

HAC (RF Emission) TEST REPORT Summary Result: M-Rating Category = M4

REPORT NO.: SA111221C21A-1 MODEL NO.: PJ53100 FCC ID: NM8PJ53100 RECEIVED: Feb. 01, 2012 TESTED: Feb. 07, 2012 ISSUED: Mar. 05, 2012

APPLICANT: HTC Corporation

ADDRESS: 23, Xinghua Rd., Taoyuan 330, Taiwan, R.O.C.

ISSUED BY:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
LAB ADDRESS:	No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Dist., New Taipei City 244, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 26 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by any government agency. The test results in the report only apply to the tested sample.

1

TABLE OF CONTENTS

REL	EASE CONTROL RECORD
1.	CERTIFICATION
2.	GENERAL INFORMATION5
2.1	GENERAL DESCRIPTION OF EUT
2.2	DESCRIPTIONOF SUPPORT UNITS
2.3	GENERAL DESCRIPTION OF APPLIED STANDARDS
3.	GENERAL INFORMATION OF THE DASY4 SYSTEM
3.1.	GENERAL INFORMATION OF TEST EQUIPMENT
	TEST EQUIPMENT LIST
3.3.	MEASUREMENT UNCERTAINTY12
3.4.	GENERAL DESCRIPTION OF THE HAC EVALUATION
4.	PERFORMANCE CATEGORIES15
5.	SYSTEM CHECK
5.1.	VALIDATION STRUCTURE
5.2.	SYSTEM CHECK PROCEDURE
5.3.	VALIDATION RESULTS
6.	MODULATION FACTOR
6.1	MODULATION FACTOR TEST RESULTS
7.	RF EMISSION TEST PROCEDURES
	TEST INSTRUCTION
7.2.	TEST PROCEDURES
7.3.	DESCRIPTION OF TEST POSITION AND CONFIGURATIONS
7.4.	SUMMARY OF MEASURED HAC RESULTS
8.	INFORMATION ON THE TESTING LABORATORIES
APP	ENDIX A: TEST CONFIGURATIONS AND TEST DATA
APP	ENDIX B: SYSTEM CERTIFICATE & CALIBRATION

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	N/A	Mar. 05, 2012

1. CERTIFICATION

PRODUCT : Smartphone MODEL NO. : PJ53100 BRAND : HTC APPLICANT : HTC Corporation TESTED : Feb. 07, 2012 STANDARDS : FCC 47 CFR Part 20.19 ANSI C63.19-2007 TEST ITEM: RF emissions

The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's characteristics under the conditions specified in this report.

This report is prepared for FCC class II permissive change. This report is issued as a supplementary report of BV ADT report no.: SA111221C21-1. The difference compared with original report is adding an inductive charging battery cover.

PREPARED BY	:	Pettie Chen / Specialist	, DATE:_	Mar. 05, 2012
APPROVED BY	:	Roy Wu / Manager	, DATE:	Mar. 05, 2012

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

EUT	Smartphone
MODEL NO.	PJ53100
CLASSIFICATION	Production Unit
MODULATION TYPE	QPSK, OQPSK, HPSK
TX FREQUENCY RANGE	CDMA2000 BC0 : 824 MHz ~ 849 MHz
	CDMA2000 BC1 : 1850 MHz ~ 1910 MHz
ANTENNA TYPE	Fixed internal antenna
ACCESSORY DEVICES	Refer to Note as below

Air Interfaces/Bands List								
Air Interface	Band	Туре	C63.19 Tested	Simultaneous Transmissions	Reduced Power	VOIP		
CDMA2000	BC0	Voice	Yes	Yes 1xEVDO+WLAN/BT LTE+WLAN/BT		N/A		
1xRTT BC1		Voice	Yes	1xEVDO+WLAN/BT LTE+WLAN/BT	N/A	N/A		
CDMA2000	BC0	Data	N/A 1xRTT+WLAN/BT		N/A	Yes		
1xEVDO	BC1	Data	N/A	N/A 1xRTT+WLAN/BT		Yes		
LTE	13	Data	N/A	1xRTT+WLAN/BT	N/A	Yes		
	2.4G	Data	N/A	N/A 1xRTT+1xEVDO+BT 1xRTT+LTE+BT		Yes		
WLAN	5G	Data	N/A	1xRTT+1xEVDO+BT 1xRTT+LTE+BT	N/A	Yes		
BT	2.4G	Data	N/A	N/A 1xRTT+1xEVDO+WLAN 1xRTT+LTE+WLAN		N/A		

Note: The HAC rating was evaluated for voice mode only.

NOTE:

- 1. This report is prepared for FCC class II permissive change. This report is issued as a supplementary report of BV ADT report no.: SA111221C21-1. The difference compared with original report is adding an inductive charging battery cover.
- 2. The EUT's accessories list refers to Ext Pho_NM8PJ53100.pdf.
- 3. Conducted power list as below:

				Data	CD	MA2000 B	C0	CDMA2000 BC1		
Mode	RC	SO	Туре	Rate	Low Ch (1013)	Mid Ch (384)	High Ch (777)	Low Ch (25)	Mid Ch (600)	High Ch (1175)
	4	2	Laan	Full	24.57	24.46	24.71	24.55	24.59	24.36
	1	2	Loop	Eighth	24.59	24.49	24.77	24.58	24.67	24.54
	1	3	Voice	-	24.59	24.48	24.74	24.64	24.69	24.52
	4		1	Full	24.63	24.56	24.78	24.63	24.71	24.70
	1	55	Loop	Eighth	24.59	24.48	24.75	24.54	24.66	24.57
	2	17	Voice	-	24.59	24.46	24.71	24.65	24.66	24.50
	2	32768	Voice	-	24.58	24.46	24.71	24.62	24.65	24.49
CDMA 1XRTT	3		Loop	Full	24.57	24.48	24.66	24.62	24.63	24.38
	3 2	2		Eighth	24.54	24.44	24.62	24.62	24.65	24.53
	3	3	Voice	-	24.55	24.44	24.65	24.60	24.56	24.28
	2		Laan	Full	24.60	24.53	24.79	24.64	24.72	24.68
	3 55	55	Loop	Eighth	24.52	24.42	24.61	24.55	24.63	24.45
	4	3	Voice	-	24.58	24.43	24.62	24.60	24.58	24.28
	5	17	Voice	-	24.56	24.44	24.66	24.56	24.59	24.30
	5	32768	Voice	-	24.57	24.45	24.59	24.56	24.57	24.31

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

2.2 DESCRIPTIONOF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.
1	Universal Radio Communication Tester	R&S	CMU200	101372

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC 47 CFR Part 20.19

ANSI C63.19 - 2007

All test items have been performed and recorded as per the above standards.

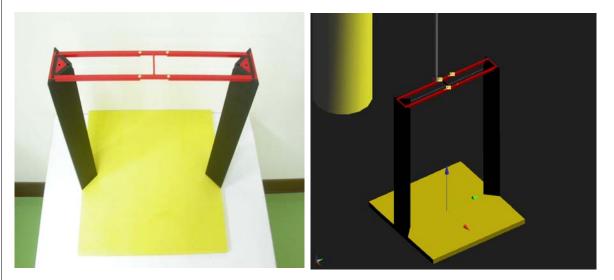
3. GENERAL INFORMATION OF THE DASY4 SYSTEM

3.1. GENERAL INFORMATION OF TEST EQUIPMENT

DASY4 consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4 software defined. The DASY4 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

ER3DV6 E-FIELD PROBE

CONSTRUCTION	One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges
CALIBRATION	In air from 100MHz to 3.0GHz (absolute accuracy \pm 6.0%, k = 2)
FREQUENCY	100MHz to > 6GHz; Linearity: ± 0.2dB (100MHz to 3GHz)
DIRECTIVITY	± 0.2dB in air (rotation around probe axis) ± 0.4dB in air (rotation normal to probe axis)
DYNAMIC RANGE	2V/m to > 1000V/m (M3 or better device readings fall well below diode compression point) Linearity: ± 0.2dB
DIMENSIONS	Overall length: 330mm (Tip: 16mm) Tip diameter: 8mm (Body: 12mm) Distance from probe tip to dipole centers: 2.5mm


H3DV6 H-FIELD PROBE

CONSTRUCTION	Three concentric loop sensors with 3.8mm loop diameters Resistively loaded detector diodes for linear response Built-in shielding against static charges
FREQUENCY	200MHz to 3GHz (absolute accuracy \pm 6.0%, k = 2); Output linearized
DIRECTIVITY	± 0.25dB (spherical isotropy error)
DYNAMIC RANGE	10mA/m to 2A/m at 1GHz (M3 or better device readings fall well below diode compression point)
DIMENSIONS	Overall length: 330mm (Tip: 40mm)
	Tip diameter: 6mm (Body: 12mm)
	Distance from probe tip to dipole centers: 3mm
E-FIELD INTERFERENCE	< 10% at 3GHz (for plane wave)

NOTE: The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

HAC ARCH

DIMENSIONS 370 x 370 x 370mm

SYSTEM VALIDATION KITS:

CD835V3 Frequency Band: 800 ~ 960MHz (free space) Return Loss: > 15dB Calibrated at: 835MHz Power Capability: 50W continuous Length & Height: 166 x 330mm

CD1880V3 Frequency Band: 1710 ~ 2000MHz (free space) Return Loss: > 18dB Calibrated at: 1880MHz Power Capability: 50W continuous Length & Height: 80.8 x 330mm

DEVICE HOLDER

CONSTRUCTION

Supports accurate and reliable positioning of any phone effect on near field <+/- 0.5dB

DATA ACQUISITION ELECTRONICS (DAE)

CONSTRUCTION The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplex, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe is mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

3.2. TEST EQUIPMENT LIST

NAME	BRAND	TYPE	SERIES NO.		DUE DATE OF CALIBRATION
E-Field Probe	SPEAG	ER3DV6	2302	Jun. 15, 2011	Jun. 14, 2012
H-Field Probe	SPEAG	H3DV6	6187	Jun. 17, 2011	Jun. 16, 2012
DAE	SPEAG	DAE4	861	Aug. 29, 2011	Aug. 28, 2012
Validation Dipole	SPEAG	CD835V3	1041	Mar. 15, 2011	Mar. 14, 2012
Validation Dipole	SPEAG	CD1880V3	1032	Apr. 12, 2011	Apr. 11, 2012

NOTE: Before starting the measurement, all test equipment shall be warmed up for 30min.

3.3. MEASUREMENT UNCERTAINTY

HAC UNCERTAINTY BUDGET ACCORDING TO ANSI C63.19[1]							
ERROR DESCRIPTION	UNCERTAINTY VALUE	PROBABILITY DISTRIBUTION	DIVISOR	(Ci) E	(Ci) H	STD. UNC. E (%)	STD. UNC. H (%)
	_	_					
Probe calibration	5.1	Normal	1	1	1	5.1	5.1
Axial isotropy	0.5	Rectangular	√3	1	1	0.3	0.3
Sensor Displacement	16.5	Rectangular	√3	1	0.145	9.5	1.4
Boundary Effects	2.4	Rectangular	√3	1	1	1.4	1.4
Linearity	0.6	Rectangular	√3	1	1	0.3	0.3
Scaling to Peak Envelope Power	2.0	Rectangular	√3	1	1	1.2	1.2
System Detection Limit	1.0	Rectangular	√3	1	1	0.6	0.6
Readout Electronics	0.3	Rectangular	√3	1	1	0.2	0.2
Response Time	0.8	Rectangular	√3	1	1	0.5	0.5
Integration Time	2.6	Rectangular	√3	1	1	1.5	1.5
RF Ambient Condition	3.0	Rectangular	√3	1	1	1.7	1.7
RF Reflections	12.0	Rectangular	√3	1	1	6.9	6.9
Probe Positioner	1.2	Rectangular	√3	1	0.67	0.7	0.5
Probe Positioning	4.7	Rectangular	√3	1	0.67	2.7	1.8
Extrap. And Interpolation	1.0	Rectangular	√3	1	1	0.6	0.6
	T	EST SAMPLE RE	LATED	_	-	-	-
Device Positioning Vertical	2.6	Normal	1	1	1	2.6	2.6
Device Positioning Lateral	2.6	Normal	1	1	1	2.6	2.6
Device Holder and Phantom	2.4	Rectangular	√3	1	1	1.4	1.4
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9
	PHAN	TOM AND SETU	P RELATED				
Phantom Thickness	2.4	Rectangular	√3	1	0.67	1.4	0.9
	COMBINED S	TD. UNCERTAIN	ГҮ			14.4	10.7
EX	PANDED STD. UN	ICERTAINTY ON	POWER			28.8	21.3
E	(PANDED STD. U		N FIELD			14.4	10.7

NOTE: Worst-case uncertainty budget for HAC free field assessment according to ANSI C63.19 [1]. The budget is valid for the frequency range 800MHz ~ 3GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

3.4. GENERAL DESCRIPTION OF THE HAC EVALUATION

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the micro-volt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
- Conversion factor	ConvFi
- Diode compression point	dcpi
Device parameters: - Frequency	F
- Crest factor	Cf
- Conversion factor - Diode compression point Device parameters: - Frequency	ConvF _i dcp _i F

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

 V_i = compensated signal of channel i(i = x, y, z) U_i = input signal of channel I(i = x, y, z)Cf = crest factor of exciting field(DASY parameter)dcp_i = diode compression point(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:
$$E_i = \sqrt{\frac{V_1}{Norm_i \cdot ConvF}}$$

H-field probes: $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

$$V_i$$
 = compensated signal of channel I (i = x, y, z)
Norm_i = sensor sensitivity of channel i $\mu V/(V/m)$ 2 for E-field Probes (i = x, y, z)

ConvF = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

F = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

E = field strength in V/m

 E_{tot} = total field strength in V/m

NOTE: The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/off switch of the power source with an integration time of 500ms and a probe response time of < 5ms. In the current implementation, DASY4waits longer than 100ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

4. PERFORMANCE CATEGORIES

The ANSI Standard presents performance requirements for acceptable interoperability of hearing aids with wireless communications devices. When these parameters are met, a hearing aid operates acceptably in close proximity to a wireless communications device.

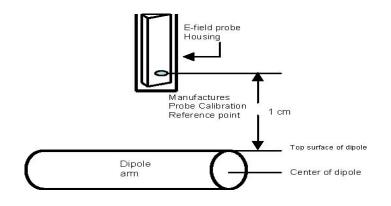
CATEGORY		TELEPHONE RF PARAMETERS < 960MHz					
NEAR FIELD	AWF	E-FIELD EMISSION CW (dBV/m)	E-FIELD EMISSION CW (V/m)	H-FIELD EMISSION CW (dBA/m)	H-FIELD EMISSION CW (A/m)		
M1	0	56.0 to 61.0	631.0 to 1122.0	5.6 to 10.6	1.91 to 3.39		
	-5	53.5 to 58.5	473.2 to 841.4	3.1 to 8.1	1.43 to 2.54		
M2	0	51.0 to 56.0	354.8 to 631.0	0.6 to 5.6	1.07 to 1.91		
IVIZ	-5	48.5 to 53.5	266.1 to 473.2	-1.9 to 3.1	0.80 to 1.43		
М3	0	46.0 to 51.0	199.5 to 354.8	-4.4 to 0.6	0.60 to 1.07		
CIVI	-5	43.5 to 48.5	149.6 to 266.1	-6.9 to -1.9	0.45 to 0.80		
M4	0	< 46.0	< 199.5	< -4.4	< 0.60		
1414	-5	< 43.5	< 149.6	< -6.9	< 0.45		

CATEGORY	TELEPHONE RF PARAMETERS > 960MHz					
NEAR FIELD	AWF	E-FIELD EMISSION CW (dBV/m)	EMISSION CW EMISSION CW		H-FIELD EMISSION CW (A/m)	
N44	0	46.0 to 51.0	199.5 to 354.8	-4.4 to 0.6	0.60 to 1.07	
M1	-5	43.5 to 48.5	149.6 to 266.1	-6.9 to -1.9	0.45 to 0.80	
M2	0	41.0 to 46.0	112.2 to 199.5	-9.4 to -4.4	0.34 to 0.60	
IVIZ	-5	48.5 to 53.5	84.1 to 149.6	-11.9 to -6.9	0.25 to 0.45	
М3	0	36.0 to 41.0	63.1 to 112.2	-14.4 to -9.4	0.19 to 0.34	
IVIS	-5	33.5 to 38.5	47.3 to 84.1	-16.9 to -11.9	0.14 to 0.25	
M4	0	< 36.0	< 63.1	< -14.4	< 0.19	
1414	-5	< 33.5	< 47.3	< -16.9	< 0.14	

ARTICULATION WEIGHING FACTOR (AWF)

The following AWF factors shall be used for the standard transmission protocols:

STANDARD	TECHNOLOGY	AWF (dB)
TIA/EIA/IS-2000	CDMA	0
TIA/EIA-136	TDMA (50Hz)	0
iDENTM	TDMA (22 and 11Hz)	0
J-STD-007	GSM (217)	-5
T1/T1P1/3GPP	UMTS (WCDMA)	0

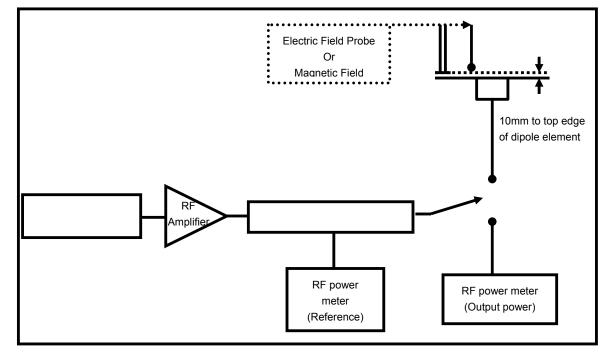

5. SYSTEM CHECK

The measured values (E-field and H-field) were compared with the values provided by the probe manufacturer and must within the allowed tolerance of **25%**.

5.1. VALIDATION STRUCTURE

The input signal was an un-modulated continuous wave. The following points were taken into consideration in performing this check:

- Average Input Power P = 100mW RMS (20dBm RMS) after adjustment for return loss
- The test fixture must meet the 2 wavelength separation criterion
- The proper measurement of the 1cm probe to dipole separation, which is measured from top surface of the dipole to the calibration reference point of the sensor, defined by the probe manufacturer is shown in the following diagram:



5.2. SYSTEM CHECK PROCEDURE

1. Before you start the system performance check, need only to tell the system with which components (probe type, validation dipole and HAC arch) are performing the system performance check; the system will take care of all parameters.

The system check configuration is shown in the following figure:

- 2. The dipole was energized with a 20dBm un-modulated continuous-wave signal.
- 3. The length of the dipole was scanned with both E-field and H-field probes and the maximum values for each were recorded.

5.3. VALIDATION RESULTS

Frequency (MHz)	Input Power (dBm)	Target Value (V/m)	E-Field 1 (V/m)	E-Field 2 (V/m)	Average Value (V/m)	Deviation (%)	Date
835	20	168.0	152.9	149.6	151.25	-9.97	Feb. 07, 2012
1880	20	142.1	139.4	140.5	139.95	-1.51	Feb. 07, 2012
Frequency (MHz)	Input Power (dBm)	Target Value (A/m)		H-Field (A/m)		Deviation (%)	Date
835	20	0.471		0.562		19.32	Feb. 07, 2012
1880	20	0.471		0.553		17.41	Feb. 07, 2012

NOTE: Please see Appendix for the system validation test data.

6. MODULATION FACTOR

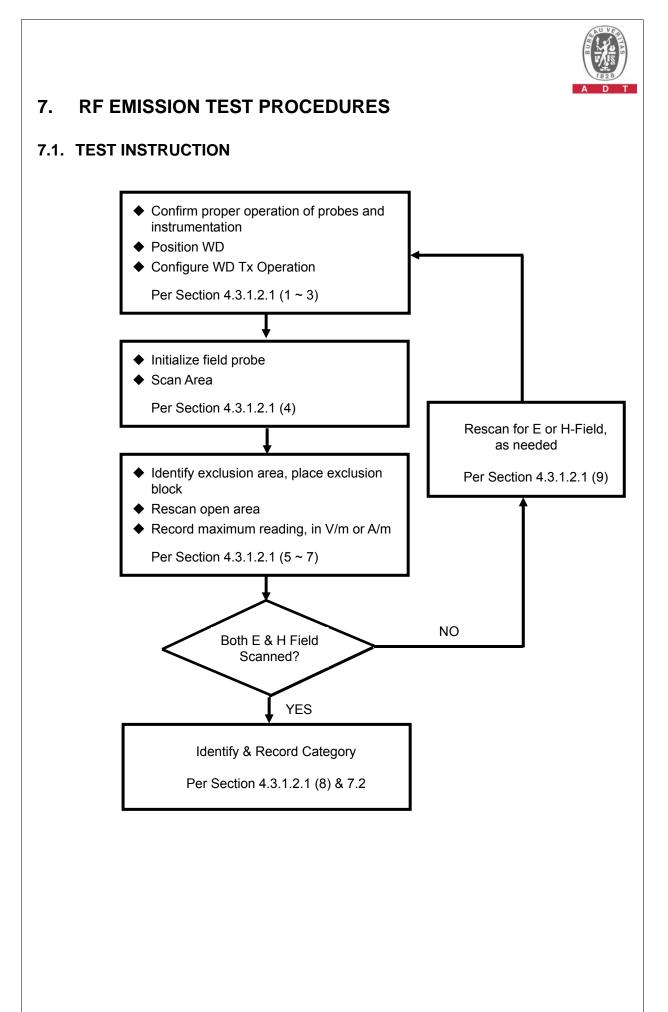
A calibration was made of the modulation response of the probe and its instrumentation chain. This calibration was performed with the field probe, attached to its instrumentation. The response of the probe system to a CW field at the frequency of interest is compared to its response to a modulated signal with equal peak amplitude to that of a CW signal. The field level of the test signals are ensured to be more than 10dB above the ambient level and the noise floor of the instrumentation being used. The ratio of the CW reading to that taken with a modulated reading was applied to the DUT measurements.

This was done using the following procedure:

- 1. Fixing the probe in a set location relative to a field generating device, such as a reference dipole antenna, as illustrated in the system check procedure.
- 2. Illuminate the probe using the wireless device connected to the reference dipole with a test signal at the intended measurement frequency, Ensure there is sufficient field coupling between the probe and the antenna so the resulting reading is greater than 10dB above the probe system noise floor but within the systems operating range.
- 3. Record the amplitude applied to the antenna during transmission and the field strength measured by the E-field probe located near the tip of the dipole antenna.
- 4. Replace the wireless device with an RF signal generator producing an unmodulated CW signal and set to the wireless device operating frequency.
- 5. Set the amplitude of the unmodulated signal to equal that recorded from the wireless device.
- 6. Record the reading of the probe measurement system of the unmodulated signal.
- 7. The RF signal generator producing an 80%AM signal and set to the wireless device operating frequency. Set the amplitude of the signal to equal that recorded from the wireless device.
- 8. Record the reading of the probe measurement system of the 80%AM signal.
- 9. The ratio, in linear units, of the probe reading in Step 3) or 8) to the reading in

Step 6) is the E-field modulation factor.

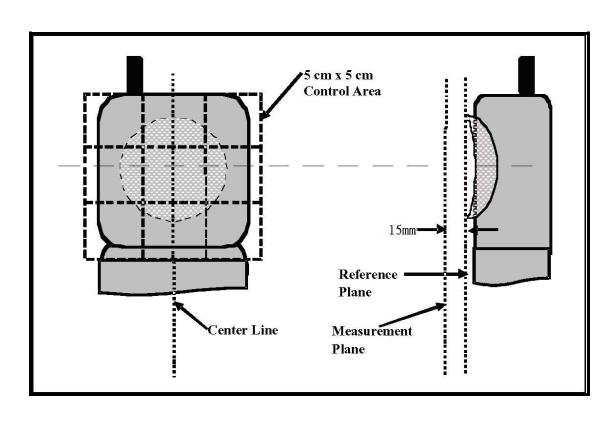
- 10. Steps 1-9 were repeated at all frequency bands and for both E and H field probes.
- **NOTE:** The ratio of the CW to modulated signal reading is the modulation factor. The modulation factors obtained were applied to readings taken of the actual wireless device, in order to obtain an accurate peak field reading using the formula:


Peak = 20 · log(Raw · ProbeModulationFactor)

6.1 MODULATION FACTOR TEST RESULTS

TEST FREQUENCY (MHz)	PROTOCOL	REFERENCE LEVEL (dBm)	MEASURED E-FILED (V/m)	E-FILED MODULATION FACTOR
	CW		277.9	NA
835	AM80%	24.5	170.5	1.63
000	CDMA		287.2	0.97
	CDMA 1/8		94.4	2.94
TEST FREQUENCY (MHz)	PROTOCOL	REFERENCE LEVEL (dBm)	MEASURED H-FILED (A/m)	H-FILED MODULATION FACTOR
	CW		0.790	NA
835	AM80%	24.5	0.519	1.52
000	CDMA	24.5	0.854	0.93
	CDMA 1/8		0.292	2.71

TEST FREQUENCY (MHz)	PROTOCOL	REFERENCE LEVEL (dBm)	MEASURED E-FILED (V/m)	E-FILED MODULATION FACTOR
	CW		320.9	NA
1000	AM80%	24.5	194.1	1.65
1880	CDMA	24.5	326.2	0.98
	CDMA 1/8		100.8	3.18
TEST FREQUENCY (MHz)	PROTOCOL	REFERENCE LEVEL (dBm)	MEASURED H-FILED (A/m)	H-FILED MODULATION FACTOR
	CW		1.063	NA
1880	AM80%	24.5	0.802	1.33
1380	CDMA	24.5	1.315	0.81
	CDMA 1/8		0.398	2.67


7.2. TEST PROCEDURES

The EUT makes a phone call to the GSM base station. Establish the simulation communication configuration rather the actual communication. Then the EUT could continuous the transmission mode. Adjust the PCL of the base station could controlled the EUT to transmitted the maximum output power. The base station also could control the transmission channel.

The recommended procedure for assessing the RF emission value consists of the following steps:

- 1. Proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed.
- 2. WD is positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- 3. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The WD audio output was positioned tangent (as physically possible) to the measurement plane.
- 4. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the HAC arch.
- 5. The measurement system measured the field strength at the reference location.
- 6. Measurements at 2mm increments in the 5 x 5cm region were performed and recorded. A 360° rotation about the azimuth axis at the maximum interpolated position was measured. For the worst-case condition, the peak reading from this rotation was used in re-evaluating the HAC category.
- 7. Steps 1-6 were done for both the E and H-Field measurements.

7.3. DESCRIPTION OF TEST POSITION AND CONFIGURATIONS

7.4. SUMMARY OF MEASURED HAC RESULTS

E-FIELD EMISSION

Plot No.	Band	Mode	Channel	Battery	Battery Cover	Peak E-Field (V/m)	E-Field M Rating
1	CDMA2000 BC0	RC1+SO55_Eighth	777	1	3	61.9	M4
2	CDMA2000 BC1	RC1+SO55_Eighth	25	1	3	33.3	M4

NOTE:

1. The E-field emission is verified on the worst mode of original report.

2. Please see the Appendix A for the measured data and test plots.

H-FIELD EMISSION

Plot No.	Band	Mode	Channel	Battery	Battery Cover	Peak H-Field (A/m)	H-Field M Rating
3	CDMA2000 BC0	RC1+SO55_Eighth	777	1	3	0.088	M4
4	CDMA2000 BC1	RC1+SO55_Eighth	25	1	3	0.096	M4

NOTE:

1. The H-field emission is verified on the worst mode of original report.

2. Please see the Appendix A for the measured data and test plots.

8. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5.phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

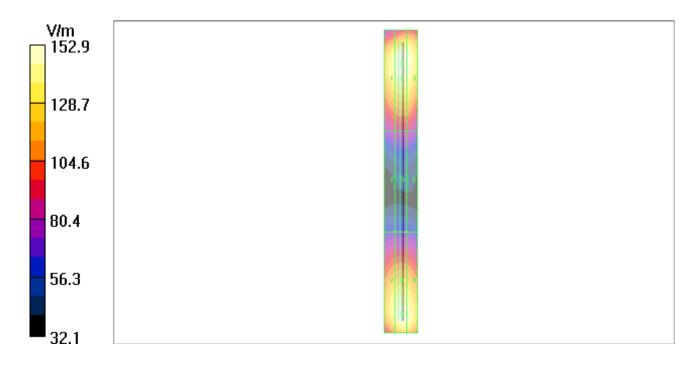
---END----

System Check_E-Field_835_120207

DUT: HAC Dipole 835 MHz; Type: CD835V3; SN: 1041

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.5 °C

DASY4 Configuration:


- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 2011/06/15
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn861; Calibrated: 2011/08/29
- Phantom: HAC Test Arch; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 152.9 V/m Probe Modulation Factor = 1.00 Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 96.7 V/m; Power Drift = -0.026 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
146.2 M4	152.9 M4	151.3 M4
Grid 4	Grid 5	Grid 6
83.6 M4	87.5 M4	86.0 M4
Grid 7	Grid 8	Grid 9
142.2 M4	149.6 M4	147.1 M4

System Check_E-Field_1880_120207

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; SN: 1032

Communication System: CW; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.5 °C

DASY4 Configuration:

- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 2011/06/15
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn861; Calibrated: 2011/08/29
- Phantom: HAC Test Arch; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 140.5 V/m Probe Modulation Factor = 1.00 Device Reference Point: 0.000, 0.000, 353.7 mm Reference Value = 160.4 V/m; Power Drift = -0.007 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

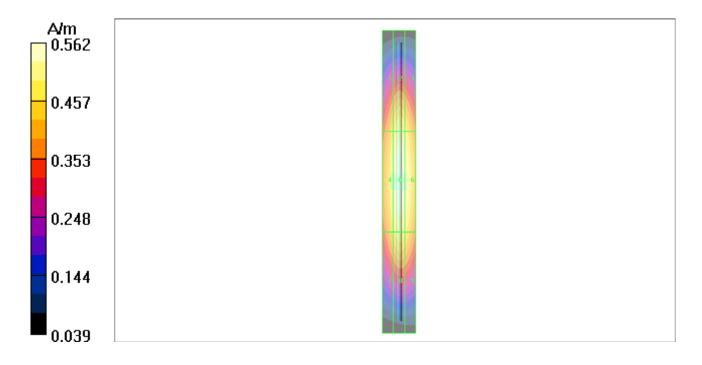
Grid 1	Grid 2	Grid 3
135.0 M2	139.4 M2	134.8 M2
Grid 4	Grid 5	Grid 6
89.4 M3	92.3 M3	87.4 M3
a · 1 =	~ · · · ~	
Grid 7	Grid 8	Grid 9

System Check_H-Field_835_120207

DUT: HAC Dipole 835 MHz; Type: CD835V3; SN: 1041

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature : 21.5 °C

DASY4 Configuration:


- Probe: H3DV6 SN6187; ; Calibrated: 2011/06/17
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn861; Calibrated: 2011/08/29
- Phantom: HAC Test Arch; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.562 A/m Probe Modulation Factor = 1.00 Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 0.597 A/m; Power Drift = -0.024 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

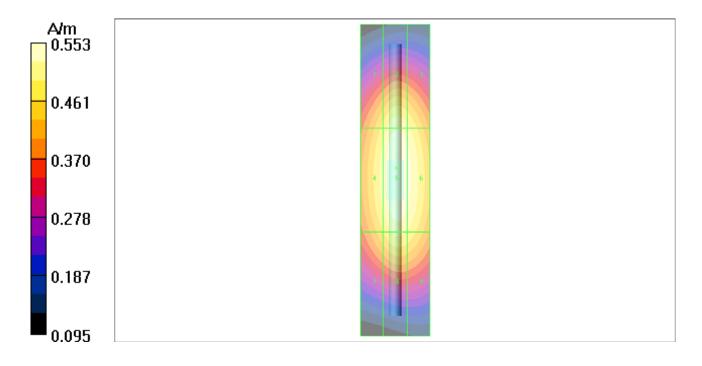
Grid 1	Grid 2	Grid 3
0.451 M4	0.506 M4	0.481 M4
Grid 4	Grid 5	Grid 6
0.507 M4	0.562 M4	0.535 M4
Grid 7	Grid 8	Grid 9
0.442 M4	0.490 M4	0.467 M4

System Check_H-Field_1880_120207

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; SN: 1032

Communication System: CW; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature : 21.5 °C

DASY4 Configuration:


- Probe: H3DV6 SN6187; ; Calibrated: 2011/06/17
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn861; Calibrated: 2011/08/29
- Phantom: HAC Test Arch; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.553 A/m Probe Modulation Factor = 1.00 Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 0.587 A/m; Power Drift = -0.033 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

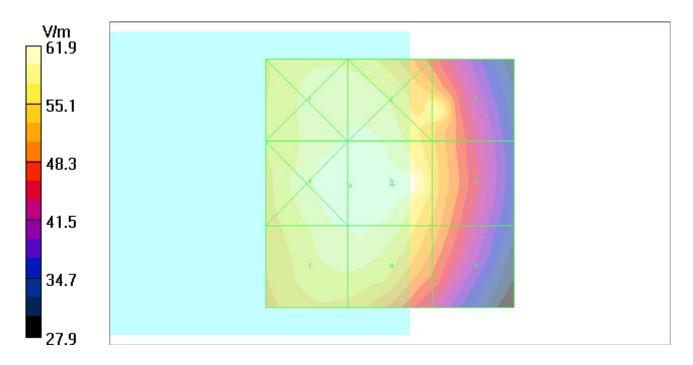
Grid 1	Grid 2	Grid 3
0.474 M2	0.520 M2	0.501 M2
Grid 4	Grid 5	Grid 6
0.510 M2	0.553 M2	0.535 M2
Grid 7	Grid 8	Grid 9
0.462 M2	0.503 M2	0.489 M2

P01 E_Field CDMA2000 BC0_RC1+SO55_Eighth_Ch777_Battery1

DUT: 120201C03

Communication System: CDMA2000 BC0; Frequency: 848.31 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.5 °C

DASY4 Configuration:


- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 2011/06/15
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn861; Calibrated: 2011/08/29
- Phantom: HAC Test Arch; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch777/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 61.9 V/m Probe Modulation Factor = 2.94 Device Reference Point: 0.000, 0.000, 353.7 mm Reference Value = 27.7 V/m; Power Drift = -0.100 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

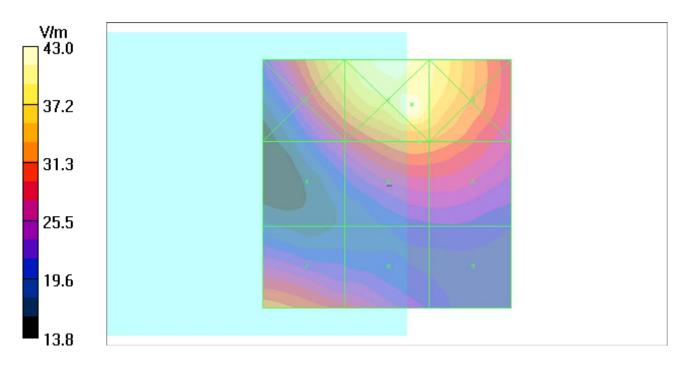
Grid 1	Grid 2	Grid 3
59.9 M4	60.2 M4	57.9 M4
Grid 4	Grid 5	Grid 6
61.9 M4	61.9 M4	54.8 M4
		Grid 9
60.0 M4	60.1 M4	52.3 M4

P02 E_Field CDMA2000 BC1_RC1+SO55_Eighth_Ch25_Battery1

DUT: 120201C03

Communication System: CDMA2000 BC1; Frequency: 1851.25 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.5 °C

DASY4 Configuration:


- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 2011/06/15
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn861; Calibrated: 2011/08/29
- Phantom: HAC Test Arch; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch25/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 33.3 V/m Probe Modulation Factor = 3.18 Device Reference Point: 0.000, 0.000, 353.7 mm Reference Value = 9.77 V/m; Power Drift = -0.037 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

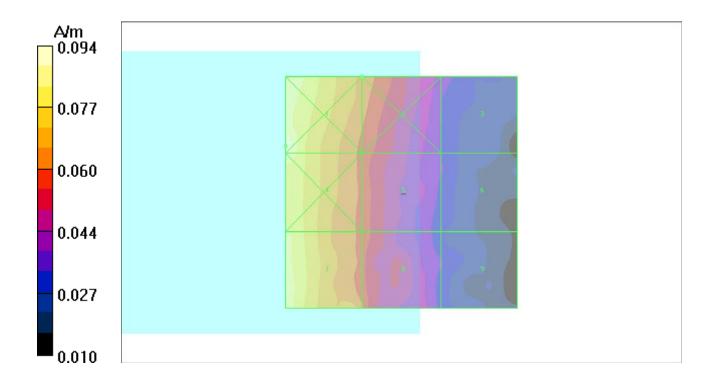
Grid 1 38.2 M4	 Grid 3 39.8 M4
Grid 4 27.4 M4	Grid 6 33.0 M4
Grid 7 32.6 M4	Grid 9 21.5 M4

P03 H_Field CDMA2000 BC0_RC1+SO55_Eighth_Ch777_Battery1

DUT: 120201C03

Communication System: CDMA2000 BC0; Frequency: 848.31 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature : 21.5 °C

DASY4 Configuration:


- Probe: H3DV6 SN6187; ; Calibrated: 2011/06/17
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn861; Calibrated: 2011/08/29
- Phantom: HAC Test Arch; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch777/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.088 A/m Probe Modulation Factor = 2.71 Device Reference Point: 0.000, 0.000, 353.7 mm Reference Value = 0.017 A/m; Power Drift = -0.176 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

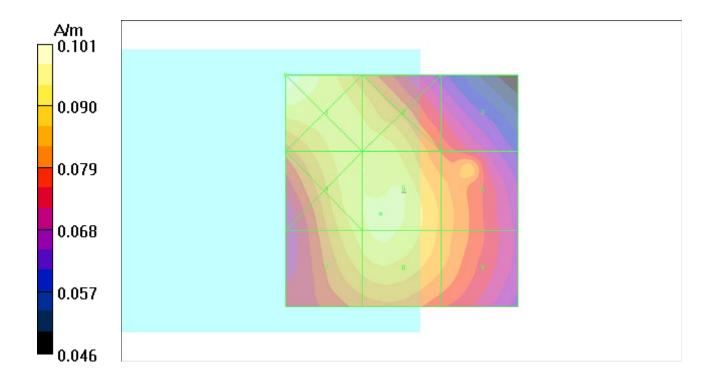
Grid 1	Grid 2	Grid 3
0.094 M4	0.064 M4	0.036 M4
Grid 4	Grid 5	Grid 6
0.092 M4	0.059 M4	0.033 M4
Grid 7	Grid 8	Grid 9
0.088 M4	0.062 M4	0.033 M4

P04 H_Field CDMA2000 BC1_RC1+SO55_Eighth_Ch25_Battery1

DUT: 120201C03

Communication System: CDMA2000 BC1; Frequency: 1851.25 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature : 21.5 °C

DASY4 Configuration:


- Probe: H3DV6 SN6187; ; Calibrated: 2011/06/17
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn861; Calibrated: 2011/08/29
- Phantom: HAC Test Arch; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch25/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.096 A/m Probe Modulation Factor = 2.67 Device Reference Point: 0.000, 0.000, 353.7 mm Reference Value = 0.040 A/m; Power Drift = 0.009 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1 0.101 M4	 Grid 3 0.079 M4
Grid 4 0.094 M4	 Grid 6 0.086 M4
Grid 7 0.092 M4	 Grid 9 0.085 M4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Auden		Certificate	No: ER3-2302_Jun11
CALIBRATION	CERTIFICATE		
Object	ER3DV6 - SN:2302		
Calibration procedure(s)	QA CAL-02.v6; QA CAI Calibration procedure for evaluations in air	25.v4 or E-field probes optimiz	ed for close near field
Calibration date:	June 15, 2011		
	uments the traceability to national stan ncertainties with confidence probability		
All calibrations have been con	ducted in the closed laboratory facility:	environment temperature (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (I	M&TE critical for calibration)		
Primary Standards	ID (Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874 3	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087 :	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12

			1
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ER3DV6	SN: 2328	4-Oct-10 (No. ER3-2328_Oct10)	Oct-11
DAE4	SN: 789	6-Apr-11 (No. DAE4-789_Apr11)	Apr-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	T M
		en de la compañía de Compañía de Compañía de la com	$f \in \mathbb{R}$
Approved by:	Katja Pokovic	Technical Manager	
	Ndija FUKUVIC		KERS
	المتعديدين ومتركز المعرول والمتعد وتنتقد والمتعاول والمتعاول والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والم		
			Issued: June 17, 2011
This calibration certificate	shall not be reproduced except in	full without written approval of the lab	oratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
NORMx,y,z	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, " IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ for XY sensors and $\vartheta = 90$ for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x, y, z = NORMx, y, z * frequency, response (see Frequency Response Chart).
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW ٠ signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open • waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2302_Jun11

Probe ER3DV6

SN:2302

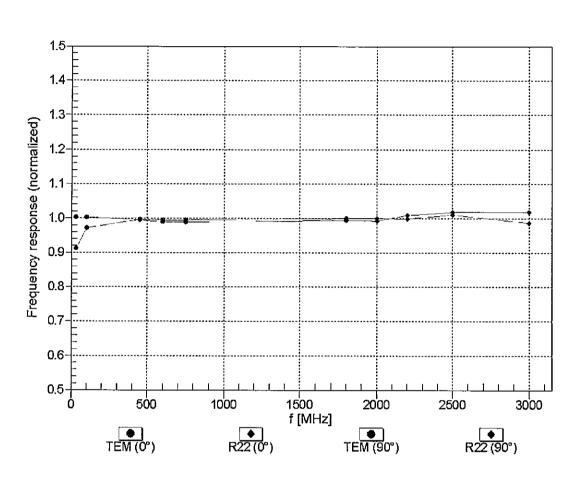
Manufactured: Calibrated:

November 6, 2002 June 15, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

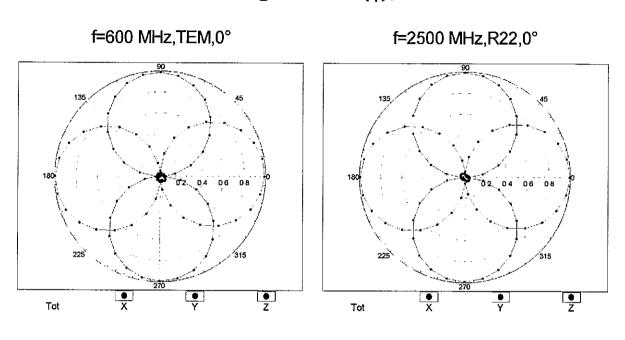
DASY/EASY - Parameters of Probe: ER3DV6 - SN:2302

Basic Calibration Parameters

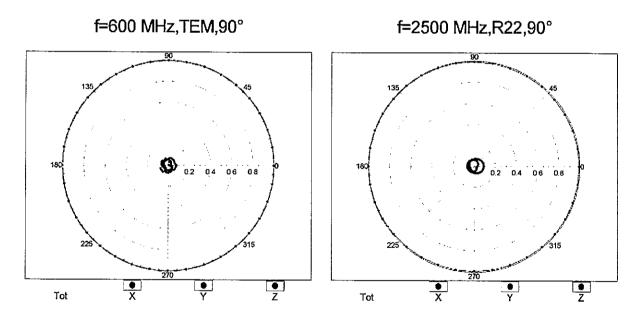

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	1.47	1.34	1.44	± 10.1 %
DCP (mV) ^B	98.2	96.7	101.8	

Modulation Calibration Parameters

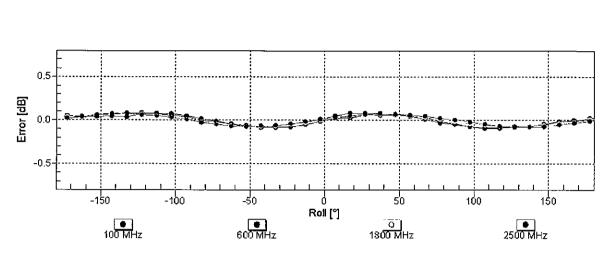
UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	113.8	±3.0 %
			Y	0.00	0.00	1.00	99.1	
			Z	0.00	0.00	1.00	95.3	


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

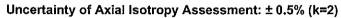
^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

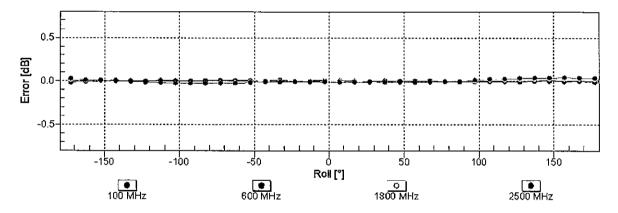

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

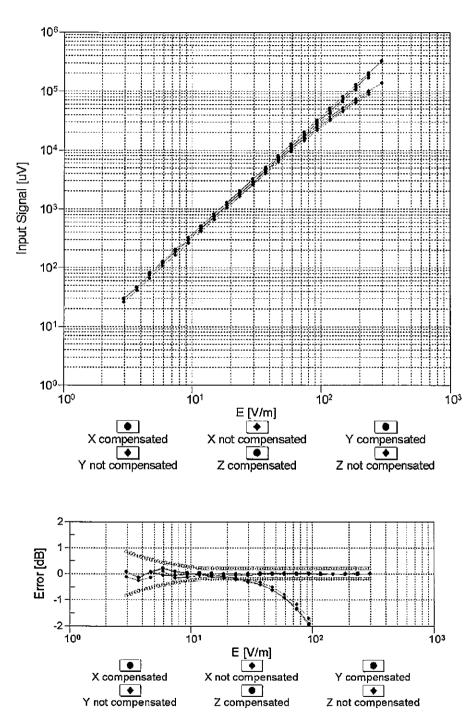
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



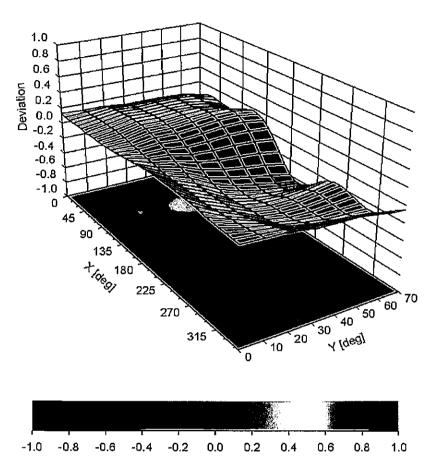
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Receiving Pattern (ϕ), ϑ = 90°


Certificate No: ER3-2302_Jun11


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), ϑ = 90°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(E-field) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Deviation from Isotropy in Air Error (\, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2302

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	-2.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Auden

Client

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No:	H3-618	7 Jun11	
Cel micale NO.		'L_UUII'I	

<u>SALEIDINAN HISIN</u>	I CERTIFICATE
Object	H3DV6 - SN:6187
Calibration procedure(s)	QA-CAL-03 v6; QA CAL-25 v4 Calibration procedure for H≢field probes optimized for close near field evaluations in air
Calibration date:	June 17; 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe H3DV6	SN: 6182	4-Oct-10 (No. H3-6182_Oct10)	Oct-11
DAE4	SN: 789	6-Apr-11 (No. DAE4-789_Apr11)	Apr-12
Secondary Standards	iD	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	U\$37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technicia	iñ I K
			<u>I (Mr</u>
Approved by:	Katja Poković	Technical Manager	al lo
			hong_
			Issued: June 17, 2011
This calibration cer	ificate shall not be reproduced except in fu	ull without written approval of the I	aboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:	
NORMx,y,z	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ for XY sensors and $\vartheta = 90$ for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X a0a1a2 (no uncertainty required).

Probe H3DV6

SN:6187

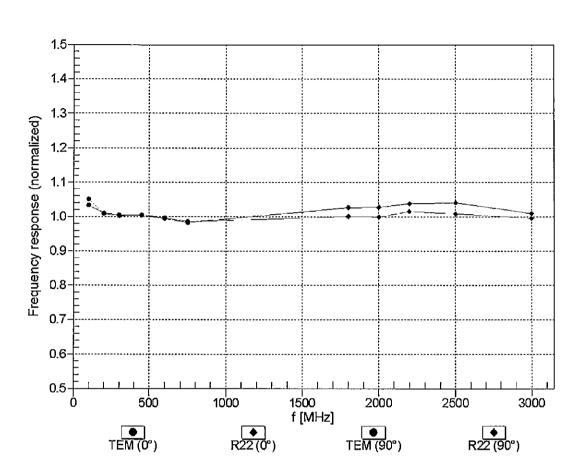
Manufactured: June 8, 2004 Calibrated:

June 17, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

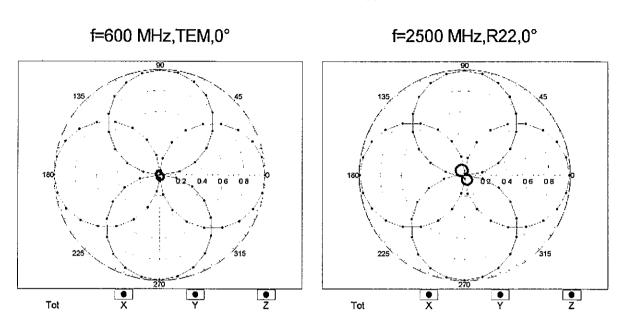
DASY/EASY - Parameters of Probe: H3DV6 - SN:6187

Basic Calibration Parameters

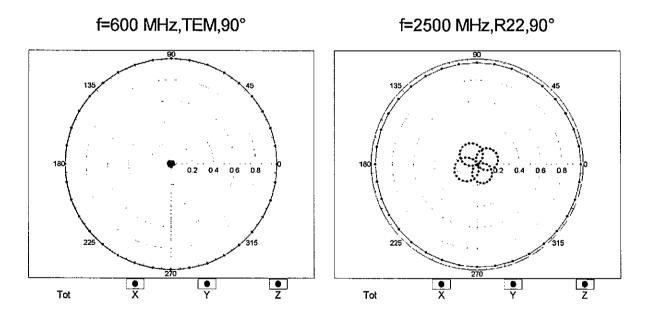

		Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (A/m / √(mV))	a0	3.25E-003	2.53E-003	3.06E-003	± 5.1 %
Norm (A/m / √(mV))	a1	-2.03E-005	4.43E-005	-4.88E-005	± 5.1 %
Norm (A/m / √(mV))	a2	2.36E-005	1.59E-005	7.21E-005	± 5.1 %
DCP (mV) ^B		108.1	92.6	91.8	

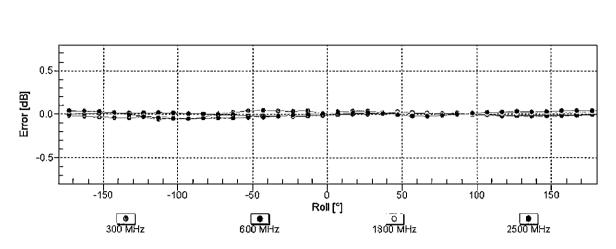
Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	77.7	±3.0 %
			Y	0.00	0.00	1.00	72.9	
			Z	0.00	0.00	1.00	90.7	


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

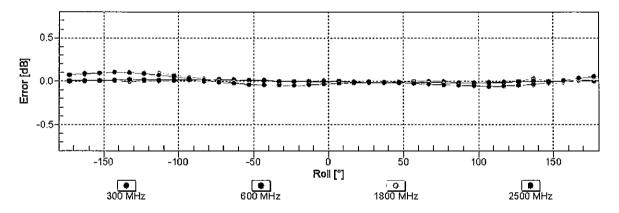
^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

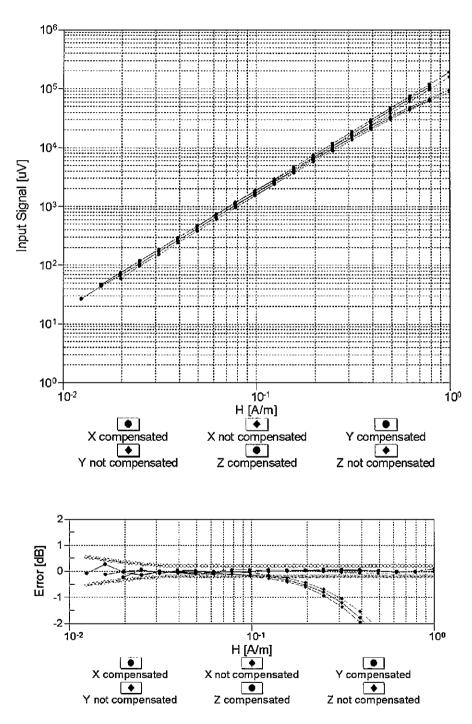



Uncertainty of Frequency Response of H-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

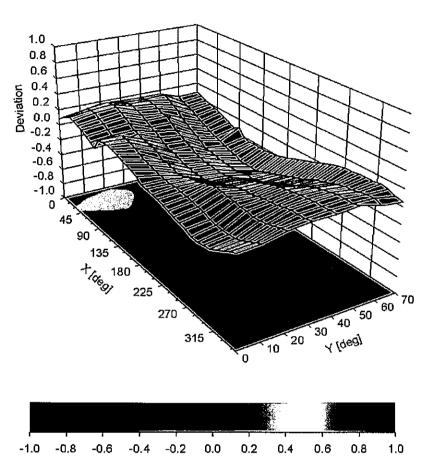
Receiving Pattern (ϕ), ϑ = 90°




Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), ϑ = 90°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(H-field) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Deviation from Isotropy in Air Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

•

DASY/EASY - Parameters of Probe: H3DV6 - SN:6187

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	-113
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	20 mm
Tip Diameter	6 mm
Probe Tip to Sensor X Calibration Point	3 mm
Probe Tip to Sensor Y Calibration Point	3 mm
Probe Tip to Sensor Z Calibration Point	3 mm

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client B.V. ADT (Auden)

Certificate No: CD835V3-1041_Mar11

CALIBRATION CERTIFICATE

Object	CD835V3 - SN:	CD835V3 - SN: 1041					
Calibration procedure(s)	QA CAL-20.v5 Calibration proc	edure for dipoles in air					
Calibration date:	March 15, 2011						
	cted in the closed laborat	ttional standards, which realize the physical ι ory facility: environment temperature (22 ± 3)					
Primary Standards	D #	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11				
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11				
Probe ER3DV6	SN: 2336	, , ,					
Probe H3DV6	SN: 6065	29-Dec-10 (No. ER3-2336_Dec10)	Dec-11				
DAE4	SN: 781	29-Dec-10 (No. H3-6065_Dec10) 20-Oct-10 (No. DAE4-781_Oct10)	Dec-11 Oct-11				
Secondary Standards		Check Date (in house)	Scheduled Check				
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-10)	In house check: Oct-11				
Power sensor HP 8482H	SN: 3318A09450	09-Oct-09 (in house check Oct-10)	In house check: Oct-11				
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-10)	In house check: Oct-11				
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11				
RF generator E4433B	MY 41000675	03-Nov-04 (in house check Oct-09)	In house check: Oct-11				
	Name	Function	Signature				
Calibrated by:	Claudio Leubler	Laboratory Technician	VAL				
Approved by:	Fin Bomholt	Technical Director	F. Annihalt				
			Issued: March 16, 2011				

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2007

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- *E- field distribution:* E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- *H-field distribution:* H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point.

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2 (424)
DASY PP Version	SEMCAD X	V14.4.4 (2829)
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.471 A/m
Incertainty for H-field measurement: 9.29/ (k-2)		

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end-	100 mW forward power	170.8 V/m
Maximum measured above low end	100 mW forward power	163.2 V/m
Averaged maximum above arm	100 mW forward power	168.0 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

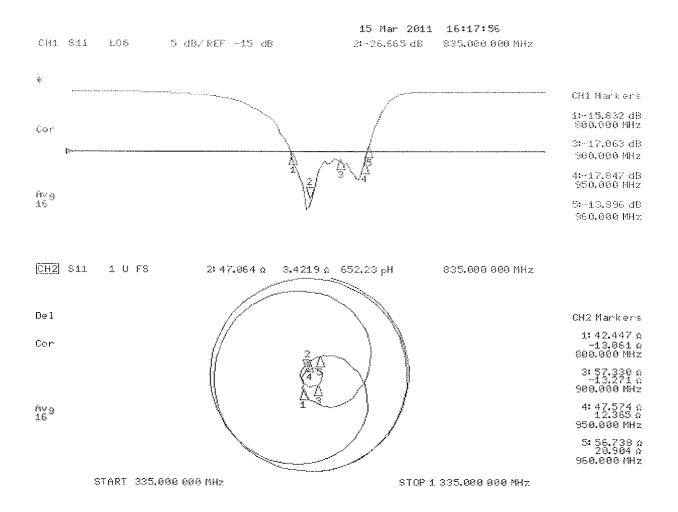
3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	15.8 dB	(42.4 – j13.1) Ohm
835 MHz	26.7 dB	(47.1 + j3.4) Ohm
900 MHz	17.1 dB	(57.3 – 13.3) Ohm
950 MHz	17.8 dB	(47.6 + j12.4) Ohm
960 MHz	13.9 dB	(56.7 + j20.9) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Test Laboratory: SPEAG Lab2

HAC RF_CD835_1041_H_110315_CL

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1041

Communication System: CW; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2007)

DASY5 Configuration:

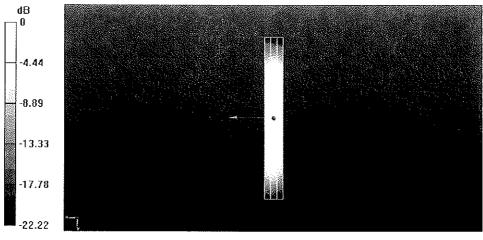
- Probe: H3DV6 SN6065; ; Calibrated: 29.12.2010
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 20.10.2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY52, V52.6 Build 2, Version 52.6.2 (424)
- Postprocessing SW: SEMCAD X, V14.4 Build 4, Version 14.4.4 (2829)

Dipole H-Field measurement @ 835MHz/H Scan - measurement distance from the probe sensor center to CD835 Dipole = 10nm/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.471 A/m

Probe Modulation Factor = 1.000


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.502 A/m; Power Drift = 0.01 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.390	0.413	0.392
M4	M4	M4
Grid 4	Grid 5	Grid 6
0.449	0.471	0.442
M4	M4	M4
Grid 7	Grid 8	Grid 9
0.398	0.414	0.385
M4	M4	M4

0 dB = 0.470 A/m

Test Laboratory: SPEAG Lab2

HAC RF_CD835_1041_E_110315_CL

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1041

Communication System: CW; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

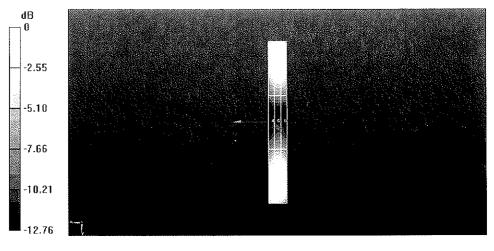
- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 29.12.2010
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 20.10.2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY52, V52.6 Build 2, Version 52.6.2 (424)
- Postprocessing SW: SEMCAD X, V14.4 Build 4, Version 14.4.4 (2829)

Dipole E-Field measurement @ 835MHz/E Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 170.8 V/m

Probe Modulation Factor = 1.000


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 124.9 V/m; Power Drift = -0.02 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
158.6	170.8	167.4
M4	M4	M4
Grid 4	Grid 5	Grid 6
86.752	90.542	88.762
M4	M4	M4
Grid 7	Grid 8	Grid 9
158.6	163.2	158.5
M4	M4	M4

0 dB = 170.8 V/m

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client B.V. ADT (Auden)

Certificate No: CD1880V3-1032_Apr11

CALIBRATION CERTIFICATE

Object	CD1880V3 - SN	: 1032	
Calibration procedure(s)	QA CAL-20.v5 Calibration proce	edure for dipoles in air	
Calibration date:	April 12, 2011		
All calibrations have been conduc	cted in the closed laborate	tional standards, which realize the physical un ory facility: environment temperature (22 ± 3)°0	
Calibration Equipment used (M&	1		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Probe ER3DV6	SN: 2336	29-Dec-10 (No. ER3-2336_Dec10)	Dec-11
Probe H3DV6	SN: 6065	29-Dec-10 (No. H3-6065_Dec10)	Dec-11
DAE4	SN: 781	20-Oct-10 (No. DAE4-781_Oct10)	Oct-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-10)	In house check: Oct-11
Power sensor HP 8482H	SN: 3318A09450	09-Oct-09 (in house check Oct-10)	In house check: Oct-11
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-10)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
RF generator E4433B	MY 41000675	03-Nov-04 (in house check Oct-09)	In house check: Oct-11

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	VAL
Approved by:	Fin Bomholt	R&D Director	F. Bruchdt
			Issued: April 12, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2007

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- *E- field distribution:* E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- *H-field distribution:* H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point.

1. Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2 (424)
DASY PP Version	SEMCAD X	V14.4.4 (2829)
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2. Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.471 A/m
$\frac{1}{1}$		

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	143.9 V/m
Maximum measured above low end	100 mW forward power	140.3 V/m
Averaged maximum above arm	100 mW forward power	142.1 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

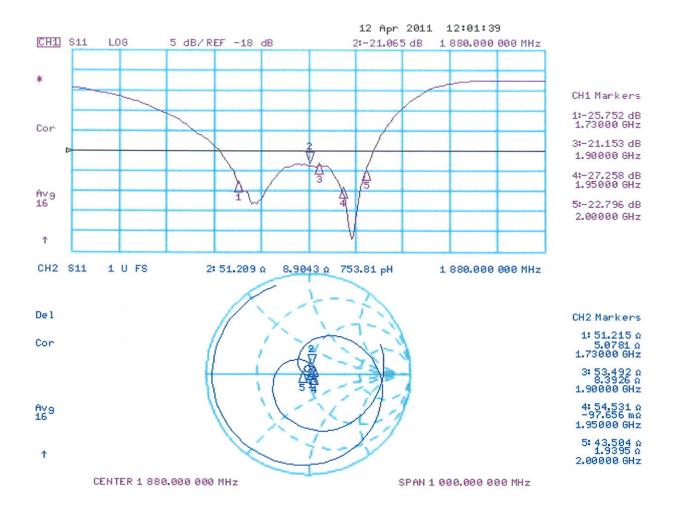
3. Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	25.8 dB	(51.2 + j5.1) Ohm
1880 MHz	21.1 dB	(51.2 + j8.9) Ohm
1900 MHz	21.2 dB	(53.5 + j8.4) Ohm
1950 MHz	27.3 dB	(54.5 – j0.1) Ohm
2000 MHz	22.8 dB	(43.5 + j1.9) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

3.3.2 DASY4 H-Field Result

Date/Time: 12.04.2011 12:39:46

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_1032_H_110412_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1032

Communication System: CW; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

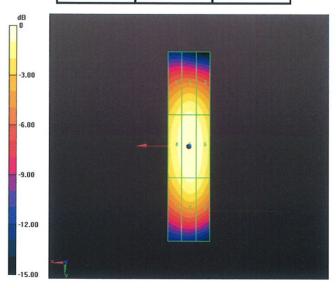
- Probe: H3DV6 SN6065; ; Calibrated: 29.12.2010
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 20.10.2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY52, V52.6 Build 2, Version 52.6.2 (424)
- Postprocessing SW: SEMCAD X, V14.4 Build 4, Version 14.4.4 (2829)

Dipole H-Field measurement @ 1880MHz/H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.471 A/m

Probe Modulation Factor = 1.000


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.500 A/m; Power Drift = -0.0016 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.406	0.432	0.416
M2	M2	M2
Grid 4	Grid 5	Grid 6
0.441	0.471	0.457
M2	M2	M2
Grid 7	Grid 8	Grid 9
0.401	0.433	0.421
M2	M2	M2

0 dB = 0.470 A/m

3.3.3 DASY4 E-Field Result

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_1032_E_110412_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1032

Communication System: CW; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

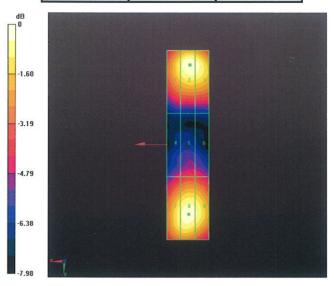
- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 29.12.2010
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 20.10.2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY52, V52.6 Build 2, Version 52.6.2 (424)
- Postprocessing SW: SEMCAD X, V14.4 Build 4, Version 14.4.4 (2829)

Dipole E-Field measurement @ 1880MHz/E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 143.9 V/m

Probe Modulation Factor = 1.000


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 144.4 V/m; Power Drift = -0.0043 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
131.8	143.9	141.3
M2	M2	M2
Grid 4	Grid 5	Grid 6
86.926	92.728	91.584
M3	M3	M3
Grid 7	Grid 8	Grid 9
133.8	140.3	137.0
M2	M2	M2

0 dB = 143.9 V/m