8DPSK for EDR-3Mbps:
	1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz

Remark:

- 1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.
- 2. The system support GFSK , π /4 DQPSK ,8DPSK , the π /4 DQPSK were reduced since the identical parameters with 8dpsk. In the following test items, frequency hopping, Conducted band edge, radiated band edge and spurious emissions.

Page: 13 / 29 Rev.: 00

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission						
Test Condition AC Power line conducted emission for line and neutral						
Power supply Mede	Mode 1: EUT power by Host System(New PCB) Mode 2: EUT power by Host System(Old PCB)					
rower supply wode	Mode 2: EUT power by Host System(Old PCB)					
Worst Mode						

Radiated Emission Measurement Below 1G						
Test Condition Radiated Emission Below 1G						
Power supply Mode	Mode 1: EUT power by Host System(New PCB) Mode 2: EUT power by Host System(Old PCB)					
i ower supply mode	Mode 2: EUT power by Host System(Old PCB)					
Worst Mode						

Remark:

- 1. The worst mode was record in this test report.
- 2. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.
- 3. EUT pre-scanned in three axis X, Y, Z and two polarity, for radiated measurement. The worst case (X-Plane) were recorded in this report

Page: 14 / 29

Report No.: TMWK2311004081KR Rev.: 00

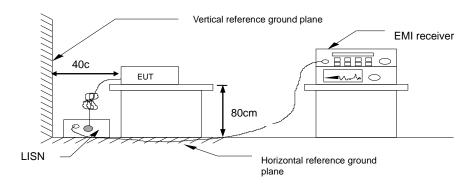
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a),

Frequency Range	Limits(dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			


^{*} Decreases with the logarithm of the frequency.

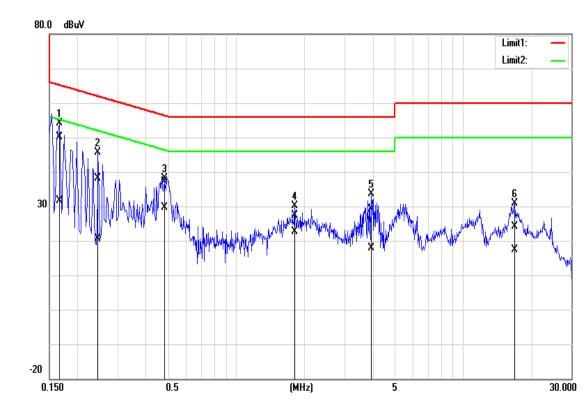
4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

- The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

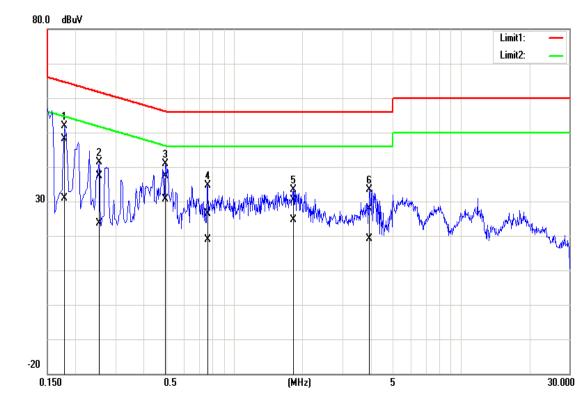
4.1.4 Test Result


Pass.

