

FCC RF Test Report

APPLICANT	:	HTC Corporation
EQUIPMENT	:	Smart Phone
MODEL NAME	:	PH44100
FCC ID	:	NM8PH44100
STANDARD	:	FCC 47 CFR Part 2, 22(H), 24(E)
CLASSIFICATION	:	PCS Licensed Transmitter Held to Ear (PCE)
Tx/Rx FREQUENCY RANGE	:	CDMA2000 BC0:824.70~848.31 MHz /
		869.70 ~ 893.31 MHz
		CDMA2000 BC1 : 1851.25 ~ 1908.75 MHz /
		1931.25 ~ 1988.75 MHz
MAX. ERP/EIRP POWER	:	CDMA2000 BC0 : 0.12 W
		CDMA2000 BC1 : 0.14 W
EMISSION DESIGNATOR	:	1M28F9W

The product was received on Mar. 29, 2011 and completely tested on May 04, 2011. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI / TIA / EIA-603-C-2004 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

TABLE OF CONTENTS

RE	VISION	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1 1.2	Applicant	
	1.3	Feature of Equipment Under Test	
	1.4	Testing Site	
	1.5	Applied Standards	
	1.6	Ancillary Equipment List	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Test Mode	7
	2.2	Connection Diagram of Test System	
3	TEST	RESULT	
	3.1	Conducted Output Power Measurement	9
	3.2	Effective Radiated Power and Effective Isotropic Radiated Power Measurement	
	3.3	Occupied Bandwidth Measurement	
	3.4	Band Edge Measurement	
	3.5 3.6	Conducted Emission Measurement	
	3.0 3.7	Field Strength of Spurious Radiation Measurement Frequency Stability Measurement	
	-		
4	LIST	OF MEASURING EQUIPMENT	36
5	UNCE	RTAINTY OF EVALUATION	

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FG132949A	Rev. 01	Initial issue of report	May 20, 2011

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	§2.1046	N/A	Conducted Output Power	N/A	PASS	-
3.2	§22.913(a)(2)	RSS-132(4.4) SRSP-503(5.1.3)	Effective Radiated Power	< 7 Watts	PASS	-
3.2	§24.232(c)	RSS-133 (6.4) SRSP-510(5.1.2)	Equivalent Isotropic Radiated Power	< 2 Watts	PASS	-
3.3	§2.1049 §22.917(a) §24.238(a)	N/A	Occupied Bandwidth	N/A	PASS	-
3.4	§2.1051 §22.917(a) §24.238(a)	RSS-132 (4.5.1) RSS-133 (6.5.1)	Band Edge Measurement	< 43+10log ₁₀ (P[Watts])	PASS	-
3.5	§2.1051 §22.917(a) §24.238(a)	RSS-132 (4.5.1) RSS-133 (6.5.1)	Conducted Emission	< 43+10log ₁₀ (P[Watts])	PASS	-
3.6	§2.1053 §22.917(a) §24.238(a)	RSS-132 (4.5.1) RSS-133 (6.5.1)	Field Strength of Spurious Radiation	< 43+10log ₁₀ (P[Watts])	PASS	Under limit 12.98 dB at 3760 MHz
3.7	§2.1055 §22.355 §24.235	RSS-132(4.3) RSS-133(6.3)	Frequency Stability for Temperature & Voltage	< 2.5 ppm	PASS	-

SUMMARY OF TEST RESULT

1 General Description

1.1 Applicant

HTC Corporation

1F., No. 6-3, Baoqiang Rd., Xindian City, Taipei, Taiwan

1.2 Manufacturer

HTC Corporation

1F., No. 6-3, Baoqiang Rd., Xindian City, Taipei, Taiwan

1.3 Feature of Equipment Under Test

Product Feature & Specification				
Equipment	Smart Phone			
Model Name	PH44100			
FCC ID	NM8PH44100			
	CDMA2000 BC0 : 824 MHz ~ 849 MHz			
Tx Frequency	CDMA2000 BC1 : 1850 MHz ~1910 MHz			
By Fraguancy	CDMA2000 BC0 : 869 MHz ~ 894 MHz			
Rx Frequency	CDMA2000 BC1 : 1930 MHz ~ 1990 MHz			
Maximum Output Power to Antenna	CDMA2000 BC0 : 24.52 dBm			
Maximum Output Power to Antenna	CDMA2000 BC1 : 24.19 dBm			
Maximum ERP/EIRP	CDMA2000 BC0 : 0.12 W (20.75 dBm)			
	CDMA2000 BC1 : 0.14 W (21.43 dBm)			
Antenna Type	Fixed Internal Antenna			
Type of Modulation	QPSK			
Type of Emission	1M28F9W			
EUT Stage	Production Unit			

