

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM120900527101 Page: 1 of 46

FCC REPORT

Application No:	SZEM1209005271RF
Applicant:	iDT Technology Limited
Manufacturer:	iDT Technology Limited
Factory:	iDT Technology Limited
Product Name:	Boot loadable platform with BLE
Model No.(EUT):	RA900, SE900
FCC ID:	NMTSSMART
Standards:	47 CFR Part 15, Subpart C (2011)
Date of Receipt:	2012-09-18
Date of Test:	2012-09-21 to 2012-09-27
Date of Issue:	2012-10-09
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM120900527101 Page: 2 of 46

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	KDB558074 D01 ANSI C63.10 2009	PASS
Conducted Peak Output	47 CFR Part 15, Subpart C Section	KDB558074 D01	PASS
Power	15.247 (b)(3)	ANSI C63.10 2009	
6dB Occupied	47 CFR Part 15, Subpart C Section	KDB558074 D01	PASS
Bandwidth	15.247 (a)(2)	ANSI C63.10 2009	
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	KDB558074 D01 ANSI C63.10 2009	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2009)	PASS
Band-edge for RF	47 CFR Part 15, Subpart C Section	KDB558074 D01	PASS
Conducted Emissions	15.247(d)	ANSI C63.10 2009	
RF Conducted Spurious	47 CFR Part 15, Subpart C Section	KDB558074 D01	PASS
Emissions	15.247(d)	ANSI C63.10 2009	
Radiated Spurious	47 CFR Part 15, Subpart C Section	KDB558074 D01	PASS
Emissions	15.205/15.209	ANSI C63.10 2009	
Band Edge (Radiated	47 CFR Part 15, Subpart C Section	KDB558074 D01	PASS
Emission)	15.205/15.209	ANSI C63.10 2009	

Remark:

Model No.: RA900, SE900

The model RA900 was performed the full tests, the model SE900 was tested the Conducted Peak Output Power, Radiated Spurious Emissions for discrepancy, since the circuitry design, PCB layout, electrical components used, internal wiring and functions were identical for the above models, with difference being pressure sensor. Both models are use same main PCB for production, the difference is that RA900 need to SMT related components on the main PCB and sub-pcb for pressure sensor, the others are same as SE900.

Report No.: SZEM120900527101 Page: 3 of 46

3 Contents

1	CO	VER PAGE	1
2	TES	ST SUMMARY	2
3		NTENTS	
4		NERAL INFORMATION	
4	.1	CLIENT INFORMATION	4
4		GENERAL DESCRIPTION OF EUT	
4	.3	TEST ENVIRONMENT	6
4	.4	DESCRIPTION OF SUPPORT UNITS	6
4	.5	TEST LOCATION	6
4		TEST FACILITY	
4		DEVIATION FROM STANDARDS	
4		ABNORMALITIES FROM STANDARD CONDITIONS	
4		OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4	.10	TEST INSTRUMENTS LIST	8
5	TES	ST RESULTS AND MEASUREMENT DATA	
5	5.1	ANTENNA REQUIREMENT	
5	5.2	CONDUCTED PEAK OUTPUT POWER	11
5	5.3	6DB OCCUPY BANDWIDTH	15
5	5.4	POWER SPECTRAL DENSITY	
5		BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5	5.6	SPURIOUS RF CONDUCTED EMISSIONS	23
5		PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
5	5.8	RADIATED SPURIOUS EMISSION	
	5.8.	1 Spurious Emissions	27
5	5.9	BAND EDGE (RADIATED EMISSION)	37-46

Report No.: SZEM120900527101 Page: 4 of 46

4 General Information

4.1 Client Information

Applicant:	iDT Technology Limited
Address of Applicant:	Block C, 9/F., Kaiser Estate, Phase 1, 41 Man YueStreet, Hunghom, Kowloon, Hong Kong.
Manufacturer:	iDT Technology Limited
Address of Manufacturer:	Block C, 9/F., Kaiser Estate, Phase 1, 41 Man YueStreet, Hunghom, Kowloon, Hong Kong.
Factory:	iDT Technology Limited
Address of Factory:	Chentian Industrial Estate Xixiang, BaoAn, Shenzhen, P.R.C

4.2 General Description of EUT

Name:	Boot loadable platform with BLE
Model No.:	RA900, SE900
Trade Mark:	Oregon scientific
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.0
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK
Number of Channel:	40
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
Test Power Grade:	N/A
Test Software of EUT:	N/A
Antenna Type	Integral
Antenna Gain	-1.5dBi
Power Supply:	3.0V DC (3.0V x 1 "CR2032H" Button cell)
Test Voltage:	3.0V

Report No.: SZEM120900527101 Page: 5 of 46

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2440MHz
The Highest channel	2480MHz

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM120900527101 Page: 6 of 46

4.3 Test Environment

Operating Environment:	Operating Environment:	
Temperature:	26.0 °C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010mbar	

4.4 Description of Support Units

The EUT has been tested independent unit.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

Report No.: SZEM120900527101 Page: 7 of 46

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM120900527101 Page: 8 of 46

4.10 Test Instruments List

RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2013-06-10
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2013-05-17
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2012-10-29
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2012-10-29
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2012-10-29
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2013-05-17
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2012-11-26
9	Coaxial cable	SGS	N/A	SEL0027	2013-05-59
10	Coaxial cable	SGS	N/A	SEL0189	2013-05-29
11	Coaxial cable	SGS	N/A	SEL0121	2013-05-29
12	Coaxial cable	SGS	N/A	SEL0178	2013-05-29
13	Band filter	Amindeon	82346	SEL0094	2013-05-17
14	Barometer	Chang Chun	DYM3	SEL0088	2013-05-24
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2012-10-23
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2012-10-27
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2013-05-17
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2012-10-23
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2013-06-04

Report No.: SZEM120900527101 Page: 9 of 46

RF c	RF connected test					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd))	
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2012-10-23	
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2012-10-27	
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2012-10-23	
4	Coaxial cable	SGS	N/A	SEL0178	2013-05-29	
5	Coaxial cable	SGS	N/A	SEL0179	2013-05-29	
6	Barometer	ChangChun	DYM3	SEL0088	2013-05-24	
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2013-05-17	
8	Band filter	amideon	82346	SEL0094	2013-05-17	
9	POWER METER	R & S	NRVS	SEL0144	2012-10-23	
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2013-05-17	
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2012-11-29	

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

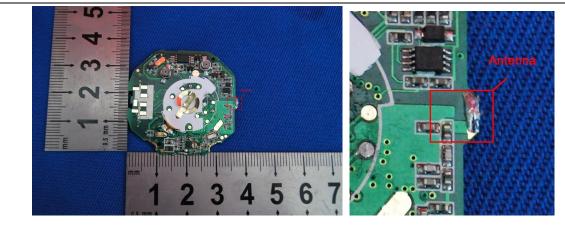
Report No.: SZEM120900527101 Page: 10 of 46

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)
--

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.5 dBi.

