

RADIO TEST REPORT

S T S

Report No: STS1810166W02

Issued for

IDT Technology Limited

9/F, Kaiser Estate, 41 Man Yue Street, Hunghom, Kowloon, HongKong

Product Name:	SENSES Aroma Clock With Brain Music
Brand Name:	Oregon scientific
Model Name:	RM661
Series Model:	N/A
FCC ID:	NMTRM661-01
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced we permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL

Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Page 2 of 44

TEST RESULT CERTIFICATION

Applicant's name:	IDT Technology Limited
Address	9/F, Kaiser Estate, 41 Man Yue Street, Hunghom, Kowloon, HongKong
Manufacture's Name:	IDT Technology Limited
Address	9/F, Kaiser Estate, 41 Man Yue Street, Hunghom, Kowloon, HongKong
Product description	
Product Name:	SENSES Aroma Clock With Brain Music
Brand Name:	Oregon scientific
Model Name	RM661
Series Model:	N/A
Test Standards	FCC Part15.247
Test procedure	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests:	22 Oct.2018 ~29 Oct.2018
Date of Issue	30 Oct 2018

Test Result	Pass
	1 433

Testing Engineer : Technical Manager : Authorized Signatory : (Vita Li)

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1810166W02

Table of Contents

Page 3 of 44

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.5 EQUIPMENTS LIST	13
3. EMC EMISSION TEST	15
3.1 CONDUCTED EMISSION MEASUREMENT	15
3.2 TEST PROCEDURE	16
3.3 TEST SETUP	16
3.4 EUT OPERATING CONDITIONS	16
3.5 TEST RESULTS	17
4. RADIATED EMISSION MEASUREMENT	19
4.1 RADIATED EMISSION LIMITS	19
4.2 TEST PROCEDURE	20
4.3 TEST SETUP	21
4.4 EUT OPERATING CONDITIONS	21
4.5 FIELD STRENGTH CALCULATION	22
4.6 TEST RESULTS	23
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	31
5.1 LIMIT	31
5.2 TEST PROCEDURE	31
5.3 TEST SETUP	31
5.4 EUT OPERATION CONDITIONS	31
5.5 TEST RESULTS	32
6. POWER SPECTRAL DENSITY TEST	35
6.1 LIMIT	35
6.2 TEST PROCEDURE	35
6.3 TEST SETUP	35
6.4 EUT OPERATION CONDITIONS	35

=#

Report No.: STS1810166W02

Table of Contents

Page 4 of 44

6.5 TEST RESULTS	36
7. BANDWIDTH TEST	38
7.1 LIMIT	38
7.2 TEST PROCEDURE	38
7.3 TEST SETUP	38
7.4 EUT OPERATION CONDITIONS	38
7.5 TEST RESULTS	39
8. PEAK OUTPUT POWER TEST	41
8.1 LIMIT	41
8.2 TEST PROCEDURE	41
8.3 TEST SETUP	41
8.4 EUT OPERATION CONDITIONS	41
8.5 TEST RESULTS	42
9. ANTENNA REQUIREMENT	43
9.1 STANDARD REQUIREMENT	43
9.2 EUT ANTENNA	43
10. EUT TEST PHOTO	44

Page 5 of 44

Report No.: STS1810166W02

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	30 Oct.2018	STS1810166W02	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 DTS Meas Guidance v04

FCC Part 15.247,Subpart C						
Standard Section	Lest Item					
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)(3)	Output Power	PASS				
15.247 (c)	Radiated Spurious Emission PASS					
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.205	Restricted Band Edge Emission	PASS				
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS				
15.203	Antenna Requirement	PASS				

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China FCC Registration No.: 625569

IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^{\circ}$

Page 7 of 44

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power,conducted	±0.71dB
4	Spurious emissions, conducted	±0.63dB
5	All emissions, radiated (9KHz-30MHz)	±3.02dB
6	All emissions, radiated (30MHz-200MHz)	±3.80dB
7	All emissions, radiated (200MHz-1000MHz)	±3.97dB
8	All emissions, radiated (>1G)	±3.03dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	SENSES Aroma Clock With Brain Music			
Trade Name	Oregon scientific			
Model Name	RM661			
Series Model	N/A			
Model Difference	N/A			
	The EUT is SENSES	S Aroma Clock With Brain Music		
	Operation Frequency:	2402~2480 MHz		
	Modulation Type:	GFSK		
	Radio Technology	BLE		
Product Description	Bluetooth Version:	4.2LE		
	Number Of Channel	40		
	Antenna Designation:	Please see Note 3.		
	Antenna Gain (dBi)	1 dBi		
Channel List	Please refer to the N	lote 2.		
Adapter	Power supply and ADP(rating): Input: AC 100V-240V, 800mA, 50/60Hz Output: DC 5V, 2000mA			
Hardware version number	V1.0			
Software version number	V1.0			
Connecting I/O Port(s)	Please refer to the User's Manual			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

\sim	
/	

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
37	2402	09	2422	18	2442	28	2462
00	2404	10	2424	19	2444	29	2464
01	2406	38	2426	20	2446	30	2466
02	2408	11	2428	21	2448	31	2468
03	2410	12	2430	22	2450	32	2470
04	2412	13	2432	23	2452	33	2472
05	2414	14	2434	24	2454	34	2474
06	2416	15	2436	25	2456	35	2476
07	2418	16	2438	26	2458	36	2478
08	2420	17	2440	27	2460	39	2480

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Oregon scientific	RM661	Built-in Antenna	N/A	1	BLE ANT

Shenzhen STS Test Services Co., Ltd.

