

FCC TEST REPORT (PART 24)

REPORT NO.: RF121129C09-1

MODEL NO.: PN07130

FCC ID: NM8PN07130

RECEIVED: Nov. 28, 2012

TESTED: Nov. 28, 2012 ~ Jan. 24, 2013

ISSUED: Jan. 31, 2013

APPLICANT: HTC Corporation

ADDRESS: 23, Xinghua Rd., Taoyuan 330, Taiwan, R.O.C.

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C.)
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

TABLE OF CONTENTS

RELEA	SE CONTROL RECORD	
1		5
2	SUMMARY OF TEST RESULTS	
2.1		-
2.2	TEST SITE AND INSTRUMENTS	
3	GENERAL INFORMATION GENERAL DESCRIPTION OF EUT	
3.1	CONFIGURATION OF SYSTEM UNDER TEST	
3.2		
3.3	DESCRIPTION OF SUPPORT UNITS	
3.4	TEST ITEM AND TEST CONFIGURATION	
3.5	EUT OPERATING CONDITIONS	
3.6 4	GENERAL DESCRIPTION OF APPLIED STANDARDS TEST TYPES AND RESULTS	
4 4.1	OUTPUT POWER MEASUREMENT	
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	
4.1.1	TEST PROCEDURES	
4.1.2 4.1.3	TEST PROCEDURES	
4.1.3	TEST RESULTS	
		-
4.2		
4.2.1	LIMITS OF FREQUENCY STABILIITY MEASUREMENT	
4.2.2		
4.2.3		
4.2.4	TEST RESULTS	-
4.3	OCCUPIED BANDWIDTH MEASUREMENT	
4.3.1	TEST PROCEDURES	
4.3.2	TEST SETUP	
4.3.3	TEST RESULTS	
4.4	PEAK TO AVERAGE RATIO	
4.4.1	LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT	.30
4.4.2	TEST SETUP	.30
4.4.3	TEST PROCEDURES	.30
4.4.4	TEST RESULTS	.31
4.5	BAND EDGE MEASUREMENT	.33
4.5.1	LIMITS OF BAND EDGE MEASUREMENT	.33
4.5.2	TEST SETUP	.33
4.5.3	TEST PROCEDURES	.33
4.5.4	TEST RESULTS	.34
4.6	CONDUCTED SPURIOUS EMISSIONS	.36
4.6.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	.36

4.6.2	TEST PROCEDURE	36
4.6.3	TEST SETUP	36
4.6.4	TEST RESULTS	37
4.7	RADIATED EMISSION MEASUREMENT	
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	38
4.7.2	TEST PROCEDURES	38
4.7.3	DEVIATION FROM TEST STANDARD	38
4.7.4	TEST SETUP	39
4.7.5	TEST RESULTS	40
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	
6	INFORMATION ON THE TESTING LABORATORIES	55
7	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHATHE EUT BY THE LAB.	

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF121129C09-1	Original release	Jan. 31, 2013

CERTIFICATION 1

PRODUCT: Smartphone **MODEL:** PN07130 BRAND: HTC **APPLICANT: HTC Corporation TESTED:** Nov. 28, 2012 ~ Jan. 24, 2013 **TEST SAMPLE:** Production Unit STANDARDS: FCC Part 24, Subpart E

The above equipment (model: PN07130) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Vera Muang, DATE: Jan. 31, 2013

PREPARED BY

Vera Huang / Specialist

APPROVED BY

DATE : Jan. 31, 2013

Anderson Chiu / Senior Engineer

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 24 & Part 2					
STANDARD SECTION	TEST TYPE		REMARK			
2.1046 24.232	Equivalent isotropically radiated power	PASS	Meet the requirement of limit.			
2.1055 24.235	Frequency Stability	PASS	Meet the requirement of limit.			
2.1049 24.238(b)	Occupied Bandwidth	PASS	Meet the requirement of limit.			
24.232(d)	Peak to average ratio	PASS	Meet the requirement of limit.			
24.238(b)	Band Edge Measurements	PASS	Meet the requirement of limit.			
2.1051 24.238	Conducted Spurious Emissions	PASS	Meet the requirement of limit.			
2.1053 24.238	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -17.79dB at 44.58MHz.			

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	150kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
Radiated emissions	200MHz ~1000MHz	2.95 dB
Radiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.2 TEST SITE AND INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCI	100744	Apr. 19, 2012	Apr. 18, 2013
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 21, 2011	Dec. 20, 2012
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 17, 2012	Dec. 16, 2013
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Apr. 03, 2012	Apr. 02, 2013
HORN Antenna SCHWARZBECK	BBHA 9120 D	209	Sep. 03, 2012	Sep. 02, 2013
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170153	Jan. 17, 2012	Jan. 16, 2013
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Dec. 25, 2012	Dec. 24, 2013
Loop Antenna	HFH2-Z2	100070	Jan. 31, 2012	Jan. 30, 2014
Preamplifier EMCI	EMC 012645	980115	Dec. 30, 2011	Dec. 29, 2012
Preamplifier EMCI	EMC 012645	980115	Dec. 28, 2012	Dec. 27, 2013
Preamplifier EMCI	EMC 330H	980112	Dec. 30, 2011	Dec. 29, 2012
Preamplifier EMCI	EMC 330H	980112	Dec. 28, 2012	Dec. 27, 2013
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4	Oct. 19, 2012	Oct. 18, 2013
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 19, 2012	Oct. 18, 2013
RF signal cable Worken	RG-213	NA	Jan. 02, 2012	Jan. 01, 2013
RF signal cable Worken	RG-213	NA	Dec. 29, 2012	Dec. 28, 2013
Software	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Mar. 23, 2012	Mar. 22, 2013
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA
Communications Tester-Wireless	E5515C	MY52102049	Jun. 11, 2012	Jun. 10, 2013
Radio Communication Analyzer	MT8820C	6201168830	Jul. 17, 2012	Jul. 16, 2013

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 9.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 460141.
- 5. The IC Site Registration No. is IC 7450F-4.

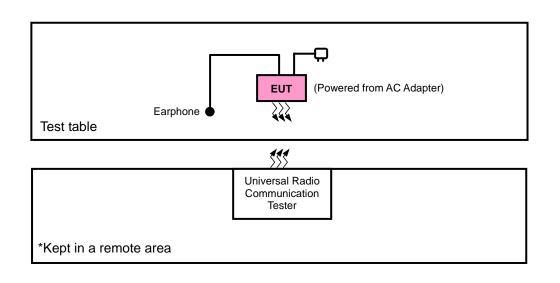
3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT				
EUT	Smartphone			
MODEL NO.	PN07130			
POWER SUPPLY	5.0Vdc (adapter or host equipment) 3.8Vdc (battery)			
	GSM/GPRS	GMSK		
MODULATION TYPE	EDGE	8PSK		
	WCDMA	BPSK		
FREQUENCY RANGE	GSM/GPRS/EDGE	1850.2MHz ~ 1909.8MHz		
FREQUENCI KANGE	WCDMA	1852.4MHz ~ 1907.6MHz		
	GSM	1177.61mW		
MAX. EIRP POWER	EDGE	450.82mW		
	WCDMA	238.78mW		
	GSM	249KGXW		
EMISSION DESIGNATOR	EDGE	244KG7W		
	WCDMA	4M18F9W		
MULTI-SLOTS CLASS	10			
WCDMA RELEASE VERSION	6			
ANTENNA TYPE	Fixed Internal antenna			
I/O PORTS	Refer to users' manual			
DATA CABLE	Refer to NOTE as below			
ACCESSORY DEVICES	Refer to NOTE as below			

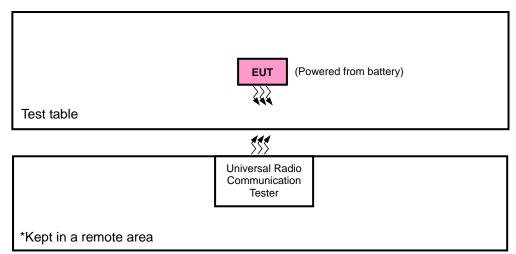
NOTE:

- 1. The EUT's accessories list refers to Ext Pho.
- 2. The device has 2 configurations as below.

