

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com

Report No.: SZEM130600298101

Page: 1 of 46

FCC REPORT

Application No:SZEM1306002981RFApplicant:IDT Technology LimitedManufacturer:IDT Technology LimitedFactory:IDT Technology Limited

Product Name:BLE Activity and Sleep monitor

Model No.(EUT): PE128 Add Model No.: PE126

FCC ID: NMTPE128

Standards: 47 CFR Part 15, Subpart C (2012)

Date of Receipt: 2013-06-09

Date of Test: 2013-06-27 to 2013-06-28

Date of Issue: 2013-08-19

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM130600298101

Page: 2 of 46

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	KDB558074 D01	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	KDB558074 D01	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	KDB558074 D01	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2009)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS
Band Edge (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

Remark:

Model No.: PE126, PE128

Only the model PE128 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being model name, color and strap.

Report No.: SZEM130600298101

Page: 3 of 46

3 Contents

			Page
1	CC	OVER PAGE	1
2	TE	ST SUMMARY	2
3		ONTENTS	
4	GE	ENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF EUT	4
	4.3	TEST ENVIRONMENT	
	4.4	DESCRIPTION OF SUPPORT UNITS	6
	4.5	TEST LOCATION	6
	4.6	TEST FACILITY	7
	4.7	DEVIATION FROM STANDARDS	
	4.8	ABNORMALITIES FROM STANDARD CONDITIONS	7
	4.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.10	EQUIPMENT LIST	8
5	TE	ST RESULTS AND MEASUREMENT DATA	11
	5.1	Antenna Requirement	11
	5.2	CONDUCTED EMISSIONS	
	5.3	CONDUCTED PEAK OUTPUT POWER	16
	5.4	6DB OCCUPY BANDWIDTH	
	5.5	POWER SPECTRAL DENSITY	
	5.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	5.7	Spurious RF Conducted Emissions	
	5.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	5.9	RADIATED SPURIOUS EMISSION	
	5.10	BAND EDGE (RADIATED EMISSION)	37-46

Report No.: SZEM130600298101

Page: 4 of 46

4 General Information

4.1 Client Information

Applicant:	IDT Technology Limited
Address of Applicant:	Block C, 9/F., Kaiser Estate, Phase 1, 41 Man YueStreet, Hunghom, Kowloon, Hong Kong.
Manufacturer:	IDT Technology Limited
Address of Manufacturer:	Block C, 9/F., Kaiser Estate, Phase 1, 41 Man YueStreet, Hunghom, Kowloon, Hong Kong.
Factory:	IDT Technology Limited
Address of Factory:	Chentian industrial Estate Xixiang, BaoAn, Shenzhen, P.R.C.

4.2 General Description of EUT

Product Name:	BLE Activity and Sleep monitor
Model No.:	PE126, PE128
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.0
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK
Number of Channel:	40
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	-1.0dBi
Battery:	Battery1: Model No.: PL401017H-30 3.7V 30mAh 0.11Wh rechargeable battery Battery2: Model No.: 401119 3.7V 40mAh rechargeable battery
Test Voltage:	DC 3.7V battery fully charged
USB charging cable:	5cm(Unshielded)

Report No.: SZEM130600298101

Page: 5 of 46

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2440MHz
The Highest channel	2480MHz

Report No.: SZEM130600298101

Page: 6 of 46

4.3 Test Environment

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	45 % RH		
Atmospheric Pressure:	1000 mbar		

4.4 Description of Support Units

The EUT has been tested with associated equipment below

Description	Manufacturer	Model No.
PC	IBM	8172
LCD-displaying	Lenovo	L1711pC
KEYBOARD	IBM	SK-8115
MOUSE	Lenovo	MO28UOA
Coder	HengTong ELECTRON	HT4000
Printer	Canon	BJC-1000SP

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

SGS

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEM130600298101

Page: 7 of 46

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM130600298101

Page: 8 of 46

4.10 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2014-06-10		
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2013-10-24		
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2014-05-16		
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2013-11-10		
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2013-11-10		
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2013-11-10		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2014-05-16		
8	Coaxial Cable	SGS	N/A	SEL0025	2014-05-29		
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2013-10-24		
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2013-10-24		
11	Barometer	Chang Chun	DYM3	SEL0088	2014-05-24		

Report No.: SZEM130600298101

Page: 9 of 46

RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2014-06-10	
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2014-05-16	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2013-10-24	
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2013-10-24	
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2013-10-24	
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2014-05-16	
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2013-10-24	
9	Coaxial cable	SGS	N/A	SEL0027	2014-05-59	
10	Coaxial cable	SGS	N/A	SEL0189	2014-05-29	
11	Coaxial cable	SGS	N/A	SEL0121	2014-05-29	
12	Coaxial cable	SGS	N/A	SEL0178	2014-05-29	
13	Band filter	Amindeon	82346	SEL0094	2014-05-16	
14	Barometer	Chang Chun	DYM3	SEL0088	2014-05-24	
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2013-10-24	
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2013-10-24	
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2014-05-16	
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2013-10-24	
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2014-06-04	

Report No.: SZEM130600298101

Page: 10 of 46

	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2013-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2013-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2013-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2014-05-29
5	Coaxial cable	SGS	N/A	SEL0179	2014-05-29
6	Barometer	ChangChun	DYM3	SEL0088	2014-05-24
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2014-05-16
8	Band filter	amideon	82346	SEL0094	2014-05-16
9	POWER METER	R&S	NRVS	SEL0144	2014-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2014-05-16
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2013-10-24

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM130600298101

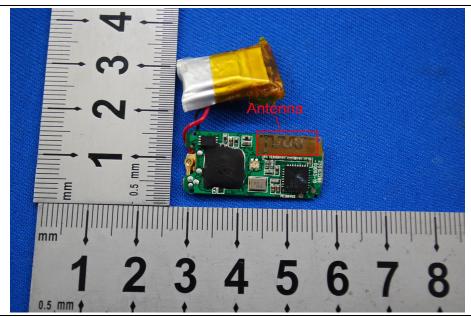
Page: 11 of 46

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

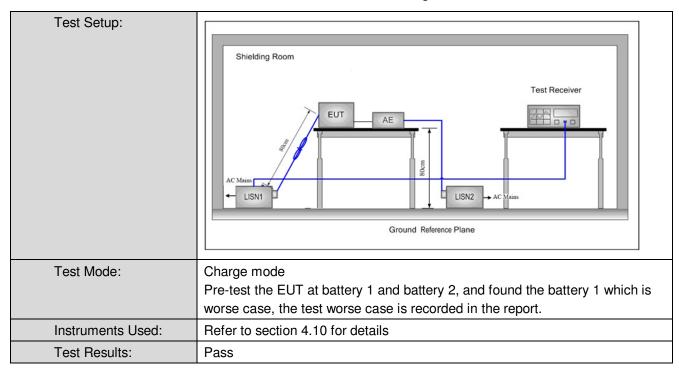
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.0dBi.

Report No.: SZEM130600298101

Page: 12 of 46

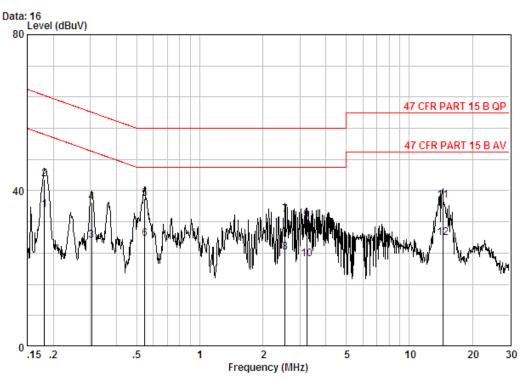

5.2 Conducted Emissions

47 CFR Part 15C Section 1	5.207								
ANSI C63.10: 2009									
150kHz to 30MHz									
Frequency	Detector	RBW	VBW	Remark					
150kHz to 30MHz	Peak	9kHz	30kHz	Peak					
150kHz to 30MHz	Average	9kHz	30kHz	Average					
150kHz to 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak					
Francisco (MIII)		Limit (dl	BuV)						
Frequency range (MHZ)	Quasi- _l	peak	Aver	age					
0.15-0.5	66 to	56*	56 to	46*					
0.5-5	56		46	3					
5-30	60		50)					
,	urbance voltag	je test was	conducted	d in a shielded					
	I to AC nowers	source thro	uah a LISN	N 1 (Line					
,	•		•	•					
•	•	•	•						
reference plane in the s	ame way as the	LISN 1 fo	r the unit b	eing					
measured. A multiple so	cket outlet strip	was used	to connec	t multiple					
_	LISN provided	I the rating	of the LISI	N was not					
	laced upon a n	on motallia	tabla 0 9n	n above the					
' '	•								
		•	angomoni	, 110 201 Was					
	_	-	erence plar	ne. The rear					
		-	=						
_	•			-					
•	•			•					
unit under test and bonded to a ground reference plane for LISNs									
mounted on top of the ground reference plane. This distance was									
between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to									
								Ü	J
						Frequency 150kHz to 30MHz Frequency 150kHz to 30MHz 150kHz to 30MHz 150kHz to 30MHz 150kHz to 30MHz Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarit 1) The mains terminal distroom. 2) The EUT was connected Impedance Stabilization impedance. The power connected to a second Leference plane in the same asured. A multiple so power cables to a single exceeded. 3) The tabletop EUT was performed of the EUT shall be 0.4 reference plane. The LIS unit under test and bond mounted on top of the ground reference plane. The LIS unit under test and bond mounted on top of the ground reference plane. The LIS unit under test and bond mounted on top of the ground reference plane. The LIS unit under test and sooi ated 5) In order to find the maxing equipment and all of the second plane.	Frequency Detector 150kHz to 30MHz Peak 150kHz to 30MHz Average 150kHz to 30MHz Quasi-peak Frequency range (MHz) 0.15-0.5 66 to 0.5-5 56 5-30 60 * Decreases with the logarithm of the frequency range (MHz) The mains terminal disturbance voltage room. 2) The EUT was connected to AC power some limpedance Stabilization Network) whice impedance. The power cables of all othe connected to a second LISN 2, which were reference plane in the same way as the measured. A multiple socket outlet strip power cables to a single LISN provided exceeded. 3) The tabletop EUT was placed upon a neground reference plane. And for floor-splaced on the horizontal ground reference of the EUT shall be 0.4 m from the vertical ground reference plane was boreference plane. The LISN 1 was placed unit under test and bonded to a ground mounted on top of the ground reference between the closest points of the LISN the EUT and associated equipment was lined to the interface cable on the interface on the interface cable on	ANSI C63.10: 2009 TookHz to 30MHz	The mains terminal disturbance voltage test was conducted room.

Report No.: SZEM130600298101

Page: 13 of 46

Report No.: SZEM130600298101


Page: 14 of 46

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

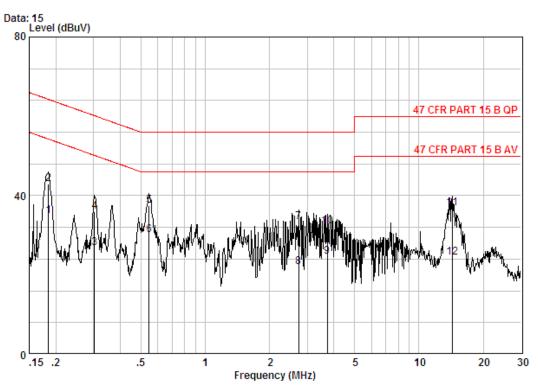
Live line:

Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE LINE

Job No. : 2981RF Test Mode : Charge

		F	Cable	LISN	Read	T 1	Limit	Over	D
		Freq	ross	Factor	rever	rever	Line	Limit	Kemark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1		0.18152	0.02	9.70	25.28	35.00	54.42	-19.42	Average
2		0.18152	0.02	9.70	33.13	42.85	64.42	-21.57	QP
3		0.30509	0.01	9.71	17.64	27.36	50.10	-22.75	Average
4		0.30509	0.01	9.71	27.24	36.96	60.10	-23.15	QP
5	@	0.54644	0.01	9.80	28.22	38.03	56.00	-17.97	QP
6		0.54644	0.01	9.80	17.93	27.74	46.00	-18.26	Average
7		2.554	0.02	9.83	24.05	33.90	56.00	-22.10	QP
8		2.554	0.02	9.83	14.28	24.13	46.00	-21.87	Average
9		3.241	0.02	9.85	22.65	32.52	56.00	-23.48	QP
10		3.241	0.02	9.85	12.62	22.49	46.00	-23.51	Average
11		14.440	0.01	10.08	27.36	37.45	60.00	-22.55	QP
12		14.440	0.01	10.08	17.91	28.00	50.00	-22.00	Average


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM130600298101

Page: 15 of 46

Neutral line:

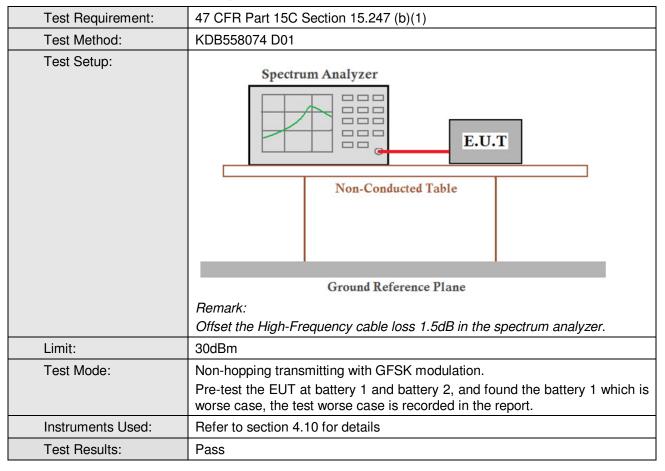
Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE NEUTRAL

Job No. : 2981RF Test Mode : Charge

		Cable	LISN	Read		Limit	Over	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18443	0.02	9.70	25.16	34.88	54.28	-19.40	Average
2	0.18443	0.02	9.70	33.31	43.03	64.28	-21.25	QP
3	0.30348	0.01	9.71	17.19	26.91	50.15	-23.24	Average
4	0.30348	0.01	9.71	26.34	36.06	60.15	-24.09	QP
5	0.54644	0.01	9.80	27.71	37.52	56.00	-18.48	QP
6 @	0.54644	0.01	9.80	20.18	29.99	46.00	-16.01	Average
7	2.736	0.02	9.83	23.56	33.41	56.00	-22.59	QP
8	2.736	0.02	9.83	12.23	22.08	46.00	-23.92	Average
9	3.720	0.02	9.87	14.76	24.64	46.00	-21.36	Average
10	3.720	0.02	9.87	22.38	32.27	56.00	-23.73	QP
11	14.364	0.01	10.00	26.82	36.84	60.00	-23.16	QP
12	14.364	0.01	10.00	14.48	24.49	50.00	-25.51	Average

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

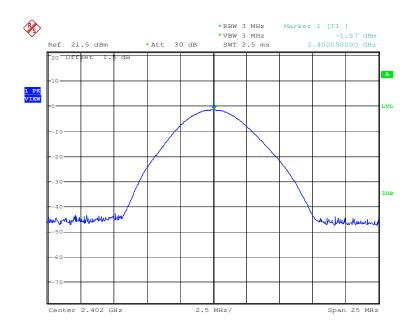
Report No.: SZEM130600298101

Page: 16 of 46

5.3 Conducted Peak Output Power

Measurement Data

	GFSK mode								
Test channel	Result								
Lowest	-1.57	30.00	Pass						
Middle	-1.48	30.00	Pass						
Highest	-2.01	30.00	Pass						



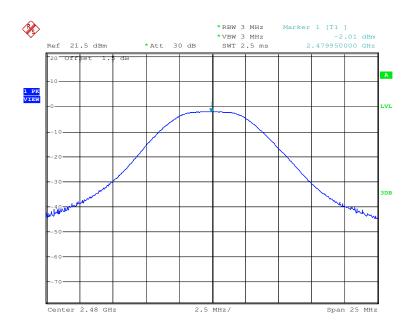
Report No.: SZEM130600298101


Page: 17 of 46

Test plot as follows:

Test mode: GFSK Test channel: Lowest

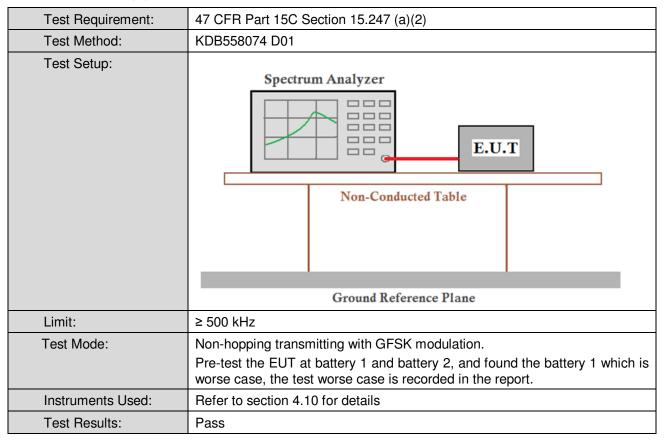
Test mode: GFSK Test channel: Middle



Report No.: SZEM130600298101

Page: 18 of 46

Test mode: GFSK Test channel: Highest



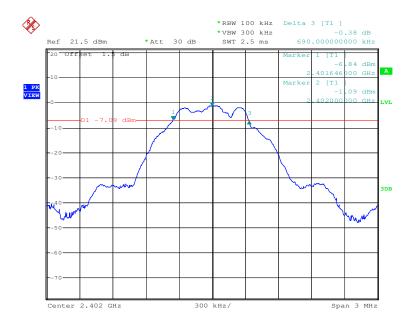
Report No.: SZEM130600298101

Page: 19 of 46

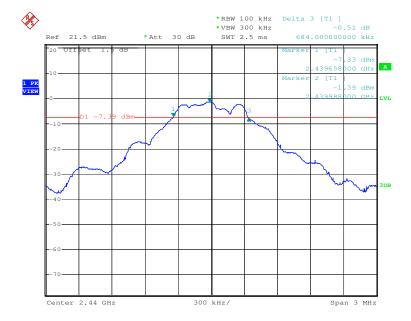
5.4 6dB Occupy Bandwidth

Measurement Data

Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.690	≥500	Pass
Middle	0.684	≥500	Pass
Highest	0.846	≥500	Pass



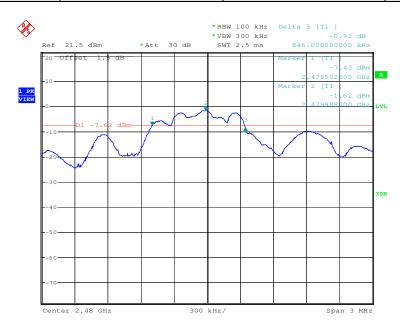
Report No.: SZEM130600298101


Page: 20 of 46

Test plot as follows:

Test mode: GFSK Test channel: Lowest

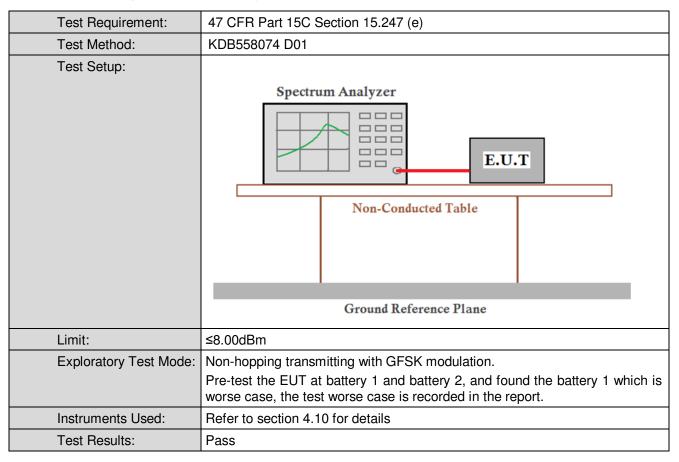
Test mode: GFSK Test channel: Middle



Report No.: SZEM130600298101

Page: 21 of 46

Test mode: GFSK Test channel: Highest



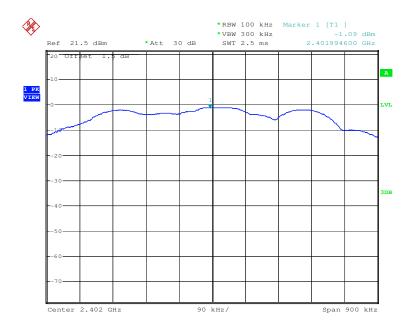
Report No.: SZEM130600298101

Page: 22 of 46

5.5 Power Spectral Density

Measurement Data

GFSK mode								
Test channel	Power Spectral Density (dBm)	Limit (dBm)	Result					
Lowest	-1.09	≤8.00	Pass					
Middle	-1.38	≤8.00	Pass					
Highest	-1.63	≤8.00	Pass					

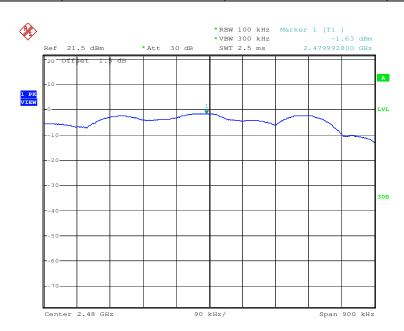


Report No.: SZEM130600298101

Page: 23 of 46

Test plot as follows:

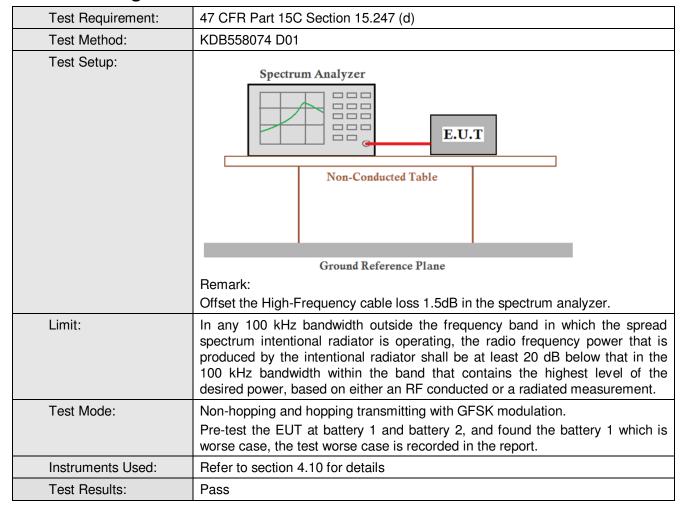
Test mode: GFSK Test channel: Lowest



Report No.: SZEM130600298101

Page: 24 of 46

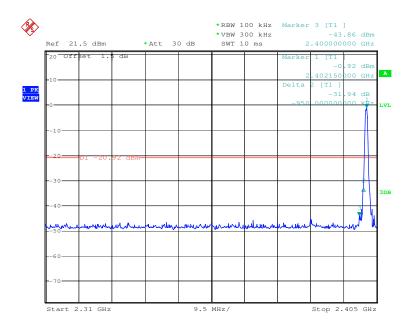
Test mode: GFSK Test channel: Highest

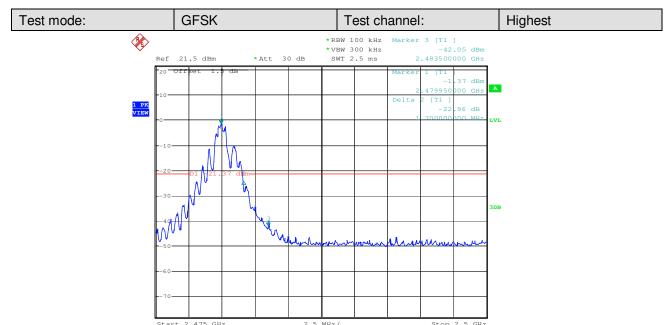


Report No.: SZEM130600298101

Page: 25 of 46

5.6 Band-edge for RF Conducted Emissions




Report No.: SZEM130600298101

Page: 26 of 46

Test plot as follows:

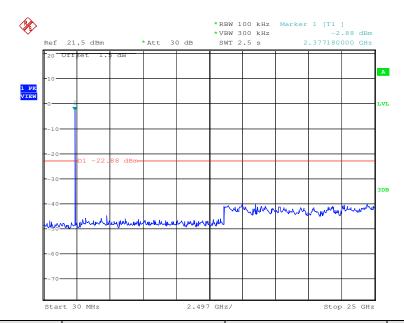
Test mode: GFSK Test channel: Lowest

Report No.: SZEM130600298101

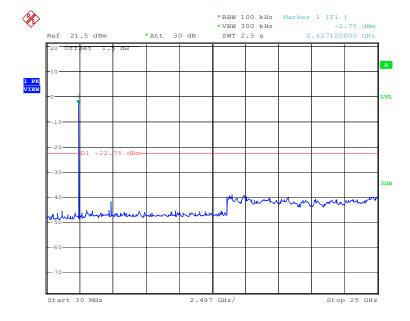
Page: 27 of 46

5.7 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)							
Test Method:	KDB558074 D01							
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table							
	Ground Reference Plane							
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test Mode:	Non-hopping transmitting with GFSK modulation. Pre-test the EUT at battery 1 and battery 2, and found the battery 1 which is worse case, the test worse case is recorded in the report.							
Instruments Used:	Refer to section 4.10 for details							
Test Results:	Pass							



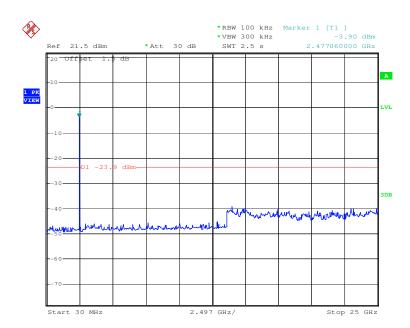
Report No.: SZEM130600298101


Page: 28 of 46

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle



Report No.: SZEM130600298101

Page: 29 of 46

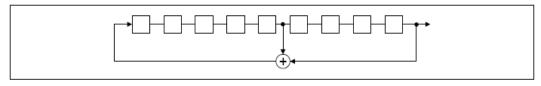
Test mode: GFSK Test channel: Highest

Report No.: SZEM130600298101

Page: 30 of 46

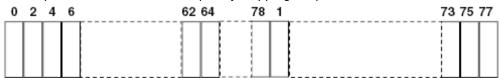
5.8 Pseudorandom Frequency Hopping Sequence

Test Requirement:


47 CFR Part 15C Section 15.247 (a)(1) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

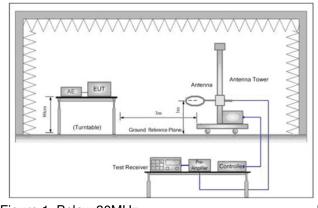
- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

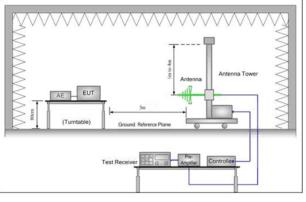


Report No.: SZEM130600298101

Page: 31 of 46

5.9 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10 2009									
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency Detector RBW VBW Remark									
	0.009MHz-0.090MH	Z	Peak	10kHz	<u>z</u>	30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	<u>z</u>	30kHz	Average			
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	<u>z</u>	30kHz	Quasi-peak			
	0.110MHz-0.490MH	Z	Peak	10kHz	Z	30kHz	Peak			
	0.110MHz-0.490MH	Z	Average	10kHz	<u>z</u>	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	Z	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	łz	300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	1MHz		Peak			
			Peak	1MHz	1MHz		Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)		Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2	400/F(kHz)	-		-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-		30			
	1.705MHz-30MHz		30	•			30			
	30MHz-88MHz		100	40.0	Q	uasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak		3			
	216MHz-960MHz		200	46.0	Q	uasi-peak	3			
	960MHz-1GHz		500	54.0	Q	uasi-peak	3			
	Above 1GHz		500	54.0		Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						erage emission			
Test Setup:										



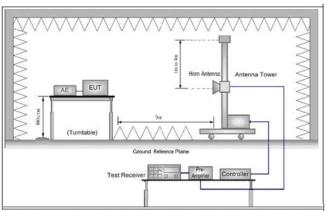
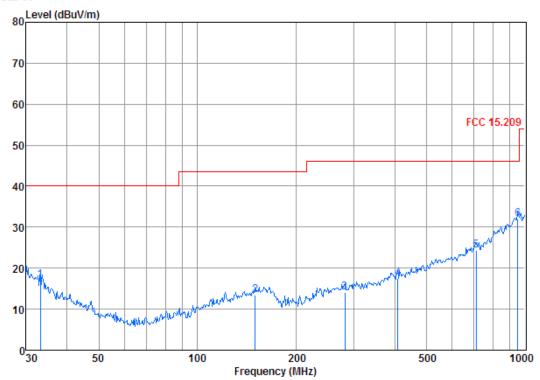

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Report No.: SZEM130600298101

Page: 32 of 46

	Figure 3. Above 1 GHz
Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Non-hopping transmitting mode with GFSK modulation.
	Pre-test the EUT at battery 1 and battery 2, and found the battery 1 which is worse case, the test worse case is recorded in the report.
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass



Report No.: SZEM130600298101

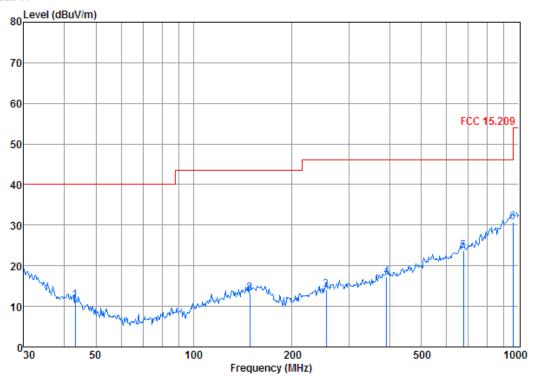
Page: 33 of 46

Radiated Emission below 1GHz						
30MHz~1GHz (QP)						
Test mode:	Transmitting	Vertical				

Condition: FCC 15.209 3m 3142C NEW VERTICAL

Job No. : 2981RF Test Mod : TX mode

est Mod . In mode									
		Cable	Antenna	Preamp	Read		Limit	Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	33.095	0.60	15.50	27.34	28.37	17.13	40.00	-22.87	
2	150.011	1.32	9.30	26.91	29.64	13.35	43.50	-30.15	
3	281.995	1.82	9.26	26.45	29.49	14.12	46.00	-31.88	
4	408.946	2.24	11.60	27.19	30.85	17.50	46.00	-28.50	
5	709.182	2.93	17.10	27.40	31.68	24.31	46.00	-21.69	
6	952.094	3.65	21.30	26.54	33.61	32.02	46.00	-13.98	



Report No.: SZEM130600298101

Page: 34 of 46

Test mode:	Transmitting	Horizontal
------------	--------------	------------

Data: 57

Condition: FCC 15.209 3m 3142C NEW HORIZONTAL

Job No. : 2981RF Test Mod : TX mode

		CableA	ntenna	Preamp	Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	43.202	0.67	10.47	27.31	27.60	11.43	40.00	-28.57
2	148.963	1.32	9.23	26.91	29.62	13.26	43.50	-30.24
3	255.623	1.70	8.90	26.52	29.98	14.06	46.00	-31.94
4	392.095	2.18	11.73	27.09	30.54	17.36	46.00	-28.64
5	675.208	2.85	16.40	27.44	31.93	23.74	46.00	-22.26
6	958.794	3.66	21.10	26.51	32.58	30.83	46.00	-15.17

Report No.: SZEM130600298101

Page: 35 of 46

Transmitte	r Emiss	ion above	1GHz					
Test mode:	(GFSK	Test	channel:	Lowest	Rema	ırk:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4785.075	4.68	34.73	41.61	52.22	50.02	74	-23.98	Vertical
6412.427	5.23	36.18	40.56	46.90	47.75	74	-26.25	Vertical
7413.726	6.02	35.97	39.69	46.76	49.06	74	-24.94	Vertical
8462.975	6.18	36.19	38.78	46.54	50.13	74	-23.87	Vertical
10453.950	6.09	38.24	37.64	44.30	50.99	74	-23.01	Vertical
12210.020	6.52	39.11	38.36	45.22	52.49	74	-21.51	Vertical
4785.075	4.68	34.73	41.61	54.73	52.53	74	-21.47	Horizontal
6347.466	5.22	36.12	40.63	47.04	47.75	74	-26.25	Horizontal
7624.250	6.23	36.00	39.51	46.75	49.47	74	-24.53	Horizontal
8973.250	6.16	36.57	38.34	45.70	50.09	74	-23.91	Horizontal
10560.940	6.11	38.32	37.68	45.66	52.41	74	-21.59	Horizontal
12055.600	6.48	38.95	38.30	45.85	52.98	74	-21.02	Horizontal

Test mode:		GFSK	Tes	t channel:	Middle		Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit L (dBuV	-	Over Limit (dB)	Polarization
4871.103	4.72	34.59	41.68	52.41	50.04	74		-23.96	Vertical
6347.466	5.22	36.12	40.63	46.80	47.51	74		-26.49	Vertical
7624.250	6.23	36.00	39.51	47.09	49.81	74		-24.19	Vertical
9834.406	5.98	37.54	37.60	44.87	50.79	74 -23.21 V		Vertical	
10999.950	6.22	38.50	37.86	44.80	51.66	74 -22.34 V		Vertical	
12588.750	6.62	39.44	38.52	44.70	52.24	74		-21.76	Vertical
4883.519	4.72	34.59	41.68	50.75	48.38	74		-25.62	Horizontal
6561.030	5.27	36.25	40.43	46.99	48.08	74		-25.92	Horizontal
7702.278	6.22	36.00	39.44	47.08	49.86	74		-24.14	Horizontal
8441.459	6.18	36.18	38.80	46.04	49.60	74		-24.40	Horizontal
10269.320	6.04	38.02	37.56	45.20	51.70	74		-22.30	Horizontal
12588.750	6.62	39.44	38.52	44.74	52.28	74		-21.72	Horizontal

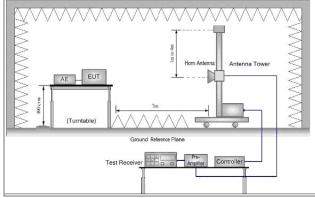
Report No.: SZEM130600298101

Page: 36 of 46

Test mode:		GFSK	Tes	t channel:	Highest	Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4971.316	4.76	34.43	41.75	53.25	50.69	74	-23.31	Vertical
6235.364	5.19	35.98	40.71	48.02	48.48	74	-25.52	Vertical
7547.013	6.17	36.00	39.57	47.51	50.11	74	-23.89	Vertical
9065.084	6.14	36.66	38.27	46.49	51.02	74	-22.98	Vertical
11027.980	6.23	38.49	37.88	44.35	51.19	74	-22.81	Vertical
12055.600	6.48	38.95	38.30	45.74	52.87	74	-21.13	Vertical
4971.316	4.76	34.43	41.75	50.65	48.09	74	-25.91	Horizontal
6696.010	5.31	36.11	40.31	47.97	49.08	74	-24.92	Horizontal
7643.683	6.23	36.00	39.49	47.30	50.04	74	-23.96	Horizontal
9538.543	6.00	37.23	37.86	45.17	50.54	74	-23.46	Horizontal
10480.590	6.09	38.28	37.65	44.75	51.47	74	-22.53	Horizontal
11963.890	6.46	38.87	38.26	45.64	52.71	74	-21.29	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


Report No.: SZEM130600298101

Page: 37 of 46

5.10 Band edge (Radiated Emission)

Test Requirement:	47 CFR Part 15C Section 15	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2009								
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)						
Limit:	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 1GHz	54.0	Average Value						
	Above IGHZ	74.0	Peak Value						
Test Setup:									

Figure 1. 30MHz to 1GHz	Figure 2. Above 1 GHz
Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest

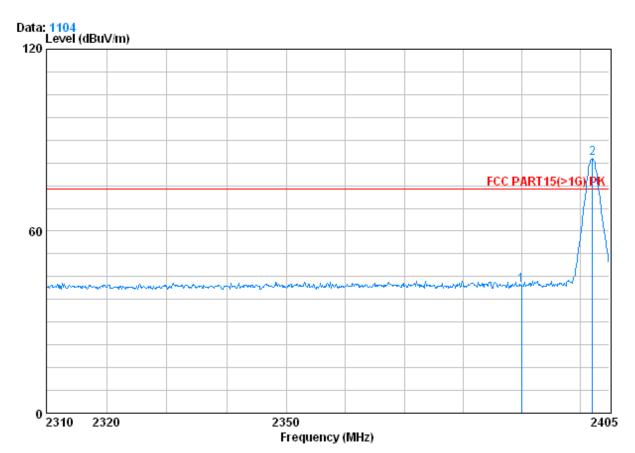
"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms-e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

channel

Report No.: SZEM130600298101

Page: 38 of 46

	 g. Test the EUT in the lowest channel , the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Non-hopping transmitting mode with GFSK modulation. Pre-test the EUT at battery 1 and battery 2, and found the battery 1 which is worse case, the test worse case is recorded in the report.
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass



Report No.: SZEM130600298101

Page: 39 of 46

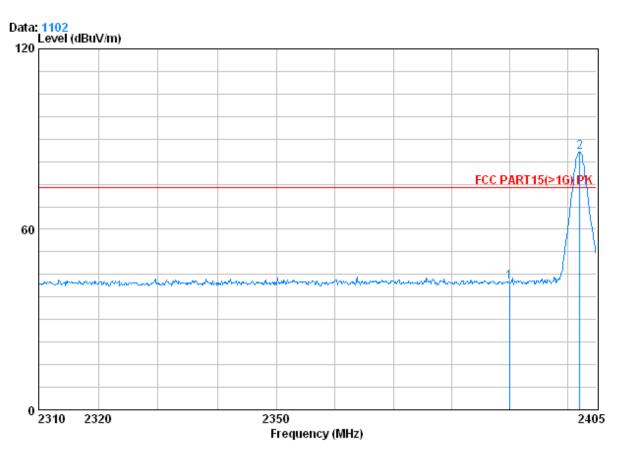
Test plot as follows:

Band edge (Radiated Emission)								
Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Vertical		

Condition : FCC PART15(>1G) PK 3m VERTICAL

Job No. : 2981RF

Test mode : 2402 Bandedge


	Freq	CableAntenna Loss Factor		-				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 X	2390.000 2402.150			39.85 39.86				

Report No.: SZEM130600298101

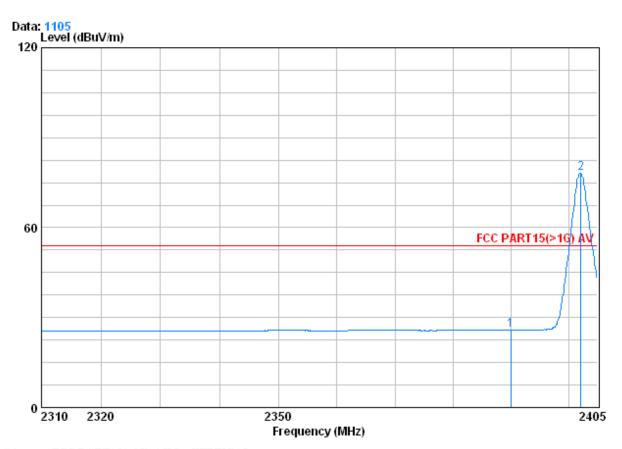
Page: 40 of 46

Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Horizontal

Condition : FCC PART15(>1G) PK 3m HORIZONTAL

Job No. : 2981RF

Test mode : 2402 Bandedge


		Freq			Preamp Read Factor Level				
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1		2390.000			39.85				
2	X	2402.150	2.98	32.51	39.86	90.16	85.79	74.00	11.79

Report No.: SZEM130600298101

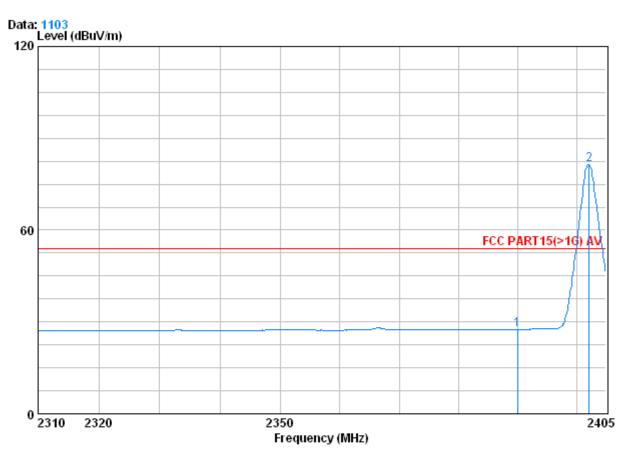
Page: 41 of 46

Test mode: GFSK	Test channel:	Lowest	Remark:	Average	Vertical	
-----------------	---------------	--------	---------	---------	----------	--

Condition : FCC PART15(>1G) AV 3m VERTICAL

Job No. : 2981RF

Test mode : 2402 Bandedge


	Freq	CableAntenna Loss Factor		-				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 @	2390.000 2402.150			39.85 39.86				

Report No.: SZEM130600298101

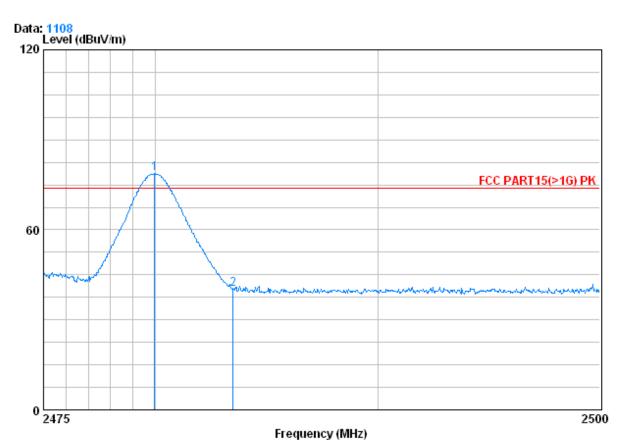
Page: 42 of 46

Test mode:	GFSK	Test channel:	Lowest	Remark:	Average	Horizontal
------------	------	---------------	--------	---------	---------	------------

Condition : FCC PART15(>1G) AV 3m HORIZONTAL

Job No. : 2981RF

Test mode : 2402 Bandedge


	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 @	2390.000 2402.150			39.85 39.86				

Report No.: SZEM130600298101

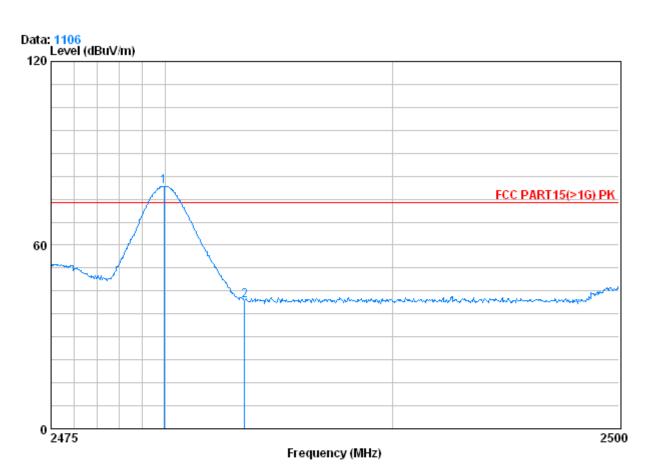
Page: 43 of 46

	Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Vertical
--	------------	------	---------------	---------	---------	------	----------

Condition : FCC PART15(>1G) PK 3m VERTICAL

Job No. : 2981RF

Test mode : 2480 Bandedge


		Freq			Preamp Factor				
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	X	2479.975	3.03	32.67	39.92	82.88	78.66	74.00	4.66
2		2483.500	3.03	32.67	39.92	44.51	40.29	74.00	-33.71

Report No.: SZEM130600298101

Page: 44 of 46

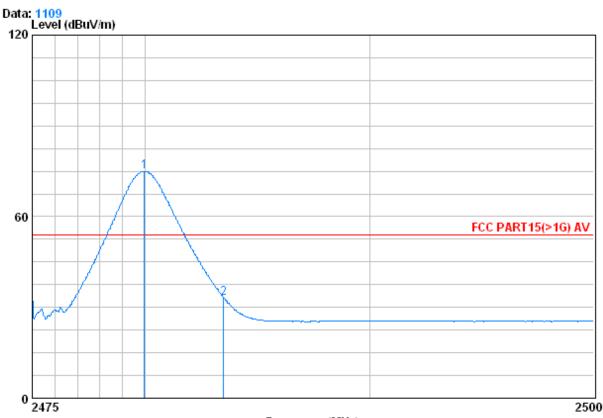
Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Horizontal
------------	------	---------------	---------	---------	------	------------

Condition : FCC PART15(>1G) PK 3m HORIZONTAL

Job No. : 2981RF

Test mode : 2480 Bandedge

		Freq			Preamp Factor				
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	X	2479.950	3.03	32.67	39.92	83.47	79.25	74.00	5.25
2		2483.500	3.03	32.67	39.92	45.98	41.76	74.00	-32.24


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms.e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM130600298101

Page: 45 of 46

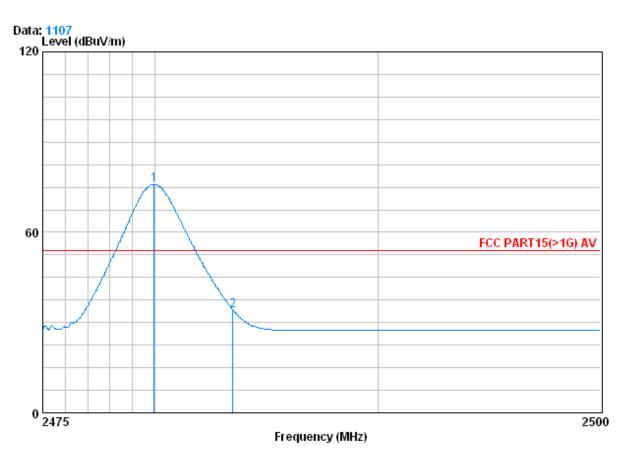
Test mode:	GFSK	Test channel:	Highest	Remark:	Average	Vertical
------------	------	---------------	---------	---------	---------	----------

Frequency (MHz)

Condition : FCC PART15(>1G) AV 3m VERTICAL

Job No. : 2981RF

Test mode : 2480 Bandedge


	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 0	2479.975	3.03	32.67	39.92	79.21	74.99	54.00	20.99
2	2483.500	3.03	32.67	39.92	37.34	33.12	54.00	-20.88

Report No.: SZEM130600298101

Page: 46 of 46

Test mode:	GFSK	Test channel:	Highest	Remark:	Average	Horizontal
------------	------	---------------	---------	---------	---------	------------

Condition : FCC PART15(>1G) AV 3m HORIZONTAL

Job No. : 2981RF

Test mode : 2480 Bandedge

		Cablei	Antenna	Preamp	Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 0	2479.975	3.03	32.67	39.92	80.15	75.93	54.00	21.93
2	2483.500	3.03	32.67	39.92	38.34	34.12	54.00	-19.88

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."