Page 10 of 44

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH37(2402MHz)	1 MHz/GFSK
Mode 2	TX CH17(2440MHz)	1 MHz/GFSK
Mode 3	TX CH39(2480MHz)	1 MHz/GFSK

Note:

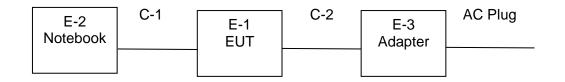
(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report

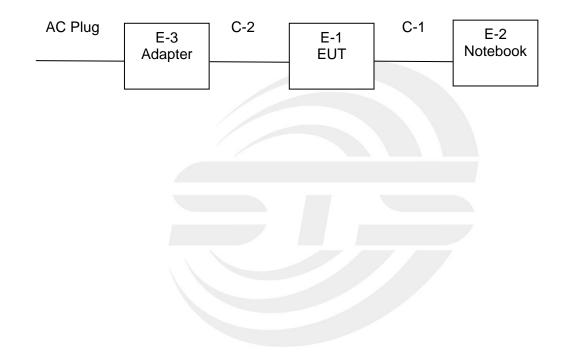
(3) Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.

For AC Conducted Emission

Test Case				
AC Conducted Emission	Mode 4 : Keeping BT TX			



Page 11 of 44


Report No.: STS1810166W02

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

Shenzhen STS Test Services Co., Ltd.

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-3	Adapter	N/A	YLS0241A-E050200	N/A	N/A
C-2	DC Cable	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	Notebook	DELL	VOSTRO.3800	N/A	N/A
C-1	USB Cable	N/A	N/A	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.5 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until		
Test Receiver	R&S	ESCI	101427	2018.10.13	2019.10.12		
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.01		
Horn Antenna	Schwarzbeck	BBHA 9120D(1201)	9120D-1343	2017.10.27	2020.10.26		
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	N/A	2018.03.11	2021.03.10		
Temperature & Humitidy	HH660	Mieo	N/A	2018.10.13	2019.10.12		
Pre-mplifier (0.1M-3GHz)	EM	EM330	N/A	2018.03.09	2019.03.08		
PreAmplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2018.10.13	2019.10.12		
Passive Loop (9K30MHz)	ZHINAN	ZN30900C	16035	2017.03.11	2020.03.10		
Low frequency cable	EM	R01	N/A	2018.03.11	2019.03.10		
Low frequency cable	EM	R06	N/A	2018.03.11	2019.03.10		
High frequency cable	SCHWARZBECK	R04	N/A	2018.03.11	2019.03.10		
High frequency cable	SCHWARZBECK	R02	N/A	2018.03.11	2019.03.10		
Semi-anechoic chamber	Changling	966	N/A	2018.10.24	2020.10.23		
turn table	EM	SC100_1	60531	N/A	N/A		
Antenna mast	EM	SC100	N/A	N/A	N/A		
Max-full Antenna Corp	MF	MFA-440H	N/A	N/A	N/A		

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2018.10.13	2019.10.12
LISN	R&S	ENV216	101242	2018.10.13	2019.10.12
conduction Cable	EM	C01	N/A	2018.03.11	2019.03.10
Temperature & Humitidy	Mieo	HH660	N/A	2018.10.13	2019.10.12

Shenzhen STS Test Services Co., Ltd.

Page 14 of 44 Report No.: STS1810166W02

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2018.10.13	2019.10.12
MXA Signal analyzer	Agilent	N9020A	MY51110105	2018.03.08	2019.03.07
MXA Signal analyzer	Agilent	N9020A	MY49100060	2018.10.13	2019.10.12

Shenzhen STS Test Services Co., Ltd.