Remark:

- 1. For other wireless features of this EUT, the test report will be issued separately.
- This test report recorded only product characteristics and test results of PCS Licensed Transmitter Held to Ear (PCE).
- **3.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Testing Site

Test Site	SPORTON INTE	SPORTON INTERNATIONAL INC.					
	No. 52, Hwa Ya ⁻	1 st Rd., Hwa Ya Te	echnology Park,				
	Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.						
Test Site Location	TEL: +886-3-327-3456						
	FAX: +886-3-328-4978						
Toot Site No	Sporton Site No. FCC/IC Registrat						
Test Site No.	TH02-HY	03CH06-HY	03CH07-HY	722060/4086B-1			

1.5 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- Preliminary Guidance for Receiving Applications for Certification of 3G Device. May 9, 2006.
- FCC 47 CFR Part 2, 22(H), 24(E)
- ANSI / TIA / EIA-603-C-2004
- IC RSS-132 Issue 2
- IC RSS-133 Issue 5

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B (DoC), recorded in a separate test report.

1.6 Ancillary Equipment List

Item	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m

2 Test Configuration of Equipment Under Test

2.1 Test Mode

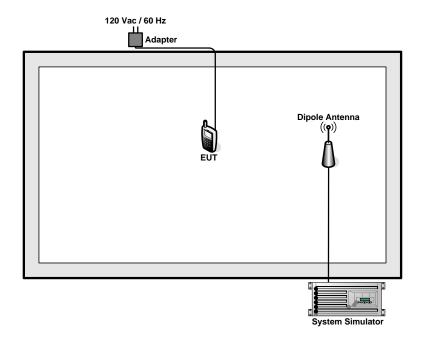
During all testing, EUT is in link mode with base station emulator at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT is rotated on three test planes to find out the worst emission.

Frequency range investigated for radiated emission is as follows:

- 1. 30 MHz to 9000 MHz for CDMA2000 BC0.
- 2. 30 MHz to 19000 MHz for CDMA2000 BC1.

Test Modes					
Band	Radiated TCs	Conducted TCs			
CDMA2000 BC0	1xRTT Link Mode	1xRTT Link Mode			
CDMA2000 BC1	1xRTT Link Mode	1xRTT Link Mode			

Note:


- The maximum RF output power levels are 1xRTT RC3+SO55 mode for CDMA2000 BC0 and 1xRTT RC3+SO55 mode for CDMA2000 BC1 on QPSK Link; only these modes were used for all tests.
- 2. Because there are individual antennas for each WWAN, WLAN, and Bluetooth, the co-location test modes are not required.

Conducted Power (*Unit: dBm)							
Band CDMA2000 BC0 CDMA2000 BC1							
Channel	1013	384	777	25	600	1175	
Frequency	824.7	836.52	848.31	1851.25	1880	1908.75	
1xRTT RC1+SO55	24.27	24.05	24.45	23.59	23.76	23.93	
1xRTT RC3+SO55	24.19	23.94	<mark>24.52</mark>	23.54	23.70	<mark>24.19</mark>	
1xRTT FCH-SCH_RC3+SO32	24.23	23.95	24.27	23.55	23.70	24.17	
1xRTT FCH+SCH_RC3+SO32	24.24	23.92	24.35	23.55	23.72	24.15	
1xEVDO RTAP 153.6K	24.30	24.14	24.50	23.67	23.83	24.18	
1xEVDO RETAP 4096K	24.44	24.08	24.51	23.61	23.88	24.12	

3. The conducted power table is as follows:

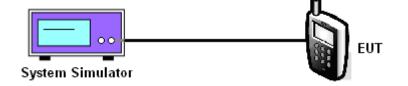
2.2 Connection Diagram of Test System

3 Test Result

3.1 Conducted Output Power Measurement

3.1.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.


3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The transmitter output port was connected to base station.
- 2. Set EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different modulation.

3.1.4 Test Setup

3.1.5 Test Result of Conducted Output Power

CDMA2000 BC0							
Test Mode	Test Status	Channel	Frequency (MHz)	Conducted Power	Conducted Power		
			()	(dBm)	(Watts)		
CDMA 2000	RC3+SO55	1013 (Low)	824.70	24.19	0.26		
		384 (Mid)	836.52	23.94	0.25		
1xRTT		777 (High)	848.31	24.52	0.28		