Page: 15 / 29 Rev.: 00

Test Data

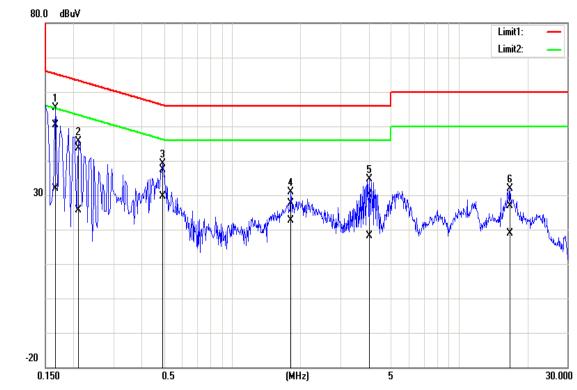
Test Mode:	Mode 1	Temp/Hum	24.3(°ℂ)/ 52%RH		
Phase:	Line	Test Date	October 26, 2023		
Test Voltage:	120Vac, 60Hz	Test Engineer	Tony Chao		



Frequency (MHz)	Quasi Peak reading (dBuV)	Average reading (dBuV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak Iimit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1660	49.95	31.54	0.15	50.10	31.69	65.16	55.16	-15.06	-23.47	Pass
0.2460	37.96	20.40	0.15	38.11	20.55	61.89	51.89	-23.78	-31.34	Pass
0.4820	36.96	29.55	0.15	37.11	29.70	56.30	46.30	-19.19	-16.60	Pass
1.8180	27.15	22.33	0.21	27.36	22.54	56.00	46.00	-28.64	-23.46	Pass
3.9300	28.78	17.60	0.26	29.04	17.86	56.00	46.00	-26.96	-28.14	Pass
16.9100	23.55	16.81	0.47	24.02	17.28	60.00	50.00	-35.98	-32.72	Pass

Page: 16 / 29 Rev.: 00

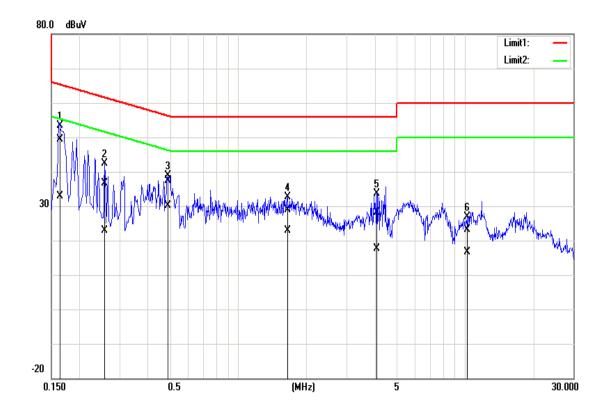
Test Mode:	Mode 1	Temp/Hum	24.3(°C)/ 52%RH		
Phase:	Phase: Neutral		October 26, 2023		
Test Voltage:	120Vac, 60Hz	Test Engineer	Tony Chao		



Frequency (MHz)	Quasi Peak reading (dBuV)	Average reading (dBuV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak Iimit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1780	47.88	30.78	0.20	48.08	30.98	64.58	54.58	-16.50	-23.60	Pass
0.2540	37.18	23.45	0.19	37.37	23.64	61.63	51.63	-24.26	-27.99	Pass
0.4980	37.31	30.32	0.19	37.50	30.51	56.03	46.03	-18.53	-15.52	Pass
0.7660	26.29	18.79	0.21	26.50	19.00	56.00	46.00	-29.50	-27.00	Pass
1.8220	30.15	24.43	0.25	30.40	24.68	56.00	46.00	-25.60	-21.32	Pass
3.9500	27.68	18.81	0.31	27.99	19.12	56.00	46.00	-28.01	-26.88	Pass

Page: 17 / 29 Rev.: 00

Test Mode:	Mode 2	Temp/Hum	24.3(°C)/ 52%RH		
Phase:	Line	Test Date	October 26, 2023		
Test Voltage:	120Vac, 60Hz	Test Engineer	Tony Chao		
80.0 dBuV			11:34		



