Appendix C. Calibration Certificate for Probe and Dipole The SPEAG calibration certificates are shown as follows. Report Format Version 5.0.0 Issued Date : Oct. 30, 2012 Report No. : SA120626C35 Revision: R02 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Accreditation No.: SCS 108 C Certificate No: D750V3-1013 Apr12 ## **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1013 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: April 25, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | Name | Function | Signature | | | THATTO | T dilottoff | Oignature | Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 25, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1013_Apr12 Page 1 of 8 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1013_Apr12 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.3 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.16 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 8.44 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.42 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 5.57 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.6 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | 524 | ## **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.19 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 8.76 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | I I | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.45 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 5.80 mW / g ± 16.5 % (k=2) | Certificate No: D750V3-1013_Apr12 Page 3 of 8 ### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.8 Ω - 0.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.6 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.4 Ω - 3.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.8 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.036 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 22, 2010 | Certificate No: D750V3-1013_Apr12 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 25.04.2012 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1013 Communication System: CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.92 \text{ mho/m}$; $\varepsilon_r =
42.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.33, 6.33, 6.33); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ### Dipole Calibration for Head Tissue/Pin=250mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.676 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.269 mW/g SAR(1 g) = 2.16 mW/g; SAR(10 g) = 1.42 mW/g Maximum value of SAR (measured) = 2.52 mW/g 0 dB = 2.52 mW/g = 8.03 dB mW/g Certificate No: D750V3-1013_Apr12 Page 5 of 8 ## **Impedance Measurement Plot for Head TSL** ### **DASY5 Validation Report for Body TSL** Date: 25.04.2012 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1013 Communication System: CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ mho/m}$; $\varepsilon_r = 55.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.12, 6.12, 6.12); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ### Dipole Calibration for Body Tissue/Pin=250mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.759 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.260 mW/g SAR(1 g) = 2.19 mW/g; SAR(10 g) = 1.45 mW/g Maximum value of SAR (measured) = 2.55 mW/g 0 dB = 2.55 mW/g = 8.13 dB mW/g Certificate No: D750V3-1013_Apr12 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Accreditation No.: SCS 108 C S Certificate No: D835V2-4d021_Apr12 ## **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d021 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: April 20, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---|------------------------| | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | ID# | Check Date (in house) | Scheduled Check | | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | Name | Function | Signature | | Israe El-Naouq | Laboratory Technician | Irraa Elmania | | Katja Pokovic | Technical Manager | 2011 | | | GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Israe El-Naouq | GB37480704 | Issued: April 20, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d021_Apr12 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | [444] | ## **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.37 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.46 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.55 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.19 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | 304 | ## **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.48 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.60 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.63 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.35 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-4d021_Apr12 Page 3 of 8 ## **Appendix** #### **Antenna Parameters with Head TSL** | Impedance,
transformed to feed point | 52.0 Ω - 2.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.9 dB | | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.7 Ω - 3.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.4 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.392 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|----------------|--| | Manufactured on | April 22, 2004 | | Certificate No: D835V2-4d021_Apr12 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 20.04.2012 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d021 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.325 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.488 mW/g SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.55 mW/g Maximum value of SAR (measured) = 2.76 mW/g 0 dB = 2.76 mW/g = 8.82 dB mW/g ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 19.04.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d021 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ mho/m}$; $\varepsilon_r = 54.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.287 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.590 mW/g SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.63 mW/g Maximum value of SAR (measured) = 2.88 mW/g 0 dB = 2.88 mW/g = 9.19 dB mW/g ## Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client B.V. ADT (Auden) Accreditation No.: SCS 108 Certificate No: D1750V2-1055_Aug11 #### CALIBRATION CERTIFICATE D1750V2 - SN: 1055 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz August 09, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E U\$37390585 \$4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Dimce Iliev Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: August 9, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.7 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | === | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.05 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 36.6 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 4.82 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 19.4 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following
parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.0 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 9.39 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 38.0 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.06 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.4 mW / g ± 16.5 % (k=2) | ## **Appendix** ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.6 Ω + 2.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 33.1 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 45.6 Ω + 1.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.0 dB | ## **General Antenna Parameters and Design** | | and the second s | |----------------------------------|--| | Electrical Delay (one direction) | 1.224 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 19, 2010 | ### **DASY5 Validation Report for Head TSL** Date: 09.08.2011 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1055 Communication System: CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ mho/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.22, 5.22, 5.22); Calibrated: 29.04.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.645 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 16.096 W/kg SAR(1 g) = 9.05 mW/g; SAR(10 g) = 4.82 mW/g Maximum value of SAR (measured) = 11.208 mW/g 0 dB = 11.210 mW/g ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 09.08.2011 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1055 Communication System: CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.85, 4.85, 4.85); Calibrated: 29.04.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.669 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.113 W/kg SAR(1 g) = 9.39 mW/g; SAR(10 g) = 5.06 mW/g Maximum value of SAR (measured) = 11.800 mW/g 0 dB = 11.800 mW/g # Impedance Measurement Plot for Body TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client B.V. ADT (Auden) Certificate No: D1750V2-1055_Aug12 Accreditation No.: SCS 108 ## **CALIBRATION CERTIFICATE** Object D1750V2 - SN: 1055 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 23, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Over Eladam | | Approved by: | Katja Pokovic | Technical Manager | One | Issued: August 23, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1055_Aug12 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering &
Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1055_Aug12 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.8.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.0 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | , - (| ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 8.89 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 36.0 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 4.77 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 19.2 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | 3,144 | ## **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 9.28 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 37.2 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.01 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.1 mW / g ± 16.5 % (k=2) | Certificate No: D1750V2-1055_Aug12 Page 3 of 8 ## **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.6 Ω + 1.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 37.4 dB | | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.2 Ω + 1.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.2 dB | | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.222 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 19, 2010 | Certificate No: D1750V2-1055_Aug12 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 23.08.2012 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1055 Communication System: CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ mho/m}$; $\varepsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(5.22, 5.22, 5.22); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.389 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 15.719 mW/g SAR(1 g) = 8.89 mW/g; SAR(10 g) = 4.77 mW/g Maximum value of SAR (measured) = 11.0 W/kg 0 dB = 11.0 W/kg = 20.83 dB W/kg Certificate No: D1750V2-1055_Aug12 Page 5 of 8 ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 23.08.2012 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1055 Communication System: CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.85, 4.85, 4.85); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.389 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 15.904 mW/g SAR(1 g) = 9.28 mW/g; SAR(10 g) = 5.01 mW/g Maximum value of SAR (measured) = 11.5 W/kg 0 dB = 11.5 W/kg = 21.21 dB W/kg Certificate No: D1750V2-1055_Aug12 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V.ADT** (Auden) Accreditation No.: SCS 108 Certificate No: D1900V2-5d036_Jan12 ## CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d036 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 26, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 29-Mar-11 (No. 217-01368) | Apr-12 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371) | Apr-12 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11
(No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | Name | Function | Signature | | | | | | | Calibrated by: | Dimce Iliev | Laboratory Technician | D. Riev | Issued: January 26, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d036_Jan12 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D1900V2-5d036_Jan12 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.0 | |------------------------------|-------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.8 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | as 40 to | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.65 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 38.9 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.05 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 9. 7 4 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 38.9 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.10 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.4 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d036_Jan12 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.0 Ω + 4.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.1 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.3 Ω + 5.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.1 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.195 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------| | Manufactured on | May 08, 2003 | Certificate No: D1900V2-5d036_Jan12 ## **DASY5 Validation Report for Head TSL** Date: 26.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d036 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.850 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.7040 SAR(1 g) = 9.65 mW/g; SAR(10 g) = 5.05 mW/g Maximum value of SAR (measured) = 12.055 mW/g 0 dB = 12.060 mW/g = 21.63 dB mW/g # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 26.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d036 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.423 V/m; Power Drift = -0.0044 dB Peak SAR (extrapolated) = 17.2700 SAR(1 g) = 9.74 mW/g; SAR(10 g) = 5.1 mW/g Maximum value of SAR (measured) = 12.419 mW/g 0 dB = 12.420 mW/g = 21.88 dB mW/g ## Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The
Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V.ADT** (Auden) Accreditation No.: SCS 108 Certificate No: D2450V2-737_Jan12 ## CALIBRATION CERTIFICATE Object D2450V2 - SN: 737 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 24, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 29-Mar-11 (No. 217-01368) | Apr-12 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371) | Apr-12 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Deraa El Davig | | Approved by: | Katja Pokovic | Technical Manager | 2014 | Issued: January 24, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-737_Jan12 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.2 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.4 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.9 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.18 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 mW /g ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.6 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | A P 18-4 | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 12.8 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.0 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.91 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.3 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-737_Jan12 Page 3 of 8 ## **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.3 Ω + 4.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.6 Ω + 5.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.6 dB | ## General Antenna Parameters and Design | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | · · · · · · · · · · · · · · · · · · · | | |----------------------|---|---------------------------------------|--| | Electrical Delay (on | e direction) | 1.161 ns | | | | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 26, 2003 | Certificate No: D2450V2-737_Jan12 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 24.