

FCC TEST REPORT (PART 24)

REPORT NO.: RF120109C17-1
 MODEL NO.: PJ40100
 FCC ID: NM8PJ40100
 RECEIVED: Jan. 09, 2012
 TESTED: Jan. 30 ~ Feb. 10, 2012
 ISSUED: Feb. 15, 2012

APPLICANT: HTC Corporation

ADDRESS: 23,Xinghua Rd., Taoyuan 330,Taiwan,R.O.C.

ISSUED BY:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
LAB ADDRESS:	No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)
TEST LOCATION:	No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 50 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

RELEAS	SE CONTROL RECORD	4
1	CERTIFICATION	5
2	SUMMARY OF TEST RESULTS	6
2.1	MEASUREMENT UNCERTAINTY	6
3	GENERAL INFORMATION	7
3.1	GENERAL DESCRIPTION OF EUT	7
3.2	DESCRIPTION OF TEST MODES	8
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	9
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	10
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	12
3.4	DESCRIPTION OF SUPPORT UNITS	12
4	TEST TYPES AND RESULTS	
4.1	OUTPUT POWER MEASUREMENT	13
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	-
4.1.2	TEST INSTRUMENTS	14
4.1.3	TEST PROCEDURES	
4.1.4	TEST SETUP	16
4.1.5	EUT OPERATING CONDITIONS	
4.1.6	TEST RESULTS	17
4.2	FREQUENCY STABILITY MEASUREMENT	20
4.2.1	LIMITS OF FREQUENCY STABILIITY MEASUREMENT	20
4.2.2	TEST INSTRUMENTS	20
4.2.3	TEST PROCEDURE	21
4.2.4	TEST SETUP	21
4.2.5	TEST RESULTS	22
4.3	OCCUPIED BANDWIDTH MEASUREMENT	24
4.3.1	LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT	24
4.3.2	TEST INSTRUMENTS	24
4.3.3	TEST SETUP	24
4.3.4	TEST PROCEDURES	25
4.3.5	EUT OPERATING CONDITION	25
4.3.6	TEST RESULTS	26
4.4	BAND EDGE MEASUREMENT	28
4.4.1	LIMITS OF BAND EDGE MEASUREMENT	28
4.4.2	TEST INSTRUMENTS	28

4.4.3	TEST SETUP	28
4.4.4	TEST PROCEDURES	29
4.4.5	EUT OPERATING CONDITION	29
4.4.6	TEST RESULTS	30
4.5	CONDUCTED SPURIOUS EMISSIONS	32
4.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	32
4.5.2	TEST INSTRUMENTS	32
4.5.3	TEST PROCEDURE	33
4.5.4	TEST SETUP	33
4.5.5	EUT OPERATING CONDITIONS	33
4.5.6	TEST RESULTS	34
4.6	RADIATED EMISSION MEASUREMENT	40
4.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	40
4.6.2	TEST INSTRUMENTS	40
4.6.3	TEST PROCEDURES	40
4.6.4	DEVIATION FROM TEST STANDARD	40
4.6.5	TEST SETUP	41
4.6.6	EUT OPERATING CONDITIONS	41
4.6.7	TEST RESULTS	42
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	48
6	INFORMATION ON THE TESTING LABORATORIES	49
7	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHA	NGES
	TO THE EUT BY THE LAB	50

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	N/A	Feb. 15, 2012

1 CERTIFICATION

PRODUCT:SmartphoneMODEL NO.:PJ40100BRAND:HTCAPPLICANT:HTC CorporationTEST SAMPLE:Production UnitTESTED:Jan. 30 ~ Feb. 10, 2012TEST STANDARDS:FCC Part 24, Subpart E

The above equipment (model: PJ40100) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

P	R	F	P	Α	R	F	D	BY	
	1.	-		~	1	-	2		

<u>ле h/v</u>, DATE: ____ Feb. 15, 2012 Ivonne Wu / Senior Specialist

APPROVED BY

(=)	. (0	, DATE :	
Gary Chang /	Technic	al Manag	jer	2

Feb. 15, 2012

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 24 & Part 2								
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK					
2.1046 24.232	Maximum Peak Output Power Limit: max. 2 watts e.i.r.p peak power	PASS	Meet the requirement of limit. Max. e.i.r.p is 31.52dBm at 1880.0MHz.					
2.1055 24.235	Frequency Stability AFC Freq. Error vs. Voltage AFC Freq. Error vs. Temperature Limit: max. +/-2.5ppm	PASS	Meet the requirement of limit.					
2.1049 24.238(b)	Occupied Bandwidth	PASS	Meet the requirement of limit.					
24.238(b)	Band Edge Measurements	PASS	Meet the requirement of limit.					
2.1051 24.238	Conducted Spurious Emissions	PASS	Meet the requirement of limit.					
2.1053 24.238	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is –11.85dB at 36.21MHz.					

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	3.34 dB
Dedicted emissions	200MHz ~1000MHz	3.35 dB
Radiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Smartphone			
MODEL NO.	PJ40100			
FCC ID	NM8PJ40100			
POWER SUPPLY	5.0Vdc (adapter or host equipment) 3.7Vdc (battery)			
MODULATION TYPE	GSM, GPRS, E-GPRS GMSK, 8PSK			
FREQUENCY RANGE	GSM, GPRS, E-GPRS 1850.2MHz ~ 1909.8MHz			
MAX. EIRP POWER	GSM	1.42Watts		
WAA. EIRF FOWER	E-GPRS	0.50Watts		
MULTI-SLOTS CLASS	12			
ANTENNA TYPE	Fixed Internal antenna with 0.91dBi gain			
I/O PORTS	Refer to users' manual			
DATA CABLE	Refer to Note as below			
ACCESSORY DEVICES	Refer to Note as below			

NOTE:

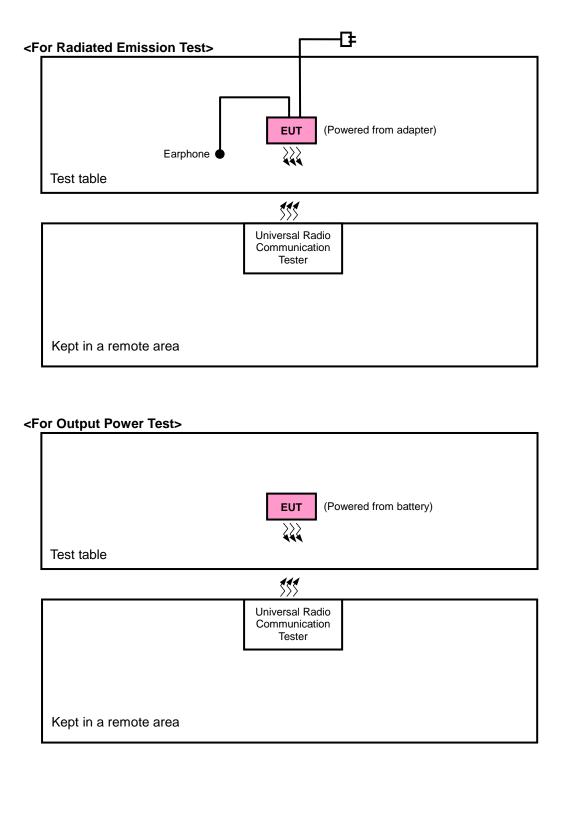
1. The EUT's accessories list refers to EUT photo.

2. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

FOR GSM, GPRS & E-GPRS:

299 channels are provided to this EUT. Therefore, the low, middle and high channels are chosen for testing.


	CHANNEL	FREQUENCY	TX MODE
LOW	512	1850.2 MHz	GSM, GPRS, E-GPRS
MIDDLE	661	1880.0 MHz	GSM, GPRS, E-GPRS
HIGH	810	1909.8 MHz	GSM, GPRS, E-GPRS

NOTE:

- 1. The channel 512, 661, and 810 were pre-tested in chamber. The channel 661 was chosen for final test.
- 2. The worst case for final test is chosen when the power control level set 0.
- 3. The channel space is 0.2MHz.
- 4. The EUT is an E-GPRS class 12 device (Multislot class: 12), which provide 4 up-link. After pre-tested 4 functions, found up-link with 1 time slot is worse, therefore, test results of output power, frequency stability, occupied bandwidth and band edge tests came out from this.
- 5. The EUT has GSM, GPRS & E-GPRS functions. After pre-testing, GSM function is the worst case for all the emission tests.

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

FOR GSM, GPRS & E-GPRS:

EUT			DESCRIPTION				
CONFIGURE MODE	OP	FS	OB	BE	CE	RE	DESCRIPTION
А	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Main Sample
В	\checkmark	-	-	-	-	\checkmark	2 nd Sample
Where OF	: Output pow						
OE	: Occupied b	andwidth		BE: E	Band edge		
CE	: Conducted	spurious em	issions	RE: F	Radiated em	ission	

OUTPUT POWER MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
А	512 to 810	512, 661, 810	GSM, GPRS, E-GPRS	Y
В	512 to 810	512, 661, 810	GSM, GPRS, E-GPRS	Y

FREQUENCY STABILITY MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	
А	512 to 810	661	GSM, E-GPRS	

OCCUPIED BANDWIDTH MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

 Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(a) was (was) calculated for the final test or listed below.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	
А	512 to 810	512, 661, 810	GSM, EGPRS	

BAND EDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	
А	512 to 810	512, 810	GSM, EGPRS	

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOG	
А	512 to 810	661	GSM, E-GPRS	

RADIATED EMISSION MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
А	512 to 810	661	GSM, E-GPRS	Z
В	512 to 810	661	GSM	Z

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
OP	25deg. C, 57%RH	3.7Vdc	Phoenix Chen
FS	25deg. C, 57%RH	3.7Vdc	Phoenix Chen
OB	25deg. C, 57%RH	3.7Vdc	Phoenix Chen
EM	25deg. C, 57%RH	3.7Vdc	Phoenix Chen
BE	25deg. C, 57%RH	3.7Vdc	Phoenix Chen
CE	25deg. C, 57%RH	3.7Vdc	Phoenix Chen
RE	25deg. C, 57%RH	120Vac, 60Hz	Kay Wu

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 24 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	UNIVERSAL RADIO COMMUNICATION TESTER	R&S	CMU200	104484	NA
2	Radio Communication Analyzer	Anritsu	MT8820C	6201010284	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA
2	NA

NOTE:

- 1. All power cords of the above support units are non shielded (1.8m).
- 2. Item 1-2 acted as a communication partners to transfer data.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated peak output power shall be according to the specific rule Part 24.232(b) that "Mobile / Portable station are limited to 2 watts e.i.r.p" and 24.232(c) specific that "Peak transmit power must be measure over any interval of continuous transmission using instrumentation calibration in terms of rms-equivalent voltage."

4.1.2 TEST INSTRUMENTS

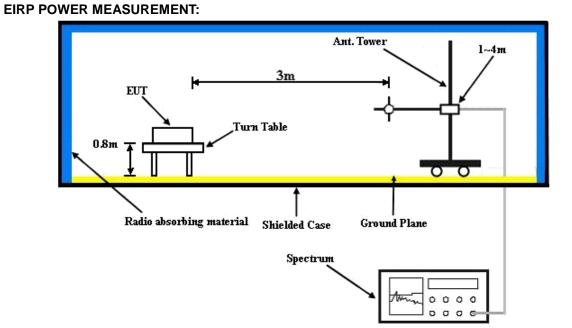
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver Agilent	N9038A	MY51210203	Dec. 22, 2011	Dec. 21, 2012
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 21, 2011	Dec. 20, 2012
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Dec. 20, 2011	Dec. 19, 2012
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Dec. 20, 2011	Dec. 19, 2012
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Dec. 20, 2011	Dec. 19, 2012
Preamplifier EMCI	EMC 012645	980115	Dec. 30, 2011	Dec. 29, 2012
Preamplifier EMCI	EMC 330H	980112	Dec. 30, 2011	Dec. 29, 2012
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4	Oct. 21, 2011	Oct. 20, 2012
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Jan. 02, 2012	Jan. 01, 2013
RF signal cable Worken	RG-213	NA	Jan. 02, 2012	Jan. 01, 2013
Software	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

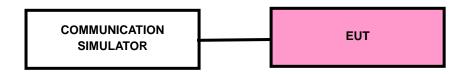
- 2. The test was performed in HwaYa Chamber 9
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 460141.
- 5. The IC Site Registration No. is IC 7450F-4.

4.1.3 TEST PROCEDURES

EIRP MEASUREMENT:


- a. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 512, 661 and 810 (GSM & E-GPRS) (low, middle and high operational frequency range.) RWB and VBW is 1MHz for GSM/EGPRS mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable . Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step c. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.

CONDUCTED POWER MEASUREMENT:


- a. The EUT was set up for the maximum power with GSM, GPRS & EGPRS link data modulation and link up with simulator.
- b. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.4 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo). **CONDUCTED POWER MEASUREMENT**:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.5 EUT OPERATING CONDITIONS

- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.1.6 TEST RESULTS

CONDUCTED OUTPUT POWER (dBm)

Band		GSM1900	
Channel	512	661	810
Frequency (MHz)	1850.2	1880	1909.8
GSM (GMSK, 1 slot)	30.25	30.41	30.23
GPRS 8 (GMSK, 1 slot)	30.22	30.39	30.24
GPRS 10 (GMSK, 2 slot)	28.18	28.53	28.66
GPRS 11 (GMSK, 3 slot)	26.70	26.95	27.04
GPRS 12 (GMSK, 4 slot)	25.24	25.64	25.58
DTM 9 (GMSK, 2 slot)	28.18	28.45	28.54
DTM 11 (GMSK, 3 slot)	26.68	26.94	27.02
EDGE 8 (8PSK, 1 slot)	25.59	25.78	25.74
EDGE 10 (8PSK, 2 slot)	25.24	25.48	25.51
EDGE 11 (8PSK, 3 slot)	24.46	24.62	24.59
EDGE 12 (8PSK, 4 slot)	22.60	22.87	22.91
DTM 9 (8PSK, 2 slot)	25.01	25.61	25.44
DTM 11 (8PSK, 3 slot)	24.29	24.54	24.59
EDGE 8 (GMSK, 1 slot)	25.71	26.28	26.17
EDGE 10 (GMSK, 2 slot)	25.21	25.89	25.86
EDGE 11 (GMSK, 3 slot)	24.91	25.44	25.35
EDGE 12 (GMSK, 4 slot)	24.40	25.01	24.85