Frequency (MHz)	Quasi Peak reading (dBuV)	Average reading (dBuV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak Iimit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1660	50.29	31.78	0.15	50.44	31.93	65.16	55.16	-14.72	-23.23	Pass
0.2100	43.58	25.53	0.15	43.73	25.68	63.21	53.21	-19.48	-27.53	Pass
0.4940	37.15	29.55	0.15	37.30	29.70	56.10	46.10	-18.80	-16.40	Pass
1.8180	27.37	22.41	0.21	27.58	22.62	56.00	46.00	-28.42	-23.38	Pass
4.0220	29.77	17.93	0.26	30.03	18.19	56.00	46.00	-25.97	-27.81	Pass
16.7660	26.54	18.44	0.46	27.00	18.90	60.00	50.00	-33.00	-31.10	Pass

Page: 18 / 29 Rev.: 00

Test Mode:	Test Mode: Mode 2		24.3(°C)/ 52%RH	
Phase:	Phase: Neutral		October 26, 2023	
Test Voltage:	120Vac, 60Hz	Test Engineer	Tony Chao	

Frequency (MHz)	Quasi Peak reading (dBuV)	Average reading (dBuV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak Iimit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1650	49.23	32.78	0.19	49.42	32.97	65.21	55.21	-15.79	-22.24	Pass
0.2580	36.49	22.63	0.19	36.68	22.82	61.50	51.50	-24.82	-28.68	Pass
0.4900	37.23	29.85	0.19	37.42	30.04	56.17	46.17	-18.75	-16.13	Pass
1.6460	28.55	22.70	0.25	28.80	22.95	56.00	46.00	-27.20	-23.05	Pass
4.0820	27.89	17.20	0.31	28.20	17.51	56.00	46.00	-27.80	-28.49	Pass
10.2260	22.66	16.36	0.39	23.05	16.75	60.00	50.00	-36.95	-33.25	Pass

Page: 19 / 29
Report No.: TMWK2311004081KR Rev.: 00

4.2 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.2.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters	Receivers		
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 20 / 29
Report No.: TMWK2311004081KR Rev.: 00

4.2.2 Test Procedure

1. The EUT is placed on a turntable, below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

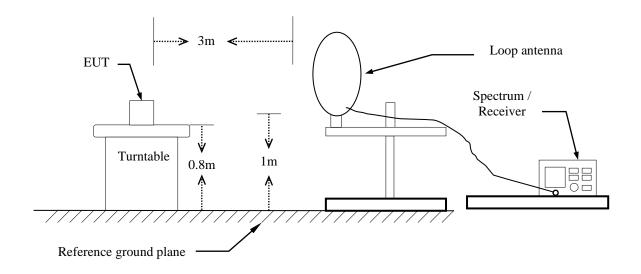
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.
- 3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 1GHz set to high power channels with the EUT transmit.

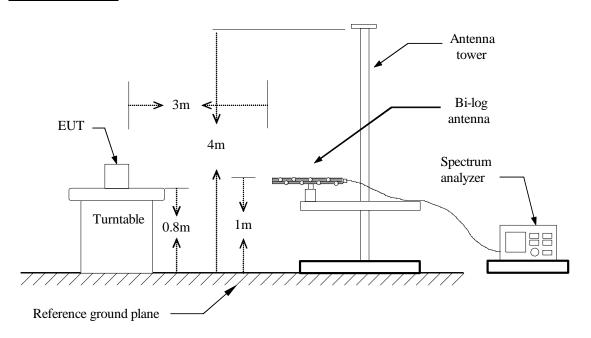
Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

4. The SA setting following:

Below 1G: RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.