Report No.: SZEM120900527101 Page: 11 of 46

5.2 Conducted Peak Output Power

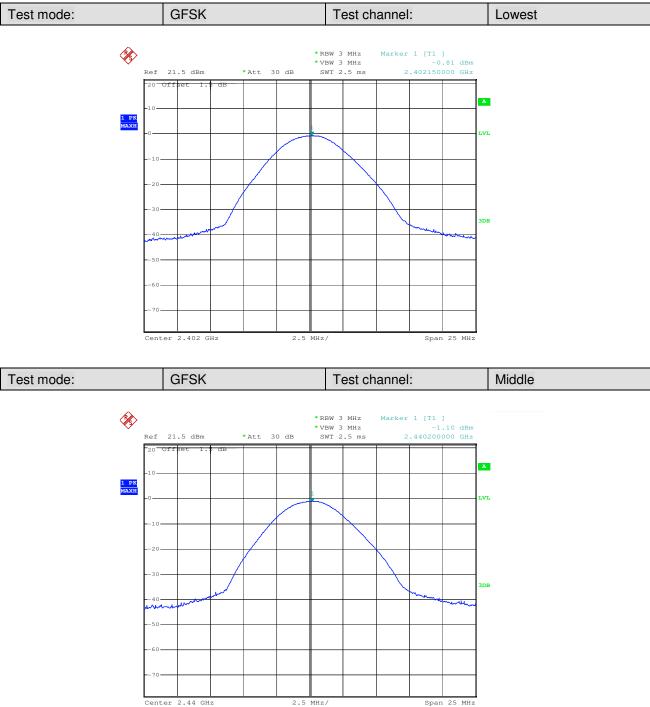
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10:2009 and KDB558074 D01	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	
	Ground Reference Plane	
	Remark:	
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	30dBm	
Test Mode:	Non-hopping transmitting with GFSK modulation	
Instruments Used:	Refer to section 4.10 for details	
Test Results:	Pass	

Measurement Data

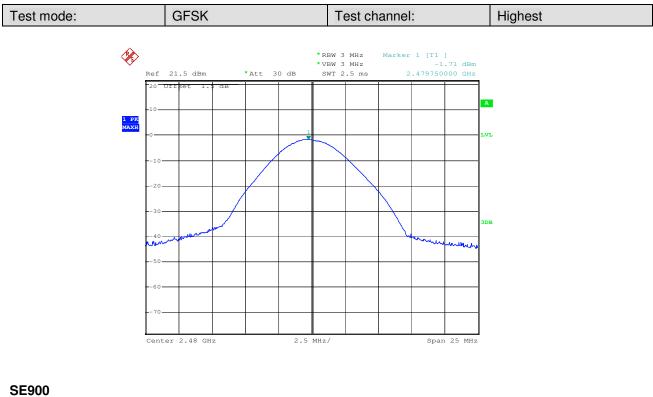
RA900

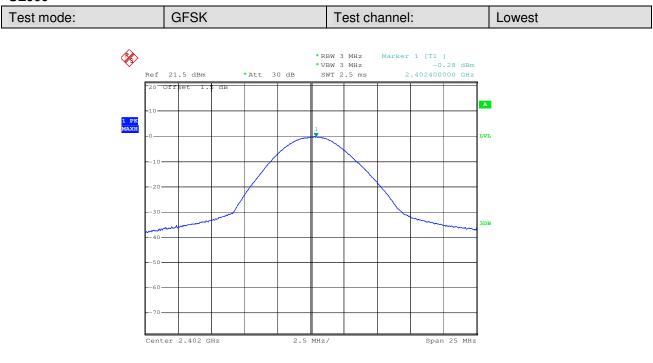
GFSK mode							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	-0.81	30.00	Pass				
Middle	-1.10	30.00	Pass				
Highest	-1.71	30.00	Pass				

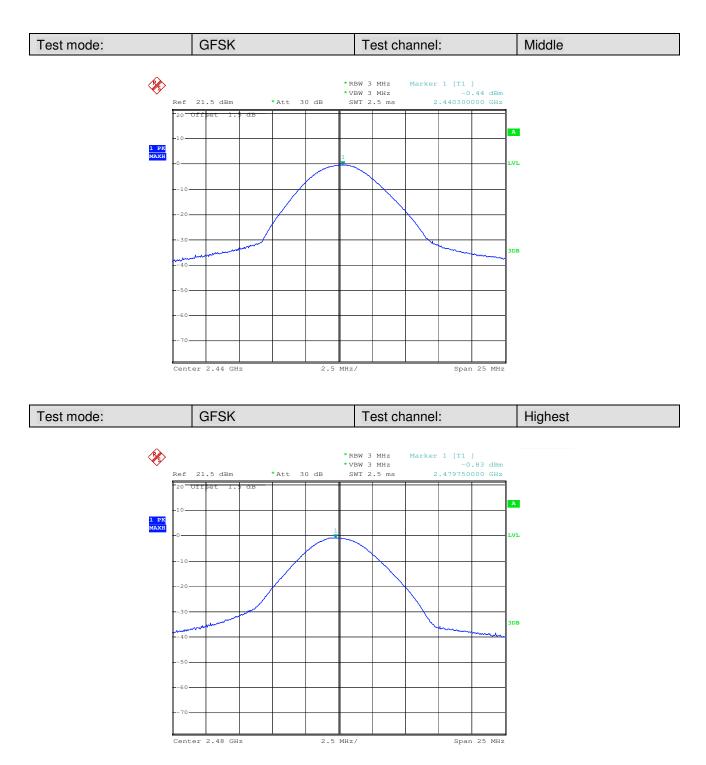
SE900


GFSK mode							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	-0.28	30.00	Pass				
Middle	-0.44	30.00	Pass				
Highest	-0.83	30.00	Pass				

Report No.: SZEM120900527101 Page: 12 of 46


Test plot as follows:


RA900

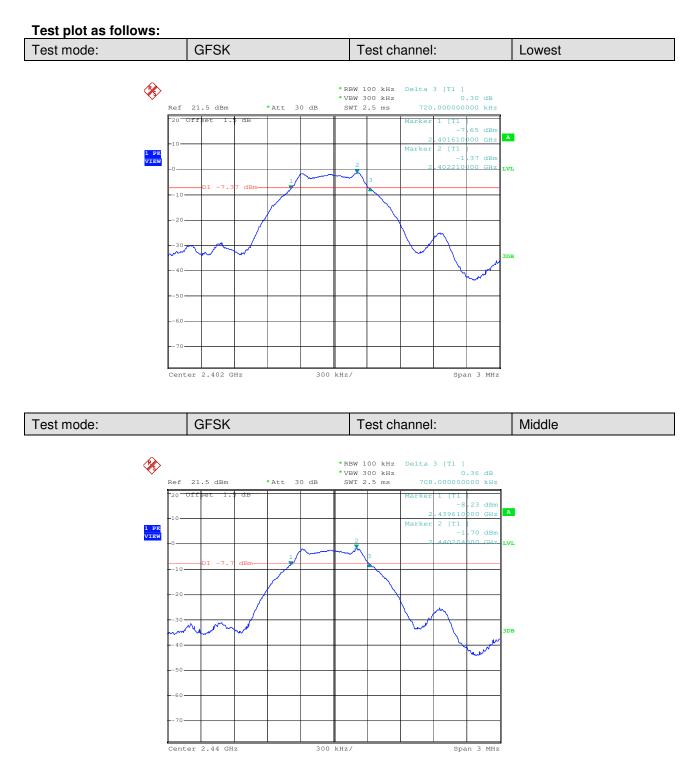

Report No.: SZEM120900527101 Page: 13 of 46

Report No.: SZEM120900527101 Page: 14 of 46

Report No.: SZEM120900527101 Page: 15 of 46

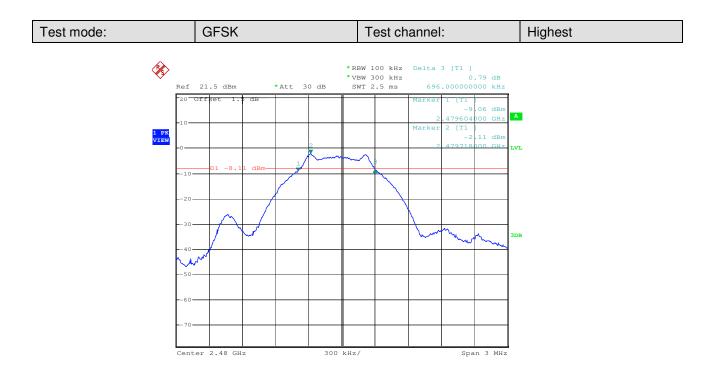
5.3 6dB Occupy Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2009 and KDB558074 D01			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Limit:	≥ 500 kHz			
Test Mode:	Non-hopping transmitting with GFSK modulation			
Instruments Used:	Refer to section 4.10 for details			
Test Results:	Pass			


Measurement Data

Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.720	≥500	Pass
Middle	0.708	≥500	Pass
Highest	0.696	≥500	Pass

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



Report No.: SZEM120900527101 Page: 16 of 46

Report No.: SZEM120900527101 Page: 17 of 46

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM120900527101 Page: 18 of 46

5.4 Power Spectral Density

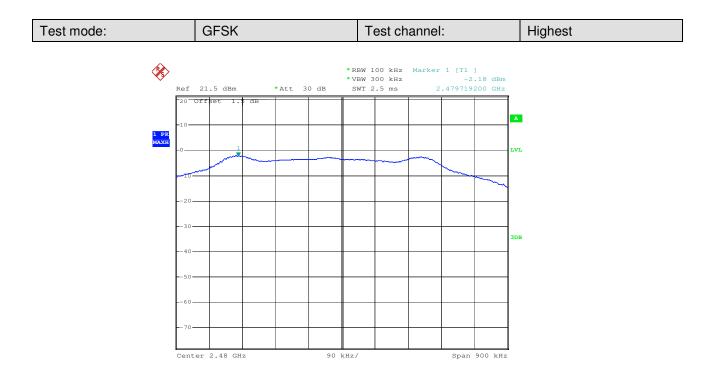
Test Requirement:	47 CFR Part 15C Section 15.247 (e)			
Test Method:	ANSI C63.10 2009 and KDB558074 D01			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Limit:	≤8.00dBm			
Exploratory Test Mode:	Non-hopping transmitting with GFSK modulation			
Instruments Used:	Refer to section 4.10 for details			
Test Results:	Pass			

Measurement Data

	GFSK mode		
Test channel	Power Spectral Density (dBm)	Limit (dBm)	Result
Lowest	-16.50	≤8.00	Pass
Middle	-16.85	≤8.00	Pass
Highest	-17.38	≤8.00	Pass

Remark:

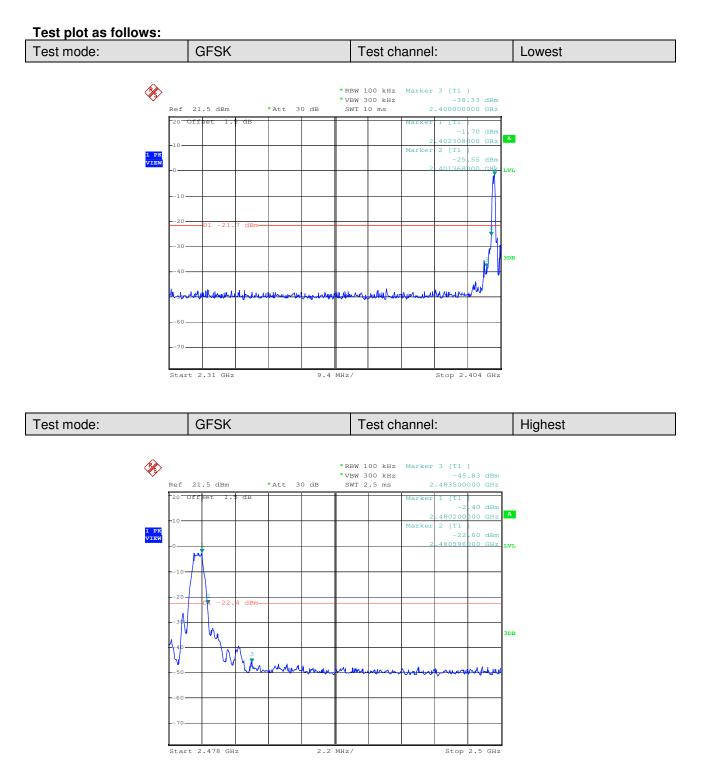
Power Spectral Density=Power + BWCF BWCF=10log(3kHz/100kHz)=-15.2dB



Report No.: SZEM120900527101 Page: 19 of 46

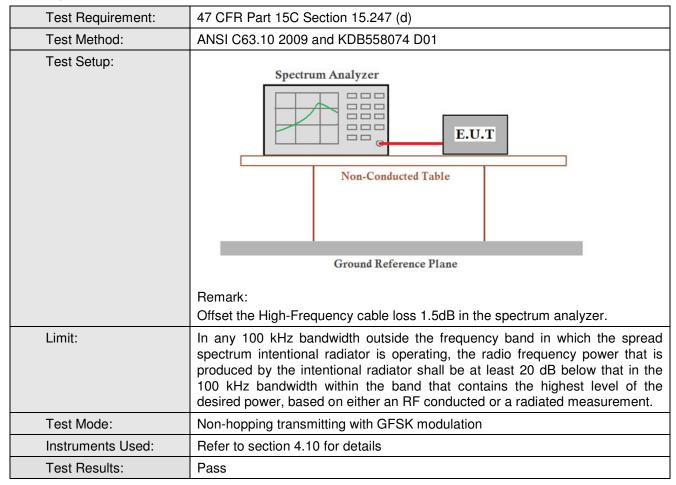
Report No.: SZEM120900527101 Page: 20 of 46