EIRP POWER

TEST MODE A

FOR GSM MODE

Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(W)	Polarization (H/V)
	512	1850.2	-7.60	38.19	30.59	1.15	Н
	661	1880.0	-7.18	38.70	31.52	1.42	Н
v	810	1909.8	-8.29	39.35	31.06	1.28	Н
T	512	1850.2	-11.77	38.48	26.71	0.47	V
	661	1880.0	-10.96	38.59	27.63	0.58	V
	810	1909.8	-12.46	38.87	26.41	0.44	V

FOR E-GPRS MODE

Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(W)	Polarization (H/V)
	512	1850.2	-11.78	38.19	26.41	0.44	н
	661	1880.0	-12.46	38.70	26.24	0.42	Н
Y	810	1909.8	-12.32	39.35	27.03	0.50	Н
Ť	512	1850.2	-15.05	38.48	23.43	0.22	V
	661	1880.0	-15.31	38.59	23.28	0.21	V
	810	1909.8	-16.05	38.87	22.82	0.19	V

TEST MODE B

FOR GSM MODE

Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(W)	Polarization (H/V)
	512	1850.2	-8.08	38.19	30.11	1.03	Н
	661	1880.0	-7.80	38.70	30.90	1.23	Н
v	810	1909.8	-8.92	39.35	30.43	1.10	Н
T	512	1850.2	-13.37	38.48	25.11	0.32	V
	661	1880.0	-13.24	38.59	25.35	0.34	V
	810	1909.8	-14.58	38.87	24.29	0.27	V

FOR E-GPRS MODE

Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(W)	Polarization (H/V)
	512	1850.2	-12.22	38.19	25.97	0.40	Н
	661	1880.0	-12.83	38.70	25.87	0.39	Н
v	810	1909.8	-13.71	39.35	25.64	0.37	Н
T	512	1850.2	-20.72	38.48	17.76	0.06	V
	661	1880.0	-19.59	38.59	19.00	0.08	V
	810	1909.8	-19.58	38.87	19.29	0.08	V

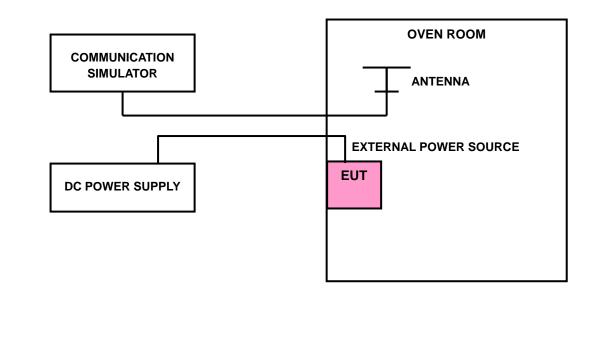
4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT

According to the FCC part 24.235 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The frequency error rate is according to the JTC standard that the frequency error rate shall be accurate to within 2.5ppm of the received frequency from the base station.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Spectrum Analyzer Agilent	E4446A	MY43360128	Feb. 22, 2011	Feb. 21, 2012
Hewlett Packard RF cable	8120-6192	01428251	NA	NA
RF cable	SUCOFLEX 104	257029	Sep. 11, 2011	Sep. 10, 2012
WIT Standard Temperature & Humidity Chamber	MHU-225AU	920842	Jun. 15, 2011	Jun. 14, 2012


NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST PROCEDURE

- a. Because of the measure the carrier frequency under the condition of the AFC lock, it shall be used the mobile station in the GSM link mode. This is accomplished with the use of the R&S CMU200 / JRC NJZ-2000 simulator station. The oven room could control the temperatures and humidity. The GSM link channel is 190.
- b. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- c. EUT is connected the external power supply to control the DC input power. The various Volts from the minimum 3.6Volts to 4.2Volts. Each step shall be record the frequency error rate.
- d. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the +/-0.5 $^{\circ}$ C during the measurement testing.
- e. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the GSM simulator.

4.2.4 TEST SETUP

4.2.5 TEST RESULTS

FOR GSM:

AFC FREQUENCY ERROR vs. VOLTAGE						
VOLTAGE (Volts)	FREQUENCY ERROR (Hz)	FREQUENCY ERROR (ppm)	LIMIT (ppm)			
3.8	-56.11	-0.03	2.5			
3.6	-72.24	-0.04	2.5			
4.2	-56.07	-0.03	2.5			

	AFC FREQUENCY ERROR vs. TEMP.						
TEMP. (℃)	FREQUENCY ERROR (Hz)	FREQUENCY ERROR (ppm)	LIMIT (ppm)				
-10	-46.9	-0.02	2.5				
0	-52.4	-0.03	2.5				
10	-42.6	-0.02	2.5				
20	47.35	0.02	2.5				
30	-41.16	-0.02	2.5				
40	44.55	0.02	2.5				
50	-50.29	-0.03	2.5				
55	51.3	0.03	2.5				

FOR E-GPRS:

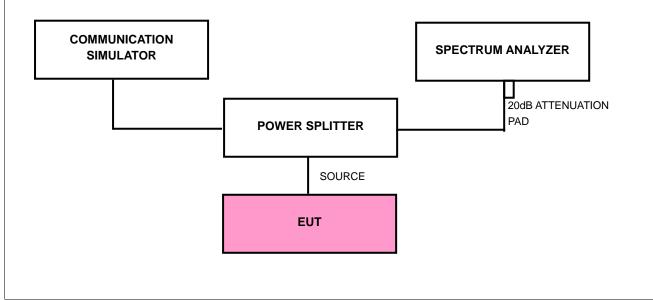
AFC FREQUENCY ERROR vs. VOLTAGE						
VOLTAGE (Volts)	FREQUENCY ERROR (Hz)	FREQUENCY ERROR (ppm)	LIMIT (ppm)			
3.8	37.61	0.02	2.5			
3.6	47.73	0.03	2.5			
4.2	35.43	0.02	2.5			

NOTE: The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.2Vdc.

AFC FREQUENCY ERROR vs. TEMP.						
ТЕМР. (℃)	FREQUENCY ERROR (Hz)	LIMIT (ppm)				
-10	34.37	0.02	2.5			
0	32.6	0.02	2.5			
10	30.78	0.02	2.5			
20	37.26	0.02	2.5			
30	38.2	0.02	2.5			
40	38.79	0.02	2.5			
50	41.87	0.02	2.5			
55	37.45	0.02	2.5			

4.3 OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT


The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the totalmean power of a given emission.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100039	Feb. 23, 2011	Feb. 22, 2012
Mini-Circuits Power Splitter	ZN2PD-9G	NA	May 25, 2011	May 24, 2012
RF cable	SUCOFLEX 104	274403/4	Aug. 20, 2011	Aug. 19, 2012
RF cable	SUCOFLEX 104	250729/4	Aug. 19, 2011	Aug. 18, 2012
RF cable	SUCOFLEX 104	214377/4	Aug. 19, 2011	Aug. 18, 2012
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

