

FCC TEST REPORT (PART 22)

 REPORT NO.:
 RF110727C21B

 MODEL NO.:
 PI39110

 FCC ID:
 NM8PI39110

 RECEIVED:
 Sep. 09, 2011

 TESTED:
 Sep. 15 ~ Sep. 16, 2011

 ISSUED:
 Sep. 19, 2011

APPLICANT: HTC Corporation

ADDRESS: 23, Xinghua Rd., Taoyuan 330, Taiwan, R.O.C.

ISSUED BY:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
LAB ADDRESS:	No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 47 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

RELEAS	SE CONTROL RECORD	
1	CERTIFICATION	
2	SUMMARY OF TEST RESULTS	
2.1	MEASUREMENT UNCERTAINTY	
3	GENERAL INFORMATION	
3.1	GENERAL DESCRIPTION OF EUT	
3.2	DESCRIPTION OF TEST MODES	8
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	. 11
3.4	DESCRIPTION OF SUPPORT UNITS	
4	TEST TYPES AND RESULTS	
4.1	OUTPUT POWER MEASUREMENT	
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	
4.1.2	TEST INSTRUMENTS	.13
4.1.3	TEST PROCEDURES	.14
4.1.4	TEST SETUP	.15
4.1.5	EUT OPERATING CONDITIONS	.15
4.1.6	TEST RESULTS	.16
4.2	FREQUENCY STABILITY MEASUREMENT	.17
4.2.1	LIMITS OF FREQUENCY STABILIITY MEASUREMENT	.17
4.2.2	TEST INSTRUMENTS	.17
4.2.3	TEST PROCEDURE	.18
4.2.4	TEST SETUP	.18
4.2.5	TEST RESULTS	.19
4.3	OCCUPIED BANDWIDTH MEASUREMENT	.20
4.3.1	LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT	.20
4.3.2	TEST INSTRUMENTS	.20
4.3.3	TEST SETUP	.20
4.3.4	TEST PROCEDURES	.21
4.3.5	EUT OPERATING CONDITION	.21
4.3.6	TEST RESULTS	.22
4.4	BAND EDGE MEASUREMENT	.25
4.4.1	LIMITS OF BAND EDGE MEASUREMENT	.25
4.4.2	TEST INSTRUMENTS	.25
4.4.3	TEST SETUP	.25
4.4.4	TEST PROCEDURES	.26
4.4.5	EUT OPERATING CONDITION	.26
4.4.6	TEST RESULTS	.27

4.5	CONDUCTED SPURIOUS EMISSIONS	
4.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	
4.5.2	TEST INSTRUMENTS	
4.5.3	TEST PROCEDURE	31
4.5.4	TEST SETUP	31
4.5.5	EUT OPERATING CONDITIONS	31
4.5.6	TEST RESULTS	32
4.6	RADIATED EMISSION MEASUREMENT	
4.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.6.2	TEST INSTRUMENTS	
4.6.3	TEST PROCEDURES	
4.6.4	DEVIATION FROM TEST STANDARD	
4.6.5	TEST SETUP	40
4.6.6	EUT OPERATING CONDITIONS	40
4.6.7	TEST RESULTS (FREQUENCY RANGE BELOW 1GHz)	41
4.6.8	TEST RESULTS (FREQUENCY RANGE ABOVE 1GHz)	42
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	45
6	INFORMATION ON THE TESTING LABORATORIES	
7	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CH	
	TO THE EUT BY THE LAB	4/

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	N/A	Sep. 16, 2011

1 CERTIFICATION

PRODUCT: Windows Phone MODEL: PI39110 BRAND: HTC APPLICANT: HTC Corporation TEST SAMPLE: Production Unit TESTED : Sep. 15 ~ Sep. 16, 2011 STANDARDS : FCC Part 22, Subpart H ANSI C63.4-2003

This report is issued as a supplementary report of **RF110727C21-2**. This report shall be used combined together with its original report.

PREPARED BY	:, DATE : Sep. 16, 2011
APPROVED BY	: DATE : Sep. 16, 2011 Gary Chang. / Technical Manager

NOTE: The only the testing for WCDMA band V was performed for this addendum. Refer to original report for the other test data.

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 22 & Part 2						
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK			
2.1046 22.913 (a)	Maximum Peak Output Power Limit: max. 7 watts e.r.p peak power	PASS	Meet the requirement of limit. Max. e.r.p is 14.0dBm at 846.6MHz.			
2.1055	Frequency Stability AFC Freq. Error vs. Voltage AFC Freq. Error vs. Temperature Limit: max. ±2.5ppm	PASS	Meet the requirement of limit.			
2.1049 (h)	Occupied Bandwidth	PASS	Meet the requirement of limit.			
22.917	Band Edge Measurements	PASS	Meet the requirement of limit.			
2.1051 22.917	Conducted Spurious Emissions	PASS	Meet the requirement of limit.			
2.1053 22.917	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is –27.8dB at 2509.2MHz.			