Main Sample (A): Battery 1 + LCD Panel 1 + Front Camera 1


2nd Sample (B): Battery 2 + LCD Panel 2 + Front Camera 2

3. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



3.2 CONFIGURATION OF SYSTEM UNDER TEST

FOR RADIATION EMISSION TEST

FOR E.I.R.P. TEST

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Earphone	Merry	Max 300	NA	NA
2	Earphone	Cotron	Max 300	NA	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	1.1m audio cable
2	1.1m audio cable

NOTE:

1. All power cords of the above support units are non shielded (1.8m).

2. Item 1 and 2 was provided by client.

3.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports The worst case was found when positioned on and Z-axis of Main Sample (A) and X-axis of 2nd Sample (B) for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

GSM MODE

EUT CONFIGURE MODE	TX ANTENNA STATUS	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	MODE
А, В	0, 1	EIRP	512 to 810	512, 661, 810	GSM, EDGE
А	0, 1	FREQUENCY STABILITY	512 to 810	810	GSM, EDGE
A	0, 1	OCCUPIED BANDWIDTH	512 to 810	512, 661, 810	GSM, EDGE
A	0, 1	PEAK TO AVERAGE RATIO	512 to 810	512, 661, 810	GSM, EDGE
А	0, 1	BAND EDGE	512 to 810	512, 810	GSM, EDGE
A	0, 1	CONDCUDETED EMISSION	512 to 810	810	GSM
А	0, 1	RADIATED EMISSION	512 to 810	810	GSM, EDGE
В	0	RADIATED EMISSION	512 to 810	810	GSM

WCDMA MODE

EUT CONFIGURE MODE	TX ANTENNA STATUS	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	MODE
А	0, 1	EIRP	9262 to 9538	9262, 9400, 9538	WCDMA
В	0, 1	EIRP	9262 to 9538	9262, 9400, 9538	WCDMA
А	0, 1	FREQUENCY STABILITY	9262 to 9538	9400	WCDMA
A	0, 1	OCCUPIED BANDWIDTH	9262 to 9538	9262, 9400, 9538	WCDMA
A	0, 1	PEAK TO AVERAGE RATIO	9262 to 9538	9262, 9400, 9538	WCDMA
A	0, 1	BAND EDGE	9262 to 9538	9262, 9538	WCDMA
A	0, 1	CONDCUDETED EMISSION	9262 to 9538	9400	WCDMA
А	0, 1	RADIATED EMISSION	9262 to 9538	9400	WCDMA

TEST CONDITION:

TEST ITEM	ENVIRONMENTAL CONDITIONS INPUT POWER		TESTED BY
EIRP	26deg. C, 58%RH 3.8Vdc		Howard Kao
FREQUENCY STABILITY	26deg. C, 58%RH	26deg. C, 58%RH 3.8Vdc	
OCCUPIED BANDWIDTH	26deg. C, 58%RH	26deg. C, 58%RH 3.8Vdc	
BAND EDGE	26deg. C, 58%RH 3.8Vdc		Howard Kao
CONDCUDETED EMISSION	26deg. C, 58%RH	3.8Vdc	Howard Kao
RADIATED EMISSION	25deg. C, 65%RH	120Vac, 60Hz	Kay Wu

3.5 EUT OPERATING CONDITIONS

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 24

ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

Mobile and portable stations are limited to 2 watts EIRP

4.1.2 TEST PROCEDURES

EIRP MEASUREMENT:

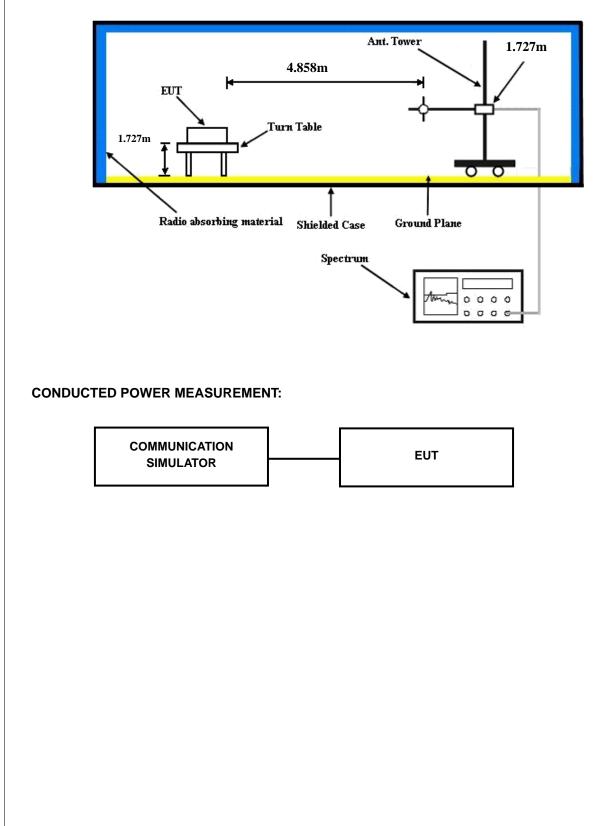
- a. The EUT was place on a turntable with 1.727 meter height in a fully anechoic chamber.
- b. The EUT was set at 4.858 meters from the receiving antenna, which was mounted on the antenna tower.
- c. The EUT was rotated along 2 axis: Theta-axis: 180 degree and Phi-axis: 360 degree, Step Size: 15 degree.
- d. The height of the receiving antenna is fixed.
- e. Taking the record of received power.
- f. A dipole antenna was used in place of the EUT for pathloss calibration with a network analyzer.
- g. The gain of the dipole antenna and the insertion loss of the connected RF cable were applied into the pathloss calibration.
- h. The maximum ERP/EIRP was calculated with received power and pathloss.
- i. ERP/EIRP = Ps + Et Es + Gs = Ps + Rt Rs + Gs
 Ps (dBm) : Input power to subsitution antenna.

Gs (dBi or dBd) : Substitution antenna Gain.

Et = Rt + AF

Es = Rs + AF

- AF (dB/m) : Receiver antenna factor
- Rt: The highest received signal in spectrum analyzer for EUT.
- Rs: The highest received signal in spectrum analyzer for substitution antenna.


CONDUCTED POWER MEASUREMENT:

The EUT was set up for the maximum power with GSM, GPRS, EDGE & WCDMA link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.3 TEST SETUP

EIRP / ERP MEASUREMENT:

4.1.4 TEST RESULTS

CONDUCTED OUTPUT POWER (dBm)

<Antenna 0>

Band		GSM1900	
Channel	512	661	810
Frequency (MHz)	1850.2	1880.0	1909.8
GSM (1 Uplink)	29.81	29.96	30.04
GPRS 8 (GMSK, 1 slot)	29.76	29.91	29.98
GPRS 10 (GMSK, 2 slot)	28.65	28.80	28.87
EDGE 8 (GMSK, 1 Uplink)	29.81	29.96	30.03
EDGE 10 (GMSK, 2 Uplink)	28.56	28.71	28.78
EDGE 8 (8PSK, 1 Uplink)	25.75	25.90	25.97
EDGE 10 (8PSK, 2 Uplink)	25.52	25.67	25.74

Band		WCDMA II	
Channel	9262	9400	9538
Frequency (MHz)	1852.4	1880.0	1907.6
RMC 12.2K	23.18	23.32	23.11
HSDPA Subtest-1	22.11	22.25	22.03
HSDPA Subtest-2	22.19	22.33	22.11
HSDPA Subtest-3	21.74	21.88	21.66
HSDPA Subtest-4	21.59	21.73	21.51
HSUPA Subtest-1	21.99	22.13	21.91
HSUPA Subtest-2	20.98	21.12	20.90
HSUPA Subtest-3	20.81	20.95	20.73
HSUPA Subtest-4	21.32	21.46	21.24
HSUPA Subtest-5	22.21	22.35	22.13

Band		GSM1900	
Channel	512	661	810
Frequency (MHz)	1850.2	1880.0	1909.8
GSM (1 Uplink)	29.81	29.72	29.85
GPRS 8 (GMSK, 1 slot)	29.79	29.70	29.83
GPRS 10 (GMSK, 2 slot)	28.46	28.37	28.50
EDGE 8 (GMSK, 1 Uplink)	29.79	29.70	29.83
EDGE 10 (GMSK, 2 Uplink)	28.40	28.31	28.44
EDGE 8 (8PSK, 1 Uplink)	25.92	25.83	25.96
EDGE 10 (8PSK, 2 Uplink)	25.67	25.58	25.71