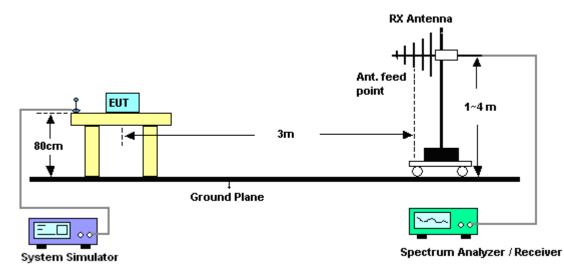
CDMA2000 BC1							
Test Mode	Test Status Channel		Frequency (MHz)	Conducted Power	Conducted Power		
			(11112)	(dBm)	(Watts)		
CDMA 2000 1xRTT	RC3+SO55	25 (Low)	1851.25	23.54	0.23		
		600 (Mid)	1880.00	23.70	0.23		
		1175 (High)	1908.75	24.19	0.26		

3.2 Effective Radiated Power and Effective Isotropic Radiated Power Measurement

3.2.1 Description of the ERP/EIRP Measurement

ERP/EIRP is measured by substitution method according to ANSI / TIA / EIA-603-C-2004. The ERP of mobile transmitters must not exceed 7 Watts and the EIRP of mobile transmitters are limited to 2 Watts.

3.2.2 Measuring Instruments


See list of measuring instruments of this test report.

3.2.3 Test Procedures

- The EUT was placed on an non-conductive rotating platform with 0.8 meter height in a semi-anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RBW= 3MHz,VBW= 3MHz, and peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. The highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Effective Isotropic Radiated Power(EIRP) was measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (substitution antenna) at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain Analyzer reading. Then the EUT's EIRP was calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP 2.15.

3.2.4 Test Setup

3.2.5 Test Result of ERP

CDMA2000 BC0 1xRTT_RC3+SO55 Radiated Power ERP									
	Horizontal Polarization								
Frequency LVL Correction Factor ERP ERP									
(MHz)	(dBm)	(dBm)	(W)						
824.70	-8.26	30.89	20.48	0.11					
836.52	-8.97	31.13	20.01	0.10					
848.31	-8.72	31.62	20.75	0.12					
		Vertical Polarization							
Frequency	LVL	Correction Factor	ERP	ERP					
(MHz)	(dBm)	(dB)	(dBm)	(W)					
824.70	-21.03	35.93	12.75	0.02					
836.52	-20.73	34.95	12.07	0.02					
848.31	-20.37	34.71	12.19	0.02					

* ERP = LVL (dBm) + Correction Factor (dB) - 2.15

3.2.6 Test Result of EIRP

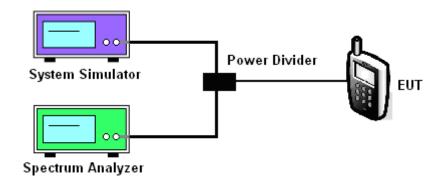
CDMA2000 BC1 1xRTT_RC3+SO55 Radiated Power EIRP						
		Horizontal Polarization				
Frequency LVL Correction Factor EIRP EIRP						
(MHz)	(dBm)	(dB)	(dBm)	(W)		
1851.25	-20.58	41.24	20.66	0.12		
1880.00	-20.03	41.46	21.43	0.14		
1908.75	-20.39	41.21	20.82	0.12		
		Vertical Polarization				
Frequency	LVL	Correction Factor	EIRP	EIRP		
(MHz)	(dBm)	(dB)	(dBm)	(W)		
1851.25	-24.88	43.52	18.64	0.07		
1880.00	-24.35	43.10	18.75	0.07		
1908.75	-24.45	42.73	18.28	0.07		

* EIRP = LVL (dBm) + Correction Factor (dB)

3.3 Occupied Bandwidth Measurement

3.3.1 Description of Occupied Bandwidth Measurement

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides of the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

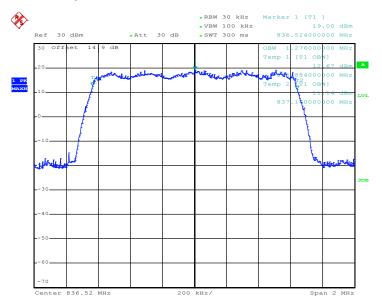

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

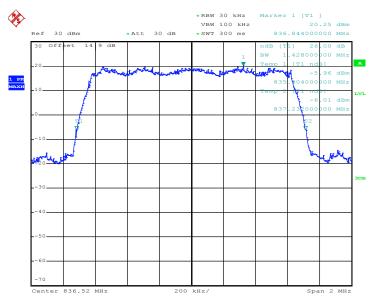
3.3.3 Test Procedures

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The 99% and 26 dB occupied bandwidth (BW) of the middle channel for the highest RF powers were measured.