Report No.: SZEM120900527101 Page: 21 of 46

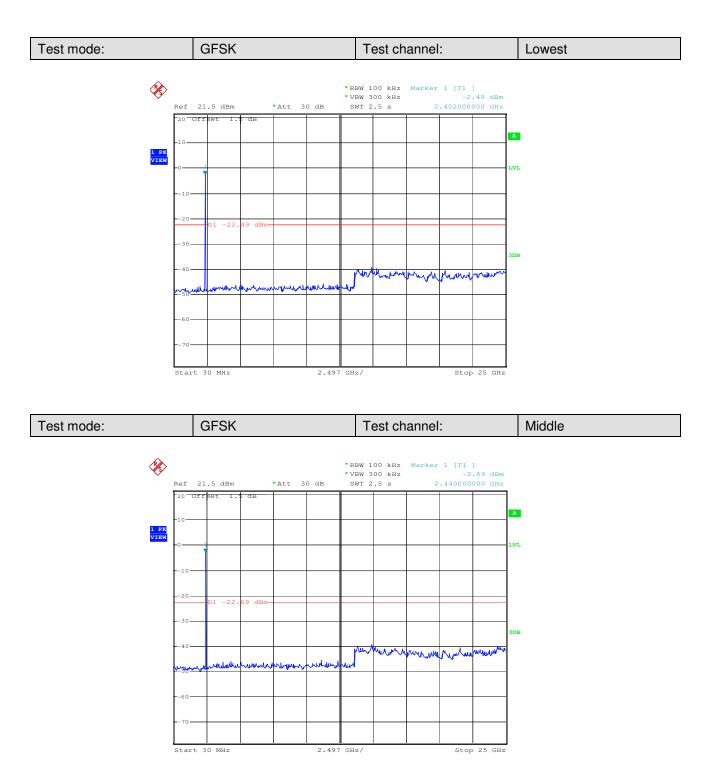

5.5 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10 2009 and KDB558074 D01			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Mode:	Non-hopping and hopping transmitting with GFSK modulation			
Instruments Used:	Refer to section 4.10 for details			
Test Results:	Pass			

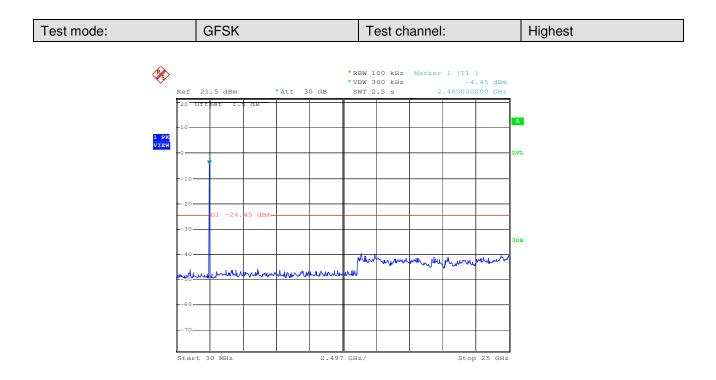
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM120900527101 Page: 22 of 46

Report No.: SZEM120900527101 Page: 23 of 46


5.6 Spurious RF Conducted Emissions

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



Report No.: SZEM120900527101 Page: 24 of 46

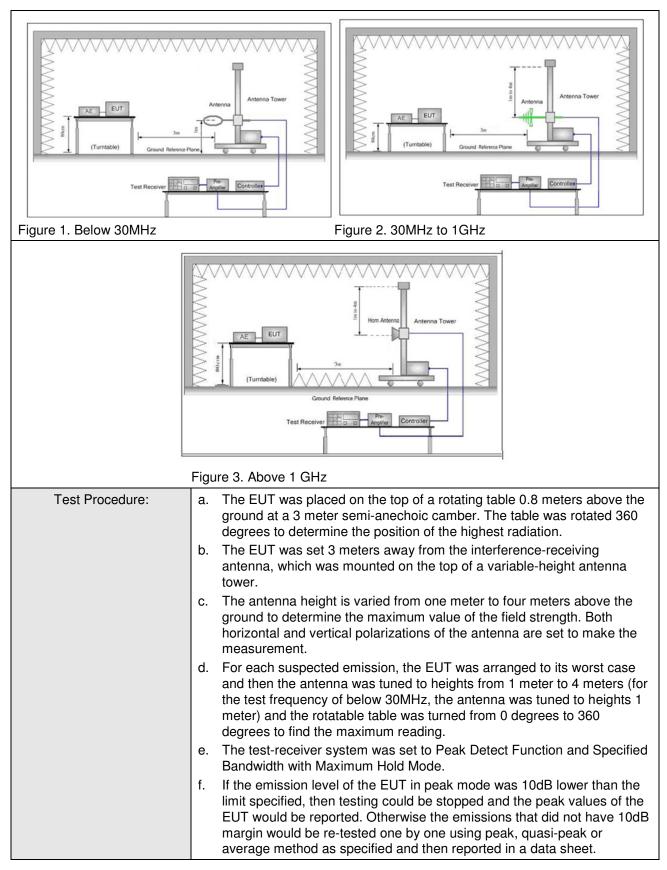
Report No.: SZEM120900527101 Page: 25 of 46

Report No.: SZEM120900527101 Page: 26 of 46

5.7 Pseudorandom Frequency Hopping Sequence

Test Requirement:	47 CFR Part 15 C Section 15.24	7 (a)(1) requirement:
Pseudorandom ordered list o by each transmitter. The sys	f hopping frequencies. Each freq tem receivers shall have input b	ected at the system hopping rate from a uency must be used equally on the average bandwidths that match the hopping channel hift frequencies in synchronization with the
EUT Pseudorandom Freque	ency Hopping Sequence	
outputs are added in a mo	dulo-two addition stage. And the s with the first ONE of 9 consecu	tage shift register whose 5th and 9th stage e result is fed back to the input of the firs tive ONEs; i.e. the shift register is initialized
 Length of pseudo-random s 	-	
Longest sequence of zeros:		
Linear Feedback Sl	hift Register for Generation of	the PRBS sequence
	m Frequency Hopping Sequence	-
0 2 4 6	62 64 78 1	73 75 77
Each frequency used equally	on the average by each transmit	tter
	u ,	opping channel bandwidths of their