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions 9kHz~30MHz		2.44 dB
Radiated emissions	30MHz ~ 200MHz	3.34 dB
	200MHz ~1000MHz	3.35 dB
	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION 3.1 GENERAL DESCRIPTION OF FUT

3.1 GENERAL DESCRIPTION OF EUT							
EUT	Windows Phone						
MODEL NO.	PI39110						
FCC ID	NM8PI39110						
POWER SUPPLY	5.0Vdc (adapter or host equipment) 3.8Vdc (battery)						
MODULATION TYPE	WCDMA BPSK						
FREQUENCY RANGE	WCDMA 826.4MHz ~ 846.6MHz						
MAX. ERP POWER	WCDMA	0.0251 Watts					
WCDMA RELEASE VERSION	6						
ANTENNA TYPE	Fixed antenna with 0dBi	gain					
I/O PORTS	Refer to users' manual						
DATA CABLE	Refer to Note as below						
ACCESSORY DEVICES	Refer to Note as below						

NOTE:

1. This is a supplementary report of RF110727C21-2. This report shall be combined together with its original report.

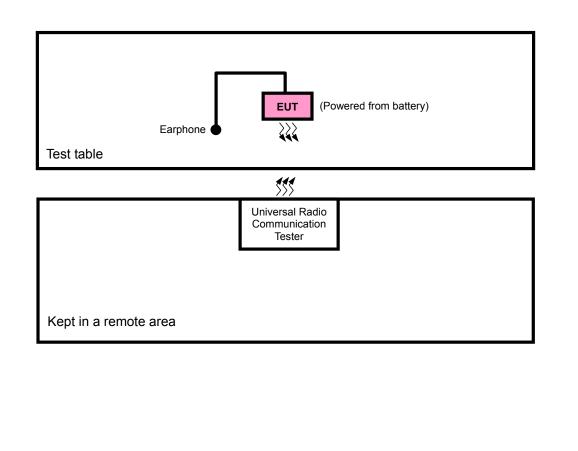
- 2. This report is prepared for FCC class II permissive change. Difference compared with the original report is adding WCDMA Band V by software enabled. Therefore, only the testing for WCDMA band V was performed for this addendum.
- The EUT's accessories list refers to Ext Pho_NM8PI39110.pdf.
 ** Main Sample + Items of 1, 4, 5 and 7 are the worst combination for final test.
- 4. IMEI Code: 35803504******.
- 5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

FOR WCDMA:

102 channels are provided to this EUT. Therefore, the low, middle and high channels are chosen for testing.

	CHANNEL	FREQUENCY	TX MODE
LOW	4132	826.4 MHz	WCDMA, HSDPA, HSUPA
MIDDLE	4182	836.4 MHz	WCDMA, HSDPA, HSUPA
HIGH	4233	846.6 MHz	WCDMA, HSDPA, HSUPA


NOTE:

1. Below 1 GHz, the channel 4132, 4182 and 4233 were pre-tested in chamber. The channel 4233 was chosen for final test.

2. Above 1 GHz, the channel 4132, 4182 and 4233 were tested individually.

- 3. The channel space is 0.2MHz.
- After pretest of output power and spurious emission under WCDMA-RMC, HSDPA & HSUPA mode, find the worst mode is WCDMA-RMC. Therefore, select WCDMA-RMC mode to do final test

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL FOR WCDMA:

	EUT CONFIGURE		APPLICABLE TO						DESCRIPTION
	MODE	OP	FS	ОВ	BE	CE	RE<1G	RE≥1G	DESCRIPTION
	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
	WhereOP: Output powerFS: Frequency stabilityOB: Occupied bandwidthBE: Band edgeCE: Conducted spurious emissionsRE<1G: Radiated emission below 1GHz								
<u>OUT</u>	OUTPUT POWER MEASUREMENT:								
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).									
F	Following channel(s) was (were) selected for the final test as listed below.							ed below	

AVAILABLE CHANNEL	AVAILABLE CHANNEL TESTED CHANNEL MODUL		AXIS
4132 to 4233	4132, 4182, 4233	WCDMA	Z

FREQUENCY STABILITY MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

\bowtie	FO	IIC

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4182	WCDMA

OCCUPIED BANDWIDTH MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL MODULATION TECHNOLO	
4132 to 4233	4132, 4182, 4233	WCDMA, HSDPA, HSUPA

BAND EDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4132, 4233	WCDMA

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4132, 4182, 4233	WCDMA

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
4132 to 4233	4233	WCDMA	Z

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
4132 to 4233	4132, 4182, 4233	WCDMA	Z