3.3.4 Test Setup



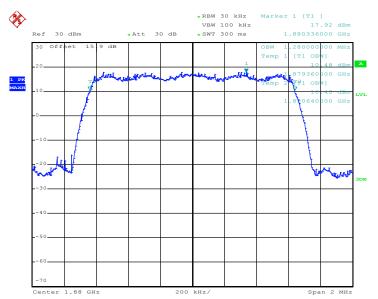
3.3.5 Test Result (Plots) of Occupied Bandwidth


Band :	CDMA2000 BC0	Power Stage :	High
Test Mode :	1xRTT_RC3+SO55		

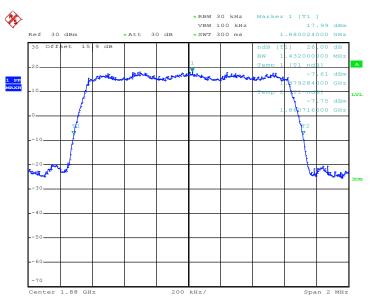
99% Occupied Bandwidth Plot on Channel 384

Date: 17.MAR.2011 12:32:27

26dB Bandwidth Plot on Channel 384


Date: 8.APR.2011 17:55:43

SPORTON INTERNATIOINAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : NM8PH44100


Band :	CDMA2000 BC1	Power Stage :	High
Test Mode :	1xRTT_RC3+SO55		

99% Occupied Bandwidth Plot on Channel 600

Date: 17.MAR.2011 13:01:50

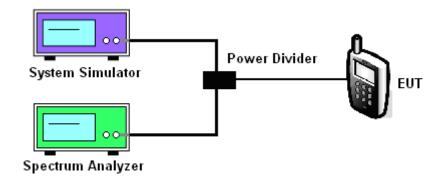
26dB Bandwidth Plot on Channel 600

Date: 17.MAR.2011 12:57:17

3.4 Band Edge Measurement

3.4.1 Description of Band Edge Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

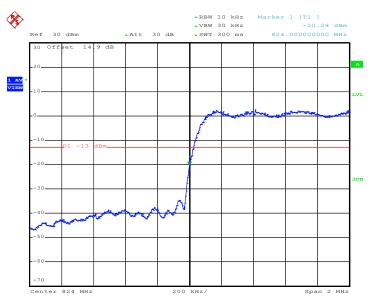

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

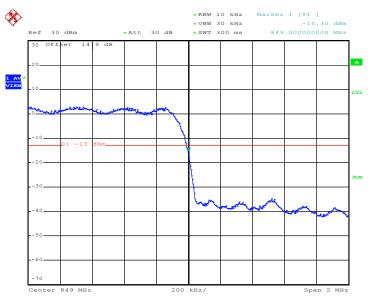
3.4.3 Test Procedures

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- The band edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.
- The RBW was replaced by 10 kHz, due to the spectrum analyzer IF-Filter including an excess of the limit. A worst case correction factor of 10 log (1% BW/measurement RBW) was implemented.

3.4.4 Test Setup



3.4.5 Test Result (Plots) of Conducted Band Edge

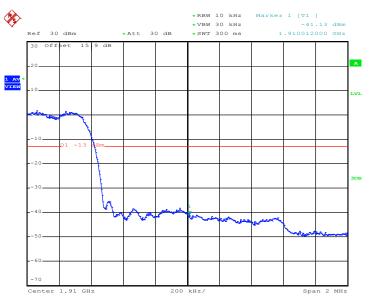

Band :	CDMA2000 BC0	Power Stage :	High
Test Mode :	1xRTT_RC3+SO55		

Lower Band Edge Plot on Channel 1013

Date: 17.MAR.2011 12:49:55

Higher Band Edge Plot on Channel 777

Date: 17.MAR.2011 12:48:50


Band :	CDMA2000 BC1	Power Stage :	High
Test Mode :	1xRTT_RC3+SO55		

Lower Band Edge Plot on Channel 25

Date: 17.MAR.2011 14:42:07

Higher Band Edge Plot on Channel 1175

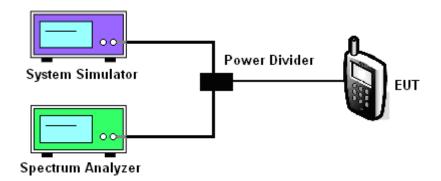
Date: 17.MAR.2011 14:43:06

3.5 Conducted Emission Measurement

3.5.1 Description of Conducted Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

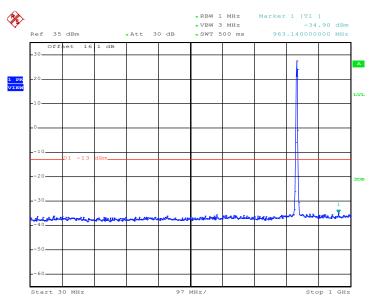

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

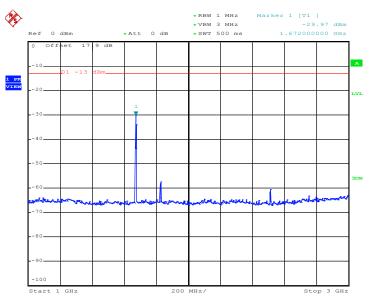
3.5.3 Test Procedures

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The middle channel for the highest RF power within the transmitting frequency was measured.
- 3. The conducted spurious emission for the whole frequency range was taken.