Band		WCDMA II	
Channel	9262	9400	9538
Frequency (MHz)	1852.4	1880.0	1907.6
RMC 12.2K	23.10	23.04	22.76
HSDPA Subtest-1	21.88	21.82	21.54
HSDPA Subtest-2	21.97	21.91	21.63
HSDPA Subtest-3	21.39	21.33	21.05
HSDPA Subtest-4	21.40	21.34	21.06
HSUPA Subtest-1	21.73	21.67	21.49
HSUPA Subtest-2	20.62	20.56	20.28
HSUPA Subtest-3	20.85	20.79	20.51
HSUPA Subtest-4	20.93	20.87	20.59
HSUPA Subtest-5	21.98	21.92	21.64

EIRP POWER (dBm)

Main Sample (A)

<Antenna 0>

GSM Radiated Power EIRP							
		Horiz	zontal Polariza	ation			
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP	
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)	
1850.20	-24.63	-51.88	0.00	1.96	29.21	833.68	
1880.00	-24.66	-52.99	0.00	2.00	30.33	1078.95	
1909.80	-25.55	-54.28	0.00	1.98	30.71	1177.61	
		Ver	tical Polarizati	ion			
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP	
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)	
1850.20	-31.28	-52.13	0.00	1.96	22.81	190.99	
1880.00	-30.64	-53.17	0.00	2.00	24.53	283.79	
1909.80	-31.32	-54.13	0.00	1.98	24.79	301.30	

EDGE Radiated Power EIRP							
		Horiz	zontal Polariza	ition			
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP	
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)	
1850.20	-28.58	-51.88	0.00	1.96	25.26	335.74	
1880.00	-29.40	-52.99	0.00	2.00	25.59	362.24	
1909.80	-30.14	-54.28	0.00	1.98	26.12	409.26	
		Ver	tical Polarizati	ion			
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP	
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)	
1850.20	-35.08	-52.13	0.00	1.96	19.01	79.62	
1880.00	-35.44	-53.17	0.00	2.00	19.73	93.97	
1909.80	-35.61	-54.13	0.00	1.98	20.50	112.20	

WCDMA Radiated Power EIRP							
		Horiz	zontal Polariza	ation			
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP	
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)	
1852.40	-30.51	-51.88	0.00	1.96	23.33	215.28	
1880.00	-31.21	-52.99	0.00	2.00	23.78	238.78	
1907.60	-32.53	-54.28	0.00	1.98	23.73	236.05	
		Ver	tical Polarizati	ion			
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP	
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)	
1852.40	-37.02	-52.13	0.00	1.96	17.07	50.93	
1880.00	-37.58	-53.17	0.00	2.00	17.59	57.41	
1907.60	-38.47	-54.13	0.00	1.98	17.64	58.08	

	GSM Radiated Power EIRP							
	Horizontal Polarization							
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP		
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)		
1850.20	-33.51	-51.88	0.00	1.96	20.33	107.89		
1880.00	-34.32	-52.99	0.00	2.00	20.67	116.68		
1909.80	-35.75	-54.28	0.00	1.98	20.51	112.46		
		Ver	tical Polarizati	ion				
Frequency	Rt	Rs	Ps	Gs	ERP	ERP		
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)		
1850.20	-39.03	-52.13	0.00	1.96	15.06	32.06		
1880.00	-38.94	-53.17	0.00	2.00	16.23	41.98		
1909.80	-39.88	-54.13	0.00	1.98	16.23	41.98		

EDGE Radiated Power EIRP							
		Horiz	zontal Polariza	ition			
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP	
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)	
1850.20	-36.17	-51.88	0.00	1.96	17.67	58.48	
1880.00	-40.19	-52.99	0.00	2.00	14.80	30.20	
1909.80	-41.57	-54.28	0.00	1.98	14.69	29.44	
		Ver	tical Polarizati	ion			
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP	
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)	
1850.20	-42.65	-52.13	0.00	1.96	11.44	13.93	
1880.00	-44.63	-53.17	0.00	2.00	10.54	11.32	
1909.80	-45.75	-54.13	0.00	1.98	10.36	10.86	

WCDMA Radiated Power ERP

	Horizontal Polarization							
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP		
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)		
1852.40	-38.08	-51.88	0.00	1.96	15.76	37.67		
1880.00	-39.18	-52.99	0.00	2.00	15.81	38.11		
1907.60	-40.71	-54.28	0.00	1.98	15.55	35.89		
	•	Ver	tical Polarizati	ion				
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP		
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)		
1852.40	-44.19	-52.13	0.00	1.96	9.90	9.77		
1880.00	-44.06	-53.17	0.00	2.00	11.11	12.91		
1907.60	-45.09	-54.13	0.00	1.98	11.02	12.65		

2nd Sample (B)

<Antenna 0>

GSM Radiated Power EIRP						
		Horiz	zontal Polariza	ation		
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)
1850.20	-24.99	-51.88	0.00	1.96	28.85	767.36
1880.00	-25.16	-52.99	0.00	2.00	29.83	961.61
1909.80	-25.95	-54.28	0.00	1.98	30.31	1073.99
		Ver	tical Polarizati	ion		
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)
1850.20	-31.55	-52.13	0.00	1.96	22.54	179.47
1880.00	-30.97	-53.17	0.00	2.00	24.20	263.03
1909.80	-31.93	-54.13	0.00	1.98	24.18	261.82

	EDGE Radiated Power EIRP								
	Horizontal Polarization								
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP			
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)			
1850.20	-28.58	-51.88	0.00	1.96	25.26	335.74			
1880.00	-28.83	-52.99	0.00	2.00	26.16	413.05			
1909.80	-29.72	-54.28	0.00	1.98	26.54	450.82			
		Ver	tical Polarizati	ion					
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP			
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)			
1850.20	-34.92	-52.13	0.00	1.96	19.17	82.60			
1880.00	-34.04	-53.17	0.00	2.00	21.13	129.72			
1909.80	-34.32	-54.13	0.00	1.98	21.79	151.01			

	WCDMA Radiated Power EIRP								
		Horiz	zontal Polariza	ation					
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP			
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)			
1852.40	-31.09	-51.88	0.00	1.96	22.75	188.36			
1880.00	-31.89	-52.99	0.00	2.00	23.10	204.17			
1907.60	-33.35	-54.28	0.00	1.98	22.91	195.43			
		Ver	tical Polarizat	ion					
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP			
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)			
1852.40	-36.03	-52.13	0.00	1.96	18.06	63.97			
1880.00	-36.36	-53.17	0.00	2.00	18.81	76.03			
1907.60	-37.74	-54.13	0.00	1.98	18.37	68.71			

	GSM Radiated Power EIRP								
		Horiz	zontal Polariza	ation					
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP			
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)			
1850.20	-34.52	-51.88	0.00	1.96	19.32	85.51			
1880.00	-35.89	-52.99	0.00	2.00	19.10	81.28			
1909.80	-36.40	-54.28	0.00	1.98	19.86	96.83			
		Ver	tical Polarizati	ion					
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP			
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)			
1850.20	-40.82	-52.13	0.00	1.96	13.27	21.23			
1880.00	-40.79	-53.17	0.00	2.00	14.38	27.42			
1909.80	-40.50	-54.13	0.00	1.98	15.61	36.39			

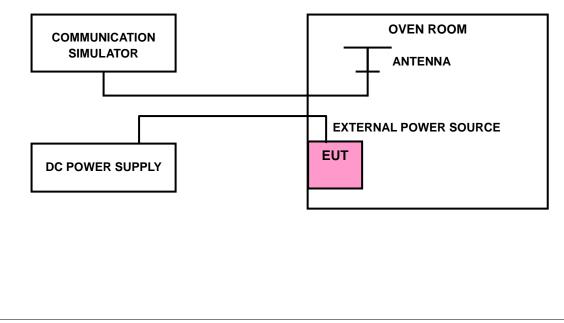
EDGE Radiated Power EIRP								
		Horiz	zontal Polariza	ation				
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP		
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)		
1850.20	-38.07	-51.88	0.00	1.96	15.77	37.76		
1880.00	-39.91	-52.99	0.00	2.00	15.08	32.21		
1909.80	-40.70	-54.28	0.00	1.98	15.56	35.97		
		Ver	tical Polarizat	ion				
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP		
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)		
1850.20	-44.38	-52.13	0.00	1.96	9.71	9.35		
1880.00	-44.75	-53.17	0.00	2.00	10.42	11.02		
1909.80	-45.38	-54.13	0.00	1.98	10.73	11.83		

WCDMA Radiated Power EIRP

	Horizontal Polarization								
Frequency	Frequency Rt Rs Ps Gs EIRP EIRP								
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)			
1852.40	-40.78	-51.88	0.00	1.96	13.06	20.23			
1880.00	-41.00	-52.99	0.00	2.00	13.99	25.06			
1907.60	-42.63	-54.28	0.00	1.98	13.63	23.07			
		Ver	tical Polarizati	ion					
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP			
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(mW)			
1852.40	-46.56	-52.13	0.00	1.96	7.53	5.66			
1880.00	-45.80	-53.17	0.00	2.00	9.37	8.65			
1907.60	-46.51	-54.13	0.00	1.98	9.60	9.12			

4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT


The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

4.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.3 TEST SETUP

4.2.4 TEST RESULTS

<Antenna 0>

FREQUENCY ERROR V.S VOLTAGE

	FRE			
VOLTAGE (Volts)	GPRS	EDGE	WCDMA	LIMIT (ppm)
3.8	-0.01	-0.02	-0.004	2.5
3.6	-0.01	-0.02	-0.005	2.5
4.35	-0.01	-0.02	-0.004	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.35Vdc.