5. Data result

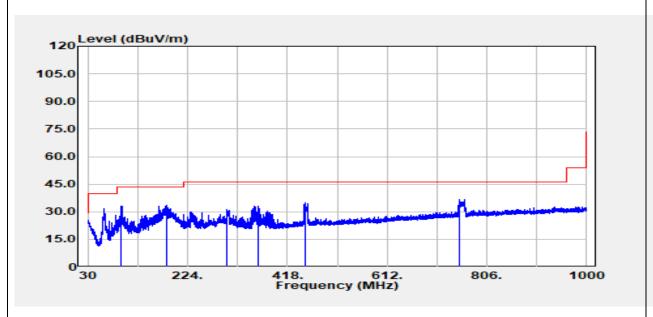

Actual FS=Spectrum Reading Level + Factor Margin=Actual FS- Limit


Page: 21 / 29 Rev.: 00

4.2.3 Test Setup

9kHz ~ 30MHz

30MHz ~ 1GHz

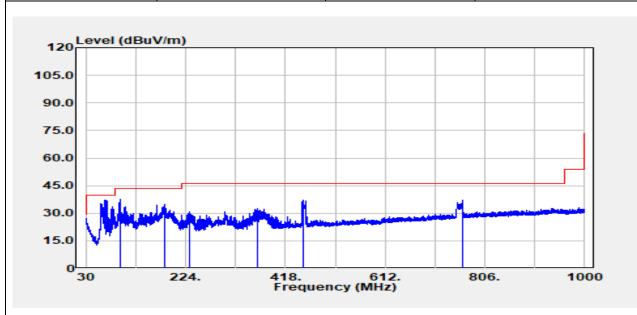


Page: 22 / 29 Rev.: 00

4.2.4 Test Result

Below 1G Test Data

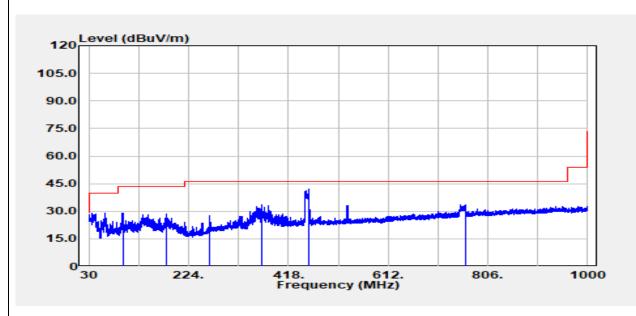
Test Mode:	GFSK_BDR-1Mbps Low CH	Temp/Hum	24.6(℃) / 56%RH
Test Item	30MHz-1GHz	Test Date	October 26, 2023
Polarize	Polarize Vertical		Tony Chao
Detector	Peak	Test Mode	Mode 1


Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
95.72	Peak	47.15	-14.05	33.10	43.50	-10.40
183.02	Peak	45.31	-11.64	33.67	43.50	-9.83
301.12	Peak	39.74	-8.64	31.10	46.00	-14.90
361.98	Peak	40.30	-7.14	33.15	46.00	-12.85
451.59	Peak	39.34	-4.52	34.82	46.00	-11.18
751.92	Peak	36.14	0.45	36.59	46.00	-9.41

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

Page: 23 / 29 Rev.: 00

Test Mode:	Test Mode: GFSK_BDR-1Mbps Low CH		24.6(°C) / 56%RH	
Test Item	30MHz-1GHz	Test Date	October 26, 2023	
Polarize	Polarize Horizontal		Tony Chao	
Detector	Peak	Test Mode	Mode 1	

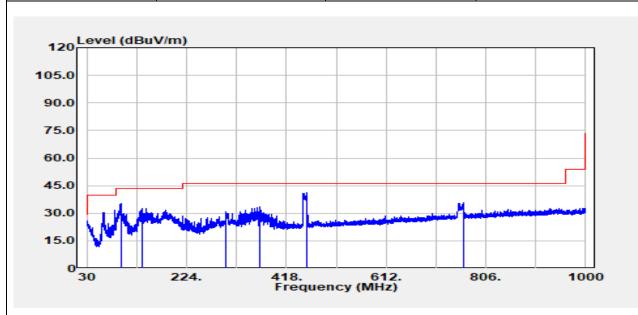

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
95.84	Peak	51.62	-13.97	37.65	43.50	-5.85
183.99	Peak	46.42	-11.63	34.79	43.50	-8.71
232.37	Peak	41.83	-11.15	30.68	46.00	-15.32
364.04	Peak	39.53	-7.11	32.42	46.00	-13.58
451.59	Peak	41.81	-4.52	37.29	46.00	-8.71
762.35	Peak	36.43	0.66	37.09	46.00	-8.91