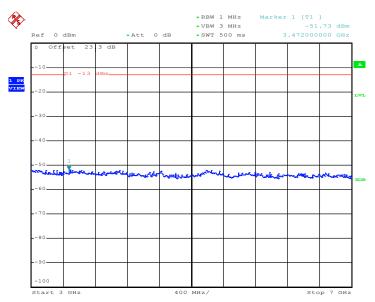
3.5.4 Test Setup



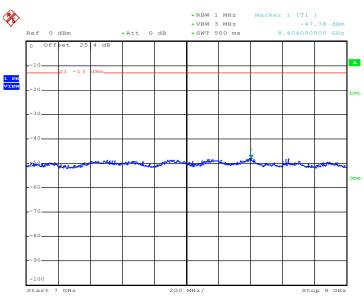
3.5.5 Test Result (Plots) of Conducted Emission


Band :	CDMA2000 BC0	Power Stage :	High
Test Mode :	1xRTT_RC3+SO55		

Conducted Emission Plot between 30MHz ~ 1GHz

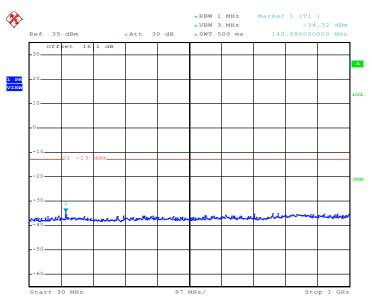

Date: 17.MAR.2011 12:43:06

Conducted Emission Plot between 1GHz ~ 3GHz

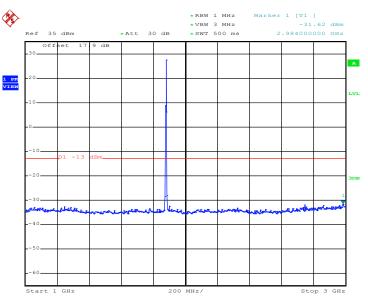

Date: 17.MAR.2011 12:43:22

Conducted Emission Plot between 3GHz ~ 7GHz

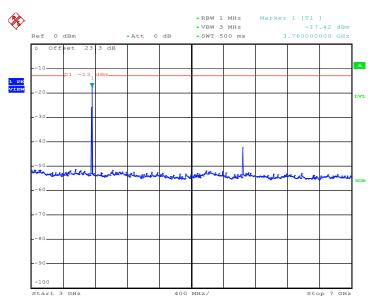
Date: 17.MAR.2011 12:43:34


Conducted Emission Plot between 7GHz ~ 9GHz

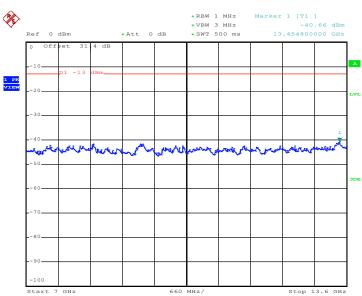
Date: 17.MAR.2011 12:43:47


Band :	CDMA2000 BC1	Power Stage :	High
Test Mode :	1xRTT_RC3+SO55		

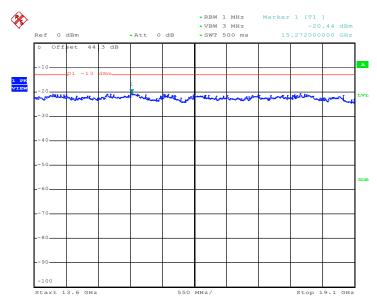
Conducted Emission Plot between 30MHz ~ 1GHz