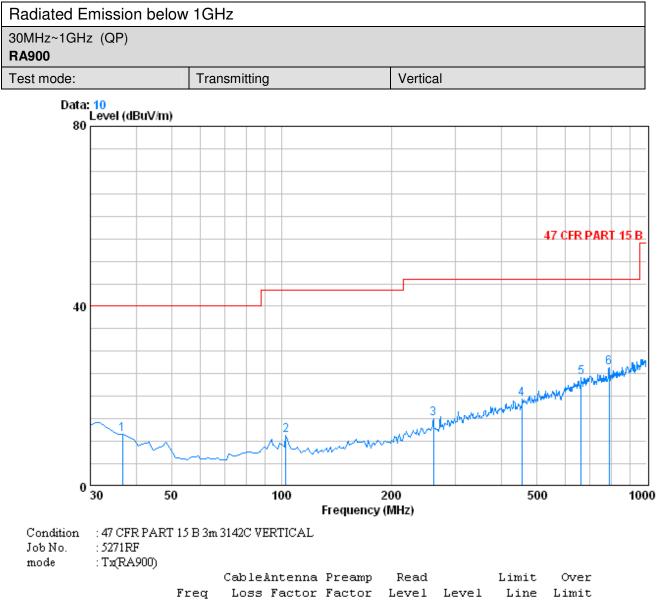
Report No.: SZEM120900527101 Page: 27 of 46


5.8 Radiated Spurious Emission

5.8.1 Spurious Emiss	ions									
Test Requirement:	47 CFR Part 15C Section	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2009 and	KD	B558074 D01							
Test Site:	Measurement Distance	: 3n	n (Semi-Anecł	noic Cham	be	r)				
Receiver Setup:	Frequency		Detector	RBW	RBW		VBW		Remark	1
	0.009MHz-0.090MH	z	Peak	10kHz	10kHz		Peak			
	0.009MHz-0.090MH	z	Average	10kHz	10kHz 30kHz		Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak			
	0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 k⊢	lz	300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz		3MHz	Peak			
			Peak	1MHz	2	10Hz	Average			
Limit:	Froquoney		eld strength crovolt/meter)	Limit (dBuV/m)			Measuremen distance (m)			
	0.009MHz-0.490MHz	IHz-0.490MHz 2400/F(kHz)		-			300	T		
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-		30	Ī		
	1.705MHz-30MHz		30	-	-		30	T		
	30MHz-88MHz		100	40.0	Q	uasi-peak	3	T		
	88MHz-216MHz		150	43.5	Ø	uasi-peak	3			
	216MHz-960MHz		200	46.0	Q	uasi-peak	3			
	960MHz-1GHz)MHz-1GHz		54.0	Q	uasi-peak	3			
	Above 1GHz	ve 1GHz 500		54.0		Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						-			
Test Setup:										

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

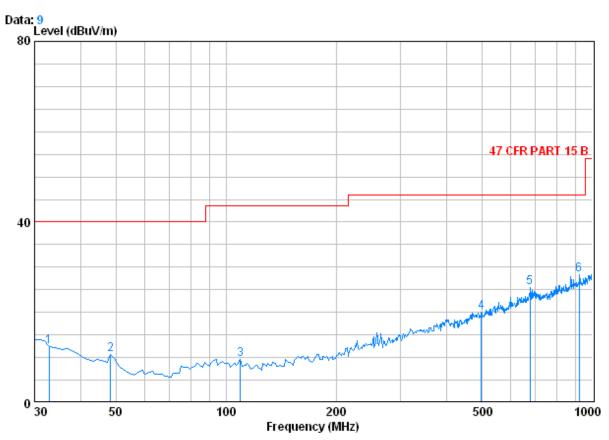
Report No.: SZEM120900527101 Page: 28 of 46


Report No.: SZEM120900527101 Page: 29 of 46

	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)			
	 h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. 			
	i. Repeat above procedures until all frequencies measured was complete.			
Test Mode:	Non-hopping transmitting mode with GFSK modulation			
Instruments Used:	Refer to section 4.10 for details			
Test Results:	Pass			

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM120900527101 Page: 30 of 46


	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	36.790	0.60	12.30	27.33	26.03	11.60	40.00	-28.40
2	102.750	1.21	8.97	27.18	28.34	11.33	43.50	-32.17
3	260.860	1.73	12.53	26.50	27.20	14.96	46.00	-31.04
4	455.830	2.43	17.09	27.48	27.31	19.35	46.00	-26.65
5	661.470	2.83	21.00	27.46	27.74	24.10	46.00	-21.90
6	788.540	3.17	22.06	27.31	28.41	26.32	46.00	-19.68

Report No.: SZEM120900527101 Page: 31 of 46

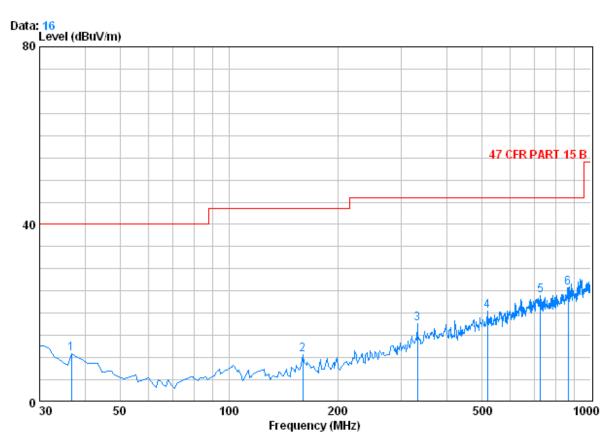
• ------

Test mode: Transmitting H	Horizontal
---------------------------	------------

Condition : 47 CFR PART 15 B 3m 3142C HORIZONTAL Job No. : 5271RF mode : Tx(RA900) CableAntenna Pr

		Cable	Intenna	Preamp	Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
-	22 010	0 60	10.04	27 25	25 42	10 50	40.00	27 40
T	32.910	0.60	13.04	27.35	25.42	12.52	40.00	-27.40
2	48.430	0.78	9.00	27.29	28.19	10.67	40.00	-29.33
3	109.540	1.23	8.62	27.14	26.98	9.69	43.50	-33.81
4	498.510	2.59	17.80	27.70	27.42	20.12	46.00	-25.88
5	676.990	2.86	21.42	27.44	28.68	25.52	46.00	-20.48
60	921.430	3.62	23.29	26.68	28.15	28.38	46.00	-17.62

Report No.: SZEM120900527101 Page: 32 of 46



moue	. 1 ALOEGUUJ							
		Cable	Antenna	Preamp	Read		Limit	Over
	Fred	ł Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	z dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	40.670	0.61	10.93	27.32	25.61	9.84	40.00	-30.16
2	98.870) 1.19	9.06	27.20	25.81	8.85	43.50	-34.65
3	159.980	1.34	9.60	26.86	26.82	10.90	43.50	-32.60
4	382.110	2.15	16.08	27.01	25.83	17.06	46.00	-28.94
5	599.390) 2.70	19.74	27.54	26.84	21.74	46.00	-24.26
60	874.870) 3.50	23.00	26.89	27.63	27.25	46.00	-18.75