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
OP	25deg. C, 65%RH	3.8Vdc	Kay Wu
FS	25deg. C, 65%RH	3.8Vdc	Kay Wu
ОВ	25deg. C, 65%RH	3.8Vdc	Kay Wu
ЕМ	25deg. C, 65%RH	3.8Vdc	Kay Wu
BE	25deg. C, 65%RH	3.8Vdc	Kay Wu
CE	25deg. C, 65%RH	3.8Vdc	Kay Wu
RE < 1G	25deg. C, 65%RH	120Vac, 60Hz	Kay Wu
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Kay Wu

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 22 ANSI C63.4-2003 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	UNIVERSAL RADIO COMMUNICATION TESTER	R&S	CMU200	104484	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE 1: All power cords of the above support units are non shielded (1.8m).

NOTE 2: Item 1 acted as a communication partner to transfer data.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated peak output power shall be according to the specific rule Part 22.913 (a) that "Mobile / Portable station are limited to 7 watts e.r.p".

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESIB7	100212	Aug. 02, 2011	Aug. 01, 2012
Spectrum Analyzer ROHDE & SCHWARZ	FSP 40	100041	Jul. 21, 2011	Jul. 20, 2012
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	Apr. 13, 2011	Apr. 12, 2012
HORN Antenna SCHWARZBECK	9120D	209	Aug. 25, 2011	Aug. 24, 2012
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 27, 2010	Dec. 26, 2011
Preamplifier Agilent	8447D	2944A10633	Nov. 02, 2010	Nov. 01, 2011
Preamplifier Agilent	8449B	3008A01964	Nov. 02, 2010	Nov. 01, 2011
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	295014/4	Aug. 19, 2011	Aug. 18, 2012
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	12738/6	Aug. 19, 2011	Aug. 18, 2012
Software ADT.	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA	NA
Turn Table ADT.	TT100.	TT93021703	NA	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

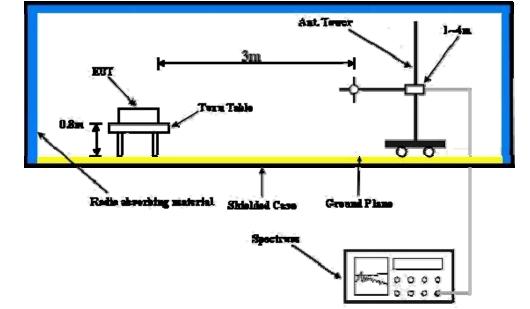
3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

- 4. The FCC Site Registration No. is 988962.
- 5. The IC Site Registration No. is IC 7450F-3.

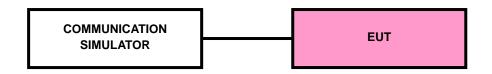
4.1.3 TEST PROCEDURES

EIRP / ERP MEASUREMENT:

- a. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 4132, 4182 and 4233. RWB and VBW are 5MHz.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step c. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- e. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.


CONDUCTED POWER MEASUREMENT:

- a. The EUT was set up for the maximum power with WCDMA link data modulation and link up with simulator.
- b. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.



4.1.4 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo). **CONDUCTED POWER MEASUREMENT:**

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.5 EUT OPERATING CONDITIONS

- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

4.1.6 TEST RESULTS

CONDUCTED POWER

Band		WCDMA V	
Channel	4132	4182	4233
Rx Channel	4357	4407	4458
Frequency	826.4	836.4	846.6
RMC 12.2K	23.35	23.54	23.45
HSDPA Subtest-1	23.26	23.45	23.42
HSDPA Subtest-2	21.47	21.62	21.61
HSDPA Subtest-3	20.23	20.44	20.45
HSDPA Subtest-4	20.02	20.21	20.19
HSUPA Subtest-1	23.04	22.68	23.05
HSUPA Subtest-2	21.45	21.95	21.84
HSUPA Subtest-3	22.11	22.09	22.27
HSUPA Subtest-4	22.31	22.35	22.41
HSUPA Subtest-5	23.33	23.46	23.45

ERP POWER

WCDMA-RMC MODE

ERP POWER					
CHANNEL NO.	FREQUENCY (MHz) S.G VALUE (dBm)		CORRECTION	OUTPUT POWER	
			FACTOR (dB)	dBm	Watt
4132	826.4	22.0	-8.6	13.4	0.0219
4182	836.4	22.1	-8.6	13.5	0.0224
4233	846.6	22.7	-8.7	14.0	0.0251

REMARKS: 1. Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).