Date: 17.MAR.2011 13:08:08

Conducted Emission Plot between 1GHz ~ 3GHz


Date: 17.MAR.2011 13:08:20

Conducted Emission Plot between 3GHz ~ 7GHz


Date: 17.MAR.2011 13:08:58

Conducted Emission Plot between 7GHz ~ 13.6GHz

Date: 17.MAR.2011 13:09:10

Conducted Emission Plot between 13.6GHz ~ 19.1GHz

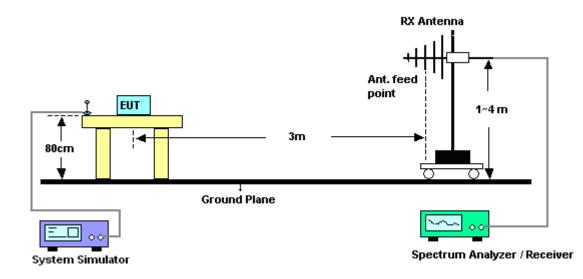
Date: 17.MAR.2011 13:09:23

3.6 Field Strength of Spurious Radiation Measurement

3.6.1 Description of Field Strength of Spurious Radiated Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA / EIA-603-C-2004. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43+10log₁₀(P[Watts]) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

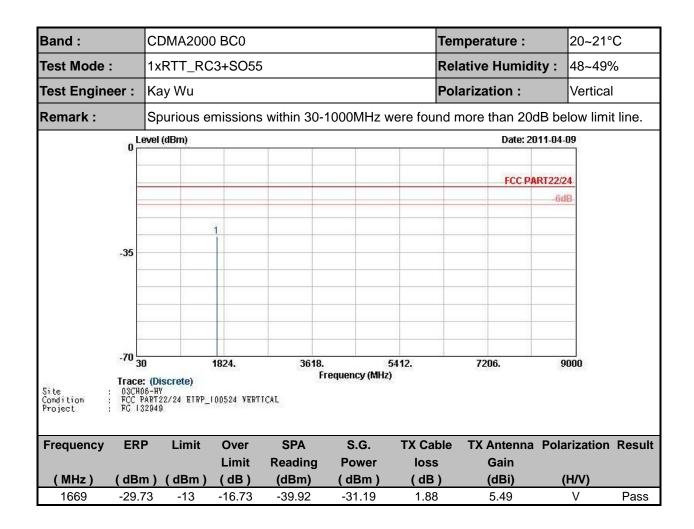
3.6.2 Measuring Instruments


See list of measuring instruments of this test report.

3.6.3 Test Procedures

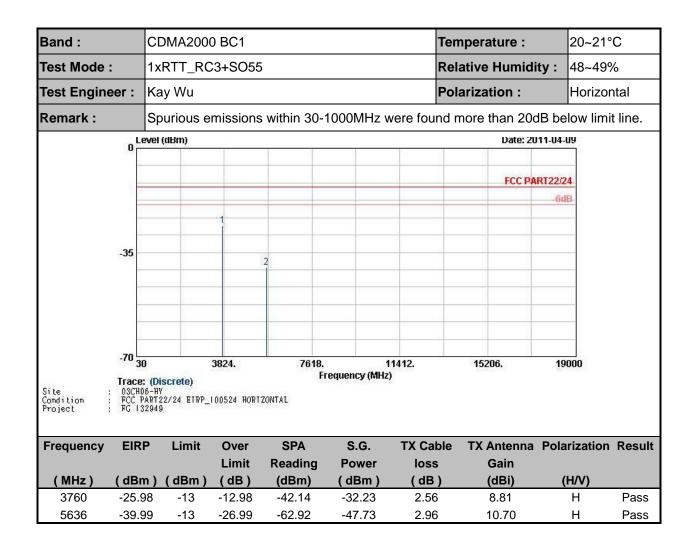
- 1. The EUT was placed on a rotatable wooden table with 0.8 meter about ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain
- 11. ERP (dBm) = EIRP 2.15