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

Page: 24 / 29 Rev.: 00

Test Mode:	Test Mode: 8DPSK_EDR-3Mbps Low CH		24.6(°C) / 56%RH	
Test Item	Harmonic	Test Date	October 26, 2023	
Polarize	Polarize Vertical		Tony Chao	
Detector	Peak / Average	Test Mode	Mode 1	

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
95.84	Peak	43.03	-13.97	29.05	43.50	-14.45
182.05	Peak	40.02	-11.64	28.38	43.50	-15.12
265.10	Peak	36.99	-9.52	27.47	46.00	-18.53
366.11	Peak	40.46	-7.06	33.40	46.00	-12.60
457.41	Peak	46.41	-4.30	42.11	46.00	-3.89
763.20	Peak	32.92	0.65	33.57	46.00	-12.43

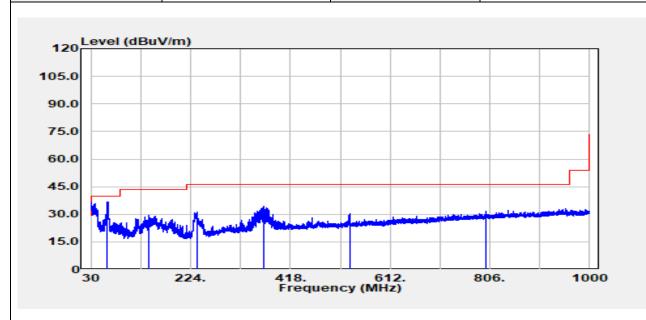

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 25 / 29 Rev.: 00

Test Mode:	8DPSK_EDR-3Mbps Low CH	Temp/Hum	24.6(°ℂ) / 56%RH	
Test Item	Test Item Harmonic		October 26, 2023	
Polarize	Polarize Horizontal		Tony Chao	
Detector	Peak / Average	Test Mode	Mode 1	

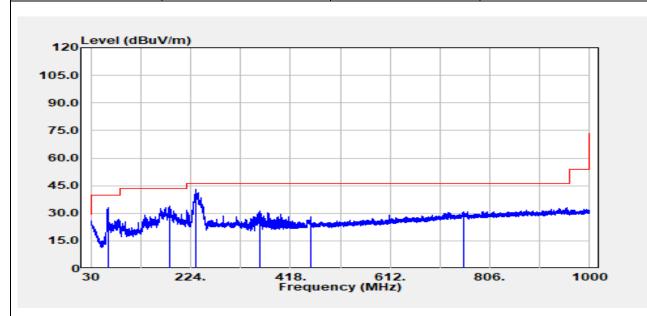
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
95.84	Peak	49.08	-13.97	35.11	43.50	-8.39
138.64	Peak	42.40	-9.78	32.61	43.50	-10.89
300.75	Peak	39.53	-8.65	30.88	46.00	-15.12
367.20	Peak	40.76	-7.03	33.72	46.00	-12.28
457.77	Peak	45.52	-4.29	41.22	46.00	-4.78
763.32	Peak	35.30	0.65	35.95	46.00	-10.05


Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 26 / 29 Rev.: 00

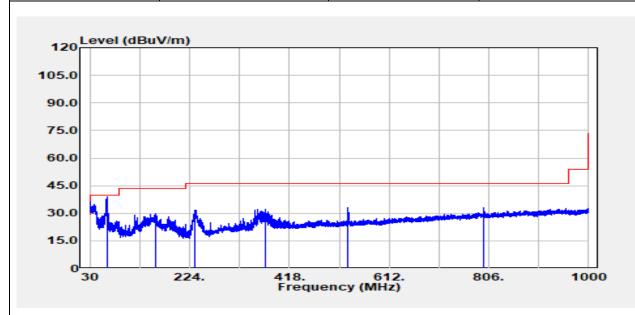
Test Mode:	GFSK_BDR-1Mbps Low CH	Temp/Hum	24.6(°C) / 56%RH
Test Item	30MHz-1GHz	Test Date	October 26, 2023
Polarize	Vertical	Test Engineer	Tony Chao
Detector	Peak	Test Mode	Mode 2


Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
62.25	Peak	52.49	-15.72	36.76	40.00	-3.24
142.40	Peak	39.66	-10.05	29.61	43.50	-13.89
236.13	Peak	42.03	-10.96	31.07	46.00	-14.93
365.62	Peak	41.36	-7.07	34.29	46.00	-11.71
533.07	Peak	33.41	-3.13	30.28	46.00	-15.72
798.12	Peak	30.17	1.32	31.49	46.00	-14.51

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

Page: 27 / 29 Rev.: 00

Test Mode:	GFSK_BDR-1Mbps Low CH	Temp/Hum	24.6(°C) / 56%RH
Test Item	30MHz-1GHz	Test Date	October 26, 2023
Polarize	Horizontal	Test Engineer	Tony Chao
Detector	Peak	Test Mode	Mode 2

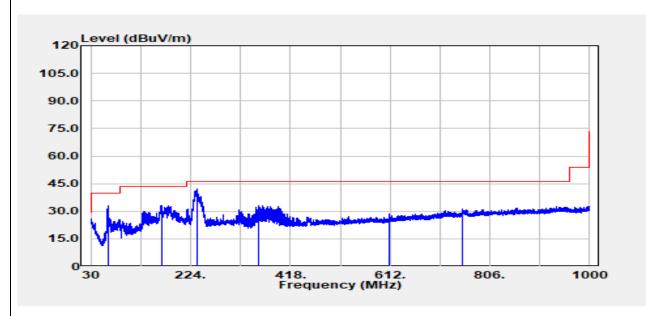

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
63.22	Peak	48.59	-15.66	32.93	40.00	-7.07
182.65	Peak	45.56	-11.64	33.92	43.50	-9.58
234.91	Peak	53.81	-11.00	42.81	46.00	-3.19
357.50	Peak	38.61	-7.25	31.35	46.00	-14.65
457.89	Peak	32.18	-4.29	27.89	46.00	-18.11
755.08	Peak	30.46	0.52	30.99	46.00	-15.01

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

Page: 28 / 29 Rev.: 00

Test Mode:	8DPSK_EDR-3Mbps Low CH	Temp/Hum	24.6(°C) / 56%RH
Test Item	Harmonic	Test Date	October 26, 2023
Polarize	Vertical	Test Engineer	Tony Chao
Detector	Peak / Average	Test Mode	Mode 2

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
63.34	Peak	54.37	-15.63	38.74	40.00	-1.26
157.56	Peak	40.45	-10.56	29.89	43.50	-13.61
233.70	Peak	42.85	-11.07	31.78	46.00	-14.22
371.93	Peak	39.22	-6.91	32.30	46.00	-13.70
532.22	Peak	36.24	-3.13	33.11	46.00	-12.89
795.82	Peak	31.65	1.31	32.96	46.00	-13.04


Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 29 / 29 Rev.: 00

Test Mode:	8DPSK_EDR-3Mbps Low CH	Temp/Hum	24.6(℃) / 56%RH
Test Item	Harmonic	Test Date	October 26, 2023
Polarize	Horizontal	Test Engineer	Tony Chao
Detector	Peak / Average	Test Mode	Mode 2

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
63.34	Peak	48.73	-15.63	33.09	40.00	-6.91
166.89	Peak	43.97	-10.98	32.99	43.50	-10.51
235.52	Peak	52.90	-10.98	41.93	46.00	-4.07
355.07	Peak	40.40	-7.32	33.09	46.00	-12.91
609.33	Peak	30.28	-1.87	28.41	46.00	-17.59
751.56	Peak	30.80	0.44	31.24	46.00	-14.76

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- End of Test Report -