Report No.: SZEM120900527101 Page: 33 of 46

Test mode: Transmitting Horizontal

Condition : 47 CFR PART 15 B 3m 3142C HORIZONTAL Job No. : 5271RF mode : TX(SE900)

,	<i>,</i>	CableA	Intenna	Preamp	Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB		dB	dBuV	dBuV/m	dBuV/m	dB
1	36.790	0.60	12.53	27.33	25.06	10.87	40.00	-29.13
2	159.980	1.34	9.60	26.86	26.68	10.76	43.50	-32.74
3	331.670	2.00	14.98	26.64	27.30	17.64	46.00	-28.36
4	517.910	2.62	18.34	27.67	27.15	20.44	46.00	-25.56
5	726.460	2.98	21.60	27.38	26.76	23.97	46.00	-22.03
60	867.110	3.48	22.78	26.92	26.40	25.73	46.00	-20.27

Report No.: SZEM120900527101 Page: 34 of 46

Transmitter E RA900	Emission	above 1GF	łz					
Test mode:		GFSK	Test	channel:	Lowest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1353.804	2.42	27.85	39.29	46.53	37.51	74	-36.49	Vertical
1928.509	2.79	31.31	39.54	47.45	42.01	74	-31.99	Vertical
3151.992	3.44	33.34	40.41	48.95	45.32	74	-28.68	Vertical
4785.075	4.68	34.73	41.61	49.81	47.61	74	-26.39	Vertical
8104.559	6.20	36.04	39.10	48.45	51.59	74	-22.41	Vertical
11112.520	6.25	38.48	37.91	46.15	52.97	74	-21.03	Vertical
1353.804	2.42	27.85	39.29	47.10	38.08	74	-35.92	Horizontal
1764.123	2.69	30.07	39.46	47.18	40.48	74	-33.52	Horizontal
4223.950	4.31	34.45	41.21	47.75	45.30	74	-28.70	Horizontal
6047.776	5.14	35.76	40.87	49.26	49.29	74	-24.71	Horizontal
7470.558	6.08	35.99	39.64	48.67	51.10	74	-22.90	Horizontal
10453.950	6.09	38.24	37.64	46.54	53.23	74	-20.77	Horizontal
Test mode:		GFSK	Test	channel:	Middle	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1553.293	2.55	28.59	39.38	46.99	38.75	74	-35.25	Vertical
3983.750	4.14	33.80	41.02	48.97	45.89	74	-28.11	Vertical
5850.919	5.07	35.45	41.06	49.64	49.10	74	-24.90	Vertical
7547.013	6.17	36.00	39.57	49.28	51.88	74	-22.12	Vertical
9935.053	5.98	37.65	37.52	46.09	52.20	74	-21.80	Vertical
11341.140	6.30	38.43	38.00	46.88	53.61	74	-20.39	Vertical
1381.656	2.44	27.88	39.30	47.65	38.67	74	-35.33	Horizontal
3552.582	3.78	33.26	40.70	48.66	45.00	74	-29.00	Horizontal
6156.505	5.17	35.88	40.79	49.39	49.65	74	-24.35	Horizontal
7721.909	6.22	36.00	39.43	49.41	52.20	74	-21.80	Horizontal
9859.472	5.98	37.56	37.58	46.76	52.72	74	-21.28	Horizontal
10888.510	6.19	38.46	37.81	46.95	53.79	74	-20.21	Horizontal

Report No.: SZEM120900527101 Page: 35 of 46

Test mode:		GFSK	Tes	st channel:	Highest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1260.670	2.36	27.67	39.25	46.15	36.93	74	-37.07	Vertical
1988.327	2.82	31.68	39.56	47.80	42.74	74	-31.26	Vertical
3815.033	4.01	33.59	40.90	49.49	46.19	74	-27.81	Vertical
5352.186	4.90	34.75	41.48	48.44	46.61	74	-27.39	Vertical
7470.558	6.08	35.99	39.64	48.39	50.82	74	-23.18	Vertical
10480.590	6.09	38.28	37.65	45.44	52.16	74	-21.84	Vertical
1367.659	2.43	27.88	39.29	48.21	39.23	74	-34.77	Horizontal
2013.795	2.84	31.83	39.57	47.48	42.58	74	-31.42	Horizontal
3943.392	4.11	33.74	41.00	49.49	46.34	74	-27.66	Horizontal
4490.048	4.48	35.15	41.40	49.41	47.64	74	-26.36	Horizontal
7566.249	6.19	36.00	39.56	48.51	51.14	74	-22.86	Horizontal
10348.050	6.06	38.12	37.59	46.37	52.96	74	-21.04	Horizontal

SE900								
Test mode:	C	GFSK	Tes	t channel:	Lowest	Rema	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1381.656	2.44	27.88	39.30	48.89	39.91	74	-34.09	Vertical
3018.502	3.33	33.39	40.31	50.64	47.05	74	-26.95	Vertical
5646.079	5.00	35.12	41.22	50.79	49.69	74	-24.31	Vertical
6903.705	5.45	35.90	40.13	51.34	52.56	74	-21.44	Vertical
8814.774	6.16	36.45	38.49	48.51	52.63	74	-21.37	Vertical
10480.590	6.09	38.28	37.65	46.70	53.42	74	-20.58	Vertical
1159.096	2.29	27.48	39.20	49.81	40.38	74	-33.62	Horizontal
1525.860	2.54	28.35	39.37	49.91	41.43	74	-32.57	Horizontal
3625.669	3.84	33.34	40.76	50.55	46.97	74	-27.03	Horizontal
4501.492	4.49	35.20	41.40	50.23	48.52	74	-25.48	Horizontal
6494.564	5.26	36.28	40.50	51.09	52.13	74	-21.87	Horizontal
9636.161	5.99	37.34	37.76	48.16	53.73	74	-20.27	Horizontal