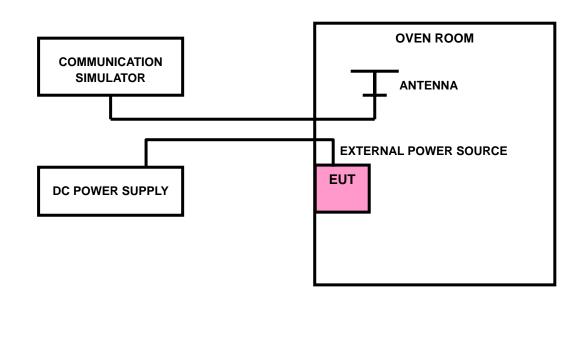
4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT

According to the FCC part 22.863 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The frequency error rate is according to the JTC standard that the frequency error rate shall be accurate to within 2.5ppm of the received frequency from the base station. The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with the 2.1055(a)(1) –30°C ~55°C.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Spectrum Analyzer Agilent	E4446A	MY43360128	Feb. 22, 2011	Feb. 21, 2012
Hewlett Packard RF cable	8120-6192	01428251	NA	NA
RF cable	SUCOFLEX 104	257029	Sep. 11, 2011	Sep. 10, 2012
WIT Standard Temperature & Humidity Chamber	MHU-225AU	920842	Jun. 15, 2011	Jun. 14, 2012


NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST PROCEDURE

- a. Because of the measure the carrier frequency under the condition of the AFC lock, it shall be used the mobile station in the WCDMA link mode. This is accomplished with the use of the R&S CMU200. The oven room could control the temperatures and humidity. The WCDMA link channel is the 4182.
- b. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- c. EUT is connected the external power supply to control the DC input power. The various Volts from the minimum 3.6Volts to 4.35Volts. Each step shall be record the frequency error rate.
- d. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing.
- e. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.4 TEST SETUP

4.2.5 TEST RESULTS

FOR WCDMA:

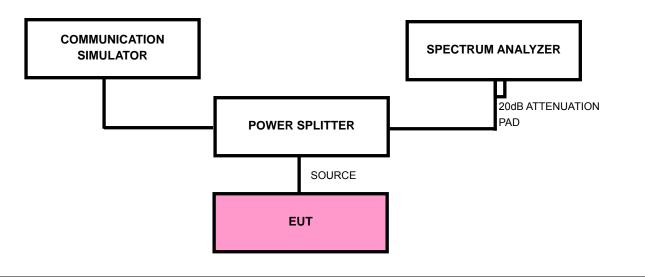
AFC FREQUENCY ERROR vs. VOLTAGE					
VOLTAGE (Volts) FREQUENCY ERROR (Hz) FREQUENCY ERROR (ppm) LIMIT (ppm)					
4.35	-6	-0.007	2.5		
3.6	-8	-0.010	2.5		

NOTE: The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.35Vdc.

	AFC FREQUENCY ERROR vs. TEMP.					
TEMP. (℃)	FREQUENCY ERROR (Hz)	FREQUENCY ERROR (ppm)	LIMIT (ppm)			
55	-28	-0.033	2.5			
50	-23	-0.027	2.5			
40	-17	-0.020	2.5			
30	-15	-0.018	2.5			
20	-9	-0.011	2.5			
10	-5	-0.006	2.5			
0	-3	-0.004	2.5			
-10	-1	-0.001	2.5			
-20	0	0.000	2.5			
-30	4	0.005	2.5			

4.3 OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT


The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the totalmean power of a given emission.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100039	Jan. 11, 2011	Jan. 10, 2012
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Mar. 24, 2011	Mar. 23, 2012
RF cable	SUCOFLEX 104	274403/4	Aug. 20, 2011	Aug. 19, 2012
RF cable	SUCOFLEX 104	250729/4	Aug. 19, 2011	Aug. 18, 2012
RF cable	SUCOFLEX 104	214377/4	Aug. 19, 2011	Aug. 18, 2012
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

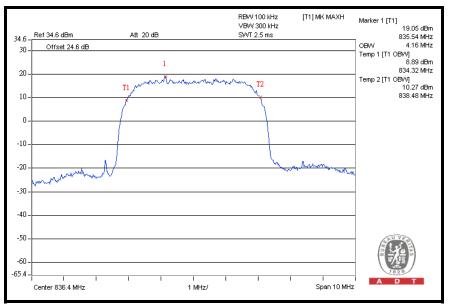
4.3.3 TEST SETUP

4.3.4 TEST PROCEDURES

- a. The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 4132, 4182 and 4233 (WCDMA) (low, middle and high operational frequency range.)
- b. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.3.5 EUT OPERATING CONDITION

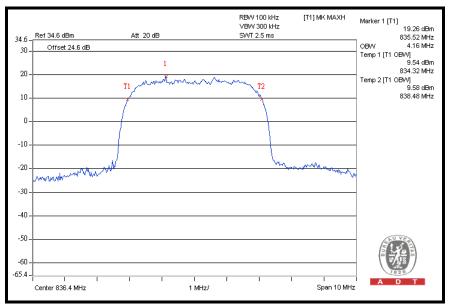
- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled a EUT to export maximum and minimum output power under transmission mode and specific channel frequency.