FREQUENCY ERROR V.S TEMPERATURE

	FRE	FREQUENCY ERROR (ppm)				
ТЕМР. (°С)	GPRS	EDGE	WCDMA	LIMIT (ppm)		
-30	-0.01	-0.02	-0.005	2.5		
-20	-0.01	-0.02	-0.005	2.5		
-10	-0.01	-0.02	-0.005	2.5		
0	-0.01	-0.02	-0.004	2.5		
10	-0.01	-0.02	-0.004	2.5		
20	-0.01	-0.02	-0.004	2.5		
30	-0.01	-0.02	-0.005	2.5		
40	-0.01	-0.02	-0.004	2.5		
50	-0.01	-0.02	-0.005	2.5		
55	-0.01	-0.02	-0.005	2.5		

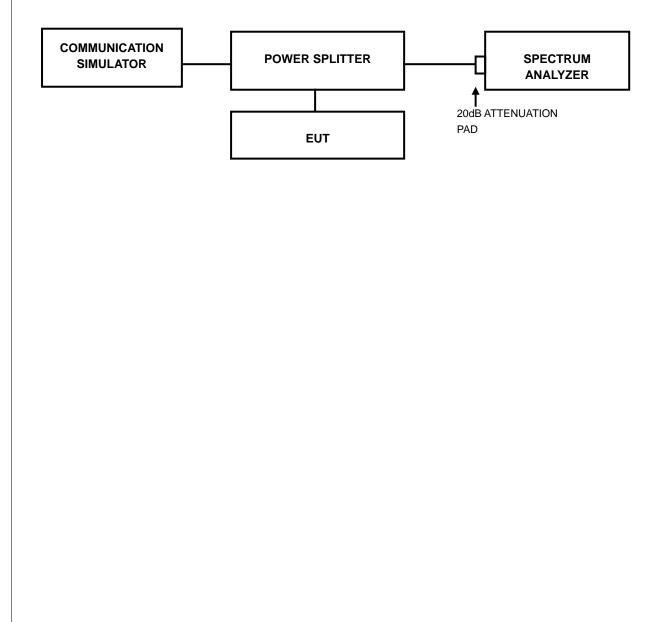
FREQUENCY ERROR V.S VOLTAGE

	FRE			
VOLTAGE (Volts)	GPRS	EDGE	WCDMA	LIMIT (ppm)
3.8	-0.01	0.02	-0.005	2.5
3.6	-0.01	0.02	-0.005	2.5
4.35	0.00	0.02	-0.005	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.35Vdc.

	FRE			
TEMP. (℃)	GPRS	EDGE	WCDMA	LIMIT (ppm)
-30	-0.01	0.02	-0.005	2.5
-20	-0.01	0.02	-0.005	2.5
-10	-0.01	0.02	-0.005	2.5
0	0.00	0.02	-0.005	2.5
10	0.00	0.02	-0.004	2.5
20	-0.01	0.02	-0.004	2.5
30	-0.01	0.02	-0.005	2.5
40	0.00	0.02	-0.004	2.5
50	0.00	0.02	-0.005	2.5
55	-0.01	0.02	-0.005	2.5

FREQUENCY ERROR V.S TEMPERATURE



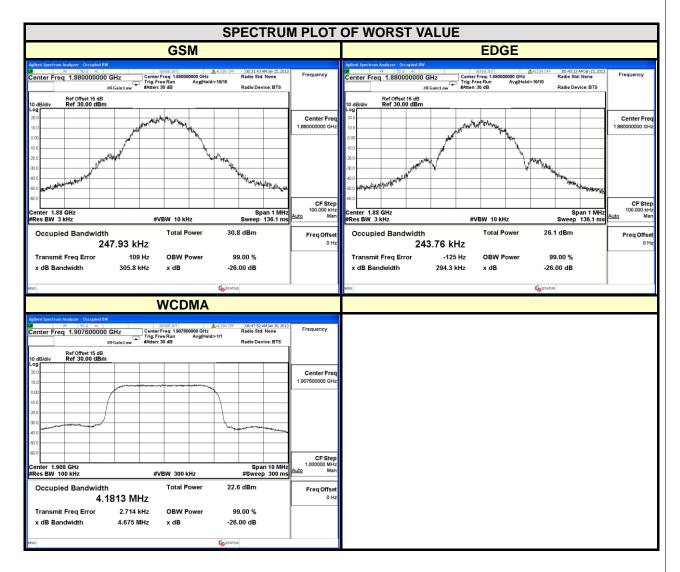
4.3 OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 TEST PROCEDURES

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

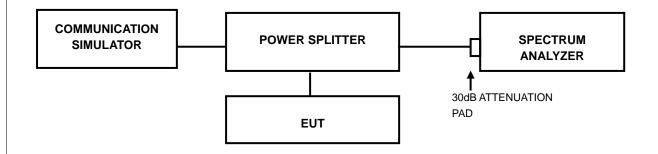
4.3.2 TEST SETUP

4.3.3 TEST RESULTS


<Antenna 0>

CHANNEL	FREQUENCY	99% OCCUPIED BANDWIDTH (kHz)		CHANNEL			99% OCCUPIED BANDWIDTH (MHz)
	(MHz)	GSM	EDGE	•••••	(MHz)	WCDMA	
512	1850.2	247.08	239.06	9262	1852.4	4.1749	
661	1880.0	242.78	241.09	9400	1880.0	4.1772	
810	1909.8	248.57	243.46	9538	1907.6	4.1770	

CHANNEL	FREQUENCY	99% OCCUPIED BANDWIDTH (kHz)		CHANNEL		99% OCCUPIED BANDWIDTH (MHz)
	(MHz)	GSM	EDGE		(MHz)	WCDMA
512	1850.2	246.98	240.67	9262	1852.4	4.1740
661	1880.0	247.93	243.76	9400	1880.0	4.1758
810	1909.8	246.13	242.68	9538	1907.6	4.1813



4.4 PEAK TO AVERAGE RATIO

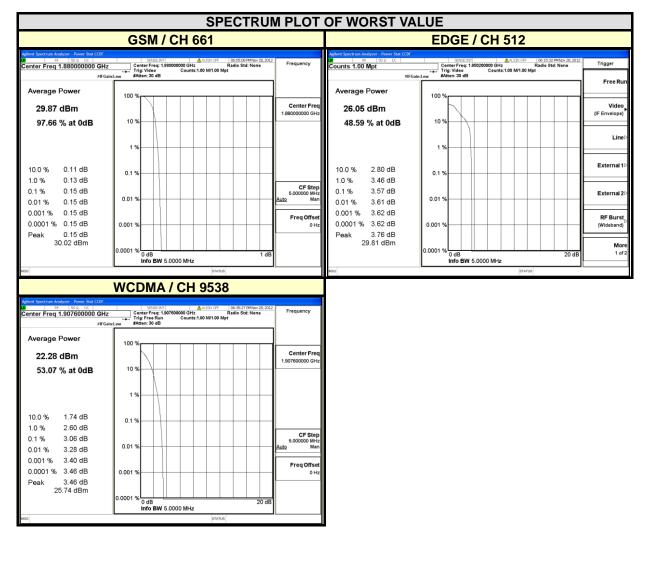
4.4.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

4.4.2 TEST SETUP

4.4.3 TEST PROCEDURES

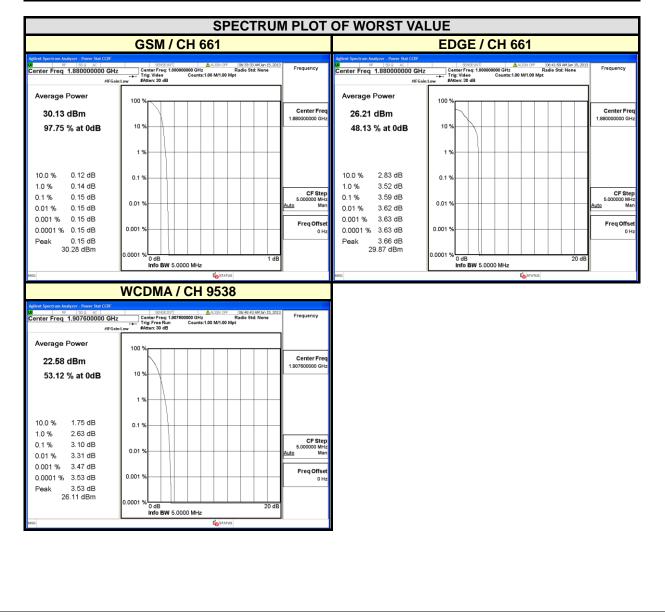
- 1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.



4.4.4 TEST RESULTS

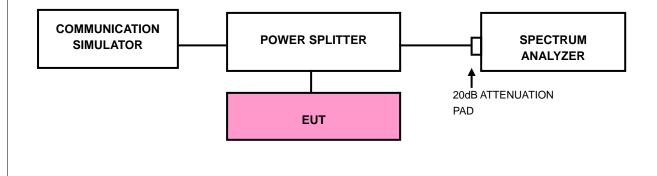
<Antenna 0>

CHANNEL		PEAK TO AVER	AGE RATIO (dB)
	FREQUENCY (MHz)	GSM	EDGE
512	1850.2	0.14	3.57
661	1880.0	0.15	3.50
810	1909.8	0.14	3.38


CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)	
		WCDMA	
9262	1852.4	2.86	
9400	1880.0	3.03	
9538	1907.6	3.06	

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)	
		GSM	EDGE
512	1850.2	0.15	3.58
661	1880.0	0.15	3.59
810	1909.8	0.15	3.42

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)	
		WCDMA	
9262	1852.4	2.71	
9400	1880.0	3.07	
9538	1907.6	3.10	

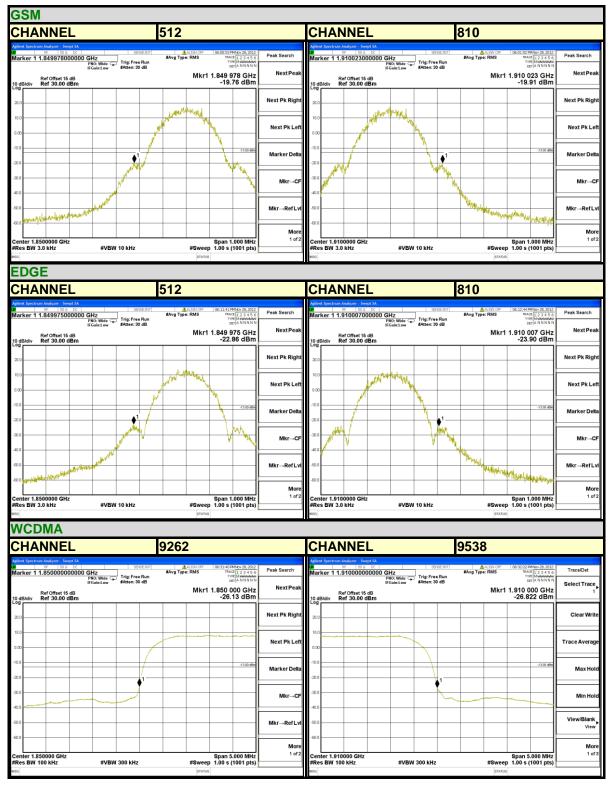


4.5 BAND EDGE MEASUREMENT

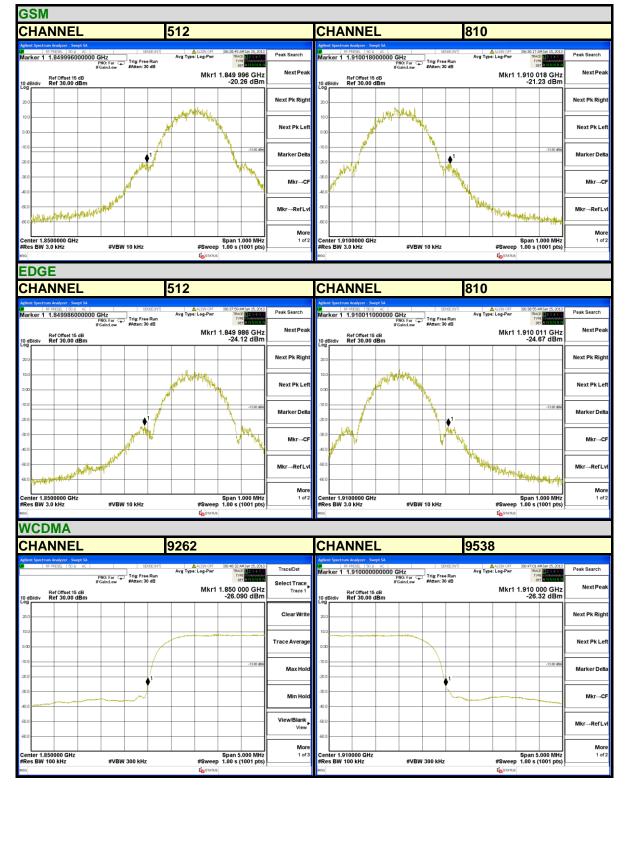
4.5.1 LIMITS OF BAND EDGE MEASUREMENT

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.5.2 TEST SETUP


4.5.3 TEST PROCEDURES

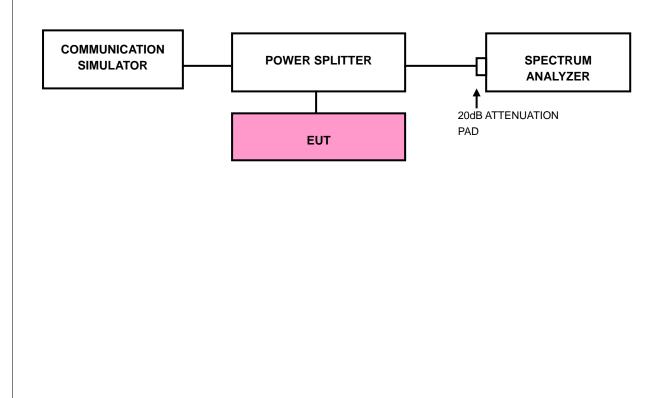
- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 3kHz and VB of the spectrum is 10kHz (GSM/GPRS/EDGE).
- c. The center frequency of spectrum is the band edge frequency and span is 5MHz. RB of the spectrum is 100kHz and VB of the spectrum is 300kHz (WCDMA).
- d. Record the max trace plot into the test report.



4.5.4 TEST RESULTS

<Antenna 0>

4.6 CONDUCTED SPURIOUS EMISSIONS


4.6.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

4.6.2 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- Measuring frequency range is from 30 MHz to 19.1GHz. 10dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

4.6.3 TEST SETUP

4.6.4 TEST RESULTS

<Antenna 0>

GSM	WCDMA
CHANNEL 661	CHANNEL 9400
FREQUENCY RANGE : 30MHz~19.1GHz	FREQUENCY RANGE : 30MHz~19.1GHz
Agini Spectrum Analyzer - Swept SA # 50 500 0C 5975991 Antigram Control Sector - Se	Agilent Spectrum Analyzer - Swept 3A Spectrum Analyzer - Swept 3A W FF SSG SSG EB/01 @ull/01/07F 06/36/05/PM/04/28, 2012 W FF SSG CC SSG EB/01 @ull/01/07F 06/36/05/PM/04/28, 2012 W FF SSG CC SSG EB/01 @ull/01/07F 06/36/05/PM/04/28, 2012 W FF SSG CC SSG EB/01 @ull/01/07F 06/36/05/PM/04/28, 2012 W FF SSG CC SSG EB/01 @ull/01/07F 06/36/05/PM/04/28, 2012 W FF SSG CC SSG EB/01 @ull/01/07F 06/36/05/PM/04/28, 2012 W FF SSG CC SSG EB/01 @ull/01/07F 06/36/05/PM/04/28, 2012 W FF SSG CC SSG EB/01 @ull/01/07F 06/36/05/PM/04/28, 2012 Marker T3.88/26/04/75/23.38/26 Peak Search @ull/01/04/17 Moltave Columna
Pho:Fast Trig Free Ran Property Composition (Composition of the Composition of the Compos	Next Peak Ref Offset 15 dB Mkr1 13,885 0 GHz Next Peak 10 dB/div ref 3.00 dBm
20 20 N	xt Pk Right 35.0 Next Pk Right
	iss
4.00	4.0
	krxefLu
65.0 Storp 19.100 GHz	More Start 30 MHz Stop 19.100 GHz 1 c
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 32.0 ms (20000 pts)	#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 32.0 ms (20000 pts)

<Antenna 1>

GSM									W	CD	AN									
CHA	NNEL 6	661							C	HAN	INEL	_ 94	00							
FRE	QUENC	Y RA	NGE	: 30	MHz	~19	.1GHz		FF	REQ	UEN	NCY	RAN	IGE	: 30	MH	z~19	9.1G	Hz	
LXI R	um Analyzer - Swept SA RF PRESEL 50 Ω AC 3.5915005750	20 CH-		SE:INT	Aug Type: Lo	gn off g-Pwr	06:35:35 AM Jan 15, 201 TRACE 12 3 4 5	3 Peak Search	100	RF F	Analyzer - Sw RESEL 50 Q .5924541	AC	iHz	1	ISE:INT	Avg Type	ALIGN OFF	TRAC		Peak Search
10 dB/div	Ref Offset 15 dB Ref 35.00 dBm	IFGain:Low	#Atten: 30	Run dB		Mkr1	3.591 5 GH: -31.90 dBn		10 d	R B/div R	ef Offset 15 ef 35.00 (P IF	NO: Fast 🖵 Sain:Low	" Trig: Free #Atten: 30			М	r1 3.592 -31.8	P NNNNN	Next Peak
25.0								Next Pk Right	25.0											Next Pk Right
5.00								Next Pk Left	15.0 5.00											Next Pk Left
-5.00							-13.00 dB	Marker Delta	-5.00										-13.00 dBm	Marker Delta
-25.0	•1							Mkr→CF	-25.0		•	1					المعرفين المع			Mkr→CF
-45.0								Mkr→RefLvl	-35.0 -45.0											Mkr→RefLvl
-55.0 Start 30 M							Stop 19.100 GH			rt 30 MHz								Stop 19		More 1 of 2
#Res BW 1	1.0 MHz	#VBV	V 3.0 MHz				1 ms (20000 pts Meas Uncal)	#Re MSG	s BW 1.0) MHz		#VBW	3.0 MHz		#		501 ms (2 1 Meas U		

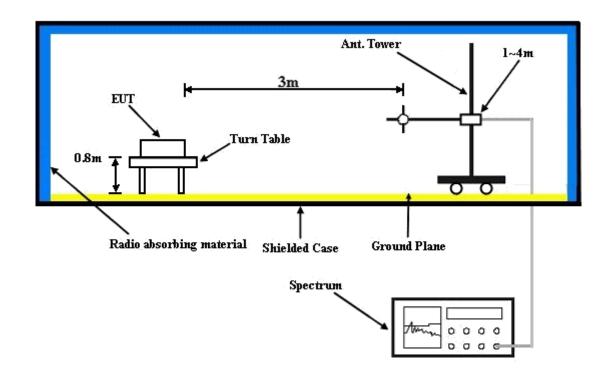
4.7 RADIATED EMISSION MEASUREMENT

4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

4.7.2 TEST PROCEDURES

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power - 2.15dBi.

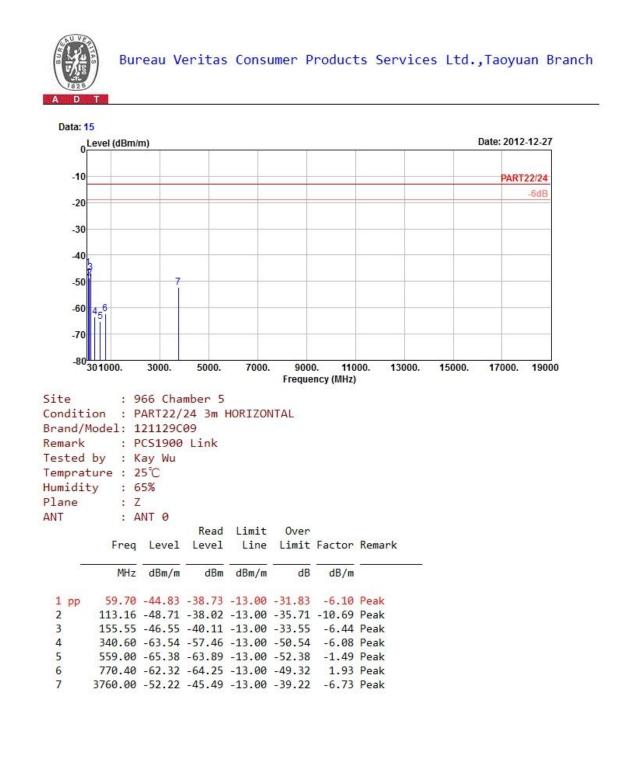

NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.7.3 DEVIATION FROM TEST STANDARD

No deviation

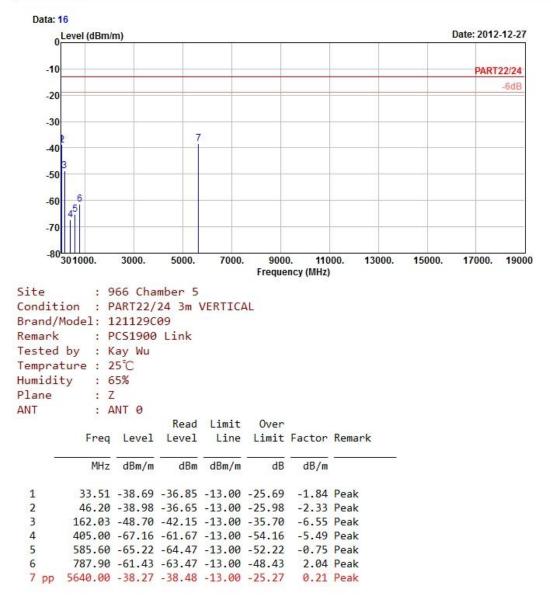
4.7.4 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

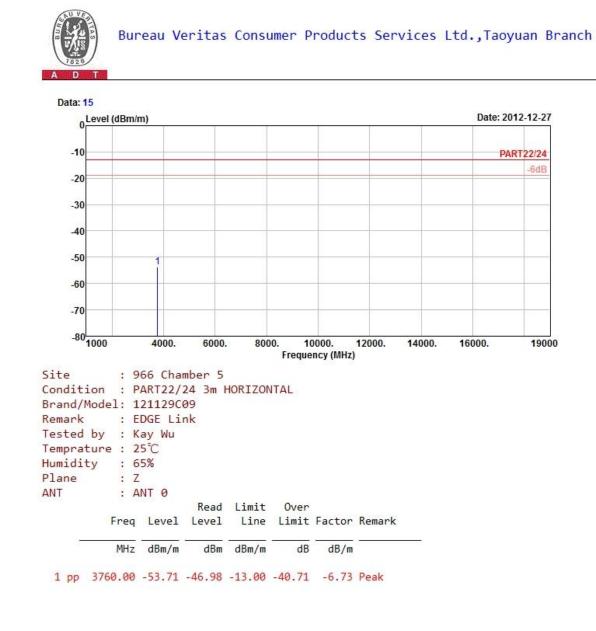


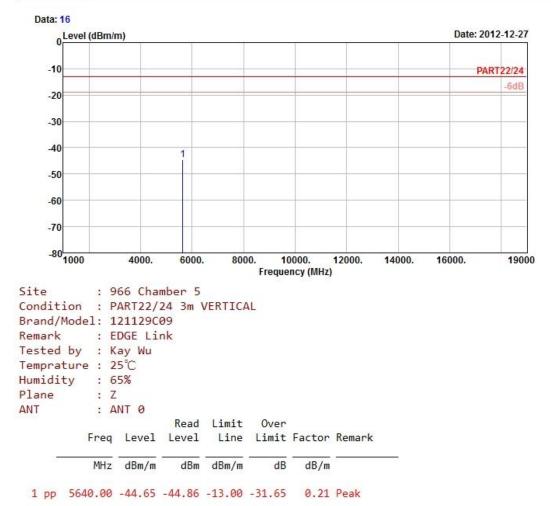
4.7.5 TEST RESULTS

Main Sample (A)

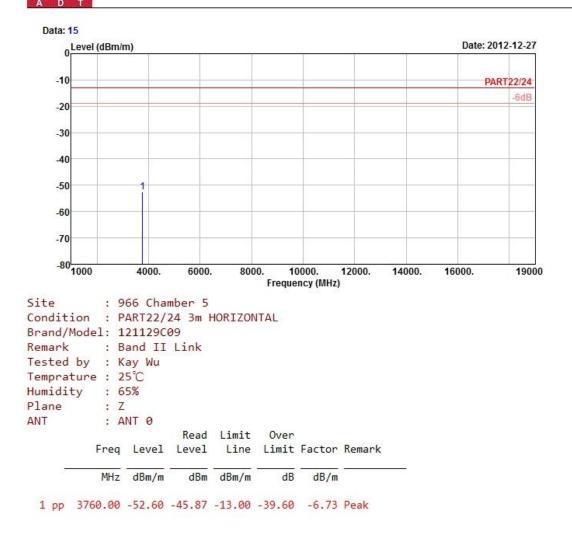

<Antenna 0>

GSM:

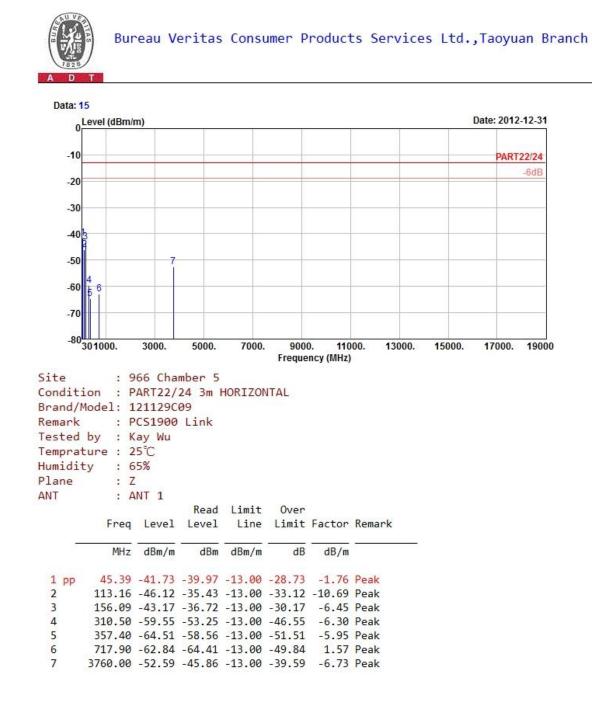




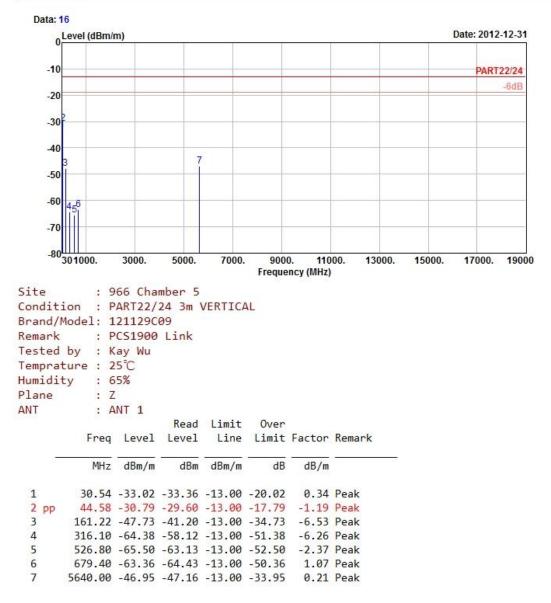
EDGE:



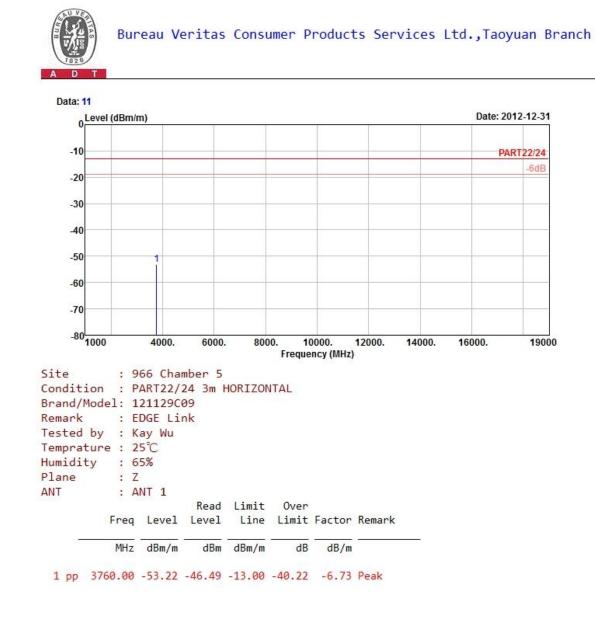
WCDMA:

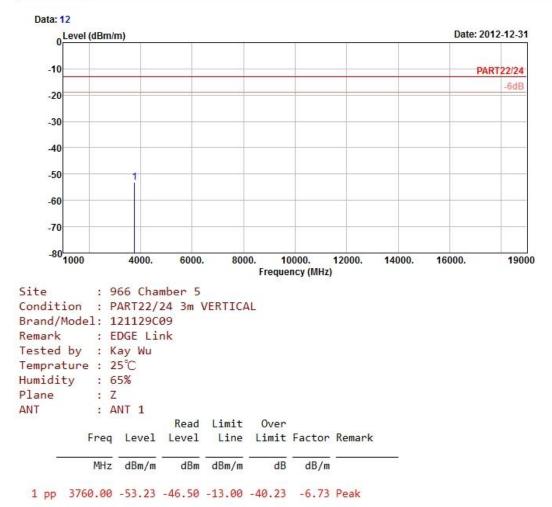


Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch Data: 16 0 Level (dBm/m) Date: 2012-12-27 -10 PART22/24 -6dB -20 -30 -40 -50 -60 -70 -80¹000 10000. 12000. 14000. 4000. 6000. 8000. 16000. 19000 Frequency (MHz) Site : 966 Chamber 5 Condition : PART22/24 3m VERTICAL Brand/Model: 121129C09 Remark : Band II Link Tested by : Kay Wu Temprature : 25℃ Humidity : 65% Plane : Z ANT : ANT 0 Read Limit Over Freq Level Level Line Limit Factor Remark MHz dBm/m dBm dBm/m dB dB/m 1 pp 3760.00 -52.58 -45.85 -13.00 -39.58 -6.73 Peak

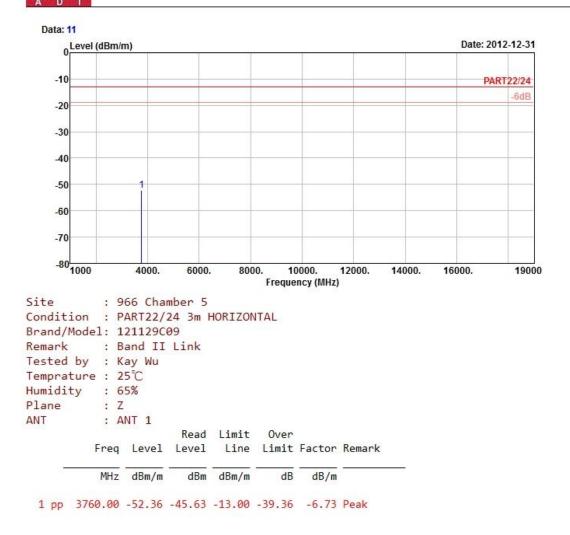

<Antenna 1>

GSM:





EDGE:



WCDMA:

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch Data: 12 0 Level (dBm/m) Date: 2012-12-31 -10 PART22/24 -6dB -20 -30 -40 -50 -60 -70 -80¹000 10000. 12000. 14000. 16000. 19000 4000. 6000. 8000. Frequency (MHz) Site : 966 Chamber 5 Condition : PART22/24 3m VERTICAL Brand/Model: 121129C09 Remark : Band II Link Tested by : Kay Wu Temprature : 25℃ Humidity : 65% Plane : Z ANT : ANT 1 Read Limit Over Line Limit Factor Remark Freq Level Level MHz dBm/m dBm dBm/m dB dB/m 1 pp 3760.00 -53.23 -46.50 -13.00 -40.23 -6.73 Peak

2nd Sample (B)

<Antenna 0> GSM:

<u> </u>										
Data: 15										
	evel (dBm/r	n)							D	ate: 2013-01-24
-10		-								PART22/24
-20										-6dB
20										
-30										
-40			8							
50		7								
-50	8									
-60	1 56									
70										
-70					-					1
-80 <mark>1</mark> 3	01000.	3000.	5000.	7000.). 110 ncy (MHz)		6000.	15000.	17000. 1900
ite	: 9	66 Cha	mber 5		Freque			6000.	15000.	17000. 1900
te nditi		66 Cha ART22/	mber 5 24 3m 1		Freque			6000.	15000.	17000. 1900
te onditi rand/M emark	: 9 on : P odel: 1 : P	66 Cha ART22/ 21129C CS1900	mber 5 24 3m 1 09		Freque			6000.	15000.	17000. 1900
3 onditi onditi ond/M emark ested	: 9 on : P odel: 1 : P by : K	66 Cha ART22/ 21129C CS1900 ay Wu	mber 5 24 3m 1 09		Freque			6000.	15000.	17000. 1900
te onditi eand/M emark ested emprat	: 9 on : P odel: 1 : P by : K ure : 2	66 Cha ART22/ 21129C CS1900 ay Wu 5°C	mber 5 24 3m 1 09		Freque			6000.	15000.	17000. 1900
te onditi and/M mark sted mprat midit	: 9 on : P odel: 1 : P by : K ure : 2	66 Cha ART22/ 21129C CS1900 ay Wu 5℃ 5%	mber 5 24 3m 1 09		Freque			000.	15000.	17000. 1900
te onditi and/M mark ested	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 : X	66 Cha ART22/ 21129C CS1900 ay Wu 5℃ 5%	mber 5 24 3m 1 09		Freque			0000.	15000.	17000. 1900
te onditi mand/M mark ested mprat midit ane IT	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 : X	66 Cha ART22/ 21129C CS1900 ay Wu 5°C 5% NT 0	mber 5 24 3m 1 09 Link	HORIZO	Freque			3000.	15000.	17000. 1900
te onditi mand/M mark ested mprat midit ane IT	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 y : 6 : X : A : 2	66 Cha ART22/ 21129C CS1900 ay Wu 5℃ 5% NT 0 nd	mber 5 24 3m 1 09 Link Read	HORIZO	Freque NTAL Over	ncy (MHz)		8000.	15000.	17000. 1900
te nditi and/M mark sted mprat ane IT	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 y : 6 : X : A : 2	66 Cha ART22/ 21129C CS1900 ay Wu 5℃ 5% NT 0 nd	mber 5 24 3m 1 09 Link Read	HORIZO	Freque NTAL Over	ncy (MHz)		000.	15000.	17000. 1900
te nditi and/M mark sted mprat midit ane T	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 : X : A : 2 Freq	66 Cha ART22/ 21129C CS1900 ay Wu 5℃ 5% NT 0 nd	mber 5 24 3m 1 09 Link Read Level	HORIZO	Freque NTAL Over Limit	ncy (MHz)	Remark	8000.	15000.	17000. 1900
te nditi and/M mark sted mprat midit ane IT mple	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 : X : A : 2 Freq MHz	66 Cha ART22/ 21129C CS1900 ay Wu 5°C 5% NT 0 nd Level dBm/m	mber 5 24 3m 1 09 Link Read Level dBm	HORIZON Limit Line	Freque NTAL Over Limit dB	Factor dB/m	Remark	0000.	15000.	17000. 1900
te nditi and/M mark sted mprat mprat T mple 1 2	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 : X : A : 2 Freq MHz 30.27 151.50	66 Cha ART22/ 21129C CS1900 ay Wu 5°C 5% NT 0 nd Level dBm/m -45.42 -57.57	mber 5 24 3m 1 09 Link Read Level dBm -46.49 -51.19	Limit Line dBm/m -13.00 -13.00	Over Limit -32.42 -44.57	Factor 	Remark Peak Peak	0000.	15000.	17000. 1900
te nditi and/M mark sted mprat mprat T mple 1 2 3	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 : X : A : 2 Freq MHz 30.27 151.50 217.65	66 Cha ART22/ 21129C CS1900 ay Wu 5°C 5% NT 0 nd Level dBm/m -45.42 -57.57 -56.89	mber 5 24 3m 1 09 Link Read Level dBm -46.49 -51.19 -49.73	HORIZON Limit Line dBm/m -13.00 -13.00 -13.00	VTAL Over Limit -32.42 -44.57 -43.89	Factor 	Remark Peak Peak Peak Peak		15000.	17000. 1900
te nditi and/M mark sted mprat mple T mple 1 2 3 4	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 : X : A : 2 Freq MHz 30.27 151.50 217.65 335.70	66 Cha ART22/ 21129C CS1900 ay Wu 5℃ 5% NT 0 nd Level 	mber 5 24 3m 1 09 Link Read Level dBm -46.49 -51.19 -49.73 -59.07	HORIZON Limit Line dBm/m -13.00 -13.00 -13.00 -13.00	Over Limit -32.42 -44.57 -43.89 -52.18	Factor dB/m 1.07 -6.38 -7.16 -6.11	Remark Peak Peak Peak Peak Peak		15000.	17000. 1900
te nditi and/M mark sted mprat mple 1 2 3 4 5	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 : X : A : 2 Freq MHz 30.27 151.50 217.65 335.70 635.30	66 Cha ART22/ 21129C CS1900 ay Wu 5℃ 5% NT 0 nd Level dBm/m -45.42 -57.57 -56.89 -65.18 -63.36	mber 5 24 3m 1 09 Link Read Level dBm -46.49 -51.19 -49.73 -59.07 -63.64	HORIZON Limit Line dBm/m -13.00 -13.00 -13.00 -13.00 -13.00	Freque NTAL Over Limit -32.42 -44.57 -43.89 -52.18 -50.36	Factor dB/m 1.07 -6.38 -7.16 -6.11 0.28	Remark Peak Peak Peak Peak Peak Peak		15000.	17000. 1900
te onditi and/M mark sted mprat midit ane IT mple 1 2 3 4 5 6	: 9 on : P odel: 1 : P by : K ure : 2 y : 6 : X : A : 2 Freq MHz 30.27 151.50 217.65 335.70	66 Cha ART22/ 21129C CS1900 ay Wu 5°C 5% NT 0 nd Level dBm/m -45.42 -57.57 -56.89 -65.18 -63.36 -62.26	mber 5 24 3m 1 09 Link Read Level dBm -46.49 -51.19 -49.73 -59.07 -63.64 -64.32	HORIZON Limit Line dBm/m -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	Freque NTAL Over Limit -32.42 -44.57 -43.89 -52.18 -50.36 -49.26	Factor dB/m 1.07 -6.38 -7.16 -6.11 0.28 2.06	Remark Peak Peak Peak Peak Peak Peak Peak	0000.	15000.	17000. 1900

Data: 16 0 Level (dBm/m) Date: 2013-01-24 -10 PART22/24 -6dB -20 -30 8 -40 -50 -60 -70 -80 9000. 11000. 13000. 17000. 19000 301000. 3000. 5000. 7000. 15000. Frequency (MHz) Site : 966 Chamber 5 Condition : PART22/24 3m VERTICAL Brand/Model: 121129C09 Remark : PCS1900 Link Tested by : Kay Wu Temprature : 25℃ Humidity : 65% Plane : X : ANT 0 ANT Sample : 2nd Read Limit Over Limit Factor Remark Freq Level Level Line MHz dBm/m dBm dBm/m dB/m dB 1 pp 30.27 -31.20 -32.27 -13.00 -18.20 1.07 Peak 42.69 -39.58 -38.25 -13.00 -26.58 -1.33 Peak 2 152.31 -57.55 -51.16 -13.00 -44.55 -6.39 Peak 3 700.40 -63.52 -64.97 -13.00 -50.52 1.45 Peak 4 5 796.30 -62.35 -64.45 -13.00 -49.35 2.10 Peak 921.60 -60.78 -63.90 -13.00 -47.78 6 3.12 Peak 7 3760.00 -50.56 -43.83 -13.00 -37.56 -6.73 Peak 8 5640.00 -41.02 -41.23 -13.00 -28.02 0.21 Peak

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications were made to the EUT by the lab during the test.

---END----