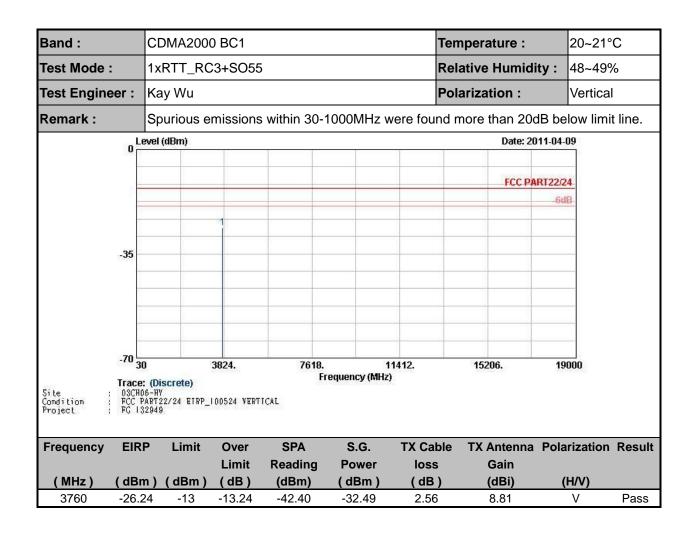
3.6.4 Test Setup



Band :		CDMA200	0 BC0			Ter	nperature :	20~21°	С
Test Mode :		1xRTT_R0	C3+SO55	5		Rel	Relative Humidity :		6
Test Engine	er :	Kay Wu				Pol	Polarization : Horiz		
Remark :		Spurious e	missions	s within 30-	1000MHz v	vere found r	more than 20c	dB below limi	t line.
Level (dBm) Date: 2011-04-09									
							FCC PA	RT22/24	
								-6dB	
			1						
	-35								
Site : Condition : Proiect :	03CH0	(Discrete)	1824.		equency (MHz	5412.)	7206.	9000	
Frequency	ERF	P Limit	Over	SPA	S.G.	TX Cable	TX Antenna	Polarization	Resu
(MHz)	(dBn	ı) (dBm)	Limit (dB)	Reading (dBm)	Power (dBm)	loss (dB)	Gain (dBi)	(H/V)	
1669	-29.7		-16.74	-38.93	-31.2	1.88	5.49	(# V)	Pass

3.6.5 Test Result of Field Strength of Spurious Radiated





3.7 Frequency Stability Measurement

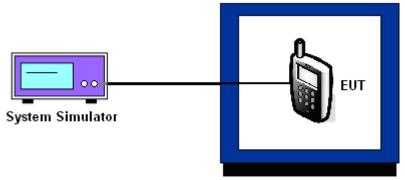
3.7.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

3.7.2 Measuring Instruments

See list of measuring instruments of this test report.

3.7.3 Test Procedures for Temperature Variation


- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
- 4. If the EUT can not be turned on at -30°C, the testing lowest temperature will be raised in 10°C step until the EUT can be turned on.

3.7.4 Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

3.7.5 Test Setup

Thermal Chamber

3.7.6 Test Result of Temperature Variation

Band :	CDMA2	000 BC0		Channel :	384
Test Mode :	1xRTT_RC3+SO55			Limit (ppm) :	2.5
Temperature	(°C)	Freq. Dev. (Hz)	[Deviation (ppm)	Result
-30		17		0.02	
-20		10		0.01	
-10	-10			-0.01	
0		15		0.02	
10		12		0.01	PASS
20		-7		-0.01	
30		-14		-0.02	
40		11		0.01	
50		-12		-0.01	

Note: The manufacturer declared that the EUT could work properly between temperatures -30°C~60°C.

Band :	CDMA2000 BC1	Channel :	600
Test Mode :	1xRTT_RC3+SO55	Limit (ppm) :	2.5

Temperature (°C)	Freq. Dev. (Hz)	Deviation (ppm)	Result
-30	9	0.00	
-20	14	0.01	
-10	22	0.01	
0	17	0.01	
10	16	0.01	PASS
20	19	0.01	
30	21	0.01	
40	15	0.01	
50	13	0.01	

Note: The manufacturer declared that the EUT could work properly between temperatures -30°C~60°C.

3.7.7 Test Result of Voltage Variation

Band & Channel	Mode	Voltage (Volt)	Freq. Dev. (Hz)	Deviation (ppm)	Limit (ppm)	Result
		3.8	8	0.01		
CDMA2000 BC0 CH384	1xRTT RC3+SO55	BEP	-3	0.00	2.5	PASS
011004		4.2	-10	-0.01		
		3.8	21	0.01		
CDMA2000 BC1 CH600	1xRTT RC3+SO55	BEP	-21	-0.01	2.5	PASS
		4.2	22	0.01		

Note :