4.3.6 TEST RESULTS

FOR WCDMA:

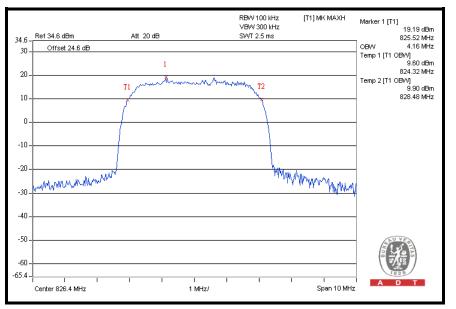
FOR WCDMA-RMC:

CHANNEL FREQUENCY (MHz)		99% OCCUPIED BANDWIDTH (MHz)
4132	826.4	4.14
4182	836.4	4.16
4233	846.6	4.14



FOR HSDPA:

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (MHz)
4132	826.4	4.14
4182	836.4	4.16
4233	846.6	4.14

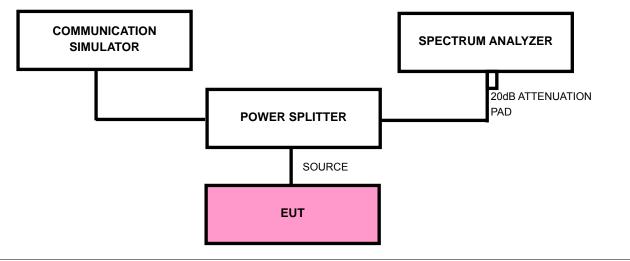


FOR HSUPA:

CHANNEL FREQUENCY 99% OCC (MHz)		99% OCCUPIED BANDWIDTH (MHz)
4132	826.4	4.16
4182	836.4	4.16
4233	846.6	4.14

4.4 BAND EDGE MEASUREMENT

4.4.1 LIMITS OF BAND EDGE MEASUREMENT


According to FCC 22.917 specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100039	Jan. 11, 2011	Jan. 10, 2012
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Mar. 24, 2011	Mar. 23, 2012
RF cable	SUCOFLEX 104	274403/4	Aug. 20, 2011	Aug. 19, 2012
RF cable	SUCOFLEX 104	250729/4	Aug. 19, 2011	Aug. 18, 2012
RF cable	SUCOFLEX 104	214377/4	Aug. 19, 2011	Aug. 18, 2012
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

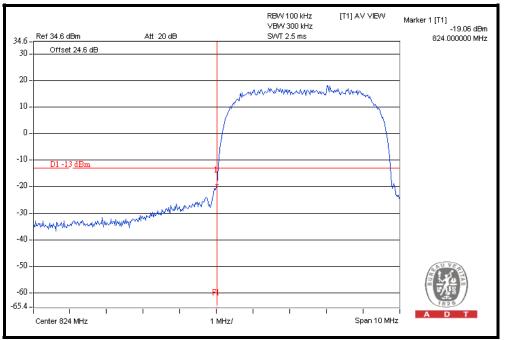
4.4.3 TEST SETUP

4.4.4 TEST PROCEDURES

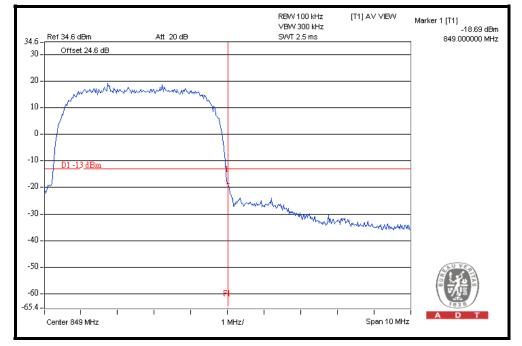
- a. The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels, 4132 and 4233.
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. The center frequency of spectrum is the band edge frequency and span is 10MHz. RB of the spectrum is 100kHz and VB of the spectrum is 300kHz.
- d. Record the max trace plot into the test report.

4.4.5 EUT OPERATING CONDITION

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.