Report No.: SZEM120900527101 Page: 36 of 46

Test mode:		GFSK	Tes	t channel:	Middle	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1381.656	2.44	27.88	39.30	48.74	39.76	74	-34.24	Vertical
1851.542	2.74	30.69	39.51	48.71	42.63	74	-31.37	Vertical
3815.033	4.01	33.59	40.90	50.20	46.90	74	-27.10	Vertical
5297.966	4.88	34.70	41.53	51.20	49.25	74	-24.75	Vertical
7394.878	6.00	35.96	39.71	50.68	52.93	74	-21.07	Vertical
10348.050	6.06	38.12	37.59	47.27	53.86	74	-20.14	Vertical
1170.959	2.30	27.51	39.21	49.05	39.65	74	-34.35	Horizontal
1777.646	2.70	30.20	39.47	49.44	42.87	74	-31.13	Horizontal
3625.669	3.84	33.34	40.76	50.44	46.86	74	-27.14	Horizontal
4983.987	4.77	34.43	41.77	50.01	47.44	74	-26.56	Horizontal
6032.401	5.13	35.74	40.89	50.50	50.48	74	-23.52	Horizontal
9370.083	6.05	37.03	37.99	48.48	53.57	74	-20.43	Horizontal
Test mode:		GFSK	Tes	t channel:	Highest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1655.354	2.62	29.33	39.42	48.20	40.73	74	-33.27	Vertical
2987.923	3.31	33.38	40.30	48.67	45.06	74	-28.94	Vertical
5073.591	4.80	34.48	41.73	49.66	47.21	74	-26.79	Vertical
6156.505	5.17	35.88	40.79	49.86	50.12	74	-23.88	Vertical
8063.403	6.20	36.02	39.13	49.46	52.55	74	-21.45	Vertical
10348.050	6.06	38.12	37.59	46.58	53.17	74	-20.83	Vertical
1286.606	2.37	27.73	39.26	48.42	39.26	74	-34.74	Horizontal
1856.261	2.74	30.69	39.51	48.46	42.38	74	-31.62	Horizontal
2898.032	3.26	33.26	40.23	49.40	45.69	74	-28.31	Horizontal
4501.492	4.49	35.20	41.40	49.76	48.05	74	-25.95	Horizontal
6219.512	5.19	35.96	40.73	50.69	51.11	74	-22.89	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

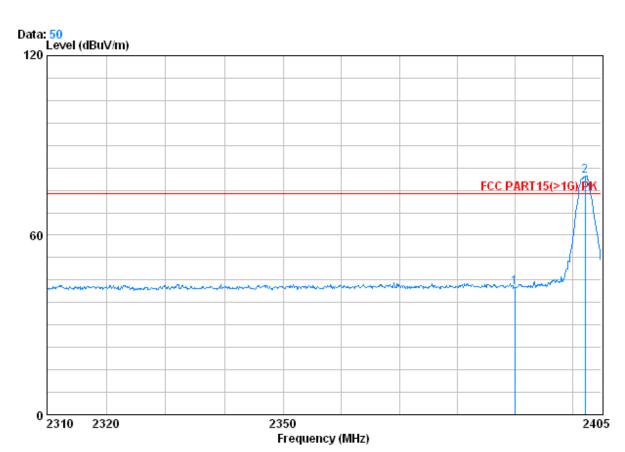
3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM120900527101 Page: 37 of 46

5.9 Band edge (Radiated Emission)

Test Requirement:	47 CFR Part 15C Section 15	5.209 and 15.205			
Test Method:	ANSI C63.10 2009 and KDE				
Test Site:	Measurement Distance: 3m		r)		
Limit:	Frequency	Limit (dBuV/m @3m)			
	30MHz-88MHz	40.0	Quasi-peak Value		
	88MHz-216MHz	43.5	Quasi-peak Value		
	216MHz-960MHz	46.0	Quasi-peak Value		
	960MHz-1GHz	54.0	Quasi-peak Value		
		54.0	Average Value		
	Above 1GHz	74.0	Peak Value		
Test Setup:					
Figure 1. 30MHz to 1GHz Test Procedure:	 Figure a. The EUT was place the ground at a 3 mm rotated 360 degrees radiation. b. The EUT was set 3 antenna, which was tower. c. The antenna height the ground to determ Both horizontal and make the measurem d. For each suspected case and then the a meters and the rotatin degrees to find the rotating degrees to find the rota	emission, the EUT was a ntenna was tuned to heigl able table was turned from	able 0.8 meters above er. The table was of the highest erference-receiving variable-height antenna to four meters above of the field strength. e antenna are set to rranged to its worst hts from 1 meter to 4 m 0 degrees to 360 ect Function and		

Report No.: SZEM120900527101 Page: 38 of 46

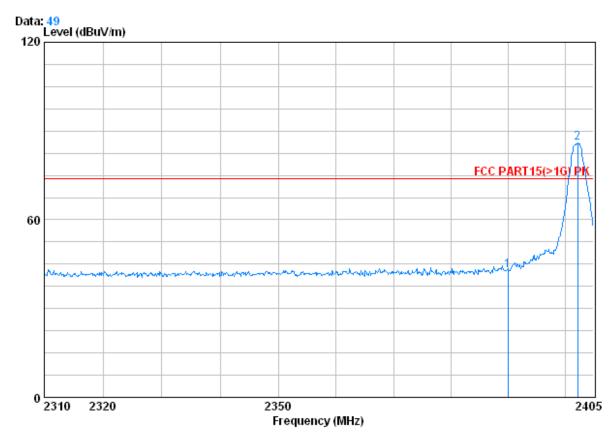

	 Repeat for each power and modulation for lowest and highest channel g. Test the EUT in the lowest channel , the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. i. Repeat above procedures until all frequencies measured was complete
Test Mode:	complete. Non-hopping transmitting mode with GFSK modulation
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass

Report No.: SZEM120900527101 Page: 39 of 46

Test plot as follows:

Band edge (Radiate	ed Emission)					
Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Vertical

Condition : FCC PART15(>1G) PK 3m VERTICAL Job No. : 5271RF


Mode : 2402 bandedge

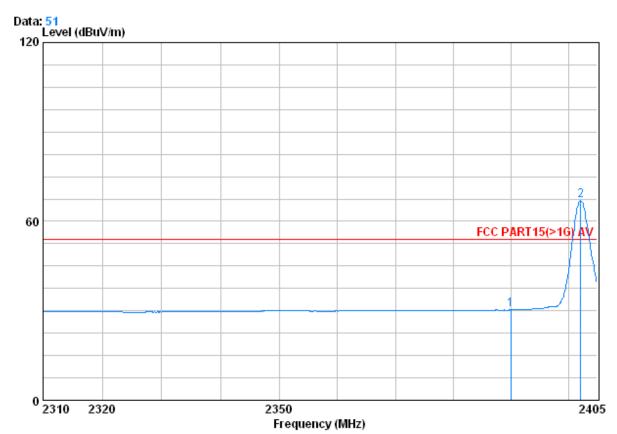
	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 X	2390.000 2402.245			39.85 39.86				

Report No.: SZEM120900527101 Page: 40 of 46

Test mode: GFSK	Test channel:	Lowest	Remark:	Peak	Horizontal
-----------------	---------------	--------	---------	------	------------