1. Normal Voltage = 3.8V.

2. Battery End Point (BEP) = 3.6 V.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Due Date	Remark
System Simulator	R&S	CMU200	117995	N/A	Jun. 08, 2009	Jun. 07, 2011	Conducted (TH02-HY)
Spectrum Analyzer	R&S	FSP40	100055	9kHz~40GHz	Jun. 11, 2010	Jun. 10, 2011	Conducted (TH02-HY)
Power Meter	Anritsu	ML2495A	0932001	N/A	Sep. 13, 2010	Sep. 12, 2011	Conducted (TH02-HY)
Power Sensor	Anritsu	MA2411B	0846202	N/A	Sep. 14, 2010	Sep. 13, 2011	Conducted (TH02-HY)
Power Meter	Agilent	E4416A	GB41292344	N/A	Feb. 18, 2011	Feb. 17, 2012	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US40441548	N/A	Feb. 18, 2011	Feb. 17, 2012	Conducted (TH02-HY)
Thermal Chamber	Ten Billion	TTH-D35P	TBN-930701	N/A	Jul. 30, 2010	Jul. 29, 2011	Conducted (TH02-HY)
Spectrum Analyzer	R&S	FSP40	100057	9KHz-40GHz	Oct. 25, 2010	Oct. 24, 2011	Radiation (03CH06-HY)
EMI TEST RECEIVER	R&S	ESCI 7	100724	9kHz~7GHz	Aug.19, 2010	Aug.19, 2011	Radiation (03CH06-HY)
Bilog Antenna	SCHAFFNER	CBL6112B	2885	30MHz -2GHz	Oct. 31, 2010	Oct. 31, 2011	Radiation (03CH06-HY)
Double Ridge Horn Antenna	EMCO	3117	00066583	1GHz~18GHz	Aug. 02, 2010	Aug. 01, 2011	Radiation (03CH06-HY)
Double Ridge Horn Antenna	Training Research	AH-0801	95119	8GHz~18GHz	Oct. 20, 2010	Oct. 19, 2011	Radiation (03CH06-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA917025 1	15GHz- 40GHz	Oct. 18, 2010	Oct. 17, 2011	Radiation (03CH06-HY)
Pre Amplifier	Agilent	8449B	3008A01917	1GHz- 26.5GHz	Apr. 14, 2011	Apr. 13, 2012	Radiation (03CH06-HY)
Amplifier	Agilent	310N	186713	9KHz~1GHz	Apr. 14, 2011	Apr. 13, 2012	Radiation (03CH06-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz~30 MHz	Jul. 29, 2010	Jul. 28, 2011	Radiation (03CH06-HY)
System Simulator	R&S	CMU200	114256	N/A	Feb. 15, 2011	Feb. 14, 2012	Radiation (03CH06-HY)

Bilog Antenna	SCHAFFNER	CBL6111C	2726	30MHz ~ 1GHz	Oct. 31, 2010	Oct. 30, 2011	Radiation (03CH07-HY)
Spectrum Analyzer	R&S	FSP	101067	9KHz ~ 30GHz	Dec. 03, 2010	Dec. 02, 2011	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Aug. 19, 2010	Aug. 18, 2011	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA917025 1	15GHz- 40GHz	Oct. 18, 2010	Oct. 17, 2011	Radiation (03CH07-HY)
Pre Amplifier	Agilent	8449B	3008A02362	1GHz~ 26.5GHz	Dec. 06, 2010	Dec. 05, 2011	Radiation (03CH07-HY)
Pre Amplifier	COM-POWER	PA-103A	161241	10-1000MHz.32dB. GAIN	Mar. 29, 2011	Mar. 28, 2012	Radiation (03CH07-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz~30 MHz	Jul. 29, 2010	Jul. 28, 2011	Radiation (03CH07-HY)
System Simulator	R&S	CMU200	114256	N/A	Feb. 15, 2011	Feb. 14, 2012	Radiation (03CH07-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

	Uncertai			
Contribution	dB	Probability Distribution	u(X _i)	
Receiver Reading	0.41	Normal (k=2)	0.21	
Antenna Factor Calibration	0.83	Normal (k=2)	0.42	
Cable Loss Calibration	0.25	Normal (k=2)	0.13	
Pre-Amplifier Gain Calibration	0.27	Normal (k=2)	0.14	
RCV/SPA Specification	2.50	Rectangular	0.72	
Antenna Factor Interpolation for Frequency	1.00	Rectangular	0.29	
Site Imperfection	1.43	Rectangular	0.83	
Mismatch	+0.39 / -0.41	U-Shape	0.28	
Combined Standard Uncertainty Uc(y)	1.27			
Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.54			

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

	Uncertainty of X _i					
Contribution	dB	Probability Distribution	u(X _i)	C _i	C _i * u(X _i)	
Receiver Reading	±0.10	Normal (k=2)	0.10	1	0.10	
Antenna Factor Calibration	±1.70	Normal (k=2)	0.85	1	0.85	
Cable Loss Calibration	±0.50	Normal (k=2)	0.25	1	0.25	
Receiver Correction	±2.00	Rectangular	1.15	1	1.15	
Antenna Factor Directional	±1.50	Rectangular	0.87	1	0.87	
Site Imperfection	±2.80	Triangular	1.14	1	1.14	
Mismatch Receiver VSWR Γ 1 = 0.197 Antenna VSWR Γ 2 = 0.194 Uncertainty = 20Log(1- Γ 1* Γ 2)	+0.34 / -0.35	U-Shape	0.244	1	0.244	
Combined Standard Uncertainty Uc(y)	2.36					
Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.72					