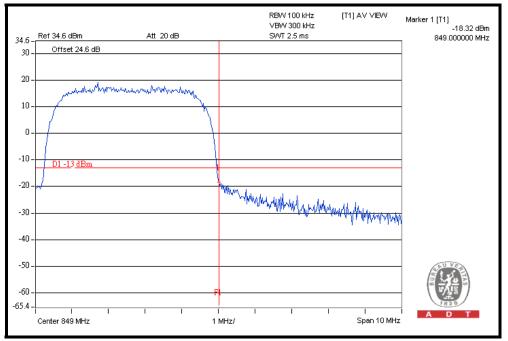
4.4.6 TEST RESULTS


FOR WCDMA:

WCDMA-RMC MODE

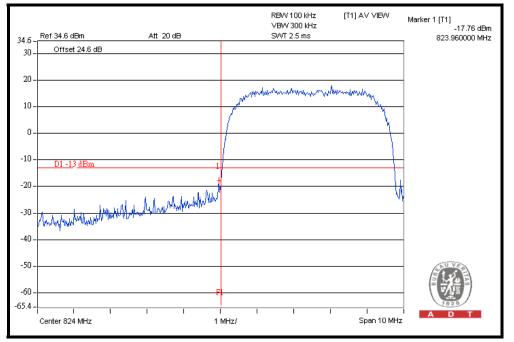
LOWER BAND EDGE

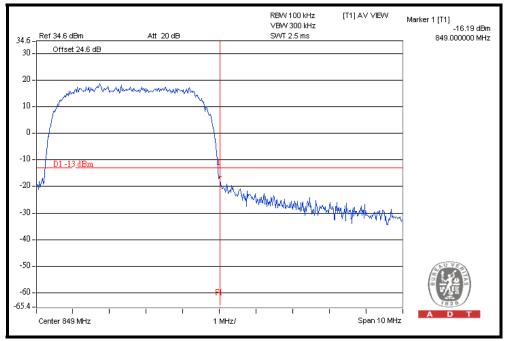

HIGHER BAND EDGE



HSDPA MODE

LOWER BAND EDGE


HIGHER BAND EDGE



HSUPA MODE

LOWER BAND EDGE

HIGHER BAND EDGE

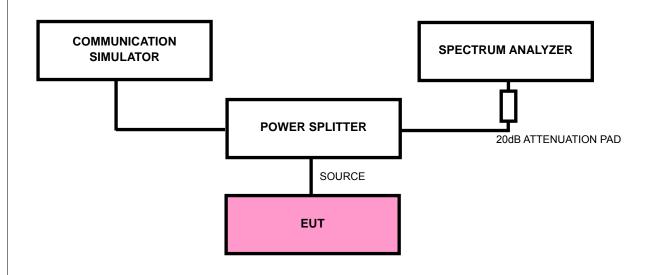
4.5 CONDUCTED SPURIOUS EMISSIONS

4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

In the FCC 22.917, On any frequency outside a licensee's frequency block within GPRS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The emission limit equal to -13dBm.

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100039	Feb. 23, 2011	Feb. 22, 2012
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Mar. 24, 2011	Mar. 23, 2012
RF cable	SUCOFLEX 104	274403/4	Aug. 20, 2011	Aug. 19, 2012
RF cable	SUCOFLEX 104	250729/4	Aug. 19, 2011	Aug. 18, 2012
RF cable	SUCOFLEX 104	214377/4	Aug. 19, 2011	Aug. 18, 2012
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

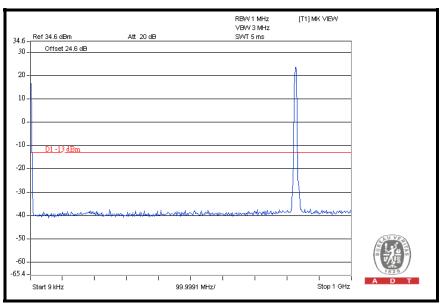
4.5.2 TEST INSTRUMENTS

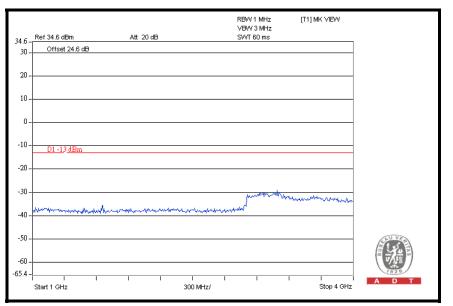

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 4132, 4182 and 4233 (low, middle and high operational frequency range.)
- b. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. Measuring frequency range is from 9 kHz to 9GHz. 20dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

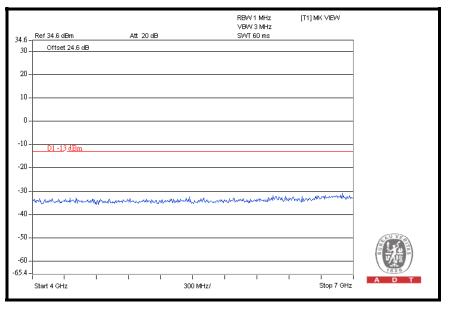
4.5.5 EUT OPERATING CONDITIONS


- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

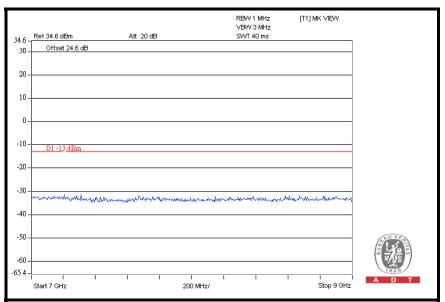

4.5.6 TEST RESULTS

FOR WCDMA-RMC:

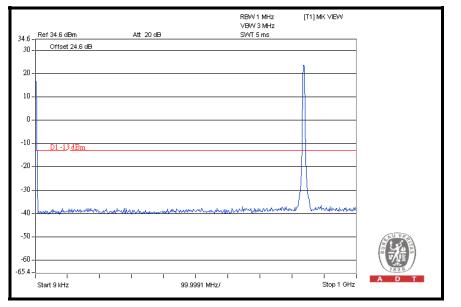
CH 4132: 9kHz ~ 1GHz



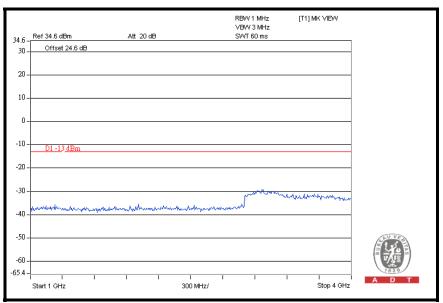
1GHz ~ 4GHz



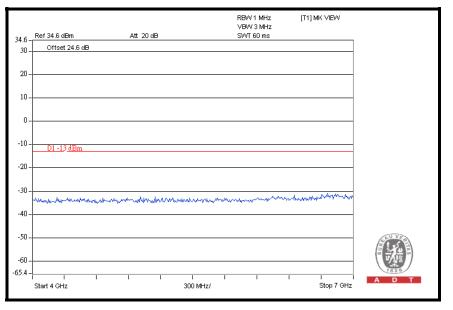
4GHz ~ 7GHz



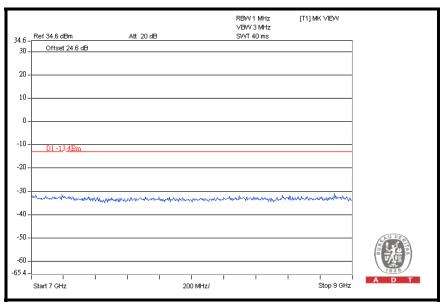
7GHz ~ 9GHz



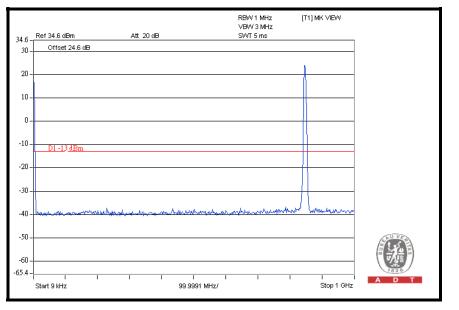
CH 4182: 9kHz ~ 1GHz



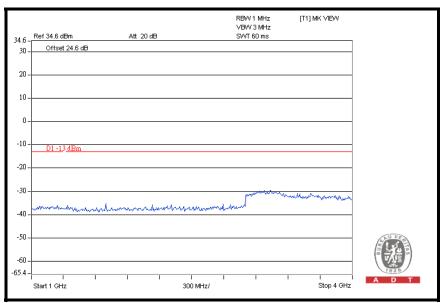
 $^{1 \}text{GHz} \sim 4 \text{GHz}$



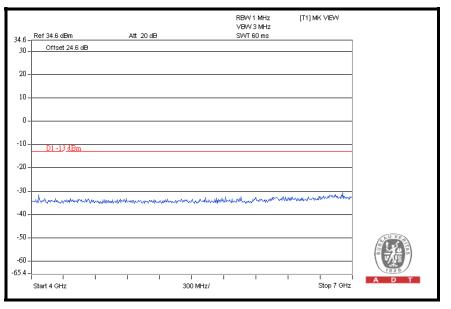
4GHz ~ 7GHz



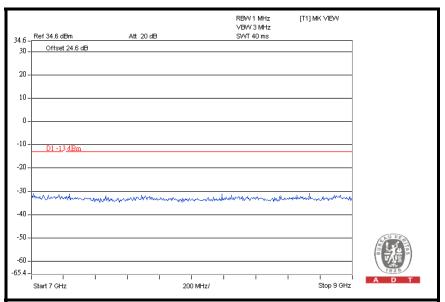
7GHz ~ 9GHz



CH 4233: 9kHz ~ 1GHz



1GHz ~ 4GHz



4GHz ~ 7GHz

7GHz ~ 9GHz

4.6 RADIATED EMISSION MEASUREMENT

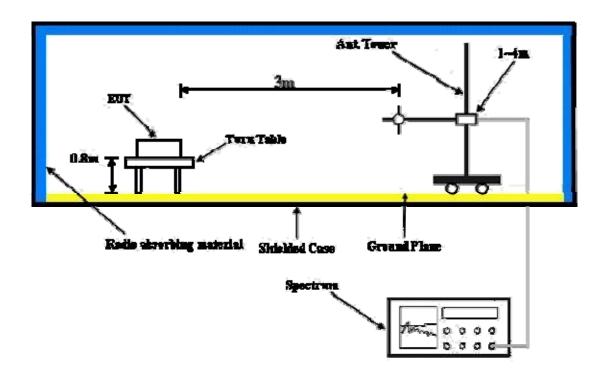
4.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 22.917 (a), On any frequency outside a licensee's frequency block within GPRS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$. The emission limit equal to -13 dBm.

4.6.2 TEST INSTRUMENTS

Same as 4.1.2.

4.6.3 TEST PROCEDURES


- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step c. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.6.6 EUT OPERATING CONDITIONS

- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

4.6.7 TEST RESULTS (Frequency range below 1GHz)

MODE	TX channel 4233	FREQUENCY RANGE	Below 1000MHz
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	INPUT POWER	120Vac, 60 Hz
TESTED BY	Kay Wu		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	82.48	37.0	-13.0	-59.5	-7.7	-67.2
2	121.36	44.2	-13.0	-58.0	-7.7	-65.7
3	142.75	45.2	-13.0	-63.0	-7.7	-70.7
4	206.89	43.0	-13.0	-60.7	-7.7	-68.4
5	271.04	42.0	-13.0	-54.2	-7.7	-61.9
6	414.89	36.6	-13.0	-50.7	-7.8	-58.5
	ANT	ENNA POLARI	TY & TEST DIS	STANCE: VERT	ICAL AT 3 M	
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	43.61	40.1	-13.0	-50.4	-7.7	-58.1
2	82.48	36.7	-13.0	-54.7	-7.7	-62.4
3	123.31	42.6	-13.0	-59.4	-7.7	-67.1
4	169.96	39.9	-13.0	-59.7	-7.7	-67.4
5	214.67	43.4	-13.0	-58.7	-7.7	-66.4
6	329.36	35.9	-13.0	-49.5	-7.8	-57.3

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

MODE	TX channel 4132	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	INPUT POWER	120Vac, 60 Hz
TESTED BY	Mark Liao		

4.6.8 TEST RESULTS (Frequency range above 1GHz)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
1	1652.8	39.0	-13.0	-62.9	7.6	-55.3	
2	2479.2	42.7	-13.0	-60.1	8.4	-51.7	
3	3305.6	40.8	-13.0	-63.3	9.9	-53.4	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
1	1652.8	44.4	-13.0	-57.5	7.6	-49.9	
2	2479.2	41.7	-13.0	-61.1	8.4	-52.7	
3	3305.6	41.0	-13.0	-63.1	9.9	-53.2	

REMARKS: 1. Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).

MODE	TX channel 4182	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	INPUT POWER	120Vac, 60 Hz
TESTED BY	Mark Liao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
1	1672.8	40.8	-13.0	-61.3	7.7	-53.6	
2	2509.2	44.8	-13.0	-57.9	8.4	-49.5	
3	3345.6	40.9	-13.0	-63.5	9.9	-53.6	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
	ANI	ENNA POLAR	ITY & TEST DIS	STANCE: VERT	ICAL AT 3 M		
No.	AN I Freq. (MHz)	ENNA POLAR Emission Level (dBuV)	Limit (dBm)	STANCE: VERT S.G Power Value (dBm)	ICAL AT 3 M Correction Factor (dB)	Power Value (dBm)	
No.		Emission Level		S.G Power	Correction		
No. 1 2	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	(dBm)	

REMARKS: 1. Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).

MODE	TX channel 4233	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	INPUT POWER	120Vac, 60 Hz
TESTED BY	Mark Liao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
1	1693.2	38.0	-13.0	-64.1	7.9	-56.2	
2	2539.8	41.0	-13.0	-61.9	8.5	-53.4	
3	3386.4	41.6	-13.0	-62.6	9.9	-52.7	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
			-			_	
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
No.		Emission Level	Limit (dBm) -13.0	S.G Power	Correction		
No. 1 2	Freq. (MHz)	Emission Level (dBuV)		S.G Power Value (dBm)	Correction Factor (dB)	(dBm)	

REMARKS: 1. Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5.phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050 Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----