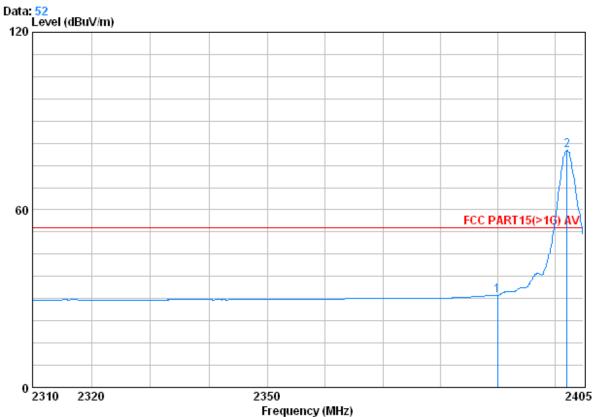
Condition : FCC PART15(>1G) PK 3m HORIZONTAL

Job No. : 5271RF Mode : 2402 handedge


MOGE	.2402 Gandeuge Freq			Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 X	2390.000 2402.245			39.85 39.86				

Report No.: SZEM120900527101 Page: 41 of 46

Test mode: GFSK Test c	hannel: Lowest	Remark:	Average	Vertical
------------------------	----------------	---------	---------	----------


Condition : FCC PART15(>1G) AV 3m VERTICAL Job No. : 5271RF Mode : 2402 bandedge

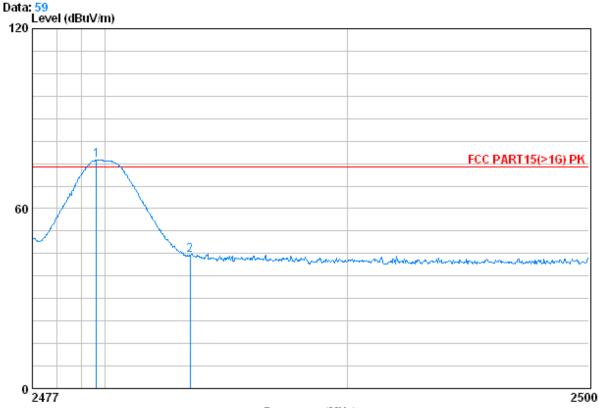
101046	. 2402 Galdeuge Freq			Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 X	2390.000 2402.150			39.85 39.86				

Report No.: SZEM120900527101 Page: 42 of 46

Test mode: GFSK Tes	t channel: Lowest	Remark:	Average	Horizontal
---------------------	-------------------	---------	---------	------------

Frequency (n

Condition : FCC PART15(>1G) AV 3m HORIZONTAL

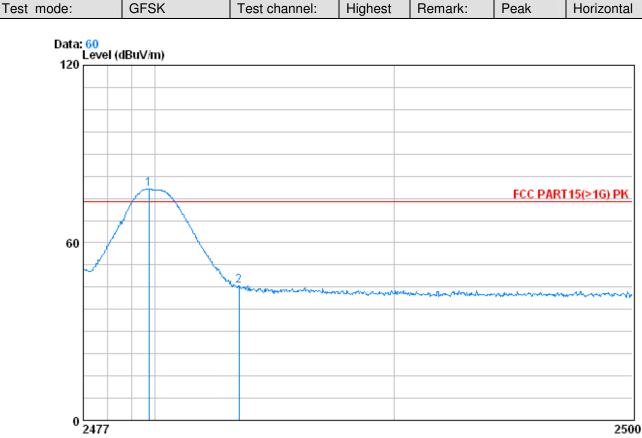

Job No. : 5271RF Mode : 2402 handedge

	Freq			Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 0	2390.000 2402.150			39.85 39.86				

Report No.: SZEM120900527101 Page: 43 of 46

Test mode: GFSK Test channe	el: Highest	Remark:	Peak	Vertical
-----------------------------	-------------	---------	------	----------

Frequency (MHz)


: FCC PART15(>1G) PK 3m VERTICAL Condition

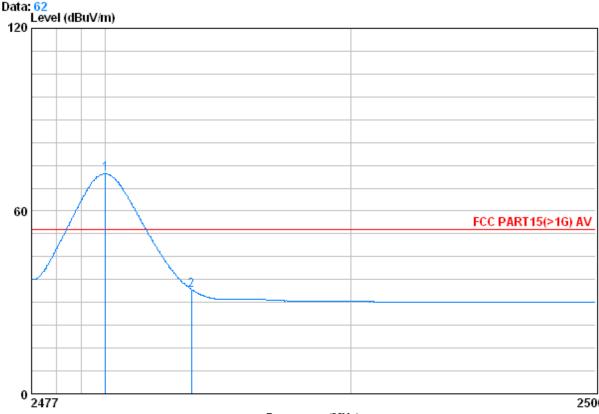
Job No. : 5271RF Mode : 2480 bandedge

01046	. 2460 Galdedge Freq			Preamp Factor			Limit Line	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 X 2	2479.645 2483.500			39.92 39.92				

Report No.: SZEM120900527101 Page: 44 of 46

Frequency (MHz)

Condition : FCC PART15(>1G) PK 3m HORIZONTAL Job No. : 5271RF


Mode : 2480 bandedge

		Freq			Preamp Factor				
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2	X	2479.737 2483.500			39.92 39.92				

Report No.: SZEM120900527101 Page: 45 of 46

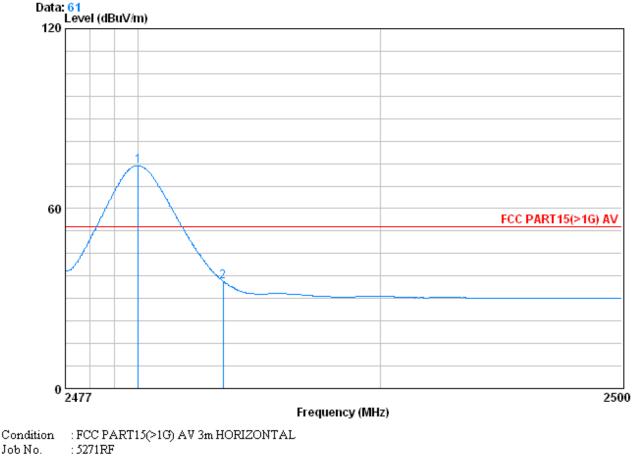
Test mode: GFSK Test channel:	Highest	Remark:	Average	Vertical
-------------------------------	---------	---------	---------	----------

Frequency (MHz)

2500

Condition : FCC PART15(>1G) AV 3m VERTICAL

Job No. : 5271RF


Mode : 2480 bandedge

		Freq			Preamp Factor				
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2	-	2479.990 2483.500			39.92 39.92				

Report No.: SZEM120900527101 Page: 46 of 46

Test mode: GFSK Test channel: Highest Remark:	Average	Horizontal
---	---------	------------

100140.	. JZ/IRP				
Mode	· 2420 handedge				

101046	. 2460 Gandedge Freq		Antenna Factor	-			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
10 2	2479.990 2483.500		32.67 32.67					

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor