FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Smart phone

Model: ROSE100

Trade Name: HTC

Issued to

HTC Corporation No. 23, Xinghua Rd., Taoyuan City, Taiwan County, 330 R.O.C.

Issued by

Compliance Certification Services Inc.
No. 11, Wu-Gong 6th Rd., Wugu Industrial Park,
Taipei Hsien 248, Taiwan (R.O.C.)
http://www.ccsemc.com.tw
service@tw.ccsemc.com

Date of Issue: September 18, 2008

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1. T	EST RESULT CERTIFICATION	3
2. E	UT DESCRIPTION	4
3. T	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	5
3.2	EUT EXERCISE	
3.3	GENERAL TEST PROCEDURES.	
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
3.5	DESCRIPTION OF TEST MODES	
4. II	NSTRUMENT CALIBRATION	8
4.1	MEASURING INSTRUMENT CALIBRATION	8
4.2		
5. F.	ACILITIES AND ACCREDITATIONS	10
5.1	FACILITIES	10
5.2	EQUIPMENT	10
5.3	TABLE OF ACCREDITATIONS AND LISTINGS	11
6. S	ETUP OF EQUIPMENT UNDER TEST	12
6.1	SETUP CONFIGURATION OF EUT	12
6.2	SUPPORT EQUIPMENT	12
7. F	CC PART 15.247 REQUIREMENTS	13
7.1	20 DB BANDWIDTH	13
7.2	PEAK POWER	18
7.3	AVERAGE POWER	
7.4	BAND EDGES MEASUREMENT	
7.5	PEAK POWER SPECTRAL DENSITY	
7.6	FREQUENCY SEPARATION	
7.7	NUMBER OF HOPPING FREQUENCY	
7.8	TIME OF OCCUPANCY (DWELL TIME)	
7.9	SPURIOUS EMISSIONS	
7.10	POWERLINE CONDUCTED EMISSIONS	71
APPE	ENDIX I RADIO FREQUENCY EXPOSURE	74
A DDE	NDIV II PHOTOCRAPHS OF TEST SETUP	75

1. TEST RESULT CERTIFICATION

Applicant: HTC Corporation

No. 23, Xinghua Rd., Taoyuan City,

Date of Issue: September 18, 2008

Taiwan County, 330 R.O.C.

Equipment Under Test: ROSE100

Trade Name: HTC

Model: ROSE100

Date of Test: August $7 \sim 8$, 2008

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 15 Subpart C	No non-compliance noted			

We hereby certify that:

Rex. / a:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by: Reviewed by:

Rex Lai Amanda Wu Section Manager Section Manager

Compliance Certification Services Inc.

Compliance Certification Services Inc.

Page 3 Rev. 00

Gina Lo For

2. EUT DESCRIPTION

Product	Smart phone				
Trade Name	HTC				
Model Number	ROSE100				
Model Discrepancy	N/A				
	1. VDC from	Power Ada	apter		
Power Supply	2. Battery				
	3. Powered from	om Host d	evice via USE	3 cable	
	HTC (Delta)		Model	TC P300	
Power Adapter Manufacturer	PHIHONG		Model	PSAI05R-050Q	
	HTC (Foxlink)		Model	TC P300	
	For TC P300				
	I/P: 100-240VA	C, 50-60H	(z, 0.2A)		
	O/P: 5V, 1.0A				
	For PSAI05R-0	_			
Power Adapter Power Rating	I/P: 100-240VA	C, 50-60H	z, 0.3A		
	O/P: 5V, 1.0A				
	For TC P300				
	I/P: 100-240VAC, 50-60Hz, 0.2A O/P: 5V, 1.0A				
AC Power Cord Type	Unshielded, 1.8m (Detachable) to Power Adapter				
) (Unshielded, 1.8m)	
USB Cable Manufacturer	MEC	Model		04M (Unshielded, 1.8m)	
	Acon	Model		7-12DA (Unshielded, 1.8m)	
D 44 D LM C 4	TWS	Model	ROSE160 (3.7V / 1000mAh)		
Battery Pack Manufacturer	Welldone	Model	ROSE160 (3.7V / 1000mAh)		
LCD Panel Manufacturer	WINTEK	Model	62H00027-E	31M	
LCD Panel Manufacturer	LGI	Model	62H00028-A	A1M	
Camara Manufaaturar	LITE ON	Model	54H00293-0	00M / 08PF03	
Camera Manufacturer	PRIMAX	Model	D00079688	/ 50-70454HTT8	
	1.Holster: NEWTech (model name: PO S330 / 70H00173-00M)				
Accessories	2.Earphone: Cotron (model name: HS S200 / 36H00582-06M),				
	Unshielded, 1.8m				
Transmit Power	4.23 dBm				
Modulation Technique	GFSK for 1Mbps; π/4-DQPSK for 2Mbps; 8DPSK for 3Mbps				
Transmit Data Rate	1, 2, 3Mbps				
Number of Channels	79 Channels				
Antenna Specification	Gain: -0.2 dBi				
Antenna Designation	PIFA Antenna				

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>NM8RSV</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

Page 4 Rev. 00

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

Date of Issue: September 18, 2008

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

Page 5 Rev. 00

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Date of Issue: September 18, 2008

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Page 6 Rev. 00

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: ROSE100) comes with two types of power adapter TC P300 & PSAI05R-050Q) for sale. After the preliminary test, the adapter with model number TC P300 was found to emit the worst emissions and therefore had been tested under operating condition.

Date of Issue: September 18, 2008

Test program used to control the EUT for staying in continuous transmitting mode was programmed.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

Following channels were selected for the for radiated emission testing only as listed below:

Tested Channel	Modulation Type	Packet Type	Date Rate	Axis
Low, Mid, High	GFSK	DH 5	1	X
Low, Mid, High	8DPSK	DH 5	3	X

Page 7 Rev. 00

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: September 18, 2008

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emissions Test Site							
Name of Equipment Manufacturer Model Serial Number Calibration							
Spectrum Analyzer	Agilent	E4446A	MY43360131	02/24/2009			
Power Meter	Agilent	E4416A	GB41291611	04/06/2009			
Power Sensor	Agilent	E9327A	US40441097	06/19/2009			

	3M Semi Anechoic Chamber							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Spectrum Analyzer	Agilent	E4446A	US42510252	09/10/2009				
Test Receiver	Rohde&Schwarz	ESCI	100064	11/30/2008				
Switch Controller	TRC	Switch Controller	SC94050010	05/03/2009				
4 Port Switch	TRC	4 Port Switch	SC94050020	05/03/2009				
Horn-Antenna	TRC	HA-0502	06	06/04/2009				
Horn-Antenna	TRC	HA-0801	04	06/19/2009				
Horn-Antenna	TRC	HA-1201A	01	08/11/2009				
Horn-Antenna	TRC	HA-1301A	01	08/11/2009				
Bilog- Antenna	Sunol Sciences	JB3	A030205	03/28/2009				
Loop Antenna	EMCO	6502	8905/2356	05/29/2009				
Turn Table	Max-Full	MFT-120S	T120S940302	N.C.R.				
Antenna Tower	Max-Full	MFA-430	A440940302	N.C.R.				
Controller	Max-Full	MF-CM886	CC-C-1F-13	N.C.R.				
Site NSA	CCS	N/A	FCC: 965860 IC: IC 6106	09/25/2008				
Test S/W	Test S/W LABVIEW (V 6.1)							

Remark: The measurement uncertainty is less than +/-3.7046dB (30MHz ~ 1GHz), +/-3.0958dB (Above 1GHz) which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Page 8 Rev. 00

·							
Powerline Conducted Emissions Test Site							
Name of Equipment Manufacturer Model Serial Number Calibration							
EMI Test Receiver 9kHz-30MHz	Rohde & Schwarz	ESHS30	828144/003	11/19/2008			
Two-Line V-Network 9kHz-30MHz	Schaffner	NNB41	03/10013	06/11/2009			
LISN 10kHz-100MHz	EMCO	3825/2	9106-1809	04/09/2009			
Test S/W LABVIEW (V 6.1)							

Date of Issue: September 18, 2008

Remark: The measurement uncertainty is less than +/- 2.81dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Page 9 Rev. 00

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

Date of Issue: September 18, 2008

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 10 Rev. 00

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	A2LA	EN 55011, EN 55014-1/2, CISPR 11, CISPR 14-1/2, EN 55022, EN 55015, CISPR 22, CISPR 15, AS/NZS 3548, VCCI V3 (2001), CFR 47, FCC Part 15/18, CNS 13783-1, CNS 13439, CNS 13438, CNS 13803, CNS 14115, EN 55024, IEC 801-2, IEC 801-3, IEC 801-4, IEC/EN 61000-3-2, EIC/EN 61000-3-3, IEC/EN 61000-4-2/3/4/5/6/8/11, EN 50081-1/EN 61000-6-3, EN 50081-2/EN 61000-6-4, EN 50081-2/EN 61000-6-1: 2001	ACCREDITED TESTING CERT #0824.01
USA	FCC	3M Semi Anechoic Chamber (965860 and 898658) to perform FCC Part 15/18 measurements	FC 965860, 898658
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12.2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 6106 & IC 6106A-2) to perform RSS 212 Issue 1	Canada IC 6106 IC 6106A-2

Date of Issue: September 18, 2008

Page 11 Rev. 00

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

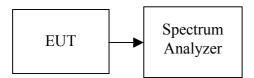
6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
	N/A						

Date of Issue: September 18, 2008


Page 12 Rev. 00

7. FCC PART 15.247 REQUIREMENTS 7.120 DB BANDWIDTH

LIMIT

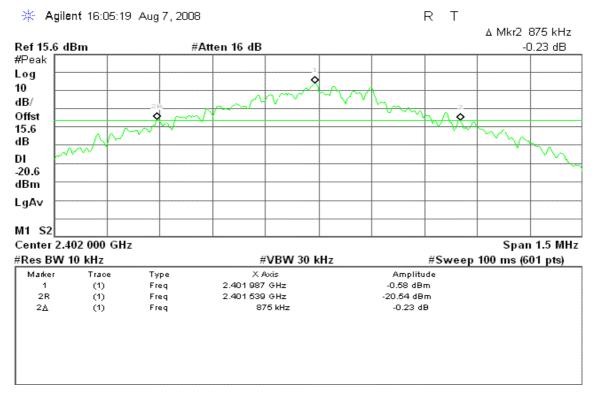
None; for reporting purposes only.

Test Configuration

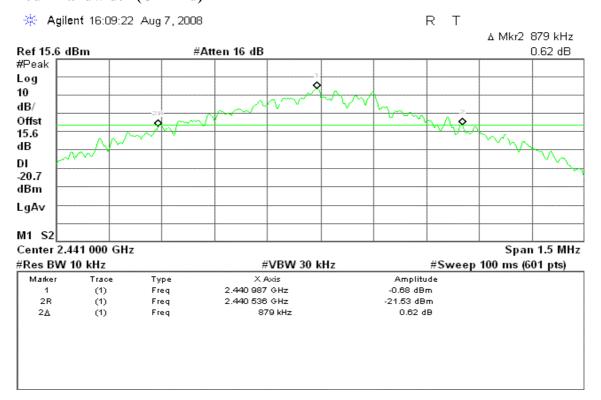
TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=10kHz, VBW =30kHz, Span = 1.5MHz, Sweep = auto.
- 4. Mark the peak frequency and 20dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

TEST RESULTS

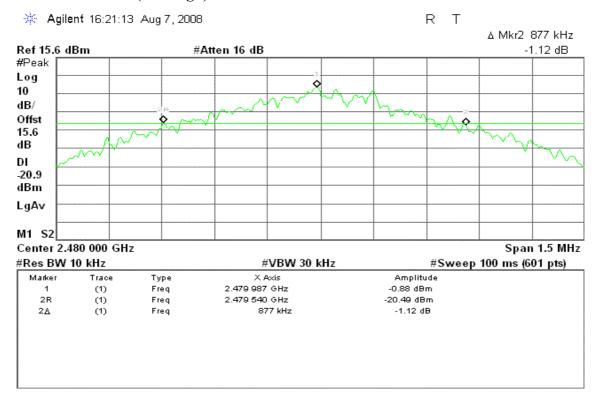

No non-compliance noted.

Page 13 Rev. 00


Test Plot

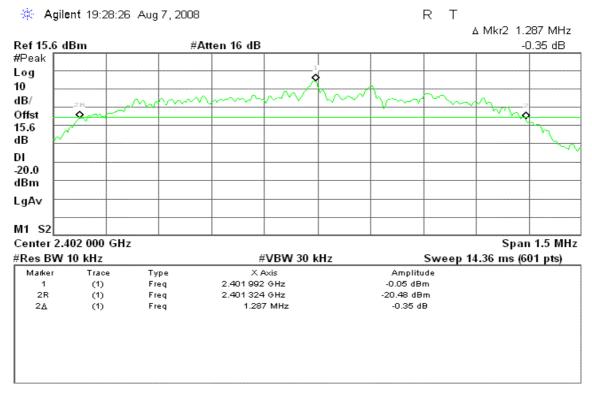
For GFSK / DH5

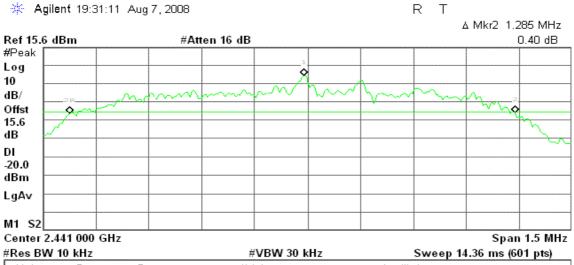
20dB Bandwidth (CH Low)



20dB Bandwidth (CH Mid)

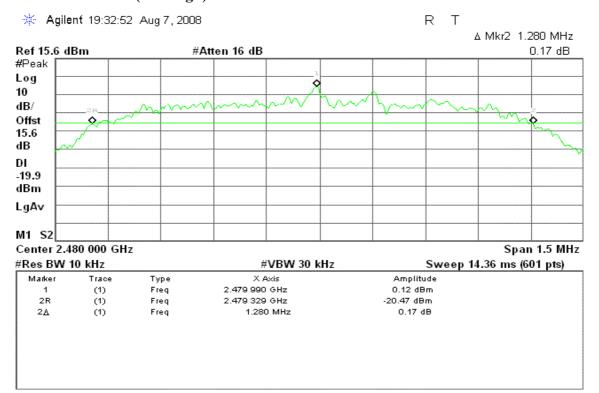
Page 14 Rev. 00


20dB Bandwidth (CH High)


Page 15 Rev. 00

For 8DPSK / DH5

20dB Bandwidth (CH Low)


20dB Bandwidth (CH Mid)

Res BVV 10 KHZ			#VBVV 3U KHZ	Sweep 14.36 ms (601 pts)
Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.440 987 GHz	0.07 dBm
2R	(1)	Freq	2.440 324 GHz	-20.69 dBm
2Δ	(1)	Freq	1.285 MHz	0.40 dB

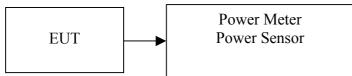
Page 16 Rev. 00

20dB Bandwidth (CH High)

Page 17 Rev. 00

7.2 PEAK POWER

LIMIT


The maximum peak output power of the intentional radiator shall not exceed the following:

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier
frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel,
whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5
MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or
two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the
systems operate with an output power no greater than 125 mW.

Date of Issue: September 18, 2008

- 2. According to \$15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 3. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

Page 18 Rev. 00

TEST RESULTS

No non-compliance noted.

Test Data

For GFSK / DH5

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	2.57	0.0018		PASS
Mid	2441	2.49	0.0018	0.125	PASS
High	2480	2.36	0.0017		PASS

For 8DPSK / DH5

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	4.23	0.0026		PASS
Mid	2441	4.22	0.0026	0.125	PASS
High	2480	4.02	0.0025		PASS


Page 19 Rev. 00

7.3 AVERAGE POWER

LIMIT

None; for reporting purposes only.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Spectrum analyzer. The Spectrum analyzer is set to the average power detection.

TEST RESULTS

No non-compliance noted.

Test Data

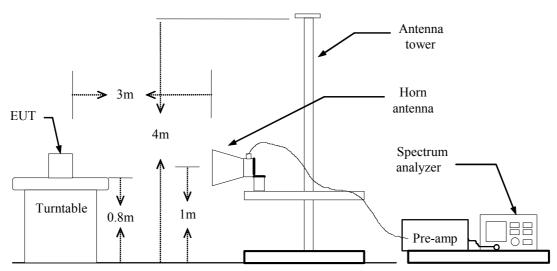
For GFSK / DH5

Channel	Frequency (MHz)	Output Power (dBm)
Low	2402	2.18
Mid	2441	2.10
High	2480	1.97

For 8DPSK / DH5

Channel	Frequency (MHz)	Output Power (dBm)
Low	2402	2.60
Mid	2441	2.57
High	2480	2.42

Page 20 Rev. 00


7.4 BAND EDGES MEASUREMENT

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Date of Issue: September 18, 2008

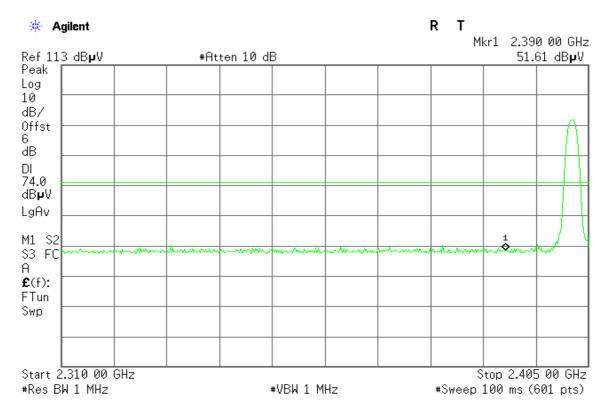
Test Configuration

TEST PROCEDURE

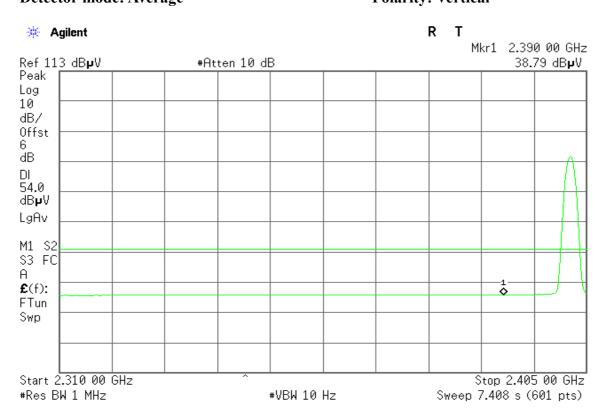
- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

Refer to attach spectrum analyzer data chart.

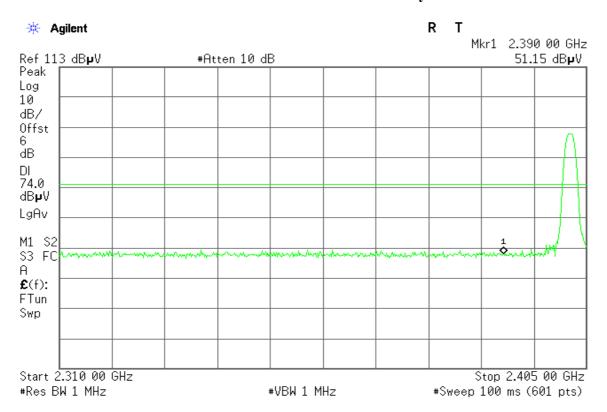

Page 21 Rev. 00

V Date of Issue: September 18, 2008

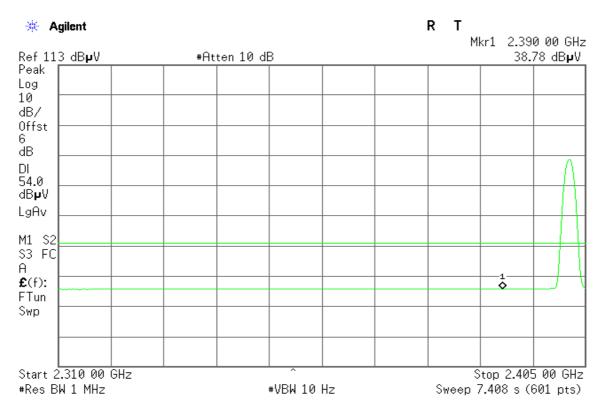

For GFSK / DH5

Band Edges (CH Low)

Detector mode: Peak Polarity: Vertical

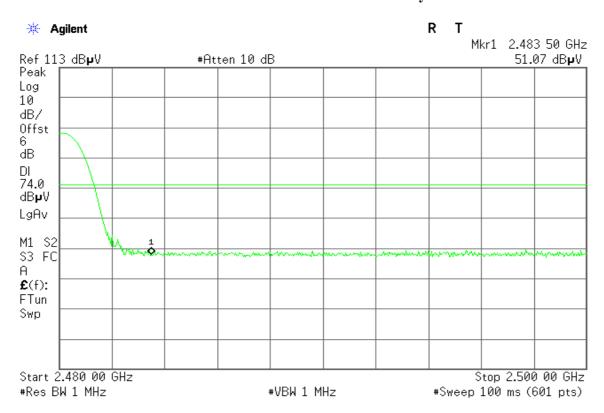


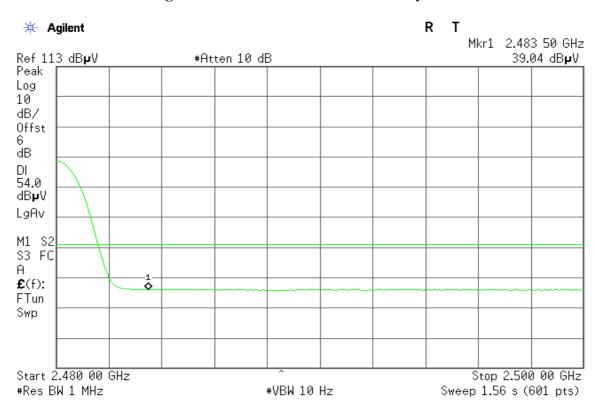
Detector mode: Average Polarity: Vertical



Page 22 Rev. 00

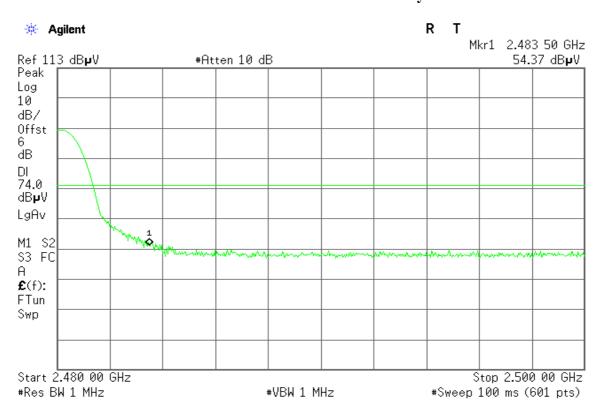
Detector mode: Peak Polarity: Horizontal


Detector mode: Average Polarity: Horizontal

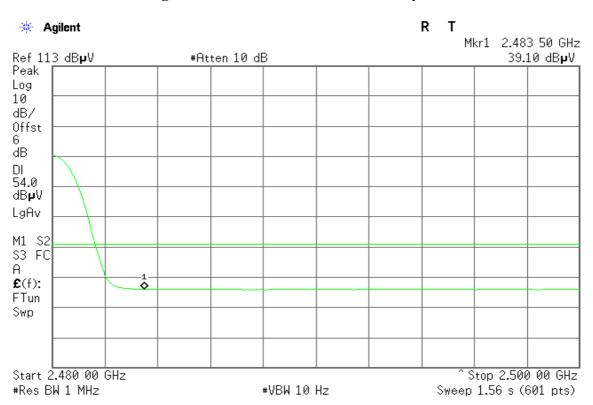

Page 23 Rev. 00

Band Edges (CH High)

Detector mode: Peak Polarity: Vertical



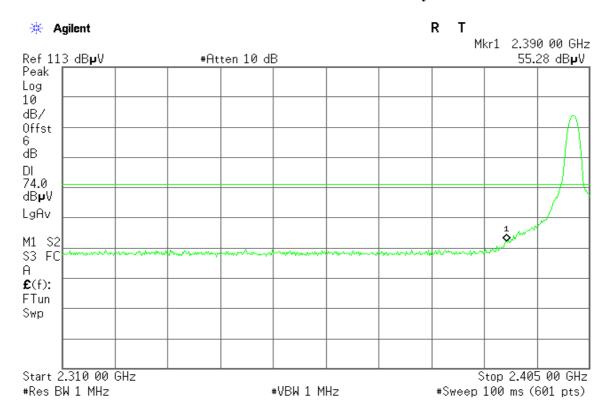
Detector mode: Average Polarity: Vertical



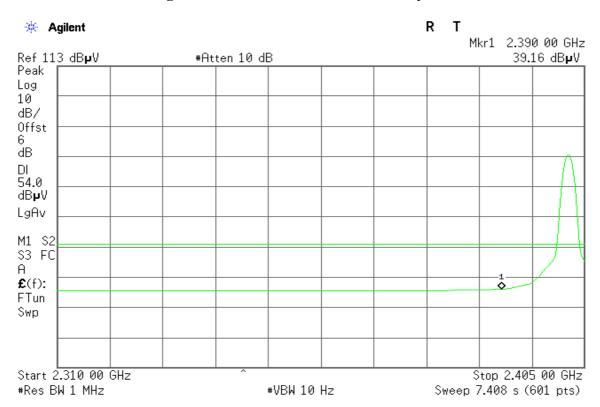
Page 24 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal

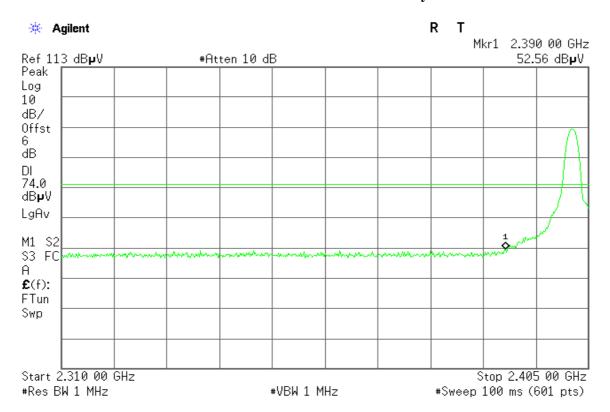

Page 25 Rev. 00

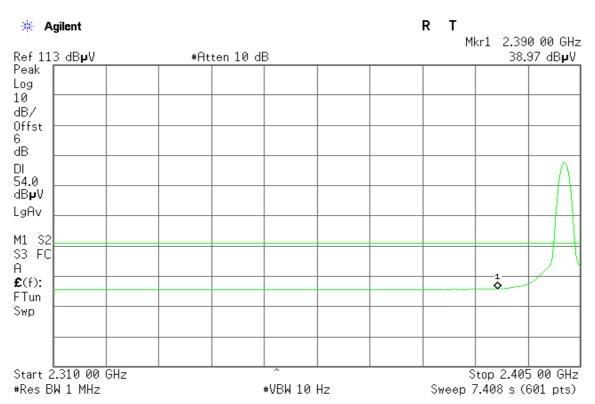
Date of Issue: September 18, 2008


For 8DPSK / DH5

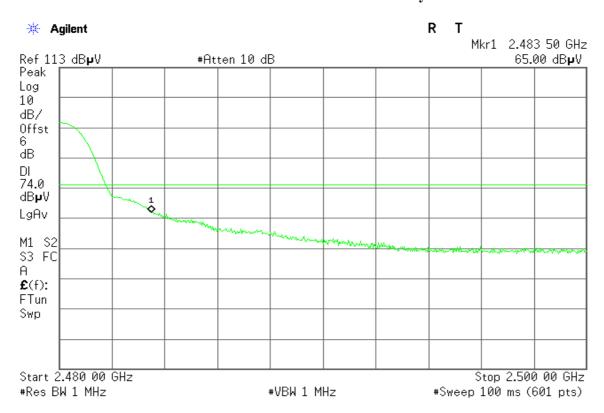
Band Edges (CH Low)

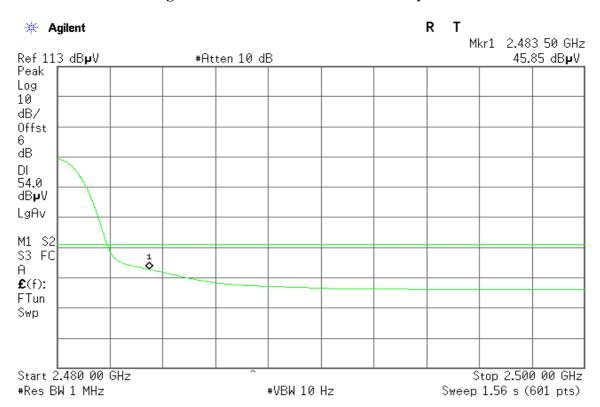
Detector mode: Peak Polarity: Vertical


Detector mode: Average Polarity: Vertical

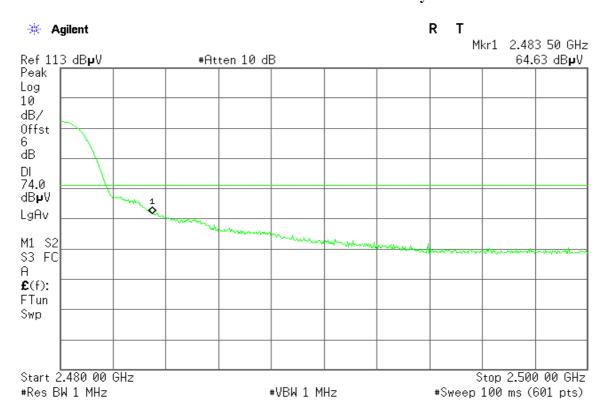

Page 26 Rev. 00

Detector mode: Peak Polarity: Horizontal

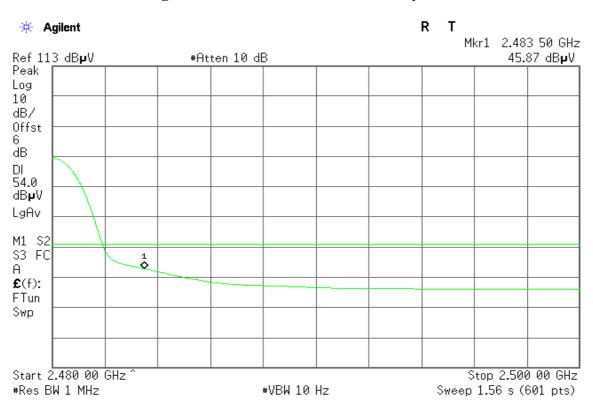

Detector mode: Average Polarity: Horizontal


Page 27 Rev. 00

Detector mode: Peak Polarity: Vertical



Detector mode: Average Polarity: Vertical



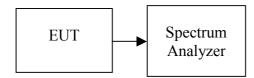
Page 28 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal

Page 29 Rev. 00

7.5 PEAK POWER SPECTRAL DENSITY


LIMIT

1. According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Date of Issue: September 18, 2008

2. According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 4. Record the max. reading.
- 5. Repeat the above procedure until the measurements for all frequencies are completed.

Page 30 Rev. 00

Date of Issue: September 18, 2008

TEST RESULTS

No non-compliance noted

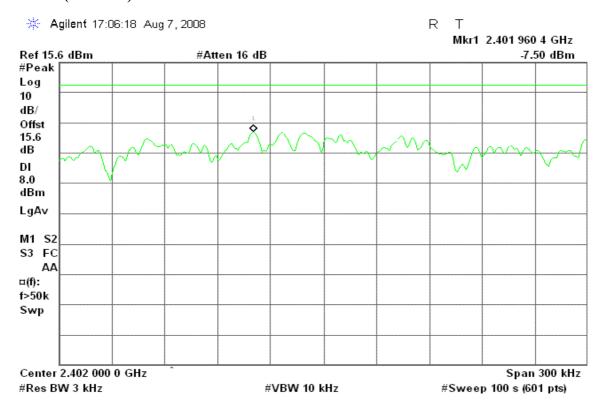
Test Data

For GFSK / DH5

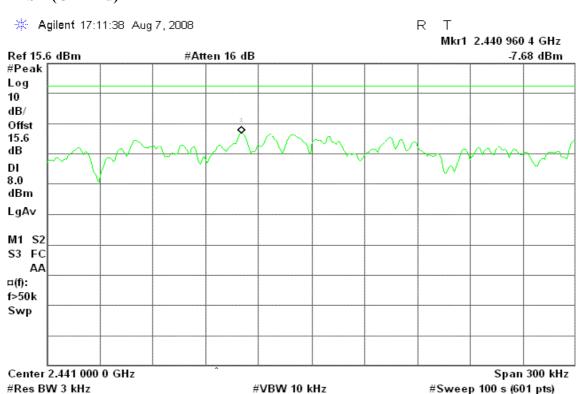
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2402	-7.50		PASS
Mid	2441	-7.68	8.00	PASS
High	2480	-7.63		PASS

For 8DPSK / DH5

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2402	-7.52		PASS
Mid	2441	-7.62	8.00	PASS
High	2480	-7.75		PASS

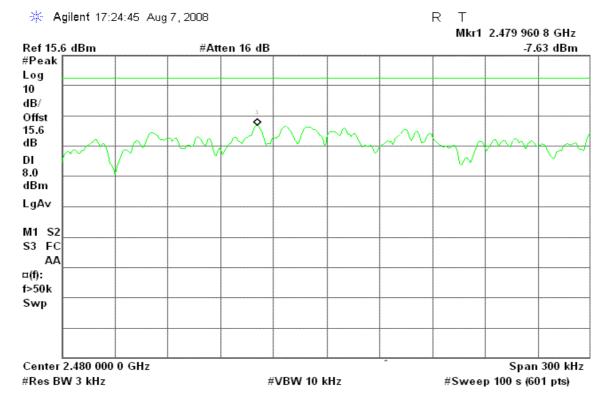

Page 31 Rev. 00

CC ID: NM8RSV Date of Issue: September 18, 2008


Test Plot

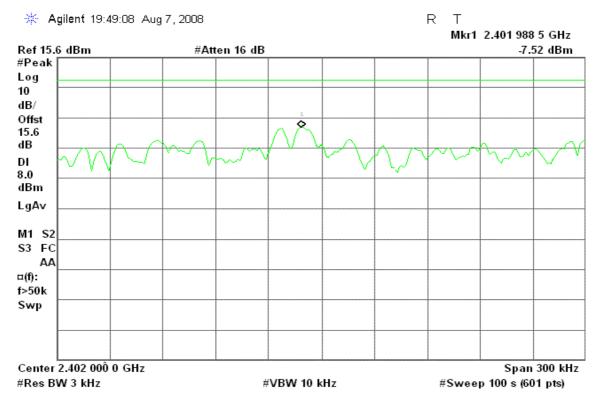
For GFSK / DH5

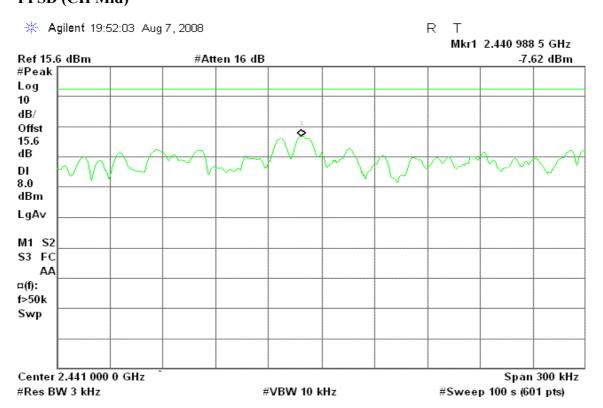
PPSD (CH Low)


PPSD (CH Mid)

Page 32 Rev. 00

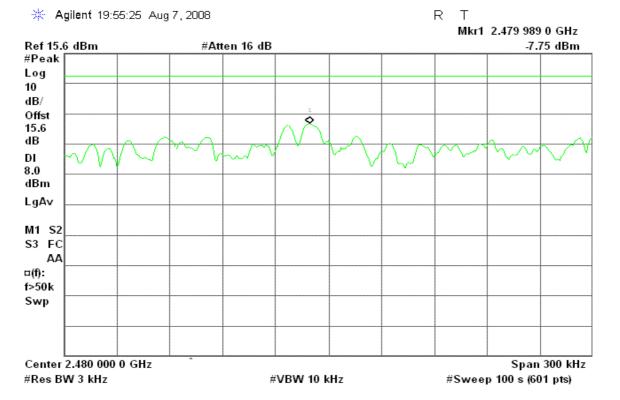
: NM8RSV Date of Issue: September 18, 2008


PPSD (CH High)


Page 33 Rev. 00

For 8DPSK / DH5

PPSD (CH Low)

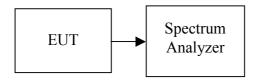

PPSD (CH Mid)

Page 34 Rev. 00

CC ID: NM8RSV Date of Issue: September 18, 2008

PPSD (CH High)

Page 35 Rev. 00


7.6 FREQUENCY SEPARATION

LIMIT

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Date of Issue: September 18, 2008

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Span = 3MHz, Sweep = auto.
- 5. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency.

Page 36 Rev. 00

TEST RESULTS

No non-compliance noted

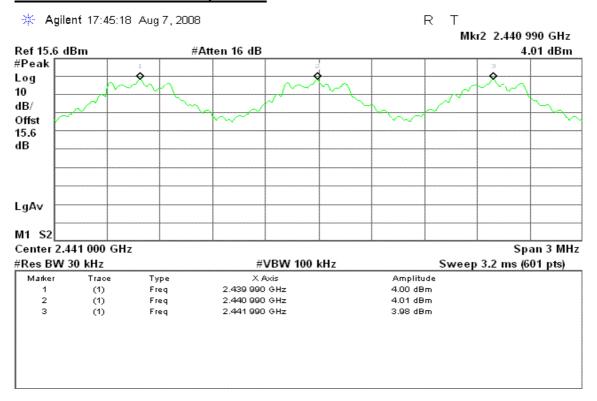
Test Data

For GFSK / DH5

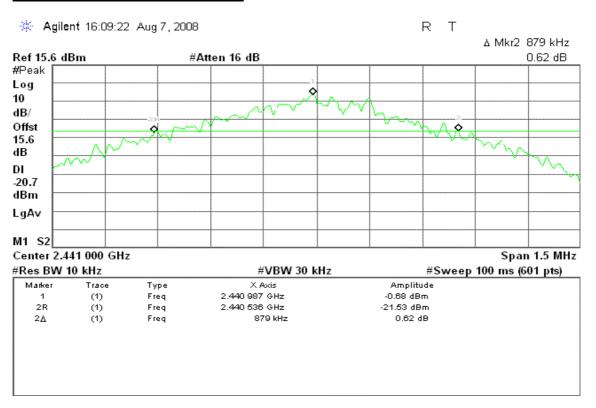
Channel Separation (MHz)	two-thirds of the 20 dB bandwidth	Channel Separation Limit	Result
1.00	586	two-thirds of the 20 dB bandwidth	Pass

Date of Issue: September 18, 2008

For 8DPSK / DH5

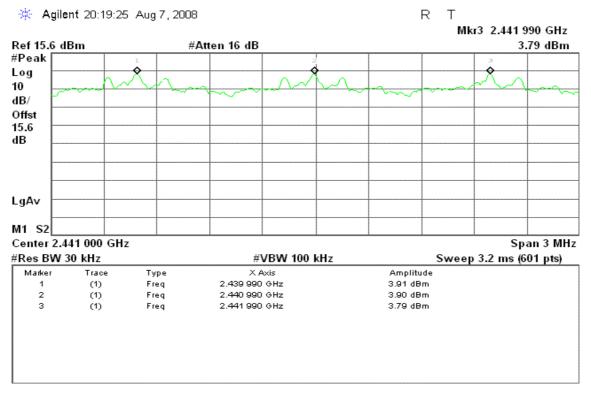

Channel Separation	two-thirds of the 20 dB	Channel Separation Limit	Result	
(MHz) bandwidth		Chamer Separation Elimit	Result	
1.00	858	two-thirds of the 20 dB bandwidth	Pass	

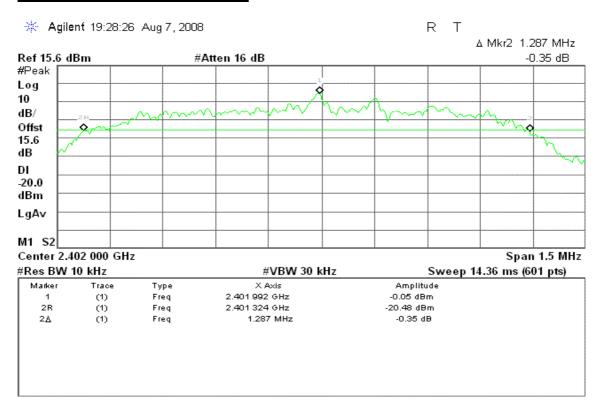
Page 37 Rev. 00


Test Plot

For GFSK / DH5

Measurement of Channel Separation


Measurement of 20dB Bandwidth

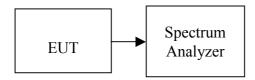

Page 38 Rev. 00

For 8DPSK / DH5

Measurement of Channel Separation

Measurement of 20dB Bandwidth

Page 39 Rev. 00


7.7 NUMBER OF HOPPING FREQUENCY

LIMIT

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

Date of Issue: September 18, 2008

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2441.5MHz, Sweep = auto and Start=2441.5MHz, Stop = 2483.5MHz, Sweep = auto.
- 4. Set the spectrum analyzer as RBW, VBW=510kHz.
- 5. Max hold, view and count how many channel in the band.

TEST RESULTS

No non-compliance noted

Test Data

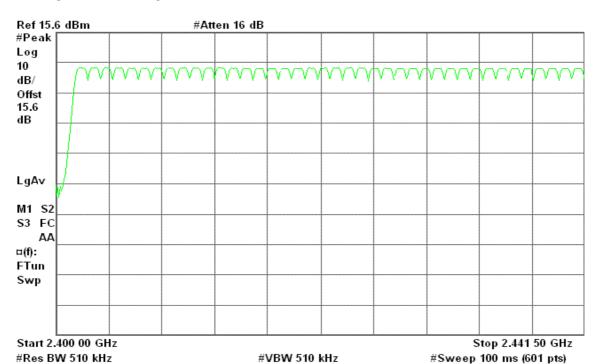
For GFSK / 8DPSK

Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS

Page 40 Rev. 00

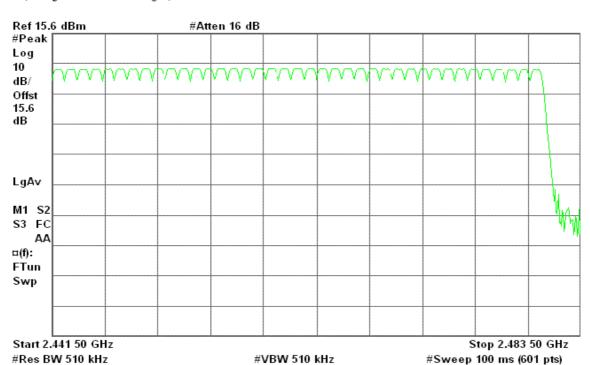
CC ID: NM8RSV Date of Issue: September 18, 2008

Test Plot


For GFSK

Channel Number

2.4 GHz - 2.4415 GHz


R T

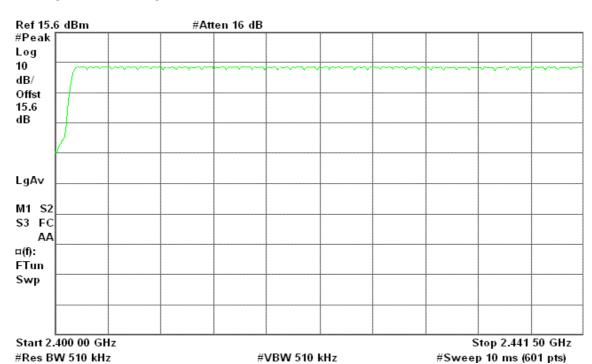
2.4415 GHz - 2.4835 GHz

* Agilent 16:57:17 Aug 7, 2008

R T

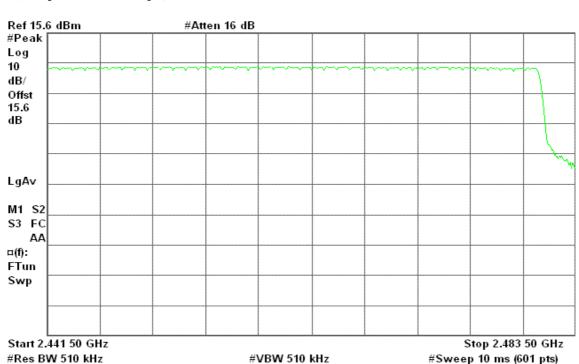
Page 41 Rev. 00

CC ID: NM8RSV Date of Issue: September 18, 2008


For 8DPSK

Channel Number

2.4 GHz – 2.4415 GHz

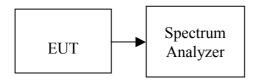

R T

2.4415 GHz - 2.4835 GHz

Agilent 19:43:53 Aug 7, 2008

R T

Page 42 Rev. 00


7.8 TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Date of Issue: September 18, 2008

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5. Repeat above procedures until all frequency measured were complete.

Page 43 Rev. 00

TEST RESULTS

No non-compliance noted.

Test Data

For GFSK / DH5

<u>DH 1</u>

CH Low: 0.400 * (1600/2)/79 * 31.6 = 128.000 (ms) CH Mid: 0.417 * (1600/2)/79 * 31.6 = 133.440 (ms) CH High: 0.417 * (1600/2)/79 * 31.6 = 133.440 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Low	0.400	128.000	31.60		PASS
Mid	0.417	133.440	31.60	400.00	PASS
High	0.417	133.440	31.60		PASS

DH 3

CH Low: 1.683 * (1600/4)/79 * 31.6 = 269.280(ms) CH Mid: 1.667 * (1600/4)/79 * 31.6 = 266.720 (ms) CH High: 1.667 * (1600/4)/79 * 31.6 = 266.720 (ms)

СН	Pulse Time (ms)			Limit (ms)	Result
Low	1.683	269.280	31.60		PASS
Mid	1.667	266.720	31.60	400.00	PASS
High	1.667	266.720	31.60		PASS

<u>DH 5</u>

CH Low: 2.933 * (1600/6)/79 * 31.6 = 312.853 (ms) CH Mid: 2.917 * (1600/6)/79 * 31.6 = 311.147 (ms) CH High: 2.917 * (1600/6)/79 * 31.6 = 311.147 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Low	2.933	312.853	31.60		PASS
Mid	2.917	311.147	31.60	400.00	PASS
High	2.917	311.147	31.60		PASS

Page 44 Rev. 00

Test Data

For 8DPSK / DH5

<u>DH 1</u>

CH Low: 0.417 * (1600/2)/79 * 31.6 = 133.440 (ms) CH Mid: 0.433 * (1600/2)/79 * 31.6 = 138.560 (ms) CH High: 0.433 * (1600/2)/79 * 31.6 = 138.560 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Low	0.417	133.440	31.60		PASS
Mid	0.433	138.560	31.60	400.00	PASS
High	0.433	138.560	31.60		PASS

Date of Issue: September 18, 2008

DH 3

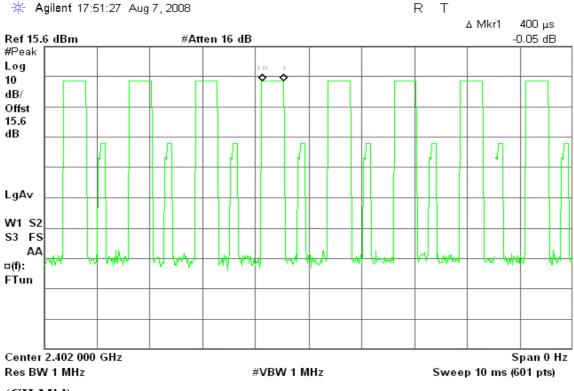
CH Low: 1.667 * (1600/4)/79 * 31.6 = 266.720 (ms) CH Mid: 1.667 * (1600/4)/79 * 31.6 = 266.720 (ms) CH High: 1.650 * (1600/4)/79 * 31.6 = 264.000 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Low	1.667	266.720	31.60		PASS
Mid	1.667	266.720	31.60	400.00	PASS
High	1.650	264.000	31.60		PASS

<u>DH 5</u>

CH Low: 2.917 * (1600/6)/79 * 31.6 = 311.147(ms) CH Mid: 2.917 * (1600/6)/79 * 31.6 = 311.147 (ms) CH High: 2.917 * (1600/6)/79 * 31.6 = 311.147 (ms)

СН	Pulse Time (ms) Total of Dwell (ms)		Period Time (s)	Limit (ms)	Result
Low	2.917	311.147	31.60		PASS
Mid	2.917	311.147	31.60	400.00	PASS
High	2.917	311.147	31.60		PASS

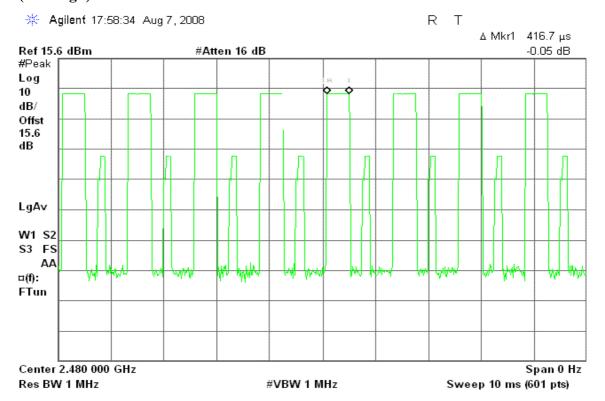

Page 45 Rev. 00

Test Plot

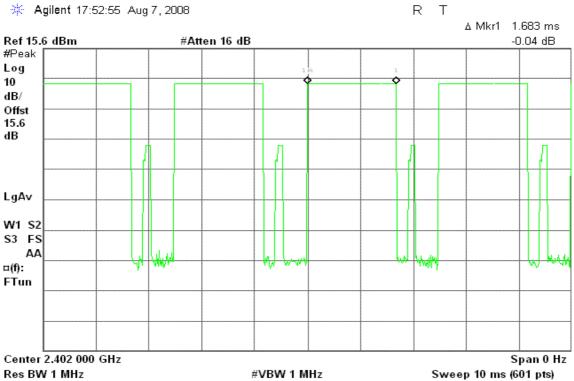
For GFSK / DH5

DH 1

(CH Low)

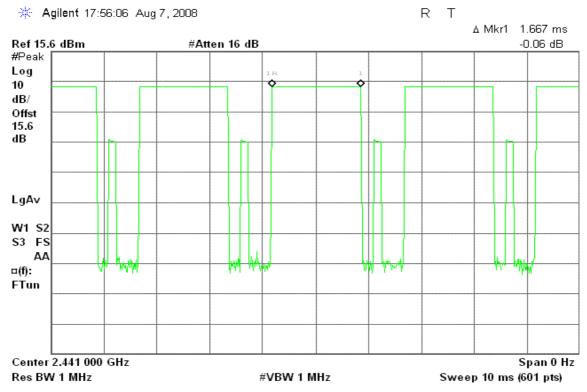

(CH Mid)

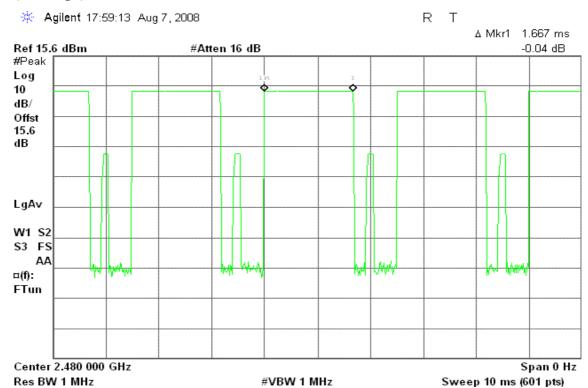
Page 46 Rev. 00


CC ID: NM8RSV Date of Issue: September 18, 2008

(CH High)

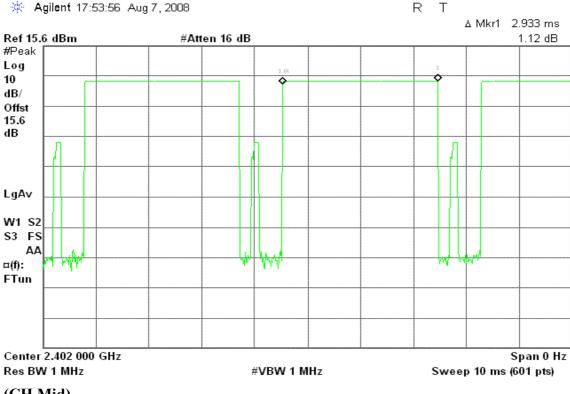
DH 3

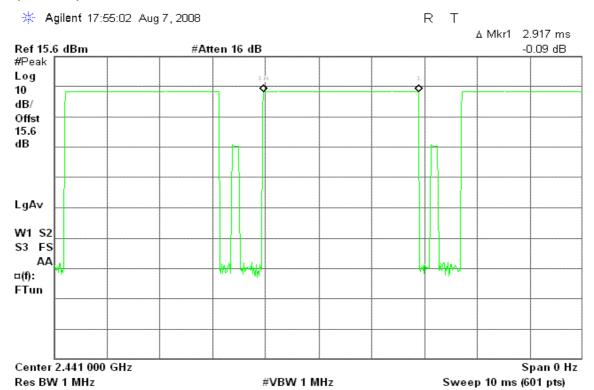

(CH Low)


Page 47 Rev. 00

-RP1 FCC ID: NM8RSV Date of Issue: September 18, 2008

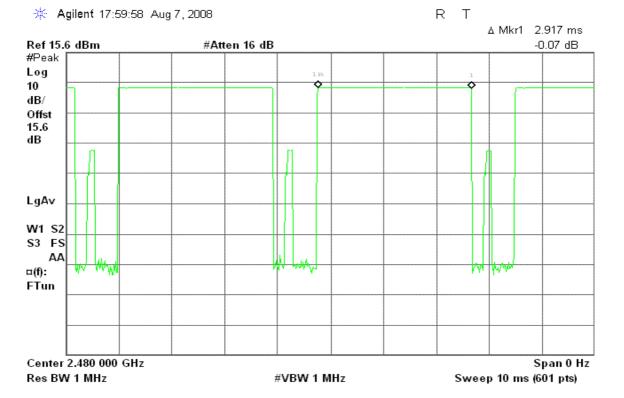
(CH Mid)


(CH High)


Page 48 Rev. 00

<u>DH 5</u>

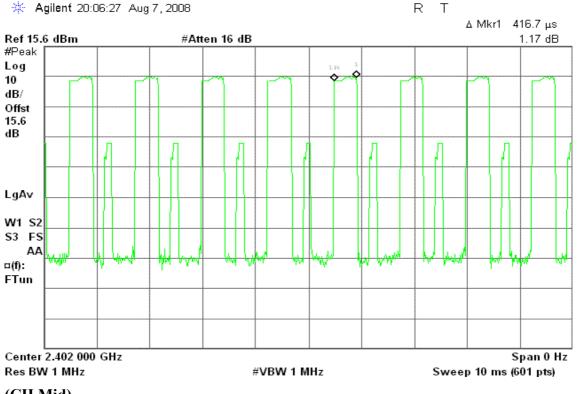
(CH Low)


(CH Mid)

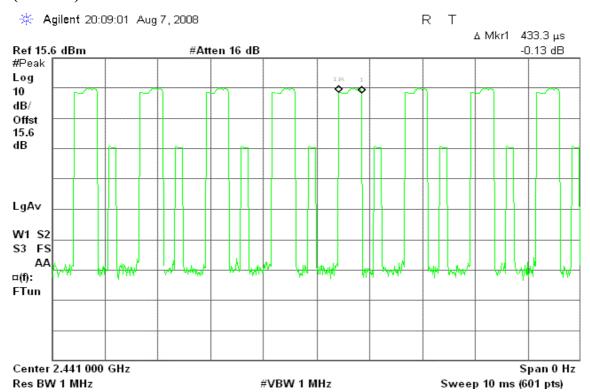
Page 49 Rev. 00

V Date of Issue: September 18, 2008

(CH High)

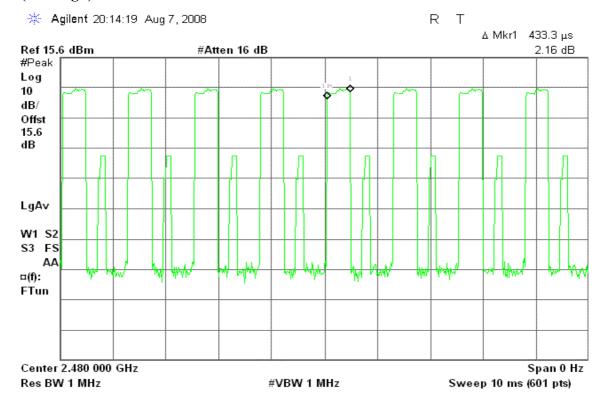


Page 50 Rev. 00

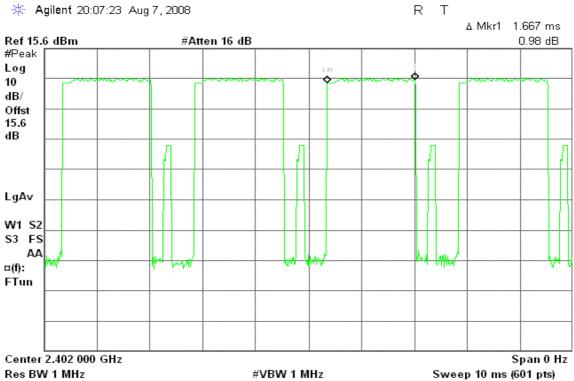

For 8DPSK / DH5

<u>DH 1</u>

(CH Low)

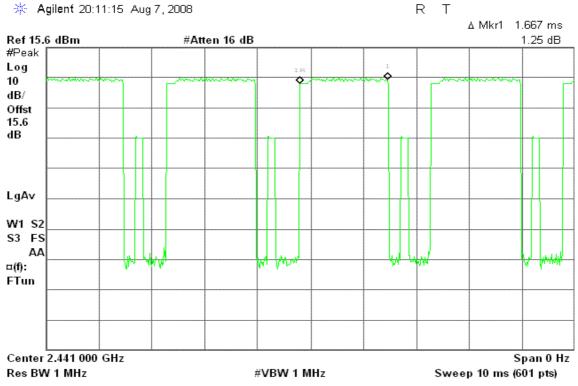


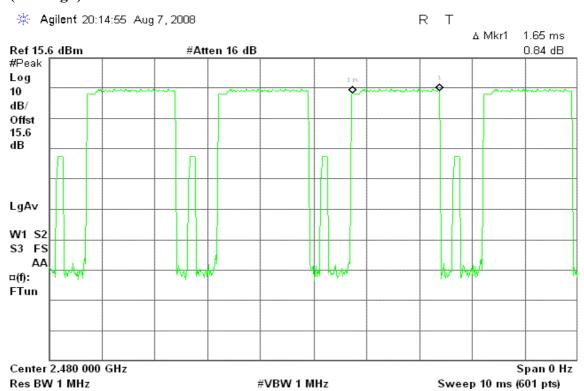
(CH Mid)


Page 51 Rev. 00

(CH High)

DH 3

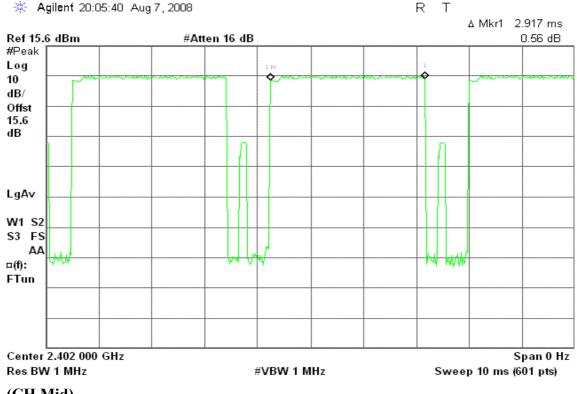

(CH Low)


Page 52 Rev. 00

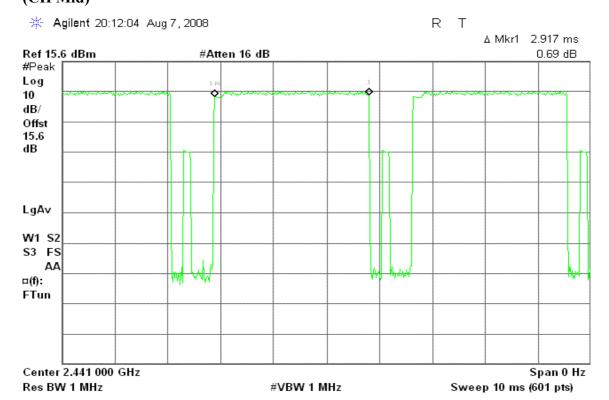
CC ID: NM8RSV Date of Issue: September 18, 2008

(CH Mid)

(CH High)

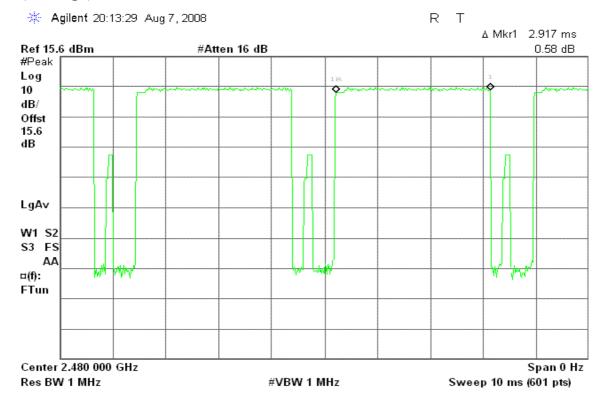


Page 53 Rev. 00


Date of Issue: September 18, 2008

<u>DH 5</u>

(CH Low)


(CH Mid)

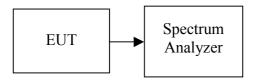
Page 54 Rev. 00

C ID: NM8RSV Date of Issue: September 18, 2008

(CH High)

Page 55 Rev. 00

7.9 SPURIOUS EMISSIONS


7.9.1 Conducted Measurement

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Date of Issue: September 18, 2008

Test Configuration

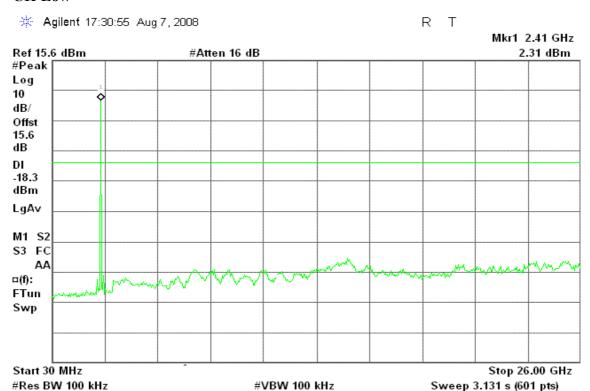
TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

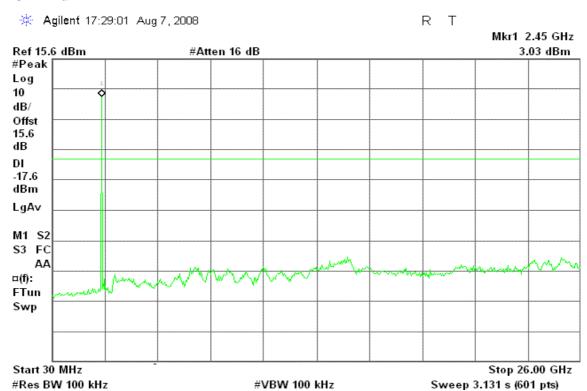
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

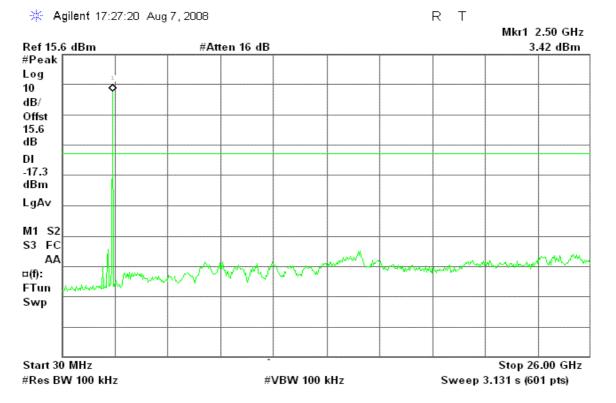

No non-compliance noted

Page 56 Rev. 00


Test Plot

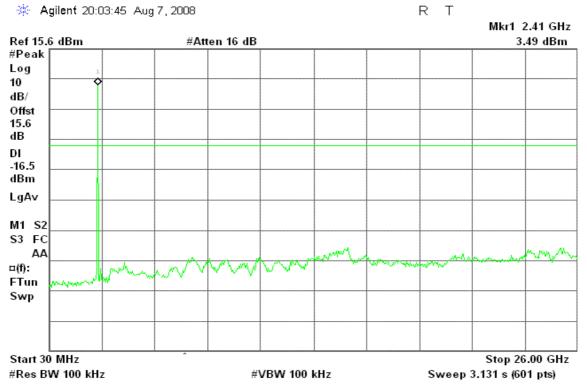
For GFSK / DH5

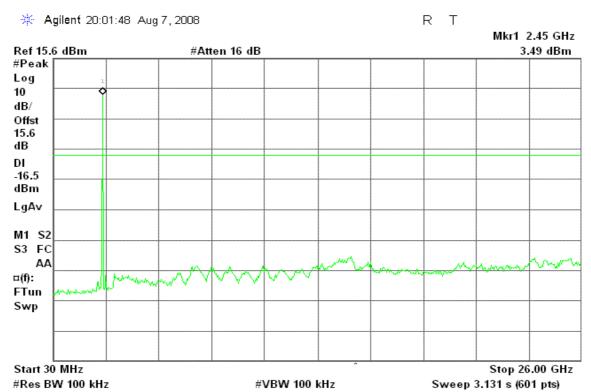
CH Low


CH Mid

Page 57 Rev. 00

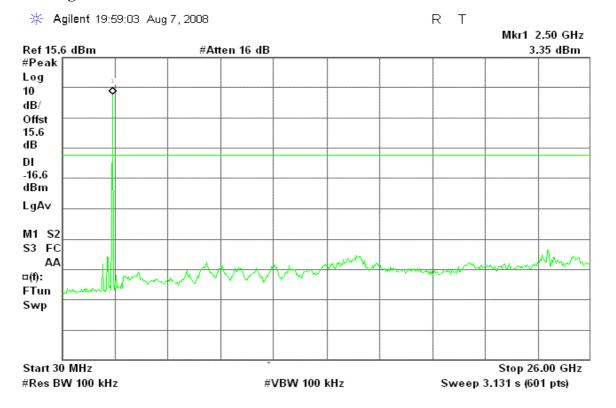
NM8RSV Date of Issue: September 18, 2008


CH High


Page 58 Rev. 00

For 8DPSK / DH5

CH Low


CH Mid

Page 59 Rev. 00

CID: NM8RSV Date of Issue: September 18, 2008

CH High

Page 60 Rev. 00

7.9.2 Radiated Emissions

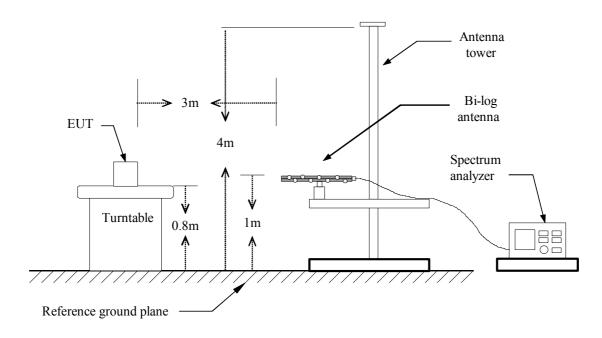
LIMIT

1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

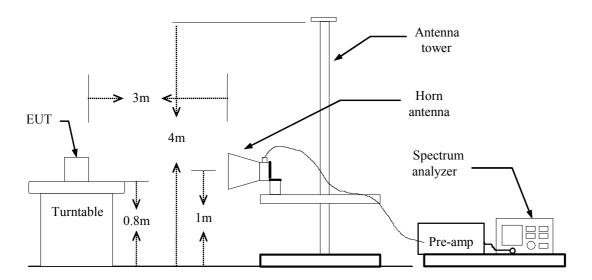
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Date of Issue: September 18, 2008