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 737 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 99.933 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.6400 SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.18 mW/g Maximum value of SAR (measured) = 17.183 mW/g 0 dB = 17.180 mW/g = 24.70 dB mW/g ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 23.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 737 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 50.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 • Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.889 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.6520 SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.91 mW/g Maximum value of SAR (measured) = 17.026 mW/g 0 dB = 17.030 mW/g = 24.62 dB mW/g # Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V.ADT** (Auden) Certificate No: D5GHzV2-1018_Jan12 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1018 Calibration procedure(s) QA CAL-22.v1 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: January 18, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---|---------------------------|---|--| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 29-Mar-11 (No. 217-01368) | Apr-12 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371) | Apr-12 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-11 (No. EX3-3503_Dec11) | Dec-12 | | DAE4 | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards Power sensor HP 8481A | ID #
MY41092317 | Check Date (in house) 18-Oct-02 (in house check Oct-11) | Scheduled Check In house check: Oct-13 | | | Though a special state of | | | Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 18, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1018_Jan12 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D5GHzV2-1018_Jan12 Page 2 of 13 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.0 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5500 MHz ± 1 MHz | | | | 5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.3 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | J | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.95 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 79.6 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 2.27 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 mW /g ± 16.5 % (k=2) | #### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.8 ± 6 % | 4.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.47 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 84.7 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.41 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 mW / g ± 16.5 % (k=2) | Certificate No: D5GHzV2-1018_Jan12 Page 3 of 13 ## Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 5.22 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | be 44 Mil 44 | | ## SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|------------------------------------| | SAR measured | 100 mW input power | 7.86 mW / g | | SAR for nominal Head
TSL parameters | normalized to 1W | 78.6 m W / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.23 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 mW / g ± 16.5 % (k=2) | Certificate No: D5GHzV2-1018_Jan12 Page 4 of 13 ## Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 49.2 ± 6 % | 5.46 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | **** | ## SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR mea s ured | 100 mW input power | 7.26 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 72.7 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR mea s ured | 100 mW input power | 2.04 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 mW / g ± 17.6 % (k=2) | ## Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.7 ± 6 % | 5.86 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.82 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 78.3 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.18 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.8 mW / g ± 17.6 % (k=2) | Certificate No: D5GHzV2-1018_Jan12 # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.2 ± 6 % | 6.28 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | **** | ## SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.33 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 73.4 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.03 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.3 mW / g ± 17.6 % (k=2) | Certificate No: D5GHzV2-1018_Jan12 Page 6 of 13 ## **Appendix** #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 53.1 Ω - 9.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.3 dB | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 50.7 Ω - 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.4 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | $56.4 \Omega + 1.4 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.3 dB | #### Antenna Parameters with Body TSL at 5200 MHz | ı | Impedance, transformed to feed point | 52.3 Ω - 8.4 jΩ | |---|--------------------------------------|-----------------| | l | Return Loss | - 21.4 dB | #### Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 49.2 Ω + 0.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 42.3 dB | ## Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 54.4 Ω - 6.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.1 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1,106 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 05, 2004 | Certificate No: D5GHzV2-1018_Jan12 Page 7 of 13 #### **DASY5 Validation Report for Head TSL** Date: 17.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1018 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.6$ mho/m; $\epsilon_r = 36.3$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5500 MHz; $\sigma = 4.9$ mho/m; $\epsilon_r = 35.8$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5800 MHz; $\sigma = 5.22$ mho/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.07.2011 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm The state of s Reference Value = 63.604 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 29.6500 SAR(1 g) = 7.95 mW/g; SAR(10 g) = 2.27 mW/g Maximum value of SAR (measured) = 18.292 mW/g ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.798 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 33.9410 SAR(1 g) = 8.47 mW/g; SAR(10 g) = 2.41 mW/g Maximum value of SAR (measured) = 20.236 mW/g ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.556 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 33.2500 SAR(1 g) = 7.86 mW/g; SAR(10 g) = 2.23 mW/g Maximum value of SAR (measured) = 19.231 mW/g Certificate No: D5GHzV2-1018_Jan12 Page 8 of 13 0 dB = 19.230 mW/g = 25.68 dB mW/g ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 18.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1018 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.46$ mho/m; $\epsilon_r = 49.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.86$ mho/m; $\epsilon_r = 48.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.28$ mho/m; $\epsilon_r = 48.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.07.2011 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm uist—1.4mm (Oxox / // Cube of Measurement grad, ax—4mm, ay—4m Reference Value = 57.349 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.4300 SAR(1 g) = 7.26 mW/g; SAR(10 g) = 2.04 mW/g Maximum value of SAR (measured) = 17.187 mW/g ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.629 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.3620 SAR(1 g) = 7.82 mW/g; SAR(10 g) = 2.18 mW/g
Maximum value of SAR (measured) = 19.092 mW/g ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.181 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 34.3080 SAR(1 g) = 7.33 mW/g; SAR(10 g) = 2.03 mW/g Maximum value of SAR (measured) = 18.527 mW/g ## Impedance Measurement Plot for Body TSL