Page 15 of 44

Report No.: STS1810166W02

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emission limit (dBuV)		
FREQUENCT (MIDZ)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

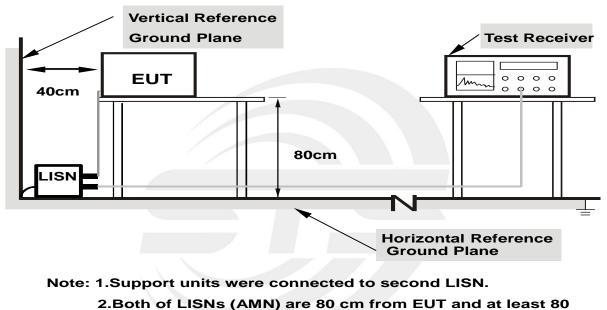
(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1810166W02



3.2 TEST PROCEDURE

a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Page 16 of 44

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

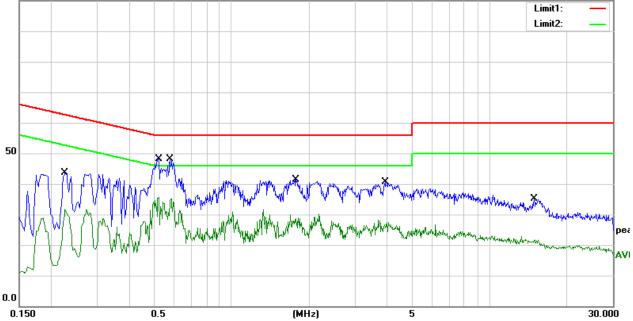
3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

from other units and other metal planes

3.5 TEST RESULTS

Temperature:	26 .1℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4		


Frequency	Reading	Correct	Result	Limit	Margin	Domork
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.2260	23.26	20.36	43.62	62.60	-18.98	QP
0.2260	11.23	20.36	31.59	52.60	-21.01	AVG
0.5220	27.62	20.46	48.08	56.00	-7.92	QP
0.5220	15.07	20.46	35.53	46.00	-10.47	AVG
0.5780	27.62	20.40	48.02	56.00	-7.98	QP
0.5780	14.83	20.40	35.23	46.00	-10.77	AVG
1.7740	21.22	20.08	41.30	56.00	-14.70	QP
1.7740	10.02	20.08	30.10	46.00	-15.90	AVG
3.9260	20.69	19.95	40.64	56.00	-15.36	QP
3.9260	7.52	19.95	27.47	46.00	-18.53	AVG
14.8860	15.03	19.97	35.00	60.00	-25.00	QP
14.8860	1.74	19.97	21.71	50.00	-28.29	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

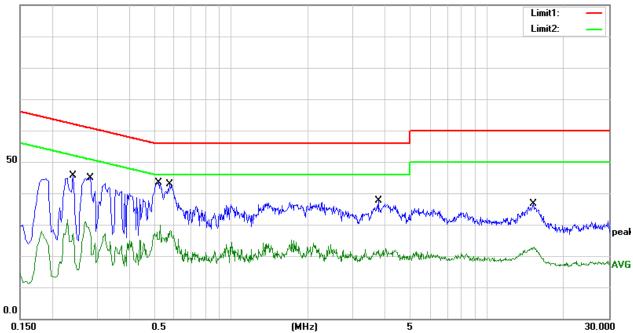
100.0 dBuV

Shenzhen STS Test Services Co., Ltd.

Page 18 of 44

Report No.: STS1810166W02

Temperature:	26 .1℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 4		


Frequency	Reading	Correct	Result	Limit	Margin	Domork
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.2420	25.05	20.51	45.56	62.03	-16.47	QP
0.2420	11.15	20.51	31.66	52.03	-20.37	AVG
0.2820	24.16	20.68	44.84	60.76	-15.92	QP
0.2820	10.26	20.68	30.94	50.76	-19.82	AVG
0.5220	22.83	20.42	43.25	56.00	-12.75	QP
0.5220	9.42	20.42	29.84	46.00	-16.16	AVG
0.5780	22.55	20.37	42.92	56.00	-13.08	QP
0.5780	6.17	20.37	26.54	46.00	-19.46	AVG
3.7660	17.48	20.06	37.54	56.00	-18.46	QP
3.7660	2.20	20.06	22.26	46.00	-23.74	AVG
15.2220	16.70	19.82	36.52	60.00	-23.48	QP
15.2220	3.17	19.82	22.99	50.00	-27.01	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.

Page 19 of 44

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	4 MUL / 2 MUL	
band)	1 MHz / 3 MHz	

For Band edge

Spectrum Parameter	Setting	
Detector	Peak/AV	
	Lower Band Edge: 2300 to 2403 MHz	
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz	
RB / VB (emission in restricted band)	1 MHz / 3 MHz	

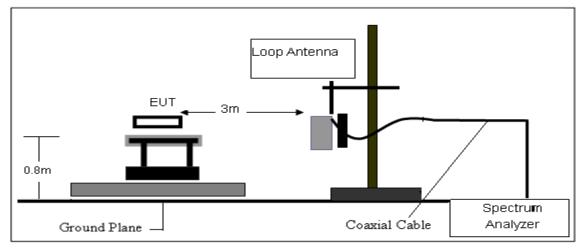
Shenzhen STS Test Services Co., Ltd.

Page 20 of 44

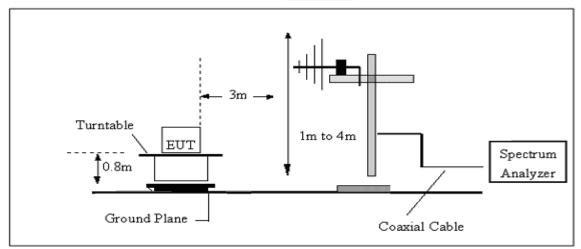
Report No.: STS1810166W02

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

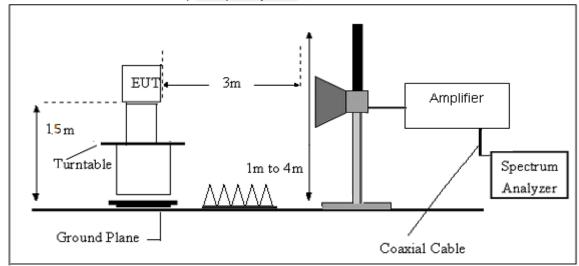
4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1810166W02

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

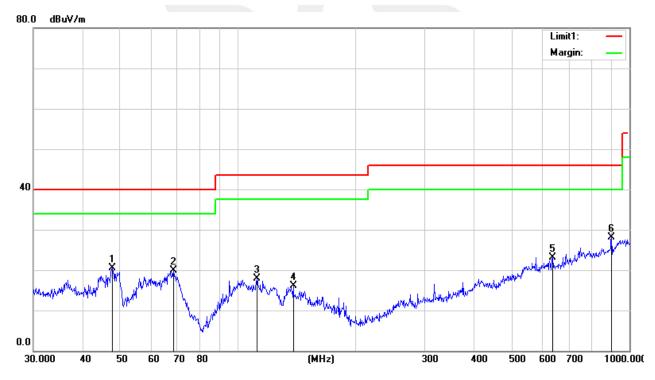
Temperature:	24.3 ℃	Relative Humidtity:	40%
Test Voltage:	DC 5V	Polarization:	
Test Mode:	TX Mode		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.


(30MHz -1000MHz)

Temperature:	24.3 °C	Relative Humidity:	40%	
Test Voltage:	DC 5V	Phase:	Horizontal	
Test Mode:	Mode1/2/3(Mode 3-1M worst mode)			

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
47.6586	40.81	-20.27	20.54	40.00	-19.46	QP
68.3908	43.98	-24.14	19.84	40.00	-20.16	QP
111.7380	36.14	-18.23	17.91	43.50	-25.59	QP
138.3873	33.69	-17.51	16.18	43.50	-27.32	QP
636.1340	29.47	-6.38	23.09	46.00	-22.91	QP
900.1473	30.28	-2.26	28.02	46.00	-17.98	QP

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 25 of 44 F

Report No.: STS1810166W02

Temperature:	24.3 °C	Relative Humidity:	40%	
Test Voltage:	DC 5V	Phase:	Vertical	
Test Mode:	Mode1/2/3(Mode 3-1M worst	mode)		

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
36.3814	45.59	-14.47	31.12	40.00	-8.88	QP
57.7962	52.72	-23.70	29.02	40.00	-10.98	QP
101.2885	46.99	-19.08	27.91	43.50	-15.59	QP
182.5592	37.97	-19.65	18.32	43.50	-25.18	QP
558.7302	28.97	-6.59	22.38	46.00	-23.62	QP
896.9965	36.00	-2.30	33.70	46.00	-12.30	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Page 26 of 44

Report No.: STS1810166W02

(1GHz-25GHz)Restricted band and Spurious emission Requirements

Low Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Low	Channel (2402 I	MHz)				
3264.81	.81 61.53 44.70 6.70 28.20				-9.80	51.73	74.00	-22.27	PK	Vertical
3264.81	50.44	44.70	6.70	28.20	-9.80	40.64	54.00	-13.36	AV	Vertical
3264.82	61.01	44.70	6.70	28.20	-9.80	51.21	74.00	-22.79	PK	Horizontal
3264.82	50.03	44.70	6.70	28.20	-9.80	40.23	54.00	-13.77	AV	Horizontal
4804.43	58.96	44.20	9.04	31.60	-3.56	55.40	74.00	-18.60	PK	Vertical
4804.43	49.26	44.20	9.04	31.60	-3.56	45.70	54.00	-8.30	AV	Vertical
4804.47	58.52	44.20	9.04	31.60	-3.56	54.96	74.00	-19.04	PK	Horizontal
4804.47	49.52	44.20	9.04	31.60	-3.56	45.96	54.00	-8.04	AV	Horizontal
5359.70	48.11	44.20	9.86	32.00	-2.34	45.77	74.00	-28.23	PK	Vertical
5359.70	39.03	44.20	9.86	32.00	-2.34	36.69	54.00	-17.31	AV	Vertical
5359.78	47.89	44.20	9.86	32.00	-2.34	45.55	74.00	-28.45	PK	Horizontal
5359.78	38.99	44.20	9.86	32.00	-2.34	36.65	54.00	-17.35	AV	Horizontal
7205.73	53.67	43.50	11.40	35.50	3.40	57.07	74.00	-16.93	PK	Vertical
7205.73	44.06	43.50	11.40	35.50	3.40	47.46	54.00	-6.54	AV	Vertical
7205.79	54.78	43.50	11.40	35.50	3.40	58.18	74.00	-15.82	PK	Horizontal
7205.79	44.87	43.50	11.40	35.50	3.40	48.27	54.00	-5.73	AV	Horizontal

Page 27 of 44

Report No.: STS1810166W02

Mid Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Mid	Channel (2440 N	//Hz)				
3264.89	61.39	44.70	6.70	28.20	-9.80	51.59	74.00	-22.41	PK	Vertical
3264.89	50.73	44.70	6.70	28.20	-9.80	40.93	54.00	-13.07	AV	Vertical
3264.59	61.55	44.70	6.70	28.20	-9.80	51.75	74.00	-22.25	PK	Horizontal
3264.59	50.48	44.70	6.70	28.20	-9.80	40.68	54.00	-13.32	AV	Horizontal
4880.49	59.26	44.20	9.04	31.60	-3.56	55.70	74.00	-18.30	PK	Vertical
4880.49	50.03	44.20	9.04	31.60	-3.56	46.47	54.00	-7.53	AV	Vertical
4880.54	59.62	44.20	9.04	31.60	-3.56	56.06	74.00	-17.94	PK	Horizontal
4880.54	49.65	44.20	9.04	31.60	-3.56	46.09	54.00	-7.91	AV	Horizontal
5359.87	48.39	44.20	9.86	32.00	-2.34	46.05	74.00	-27.95	PK	Vertical
5359.87	39.09	44.20	9.86	32.00	-2.34	36.75	54.00	-17.25	AV	Vertical
5359.68	48.48	44.20	9.86	32.00	-2.34	46.14	74.00	-27.86	PK	Horizontal
5359.68	38.14	44.20	9.86	32.00	-2.34	35.80	54.00	-18.20	AV	Horizontal
7310.94	53.70	43.50	11.40	35.50	3.40	57.10	74.00	-16.90	PK	Vertical
7310.94	44.07	43.50	11.40	35.50	35.50 3.40 47.47		54.00	-6.53	AV	Vertical
7310.76	54.12	43.50	11.40	35.50	3.40	57.52	74.00	-16.48	PK	Horizontal
7310.76	43.55	43.50	11.40	35.50	3.40	46.95	54.00	-7.05	AV	Horizontal

Shenzhen STS Test Services Co., Ltd.

Page 28 of 44

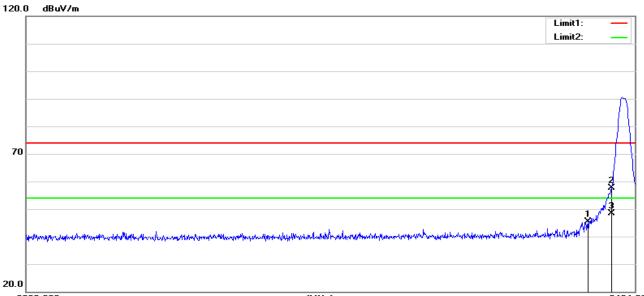
Report No.: STS1810166W02

High Channel

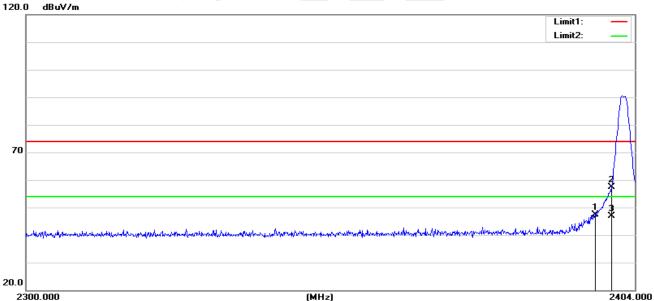
				3						
				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				High	Channel (2480	MHz)				
3264.81	61.09	44.70	6.70	28.20	-9.80	51.29	74.00	-22.71	PK	Vertical
3264.81	51.41	44.70	6.70	28.20	-9.80 41.61		54.00	-12.39	AV	Vertical
3264.85	61.87	44.70	6.70	28.20	-9.80	52.07	74.00	-21.93	PK	Horizontal
3264.85	51.31	44.70	6.70	28.20	-9.80	41.51	54.00	-12.49	AV	Horizontal
4960.48	59.45	44.20	9.04	31.60	-3.56	55.89	74.00	-18.11	PK	Vertical
4960.48	49.94	44.20	9.04	31.60	-3.56 46.38		54.00	-7.62	AV	Vertical
4960.38	58.16	44.20	9.04	31.60	-3.56	54.60	74.00	-19.40	PK	Horizontal
4960.38	49.45	44.20	9.04	31.60	-3.56	45.89	54.00	-8.11	AV	Horizontal
5359.69	48.46	44.20	9.86	32.00	-2.34	46.12	74.00	-27.88	PK	Vertical
5359.69	39.29	44.20	9.86	32.00	-2.34	36.95	54.00	-17.05	AV	Vertical
5359.74	47.80	44.20	9.86	32.00	-2.34	45.46	74.00	-28.54	PK	Horizontal
5359.74	38.61	44.20	9.86	32.00	-2.34	36.27	54.00	-17.73	AV	Horizontal
7439.80	54.65	43.50	11.40	35.50	3.40	58.05	74.00	-15.95	PK	Vertical
7439.80	43.48	43.50	11.40	35.50	3.40	46.88	54.00	-7.12	AV	Vertical
7439.74	54.21	43.50	11.40	35.50	3.40	57.61	74.00	-16.39	PK	Horizontal
7439.74	44.66	43.50	11.40	35.50	3.40	48.06	54.00	-5.94	AV	Horizontal
Noto:							•			

Note:

1) Factor = Antenna Factor + Cable Loss - Pre-amplifier.


Emission Level = Reading + Factor

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.


4.6 TEST RESULTS (Restricted Bands Requirements)

GFSK-Low Horizontal

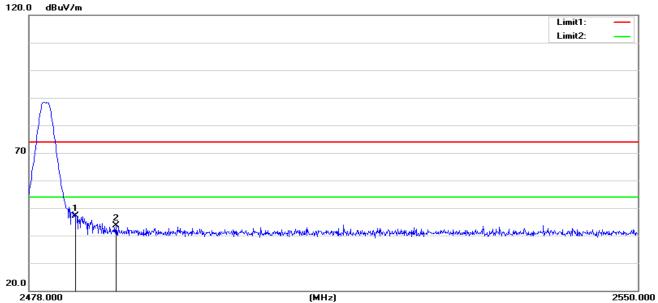
2300.00	0		(MHz)				2404.000
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2395.888	57.25	-11.99	45.26	74.00	-28.74	peak
2	2400.000	69.58	-11.97	57.61	74.00	-16.39	peak
3	2400.000	50.24	-1.97	48.27	54.00	-5.73	AVG

Vertical

No. Frequency Reading Correct Result Limit Margin Remark (MHz) (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (dB) 1 2397.136 59.32 -11.98 47.34 74.00 -26.66 peak 2 2400.000 69.32 -11.97 57.35 74.00 -16.65 peak 3 2400.000 48.80 -1.97 46.83 54.00 -7.17 AVG

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 30 of 44

Report No.: STS1810166W02

GFSK-High Horizontal

No.	Frequency	Reading	Correct Result		Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	58.44	-11.20	47.24	74.00	-26.76	peak
2	2488.224	54.76	-11.18	43.58	74.00	-30.42	peak

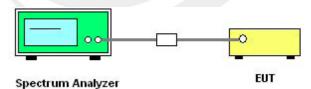
Vertical

No.	Frequency	Reading	Reading Correct		Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	56.43	-11.20	45.23	74.00	-28.77	peak
2	2485.776	56.52	-11.19	45.33	74.00	-28.67	peak

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting				
Detector	Peak				
Stort/Stop Fraguener	Lower Band Edge: 2300 – 2403 MHz				
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz				
RB / VB (emission in restricted band)	100 KHz/300 KHz				
Trace-Mode:	Max hold				

5.3 TEST SETUP

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:			
Test Voltage:	DC 5V		TX Mode /CH37, CH17, CH39		

37 CH

RL		RF	<mark>/zer - Swep</mark> t 50 Ω	AC		SENSE:I	T	AL	IGNAUTO		03:11	:44 PM Oct 29, 201
enter	Fre	q 12	2.51500	0000 GHz	PNO: Fast IFGain:Low		g: Free Run ten: 30 dB		Avg Type	: Log-Pwr		TRACE 1 2 3 4 5 TYPE MWWW DET P P P P
dB/div			ffset 0.5 d 1.63 dBr									402 2 GH 3.373 dBr
g		V	1									
.4												
.4		_			∦							-28.37 df
4		_		1								
.4			_{\} ²						Male of a bolt field and	والمعادية المروحة والمراجع		A
4												
4												
.4		_										
art 30 tes B			Hz		#	VBW 30	0 kHz			Swe	Sto ep 2.387	op 25.00 GH s (40001 pt
R MODE	TRC	SCL f		× 2.402 2 GH		⊻ .373 dBm	FUNCTION	FUNC	TION WIDTH		FUNCTION VALUE	
N N	1	f f		3.179 3 GH 7.205 8 GH	z -32	.858 dBm .622 dBm						
N	1	f		24.235 9 GH	z -47	.914 dBm						
; ,												
1												
												>

Shenzhen STS Test Services Co., Ltd.

17 CH

ent Spectr R L	<mark>um Anal</mark> RF	<mark>yzer - Swept SA</mark> 50 Ω AC		SE	NSE:INT	ALI	SNAUTO		03:15:3	6 PM Oct 29, 20
nter Fr	req 12	2.515000000		Fast 😱	Trig: Free Run #Atten: 30 dB		Avg Type:	Log-Pwr	T	RACE 1 2 3 4 TYPE MWWW DET P P P P
dB/div		offset 0.5 dB 3.68 dBm							Mkr1 2.4 -6.	40 2 GH 318 dB
2		1								
3			3							-26.32 (
										0
3		2^2	mentitive bage in the result of	المراجع المراجع المراجع	Mary Mary and a Mary and Address					
3				in an dige filter in the						
3										
nt 30 N es BW		Hz		#VBW	/ 300 kHz			Swe	Stop ep 2.387 s	25.00 G (40001 p
MODE TE N 1 N 1 N 1 N 1	f f f	3.24 7.32	0 2 GHz 9 9 GHz 0 0 GHz 4 1 GHz	-6.318 d -56.591 d -37.263 d -48.523 d	Bm Bm	FUNCTI	ON WIDTH		FUNCTION VALUE	
										>
							STATUS			

39 CH

RF 5	OΩ AC	9	ENSE:INT	ALIGNAUTO		03:18:05 PM Oct 29, 2
ter Freq 12.51	5000000 GHz	PNO: Fast 😱	Trig: Free Run #Atten: 30 dB	Avg Type: L	og-Pwr	TRACE 1 2 3 4 TYPE MWWW DET P P P
Ref Offset B/div Ref 3.56					М	kr1 2.480 2 G -6.436 dE
∮ 1						
		3				-26.44
						0
			an an the second state of		and a state of the second	
t 30 MHz s BW 100 kHz		#VBI	W 300 kHz		Sweep	Stop 25.00 G 2.387 s (40001 p
MODE TRC SCL	× 2.480 2 GHz	-6.436	EUNCTION	FUNCTION WIDTH	FUNC	TION VALUE
N 1 f N 1 f N 1 f	2.460 2 GHz 2.526 4 GHz 7.439 8 GHz 24.144 2 GHz	-56.894 -34.724 -49.359	dBm dBm			
	24.144 2 6H2	-49.559	ubm			
						1



37 CH

RL		pt SA						
	RF 50 Ω q 2.351500	0000 GHz		NSE:INT	ALIGNAUTO Avg Typ	e: Log-Pwr	TRAC	M Oct 29, 20: CE 1 2 3 4 5
			'NO: Fast 🖵 Gain:Low	#Atten: 30 dB			D	ETPPPPI
	Ref Offset 0.5 Ref 2.95 dB					MI	r1 2.402 1 7.0-	76 G⊦ 46 dB
g	(CI 2.50 UL							
.1								
.1								-27.05 d
.1								
.1								
.1				a akata a	Aller and a management			$\langle \rangle^2 \gamma$
.1	wayanana kanana dar	all a series of the series of			and a feature of the second			
.1								
.1								
							0 4 0 4	1300 GF
art 2.3000	0 GHz						Stop 2.40	
art 2.3000 tes BW 10			#VBW	300 kHz		Swee	9.867 ms (1001 pt
es BW 10	00 kHz	×	Y	FUNCTION	FUNCTION WIDTH		Stop 2.40 9.867 ms (UNCHION VALUE	1001 pt
es BW 10 MODE THE N 1 N 1	00 kHz f f	2.402 176 GHz 2.396 820 GHz	-7.046 d -59.386 d	FUNCTION Bm Bm	FUNCTION WIDTH		o 9.867 ms (1001 pt
es BW 10 N 1 N 1 N 1 N 1	00 kHz	2.402 176 GHz	-7.046 d	FUNCTION Bm Bm	FUNCTION WIDTH		o 9.867 ms (1001 pt
es BW 10 N 1 N 1 N 1	00 kHz f f	2.402 176 GHz 2.396 820 GHz	-7.046 d -59.386 d	FUNCTION Bm Bm	FUNCTION WIDTH		o 9.867 ms (1001 pt
es BW 10 N 1 N 1 N 1	00 kHz f f	2.402 176 GHz 2.396 820 GHz	-7.046 d -59.386 d	FUNCTION Bm Bm	FUNCTION WIDTH		o 9.867 ms (1001 pi
es BW 10 Mode TRC N 1 N 1 N 1	00 kHz f f	2.402 176 GHz 2.396 820 GHz	-7.046 d -59.386 d	FUNCTION Bm Bm	FUNCTION WIDTH		o 9.867 ms (1001 pi
es BW 10 N 1 N 1 N 1 N 1	00 kHz f f	2.402 176 GHz 2.396 820 GHz	-7.046 d -59.386 d	FUNCTION Bm Bm	FUNCTION WIDTH		o 9.867 ms (1001 pi

39 CH

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 5V		TX Mode /CH37, CH17, CH39

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3KHz)	Result
2402 MHz	-22.556	≤8	PASS
2440 MHz	-21.596	≤8	PASS
2480 MHz	-20.296	≤8	PASS

TX CH37

RL RF 50Ω AC	SEA	ISE:INT	ALIGNAUTO	03:13:25 PM Oct 29, 201
nter Freq 2.402000000 GHz	PNO: Wide 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pw Avg Hold: 98/100	TRACE 1 2 3 4 5 TYPE M WWWW DET P P P P
Ref Offset 0.5 dB dB/div Ref -12.56 dBm				Mkr1 2.402 124 8 GH -22.556 dBi
6			∮ ¹	
5	mannam	MM MM	MMMMMM	mm MM
s		Ÿ ·		I GITIA
6 why				
5				
ŝ				
5				
3				
nter 2.4020000 GHz es BW 3.0 kHz	#VBW	10 kHz		Span 1.200 MH weep 126.5 ms (1001 pt


Shenzhen STS Test Services Co., Ltd.

TX CH17

TX CH39

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 5V		TX Mode /CH37, CH17, CH39

Frequency	6dB Bandwidth (MHz)	Limit	Result
2402 MHz	0.698	>=500KHz	PASS
2440 MHz	0.694	>=500KHz	PASS
2480 MHz	0.691	>=500KHz	PASS

TX CH 37

Agilent Spectrum Analyzer - Occupied	BW			
RL RF 50 Ω AC Center Freq 2.40200000	0 GHz	SENSE:INT Center Freq: 2.402000		03:11:02 PM Oct 29, 2018 Radio Std: None
	#IFGain:Low	⊃ Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	Radio Device: BTS
10 dB/div Ref 20.00 dB	m			
Log 10.0				
0.00				
-10.0				
-20.0				
-30.0				
-40.0				
-50.0				
-60.0				
-70.0				
Center 2.402 GHz				Span 2 MHz
#Res BW 100 kHz		#VBW 300 k	Hz	Sweep 1 ms
Occupied Bandwidth		Total Power -0.54 dBm		
1	.0620 MHz			
Transmit Freq Error	167.16 kHz	OBW Power	99.00 %	
x dB Bandwidth	697.9 kHz	x dB	-6.00 dB	
MSG			STATUS	

Shenzhen STS Test Services Co., Ltd.

TX CH 17

nter Fre	RF 50Ω AC		SENSE:INT	ALIGNAUTO	03:14:54 PM Oct 29, 20
	q 2.440000000	GHz	Center Freq: 2.4400000	00 GHz	Radio Std: None
		#IEGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	Radio Device: BTS
		#IFGalli.LUW	wither of up		Haalo Berlie. Bro
dB/div g	Ref 20.00 dBm	l			
o					
0					
0					
0					
o 🎽 🗕 🚽					
0					
0					
nter 2.44					Span 2 Mi
es BW 1	00 kHz		#VBW 300 ki	Hz	Sweep 1 m
Occupi	ed Bandwidt	n	Total Power	0.36 dBm	
	1.0	0637 MHz			
Transmi	t Freq Error	169.58 kHz	OBW Power	99.00 %	
x dB Bai	ndwidth	694.1 kHz	x dB	-6.00 dB	
		00 II T KIIZ		5.50 dB	

TX CH 39

STATUS

RL RF 50Ω AC	N	SENSE:INT	ALIGNAUTO	03:17:23 PM Oct 29, 2018
enter Freq 2.48000000	GHz #IFGain:Low	Center Freq: 2.480000		Radio Std: None Radio Device: BTS
0 dB/div Ref 20.00 dBm	1			
10.0				
0.00				
10.0				<u> </u>
20.0				
30.0	*****			
40.0				
50.0				
50.0				
70.0				
Center 2.48 GHz Res BW 100 kHz		#VBW 300 ki	Hz	Span 2 MHz Sweep 1 ms
Occupied Bandwidth		Total Power	1.66 dBm	
1.0	0659 MHz			
Transmit Freq Error	171.89 kHz	OBW Power	99.00 %	
x dB Bandwidth	690.5 kHz	x dB	-6.00 dB	
5G			STATUS	

Π

Shenzhen STS Test Services Co., Ltd.

MSG

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C					
Section Test Item Limit		Frequency Range (MHz)			
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS	

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Meter

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 5V		TX Mode /CH37, CH17, CH39

TX Mode					
Test Channel	Frequency	Conducted Output Power		LIMIT	
Test Channer	(MHz)	Peak (dBm)	AVG (dBm)	dBm	
CH37	2402	-4.33	-6.50	30	
CH17	2440	-3.74	-5.81	30	
CH39	2480	-3.28	-5.46	30	

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is Built-in Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

Page 44 of 44

Report No.: STS1810166W02

10. EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.