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


2. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54


Page 61 Rev. 00

Test Configuration

Below 1 GHz

Above 1 GHz

Page 62 Rev. 00

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

Date of Issue: September 18, 2008

- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

Page 63 Rev. 00

Below 1 GHz

Operation Mode: Normal Link **Test Date:** August 8, 2008

Date of Issue: September 18, 2008

Temperature: 23°C **Tested by:** Mimic Yang

Humidity: 53 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
67.18	V	35.79	-14.44	21.35	40.00	-18.65	Peak
159.33	V	31.72	-8.96	22.76	43.50	-20.74	Peak
256.33	V	31.08	-7.43	23.65	46.00	-22.35	Peak
288.67	V	30.46	-6.46	24.01	46.00	-21.99	Peak
448.72	V	25.45	-2.47	22.98	46.00	-23.02	Peak
629.78	V	24.73	1.58	26.31	46.00	-19.69	Peak
160.95	Н	33.89	-9.02	24.86	43.50	-18.64	Peak
219.15	Н	28.65	-8.14	20.51	46.00	-25.49	Peak
256.33	Н	32.05	-7.43	24.61	46.00	-21.39	Peak
288.67	Н	31.53	-6.46	25.07	46.00	-20.93	Peak
736.48	Н	23.97	3.84	27.81	46.00	-18.19	Peak
791.45	Н	23.69	5.01	28.70	46.00	-17.30	Peak

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Measuring frequencies from 30 MHz to the 1GHz.
- 3. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 4. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Quasi-peak limit(dBuV/m).

Page 64 Rev. 00

Above 1 GHz

For GFSK / DH5

Operation Mode: TX / CH Low **Test Date:** August 8, 2008

Date of Issue: September 18, 2008

Temperature: 23°C Tested by: Mimic Yang

Humidity: 53 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1646.67	V	56.15		-7.13	49.02		74.00	54.00	-4.98	Peak
N/A										
1720.00	Н	55.72		-6.52	49.20		74.00	54.00	-4.80	Peak
N/A										

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 5. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 6. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 7. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 65 Rev. 00

Operation Mode: TX / CH Mid **Test Date:** August 8, 2008

Date of Issue: September 18, 2008

Temperature: 23°C **Tested by:** Mimic Yang

Humidity: 53 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1790.00	V	54.72		-5.93	48.78		74.00	54.00	-5.22	Peak
N/A										
1740.00	Н	56.07		-6.35	49.72		74.00	54.00	-4.28	Peak
N/A										

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 5. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 6. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 7. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 66 Rev. 00

Operation Mode: TX / CH High **Test Date:** August 8, 2008

Date of Issue: September 18, 2008

Temperature: 23°C **Tested by:** Mimic Yang

Humidity: 53 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1790.00	V	55.48		-5.93	49.55		74.00	54.00	-4.45	Peak
N/A										
1800.00	Н	54.72		-5.85	48.87		74.00	54.00	-5.13	Peak
N/A										

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 5. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 6. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 7. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 67 Rev. 00

For 8DPSK / DH5

Operation Mode: TX / CH Low **Test Date:** August 8, 2008

Date of Issue: September 18, 2008

Temperature: 23°C **Tested by:** Mimic Yang

Humidity: 53 % RH **Polarity:** Ver. / Hor.

Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
V	55.59		-5.96	49.63		74.00	54.00	-4.37	Peak
Н	54.98		-5.71	49.26		74.00	54.00	-4.74	Peak
	(H/V) V	(H/V) (Peak) (dBuV) V 55.59	Ant.Pol. (Peak) (Average) (dBuV) V 55.59	Ant.Pol. (Peak) (Average) (dBuV) (dBuV) V 55.595.96	Ant.Pol. (H/V) (Peak) (Average) (dBuV) (dBuW) (dBuW) (dBuV/m) V 55.595.96 49.63	Ant.Pol. (H/V) (Peak) (dBuV) (dBuV) (dBm) (Peak) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m)	Ant.Pol. (H/V) (Peak) (dBuV) (Average) (dBuV) (dBm) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m)	Ant.Pol. (H/V) (Peak) (dBuV) (dBuW) (dBuW) (dBuW/m) (dBuV/m) (dBuV	Ant.Fol. (H/V) (Peak) (dBuV) (Average) (dBuW) (dBm) (dBuV/m) (dBuV

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 5. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 6. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 7. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 68 Rev. 00

Operation Mode: TX / CH Mid **Test Date:** August 8, 2008

Date of Issue: September 18, 2008

Temperature: 23°C **Tested by:** Mimic Yang

Humidity: 53 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1653.33	V	56.19		-7.08	49.11		74.00	54.00	-4.89	Peak
N/A										
1826.67	Н	54.64		-5.63	49.02		74.00	54.00	-4.98	Peak
N/A										

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 5. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 6. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 7. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 69 Rev. 00

Operation Mode: TX / CH High **Test Date:** August 8, 2008

Date of Issue: September 18, 2008

Temperature: 23°C **Tested by:** Mimic Yang

Humidity: 53 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1856.67	V	55.30		-5.38	49.92		74.00	54.00	-4.08	Peak
N/A										
1790.00	Н	55.24		-5.93	49.30		74.00	54.00	-4.70	Peak
N/A										

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 5. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 6. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 7. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 70 Rev. 00

7.10 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Date of Issue: September 18, 2008

Frequency Range (MHz)	Limits (dBµV)				
(141112)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

^{*} Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

Page 71 Rev. 00

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Date of Issue: September 18, 2008

Test Data

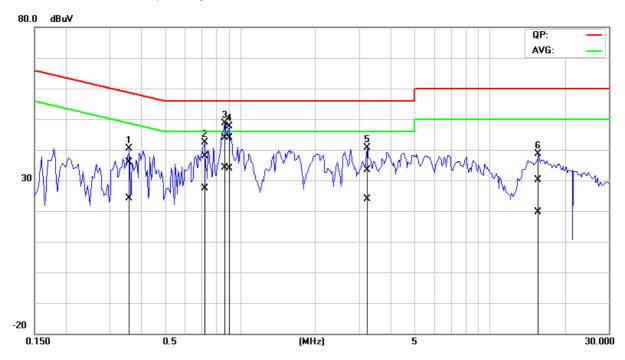
Operation Mode: Normal Link Test Date: August 19, 2008

Temperature: 22°C **Tested by:** Chihkai Chung

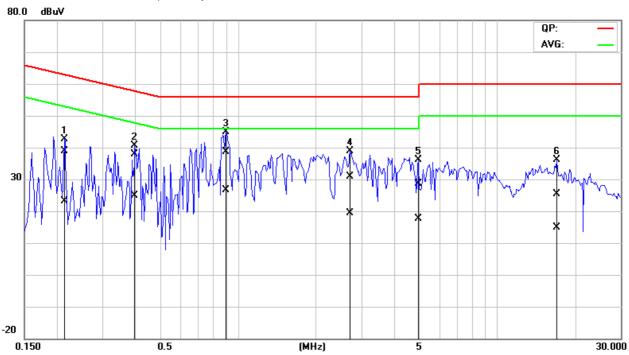
Humidity: 45% RH

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB)	QP Result (dBuV)	AV Result (dBuV)	QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.3600	35.71	24.11	0.09	35.80	24.20	58.73	48.73	-22.93	-24.53	L1
0.7200	37.97	27.47	0.03	38.00	27.50	56.00	46.00	-18.00	-18.50	L1
0.8700	43.97	34.07	0.03	44.00	34.10	56.00	46.00	-12.00	-11.90	L1
0.9050	43.97	33.77	0.03	44.00	33.80	56.00	46.00	-12.00	-12.20	L1
3.2350	33.29	23.79	0.11	33.40	23.90	56.00	46.00	-22.60	-22.10	L1
15.6900	29.55	18.95	0.65	30.20	19.60	60.00	50.00	-29.80	-30.40	L1
0.2150	38.76	23.06	0.14	38.90	23.20	63.01	53.01	-24.11	-29.81	L2
0.4000	37.73	24.83	0.07	37.80	24.90	57.85	47.85	-20.05	-22.95	L2
0.9039	38.67	26.57	0.03	38.70	26.60	56.00	46.00	-17.30	-19.40	L2
2.7100	30.82	19.32	0.08	30.90	19.40	56.00	46.00	-25.10	-26.60	L2
4.9750	28.36	17.36	0.24	28.60	17.60	56.00	46.00	-27.40	-28.40	L2
16.9750	24.59	14.09	0.71	25.30	14.80	60.00	50.00	-34.70	-35.20	L2

Remark:


- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz;
- 4. $L1 = Line \ One \ (Live \ Line) \ / \ L2 = Line \ Two \ (Neutral \ Line)$

Page 72 Rev. 00


Date of Issue: September 18, 2008

Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

Page 73 Rev. 00

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

Date of Issue: September 18, 2008

EUT Specification

EUT	ROSE100				
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz WLAN: 5.745GHz ~ 5.825GHz ✓ Others: Bluetooth: 2.402GHz ~ 2.480GHz 				
Device category	Portable (<20cm separation) Mobile (>20cm separation) Others				
Exposure classification	Occupational/Controlled exposure $(S = 5mW/cm^2)$ Seneral Population/Uncontrolled exposure $(S=1mW/cm^2)$				
Antenna diversity	 Single antenna Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity 				
Max. output power	4.23dBm (2.649mW)				
Antenna gain (Max)	-0.2 dBi (Numeric gain: 0.955)				
Evaluation applied	 MPE Evaluation SAR Evaluation N/A*				
Remark:					
	is <u>4.23dBm (2.649mW) a</u> t <u>2402MHz</u> (with <u>0.955 numeric</u>				
antenna gain.) 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.					
8. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm ² even if the calculation indicates that the power density would be larger					

TEST RESULTS

No non-compliance noted.

(SAR evaluation is not required for the PORTABLE device while its maximum output power is lower than the general population low threshold: $60/f_{(GHz)}=60/2.441=24.58$ mW)

Page 74 Rev. 00