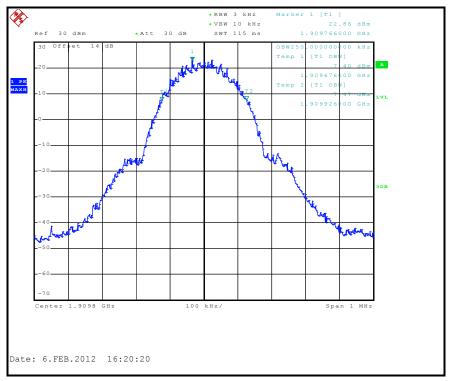
4.3.3 TEST SETUP

4.3.4 TEST PROCEDURES

- a. The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 512, 661 and 810 (GSM / E-GPRS) (low, middle and high operational frequency range.)
- b. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.3.5 EUT OPERATING CONDITION

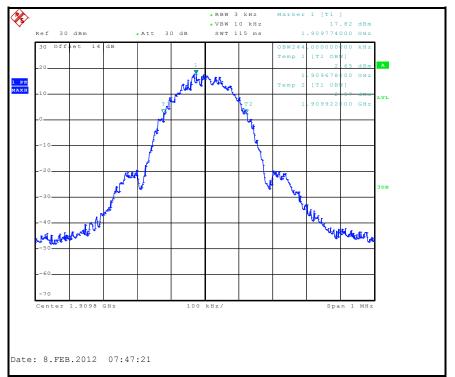
- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled a EUT to export maximum and minimum output power under transmission mode and specific channel frequency.



4.3.6 TEST RESULTS

FOR GSM MODE

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (kHz)
512	1850.2	246
661	1880.0	246
810	1909.8	250

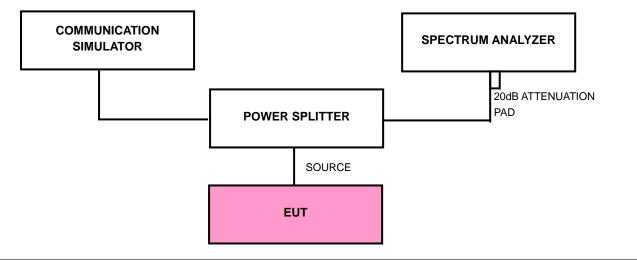


CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (kHz)
512	1850.2	242
661	1880.0	238
810	1909.8	244

FOR E-GPRS MODE

4.4 BAND EDGE MEASUREMENT

4.4.1 LIMITS OF BAND EDGE MEASUREMENT


According to FCC 24.238(a) specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100039	Feb. 23, 2011	Feb. 22, 2012
Mini-Circuits Power Splitter	ZN2PD-9G	NA	May 25, 2011	May 24, 2012
RF cable	SUCOFLEX 104	274403/4	Aug. 20, 2011	Aug. 19, 2012
RF cable	SUCOFLEX 104	250729/4	Aug. 19, 2011	Aug. 18, 2012
RF cable	SUCOFLEX 104	214377/4	Aug. 19, 2011	Aug. 18, 2012
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

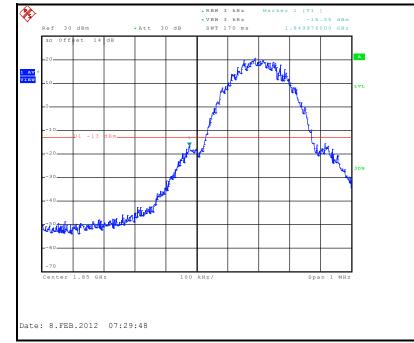
NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

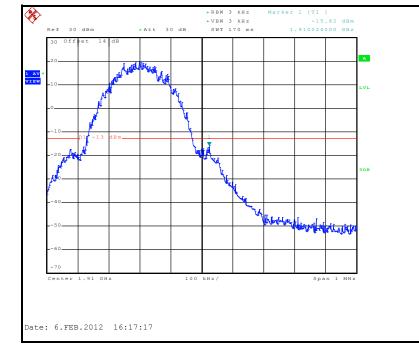
4.4.3 TEST SETUP

4.4.4 TEST PROCEDURES

- a. The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels, 512 and 810 (GSM / E-GPRS) (low and high operational frequency range.)
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 3kHz and VB of the spectrum is 3kHz (GSM / E-GPRS).
- d. Record the max trace plot into the test report.

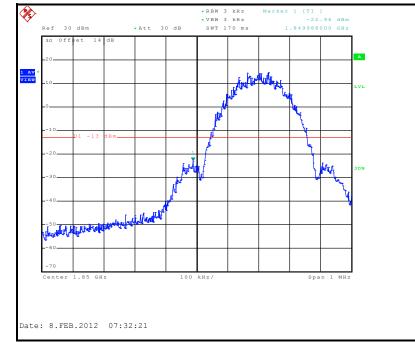
4.4.5 EUT OPERATING CONDITION

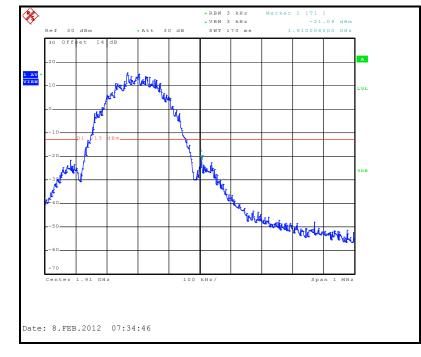

- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.


4.4.6 TEST RESULTS

FOR GSM MODE

LOWER BAND EDGE


HIGHER BAND EDGE



FOR E-GPRS MODE

LOWER BAND EDGE

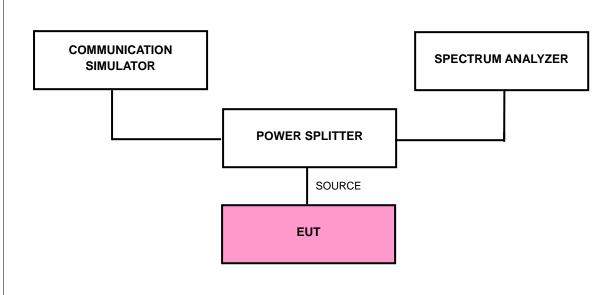
HIGHER BAND EDGE

4.5 CONDUCTED SPURIOUS EMISSIONS

4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

In the FCC 24.238(a), On any frequency outside a licensee's frequency block within USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The specified minimum attenuation becomes 43dB and the limit of emission equal to -13dBm.

4.5.2 TEST INSTRUMENTS


DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100039	Feb. 23, 2011	Feb. 22, 2012
Mini-Circuits Power Splitter	ZN2PD-9G	NA	May 25, 2011	May 24, 2012
RF cable	SUCOFLEX 104	274403/4	Aug. 20, 2011	Aug. 19, 2012
RF cable	SUCOFLEX 104	250729/4	Aug. 19, 2011	Aug. 18, 2012
RF cable	SUCOFLEX 104	214377/4	Aug. 19, 2011	Aug. 18, 2012
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

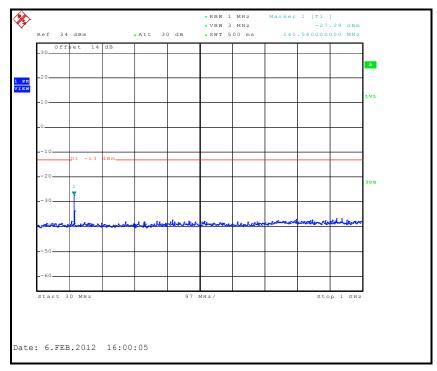
NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

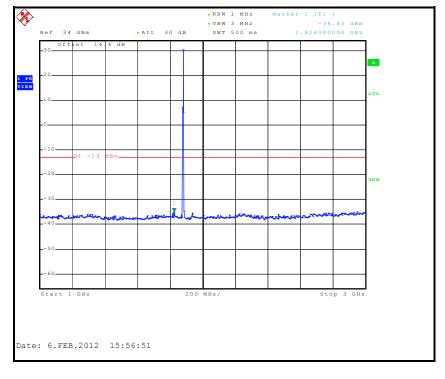
4.5.3 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at channel 661 (GSM / E-GPRS).
- b. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. Measuring frequency range is from 30 MHz to 19.1GHz. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

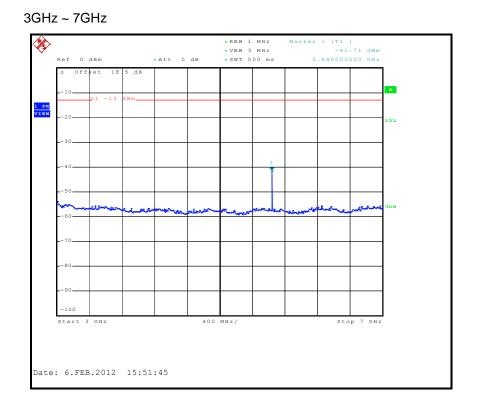
4.5.4 TEST SETUP

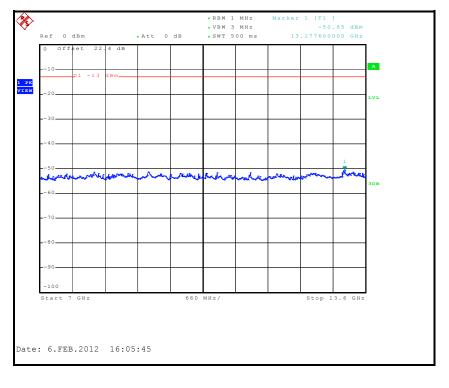
4.5.5 EUT OPERATING CONDITIONS

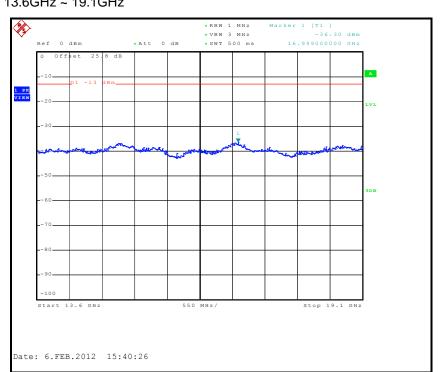

- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.


4.5.6 TEST RESULTS

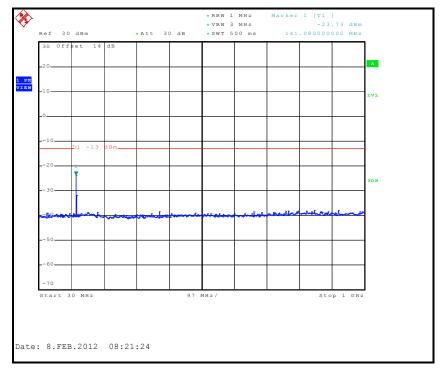
FOR GSM:


CH 661: 30MHz ~ 1GHz

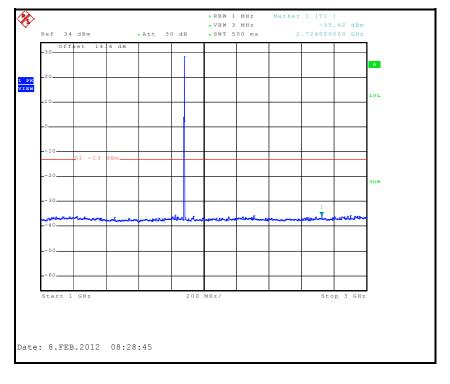

1GHz ~ 3GHz



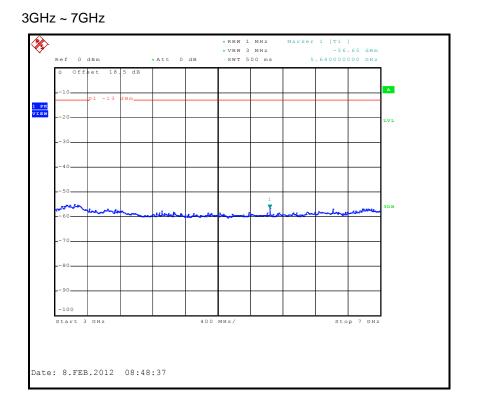
7GHz ~ 13.6GHz

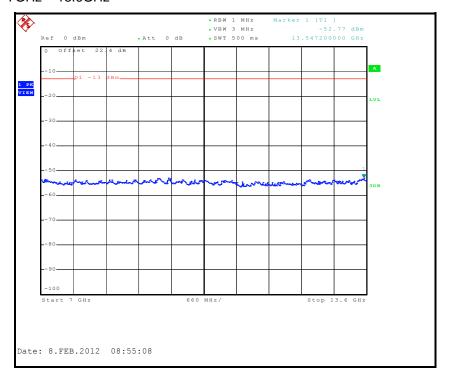


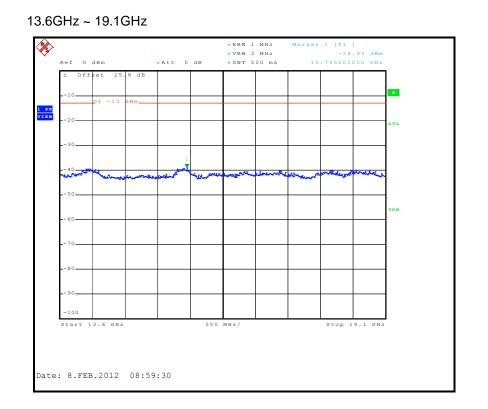
13.6GHz ~ 19.1GHz



FOR E-GPRS:


CH 661: 30MHz ~ 1GHz


1GHz ~ 3GHz



7GHz ~ 13.6GHz

4.6 RADIATED EMISSION MEASUREMENT

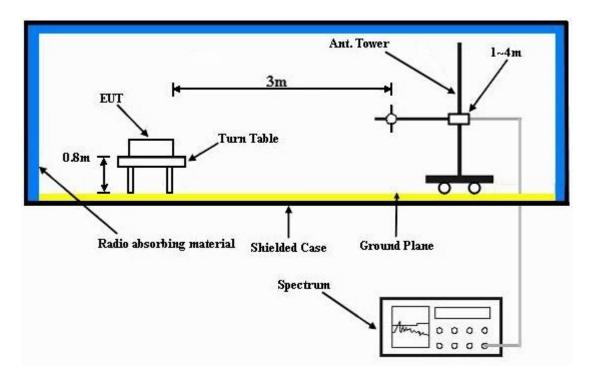
4.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 24.238(a), On any frequency outside a licensee's frequency block within USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The emission of limit equal to -13dBm.

4.6.2 TEST INSTRUMENTS

Same as 4.1.2.

4.6.3 TEST PROCEDURES


- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.6.4 DEVIATION FROM TEST STANDARD

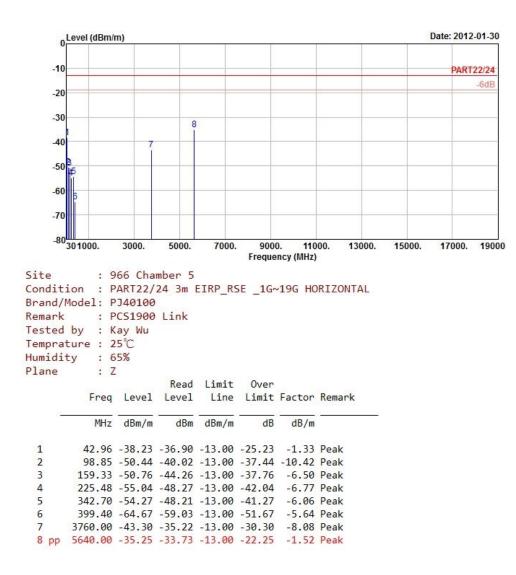
No deviation

4.6.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

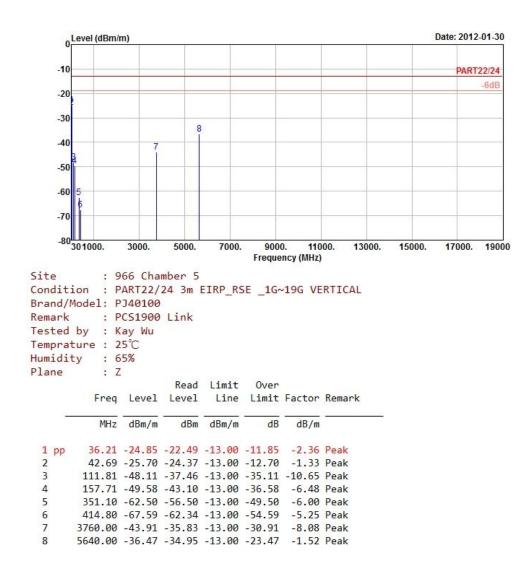
4.6.6 EUT OPERATING CONDITIONS

- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

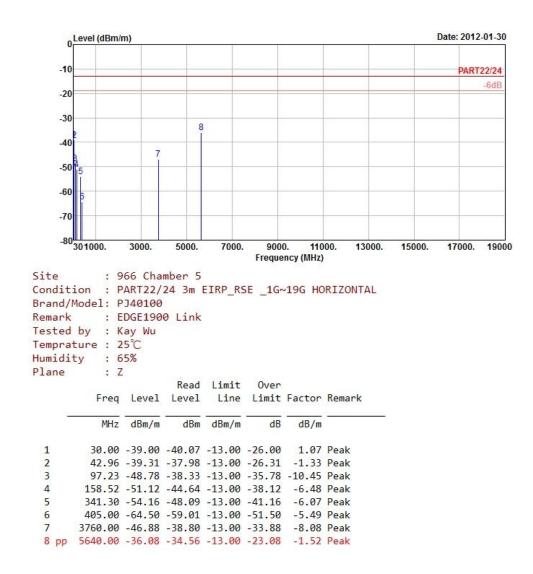


4.6.7 TEST RESULTS

Test Mode A

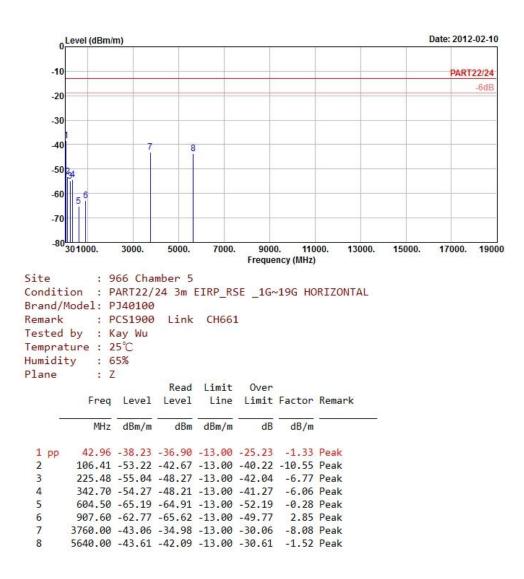

FOR GSM:

ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	INPUT POWER	120Vac, 60 Hz
TESTED BY	Kay Wu	POLARIZATION	Horizontal


ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	INPUT POWER	120Vac, 60 Hz
TESTED BY	Kay Wu	POLARIZATION	Vertical

FOR E-GPRS:

ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	INPUT POWER	120Vac, 60 Hz
TESTED BY	Kay Wu	POLARIZATION	Horizontal


ENVIRONMENTAL CONDITIONS ESTED BY		250	25deg. C, 65%RH Kay Wu			- I	INPUT POWER POLARIZATION				120Vac, 60 Hz
		Кау									Vertical
OLeve	el (dBm/n	n)							I	Date: 201	12-01-30
-10										PAR	T22/24
-20								-	_		-6dB
2											
-30	1			8			0				
-40				Ĩ –							
		7									
-50											
-60 5									_		
-00 3											
-70	<u>.</u>						-				I
-803010	000.	3000.	5000	. 7000	. 900	0. 110	00. 13	3000. ···	15000.	17000.	. 19000
-803010	000.	3000.	5000	. 7000		0. <mark>11</mark> 0 ency (MHz)		3000.	15000.	17000	. 19000
-803010		3000. 66 Cha						3000.	15000.	17000	. 19000
3010	: 90	66 Cha	mber	5	Freque	ency (MHz)			15000.	17000	. 19000
3010 Site	: 90 : P/	66 Cha ART22/	mber 24 3m	5	Freque	ency (MHz)			15000.	17000.	. 19000
Site Condition Brand/Mod Remark	: 90 : P/ el: P: : EU	66 Cha ART22/ J40100 DGE190	mber 24 3m	5 EIRP_R	Freque	ency (MHz)			15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by	: 90 : P/ el: P : EI : Ka	66 Cha ART22/ J40100 DGE190 ay Wu	mber 24 3m	5 EIRP_R	Freque	ency (MHz)			15000.	17000	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur	: 90 : P/ el: P: : El : Ka e : 2!	66 Cha ART22/ J40100 DGE190 ay Wu 5℃	mber 24 3m	5 EIRP_R	Freque	ency (MHz)			15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity	: 90 : P/ el: P: : El : Ki e : 2! : 6!	66 Cha ART22/ J40100 DGE1900 ay Wu 5℃ 5%	mber 24 3m	5 EIRP_R	Freque	ency (MHz)			15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur	: 90 : P/ el: P: : El : Ka e : 2!	66 Cha ART22/ J40100 DGE1900 ay Wu 5℃ 5%	mber 24 3m 0 Lin	5 EIRP_R k	Freque	ency (MHz)			15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity	: 90 : P) el: P: : El : Ka e : 2! : 6! : Z	66 Cha ART22/ J40100 DGE1900 ay Wu 5℃ 5%	mber 24 3m 0 Lin Read	5 EIRP_R k d Limit	Freque SE _1G [,] Over	•ncy (MHz) ∙19G VE	RTICAL		15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity	: 90 : P) el: P: : El : Ka e : 2! : 6! : Z	66 Cha ART22/ J40100 DGE1900 ay Wu 5℃ 5%	mber 24 3m 0 Lin Read	5 EIRP_R k	Freque SE _1G [,] Over	•ncy (MHz) ∙19G VE	RTICAL		15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity	: 90 : P/ el: P: : El : Ki : 69 : 2 Freq	66 Cha ART22/ J40100 DGE190 ay Wu 5°C 5% Level	mber 24 3m 0 Lin Rea Leve	5 EIRP_R k d Limit	Freque SE _1G [,] Over Limit	Factor	RTICAL		15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity Plane	: 90 : P) el: P: : El : Ki e : 2! : 6! : Z Freq MHz	66 Chai ART22/ J40100 DGE1900 ay Wu 5°C 5% Level dBm/m	mber 24 3m 0 Lin Read Leve dBr	5 EIRP_R k d Limit l Line m dBm/m	Freque SE _1G Over Limit dB	Factor Bactor Bactor	RTICAL		15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity Plane	: 90 : P/ el: P: : EL : K4 e : 2! : 6! : Z Freq MHz 36.21	66 Chai ART22/ J40100 DGE1900 ay Wu 5°C 5% Level dBm/m -25.40	mber 24 3m 0 Lin Read Leve dBu -23.04	5 EIRP_R k d Limit l Line	Freque SE _1G Over Limit dB -12.40	Factor -19G / VE - Factor - dB/m - 2.36	RTICAL		15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity Plane	: 96 : P/ el: P: : El : Ka e : 2! : 6! : Z Freq MHz 36.21 42.42	66 Chai ART22/ J40100 DGE190 ay Wu 5°C 5% Level dBm/m -25.40 -27.55	mber 24 3m 24 3m 0 Lin Reaa Leve dBi -23.04 -26.22	5 EIRP_R k d Limit l Line n dBm/m 4 -13.00	Freque SE _1G Over Limit dB -12.40 -14.55	Factor -2.36 -1.33	RTICAL Remark Peak Peak		15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity Plane	: 96 : P/ el: P: : El : Ki e : 2! : 6! : Z Freq MHz 36.21 42.42 10.19	66 Chai ART22/ J40100 DGE1900 ay Wu 5°C 5% Level dBm/m -25.40 -27.55 -50.48	mber 24 3m 24 3m 0 Lin Read Leve dBi -23.04 -26.22 -39.85	5 EIRP_R: k d Limit l Line m dBm/m 4 -13.00 2 -13.00	Freque SE _1G Over Limit 	Factor -2.36 -10.63	RTICAL Remark Peak Peak Peak		15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity Plane 1 pp 2 4 3 1: 4 1: 5 3:	: 96 : P/ el: P: : El : Ki e : 2! : 6! : Z Freq MHz 36.21 42.42 10.19 59.33	66 Chai ART22/ J40100 DGE190 ay Wu 5°C 5% Level dBm/m -25.40 -27.55 -50.48 -50.26	mber 24 3m 24 3m 0 Lin Read Leve dBr -23.04 -26.22 -39.81 -43.70	5 EIRP_R: k d Limit l Line m dBm/m 4 -13.00 2 -13.00 5 -13.00	Freque SE _1G Over Limit -12.40 -14.55 -37.48 -37.26	Factor -19G VE -19G VE -100 -1.33 -10.63 -6.50	RTICAL Remark Peak Peak Peak Peak Peak		15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity Plane 1 pp 2 4 3 1: 4 1: 5 3: 6 3:	: 96 : P/ el: P: : El : Ki e : 2! : 6! : Z Freq MHz 36.21 42.42 10.19 59.33 01.40 41.30	66 Chai ART22/ J40100 DGE190 ay Wu 5°C 5% Level dBm/m -25.40 -27.55 -50.48 -50.26 -62.36 -62.72	mber 24 3m 24 3m 0 Lin Read Leve -23.04 -26.22 -39.81 -43.70 -55.99 -56.61	5 EIRP_R: k d Limit l Line m dBm/m 4 -13.00 2 -13.00 5 -13.00 9 -13.00 5 -13.00	Freque SE _1G Over Limit -12.40 -14.55 -37.48 -37.26 -49.36 -49.72	Factor -19G VE Factor dB/m -2.36 -1.33 -10.63 -6.50 -6.37 -6.07	RTICAL Remark Peak Peak Peak Peak Peak Peak Peak Pea		15000.	17000.	. 19000
Site Condition Brand/Mod Remark Tested by Tempratur Humidity Plane 1 pp 2 4 3 1: 4 1: 5 3: 6 3: 7 37	: 96 : P/ el: P: : El : Ki e : 2! : 6! : Z Freq MHz 36.21 42.42 10.19 59.33 01.40 41.30 60.00	66 Chai ART22/ J40100 DGE190 ay Wu 5°C 5% Level dBm/m -25.40 -27.55 -50.48 -50.26 -62.36 -62.72 -47.95	mber 24 3m 0 Lin 0 Lin 23.04 -26.2 -39.8 -43.70 -55.99 -56.6 -39.8	5 EIRP_R: k d Limit l Line m dBm/m 4 -13.00 2 -13.00 5 -13.00 9 -13.00	Freque SE _1G Over Limit -12.40 -14.55 -37.48 -37.26 -49.36 -49.32 -34.95	Factor -19G VE -19G VE -19G VE -19G VE -2.36 -1.33 -10.63 -6.50 -6.37 -6.07 -8.08	RTICAL Remark Peak Peak Peak Peak Peak Peak Peak Pea		15000.	17000.	. 19000

Test Mode B

FOR GSM:

ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	INPUT POWER	120Vac, 60 Hz
TESTED BY	Kay Wu	POLARIZATION	Horizontal

NVIRONMENTAL ONDITIONS	25d	25deg. C, 65%RH			1	INPUT POWER				120Vac, 60 Hz
ESTED BY	Kay	/ Wu			1	POLAF	RIZATIO	ON		Vertical
	1100 I.									0.00.40
0 Level (dBn	1/m)	-	-					U	ate: 2012	2-02-10
-10									DART	22/24
									PARI	-6dB
-20							-			
-30										
	7									
-40		8	6							1
-50										
12.04										
-60 4 5 ⁶										
						0				
-70										
-70										
-70 -80 30 1000.	3000.	5000.	7000.	900	0. <mark>11</mark> 0	00. 13	3000. 1	5000.	17000.	19000
80	3000.	5000.	7000.		0. <mark>11</mark> 0 ency (MHz)		3000. 1	5000.	17000.	19000
-80 301000.	3000. 966 Char		7000.				3000. 1	5000.	17000.	19000
-80 301000.	966 Char	mber 5		Freque	ency <mark>(</mark> MHz)			15000.	17000.	19000
-80 ₃₀₁₀₀₀ . Site : Condition : Brand/Model:	966 Char PART22/2 PJ40100	mber 5 24 3m	EIRP_RS	Freque	ency <mark>(</mark> MHz)			15000.	17000.	19000
-80 ₃₀₁₀₀₀ . Site : Condition : Brand/Model: Remark :	966 Char PART22/: PJ40100 PCS1900	mber 5 24 3m	EIRP_RS	Freque	ency <mark>(</mark> MHz)			5000.	17000.	19000
-80 ₃₀₁₀₀₀ . Site : Condition : Brand/Model: Remark : Tested by :	966 Char PART22/: PJ40100 PCS1900 Kay Wu	mber 5 24 3m	EIRP_RS	Freque	ency <mark>(</mark> MHz)			5000.	17000.	19000
-80 ₃₀₁₀₀₀ . Site : Condition : Brand/Model: Remark : Tested by : Temprature :	966 Char PART22/: PJ40100 PCS1900 Kay Wu 25℃	mber 5 24 3m	EIRP_RS	Freque	ency <mark>(</mark> MHz)			15000.	17000.	19000
-80 301000. Site : Condition : Brand/Model: Remark : Tested by : Temprature : Humidity :	966 Char PART22/2 PJ40100 PCS1900 Kay Wu 25℃ 65%	mber 5 24 3m	EIRP_RS	Freque	ency <mark>(</mark> MHz)			5000.	17000.	19000
-80 ₃₀₁₀₀₀ . Site : Condition : Brand/Model: Remark : Tested by : Temprature :	966 Char PART22/2 PJ40100 PCS1900 Kay Wu 25℃ 65%	mber 5 24 3m Link	EIRP_RS	Freque	×ncy (MHz)			15000.	17000.	19000
-80 301000. Site : Condition : Brand/Model: Remark : Tested by : Temprature : Humidity : Plane :	966 Char PART22/2 PJ40100 PCS1900 Kay Wu 25℃ 65%	mber 5 24 3m 1 Link Read	EIRP_RS CH661 Limit	Freque	×ncy (MHz)	RTICAL		5000.	17000.	19000
-80 301000. Site : Condition : Brand/Model: Remark : Tested by : Temprature : Humidity : Plane : Free	966 Char PART22/: PJ40100 PCS1900 Kay Wu 25℃ 65% Z	nber 5 24 3m Link Read Level	EIRP_RS CH661 Limit	Freque	Factor	RTICAL		15000.	17000.	19000
-80 301000. Site : Condition : Brand/Model: Remark : Tested by : Temprature : Humidity : Plane : Free MH:	966 Char PART22/: PJ40100 PCS1900 Kay Wu 25°C 65% Z q Level z dBm/m	mber 5 24 3m 1 Link Read Level dBm	EIRP_RS CH661 Limit Line dBm/m	Freque 5E _1G* L Limit dB	×19G VE ×19G VE Factor dB/m	RTICAL Remark		5000.	17000.	19000
-80 301000. Site : Condition : Brand/Model: Remark : Tested by : Temprature : Humidity : Plane : Free MH: 1 pp 47.02	966 Char PART22/: PJ40100 PCS1900 Kay Wu 25°C 65% Z 4 Level 2 dBm/m L -33.90	mber 5 24 3m 1 Link Read Level dBm -31.01	EIRP_RS CH661 Limit Line dBm/m -13.00	Freque 5E _1G* L Uver Limit dB -20.90	+ncy (MHz) -19G VE Factor dB/m -2.89	RTICAL		5000.	17000.	19000
-80 301000. Site : Condition : Brand/Model: Remark : Tested by : Temprature : Humidity : Plane : Free MH: 1 pp 47.0: 2 112.0:	966 Char PART22/: PJ40100 PCS1900 Kay Wu 25°C 65% Z q Level z dBm/m	mber 5 24 3m Link Read Level dBm -31.01 -37.61	EIRP_RS CH661 Limit Line dBm/m -13.00 -13.00	Freque SE _1G* L Uver Limit dB -20.90 -35.28	Factor -2.89 -10.67	RTICAL Remark Peak Peak		15000.	17000.	19000
-80 301000. Site : Condition : Brand/Model: Remark : Tested by : Temprature : Humidity : Plane : Free MH: 1 pp 47.0: 2 112.0: 3 217.9:	966 Char PART22/: PJ40100 PCS1900 Kay Wu 25℃ 65% Z d Level z dBm/m L -33.90 3 -48.28	mber 5 24 3m Link Read Level dBm -31.01 -37.61 -58.21	EIRP_RS CH661 Limit Line dBm/m -13.00 -13.00	Freque 5E _1G* 0ver Limit -20.90 -35.28 -52.33	Factor -2.89 -10.67 -7.12	RTICAL Remark Peak Peak Peak		15000.	17000.	19000
-80 301000. Site : Condition : Brand/Model: Remark : Tested by : Temprature : Humidity : Plane : Free MH: 1 pp 47.0: 2 112.0: 3 217.9: 4 300.00	966 Char PART22/2 PJ40100 Kay Wu 25℃ 65% Z Level z dBm/m L -33.90 3 -48.28 2 -65.33	mber 5 24 3m Link Read Level dBm -31.01 -37.61 -58.21 -56.32	EIRP_RS CH661 Limit Line dBm/m -13.00 -13.00 -13.00	Freque 5E _1G* 0ver Limit -20.90 -35.28 -52.33 -49.70	Factor -19G VE -19G VE -19G VE -2.89 -10.67 -7.12 -6.38	RTICAL Remark Peak Peak Peak Peak Peak		15000.	17000.	19000
-80 301000. Site : Condition : Brand/Model: Remark : Tested by : Temprature : Humidity : Plane : Free MH: 1 pp 47.0: 2 112.0: 3 217.9: 4 300.00 5 609.44 6 811.00	966 Char PART22/: PJ40100 PCS1900 Kay Wu 25℃ 65% Z Level z dBm/m L -33.90 3 -48.28 2 -65.33 0 -62.70 0 -66.47 0 -64.33	mber 5 24 3m Link Read Level dBm -31.01 -37.61 -58.21 -56.32 -66.28 -66.52	EIRP_RS CH661 Limit Line dBm/m -13.00 -13.00 -13.00 -13.00 -13.00	Freque 5E _1G^ 0ver Limit -20.90 -35.28 -52.33 -49.70 -53.47 -51.33	Factor -19G VE -19G VE -19G VE -2.89 -10.67 -7.12 -6.38 -0.19 2.19	RTICAL Remark Peak Peak Peak Peak Peak Peak Peak		15000.	17000.	19000
-80 301000. Site : Condition : Brand/Model: Remark : Tested by : Temprature : Humidity : Plane : Free MH: 1 pp 47.00 2 112.00 3 217.90 4 300.00 5 609.40 6 811.00 7 3760.00	966 Char PART22/2 PJ40100 Kay Wu 25℃ 65% Z Level z dBm/m L -33.90 3 -48.28 2 -65.33 ∂ -62.70 ∂ -66.47	mber 5 24 3m Link Read Level dBm -31.01 -37.61 -58.21 -56.32 -66.28 -66.52 -29.53	EIRP_R9 CH661 Limit Line dBm/m -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	Freque 5E _1G- 1 0ver Limit -20.90 -35.28 -52.33 -49.70 -53.47 -51.33 -24.61	Factor -19G VE -19G VE -19G VE -2.89 -10.67 -7.12 -6.38 -0.19 2.19 -8.08	RTICAL Remark Peak Peak Peak Peak Peak Peak Peak Pea		15000.	17000.	19000

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5.phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050 Email: service.adt@tw.bureauveritas.com Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.

---END----