

FCC TEST REPORT (PART 22)

 REPORT NO.:
 RF110418C16-2

 MODEL NO.:
 PG86310

 FCC ID:
 NM8PG86310

 RECEIVED:
 Apr. 18, 2011

 TESTED:
 Apr. 26 ~ May 03, 2011

 ISSUED:
 May 12, 2011

APPLICANT: HTC Corporation

- ADDRESS: No. 23, Xinghua Rd., Taoyuan City, Taoyuan, 330 Taiwan
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 73 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

RELEA	SE CONTROL RECORD	4
1	CERTIFICATION	
2	SUMMARY OF TEST RESULTS	6
2.1	MEASUREMENT UNCERTAINTY	6
3	GENERAL INFORMATION	7
3.1	GENERAL DESCRIPTION OF EUT	7
3.2	DESCRIPTION OF TEST MODES	9
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	10
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	15
3.4	DESCRIPTION OF SUPPORT UNITS	15
4	TEST TYPES AND RESULTS	16
4.1	OUTPUT POWER MEASUREMENT	16
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	16
4.1.2	TEST INSTRUMENTS	17
4.1.3	TEST PROCEDURES	18
4.1.4	TEST SETUP	
4.1.5	EUT OPERATING CONDITIONS	19
4.1.6	TEST RESULTS	
4.2	FREQUENCY STABILITY MEASUREMENT	23
4.2.1	LIMITS OF FREQUENCY STABILIITY MEASUREMENT	23
4.2.2	TEST INSTRUMENTS	23
4.2.3	TEST PROCEDURE	24
4.2.4	TEST SETUP	24
4.2.5	TEST RESULTS	25
4.3	OCCUPIED BANDWIDTH MEASUREMENT	
4.3.1	LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT	27
4.3.2	TEST INSTRUMENTS	27
4.3.3	TEST SETUP	27
4.3.4	TEST PROCEDURES	28
4.3.5	EUT OPERATING CONDITION	
4.3.6	TEST RESULTS	29
4.4	BAND EDGE MEASUREMENT	
4.4.1	LIMITS OF BAND EDGE MEASUREMENT	35
4.4.2	TEST INSTRUMENTS	35
4.4.3	TEST SETUP	
4.4.4	TEST PROCEDURES	
4.4.5	EUT OPERATING CONDITION	36
4.4.6	TEST RESULTS	
4.5	CONDUCTED SPURIOUS EMISSIONS	
4.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	43
4.5.2	TEST INSTRUMENTS	43
4.5.3	TEST PROCEDURE	44
4.5.4	TEST SETUP	44
4.5.5	EUT OPERATING CONDITIONS	44
4.5.6	TEST RESULTS	45
4.6	RADIATED EMISSION MEASUREMENT (BELOW 1GHz)	57
4.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	57
4.6.2	TEST INSTRUMENTS	57
4.6.3	TEST PROCEDURES	58

		A D I
4.6.4	DEVIATION FROM TEST STANDARD	58
4.6.5	TEST SETUP	59
4.6.6	EUT OPERATING CONDITIONS	59
4.6.7	TEST RESULTS	60
4.7	RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)	62
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	62
4.7.2	TEST INSTRUMENTS	62
4.7.3	TEST PROCEDURES	
4.7.4	DEVIATION FROM TEST STANDARD	63
4.7.5	TEST SETUP	64
4.7.6	EUT OPERATING CONDITIONS	
4.7.7	TEST RESULTS	
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	71
6	INFORMATION ON THE TESTING LABORATORIES	72
7	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CH/	
	TO THE EUT BY THE LAB	73

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	N/A	May 12, 2011

CERTIFICATION 1

PRODUCT: Smart Phone **MODEL NO.:** PG86310 BRAND: hTC **APPLICANT: HTC Corporation TEST SAMPLE:** Production Unit **TESTED :** Apr. 26 ~ May 03, 2011 STANDARDS : FCC Part 22, Subpart H ANSI C63.4-2003

The above equipment (model: PG86310) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : _______, DATE : ______ May 12, 2011 Pettie Chen / Specialist

Gary Chang / Assistant Manager

APPROVED BY

, DATE : May 12, 2011

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: F	CC Part 22	& Part 2
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK
2.1046 22.913 (a)	Maximum Peak Output Power Limit: max. 7 watts e.r.p peak power	PASS	Meet the requirement of limit. Max. e.r.p is 30.2dBm at 824.2MHz.
2.1055	Frequency Stability AFC Freq. Error vs. Voltage AFC Freq. Error vs. Temperature Limit: max. ±2.5ppm	PASS	Meet the requirement of limit.
2.1049 (h)	Occupied Bandwidth	PASS	Meet the requirement of limit.
22.917	Band Edge Measurements	PASS	Meet the requirement of limit.
2.1051 22.917	Conducted Spurious Emissions	PASS	Meet the requirement of limit.
2.1053 22.917	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is –9.5dB at 2509.8MHz.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
Radiated emissions	200MHz ~1000MHz	2.95 dB
	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION 3.1 GENERAL DESCRIPTION OF EUT

3.1 GENERAL DESCRIPTION	N OF EUT			
EUT	Smart Phone			
MODEL NO.	PG86310			
FCC ID	NM8PG86310			
POWER SUPPLY	5.0Vdc (adapter or host 3.7Vdc (battery) 3.8Vdc (battery)	equipment)		
MODULATION TYPE	GSM, GPRS, E-GPRS	GMSK, 8PSK		
	WCDMA	BPSK		
FREQUENCY RANGE	GSM, GPRS, E-GPRS	824.2MHz ~ 848.8MHz		
TREGOLIGIT RANGE	WCDMA	826.4MHz ~ 846.6MHz		
	GSM	1.047Watts		
MAX. ERP POWER	GPRS	1.000Watts		
	E-GPRS	0.200Watts		
	WCDMA	0.120Watts		
MULTI-SLOTS CLASS	10			
WCDMA RELEASE VERSION	6			
ANTENNA TYPE	Fixed internal antenna v	vith -0.6dBi gain		
DATA CABLE	Refer to Note as below			
I/O PORTS	Refer to user's manual			
ACCESSORY DEVICES	Refer to Note as below			

NOTE:

1. The EUT is a Smart Phone. The test data are separated into following test reports.

	TEST STANDARD	REFERENCE REPORT
WLAN 802.11b/g/n	FCC Part 15, Subpart C	RF99110418C16
BLUETOOTH	(Section 15.247)	RF99110418C16-1
GSM 850, GPRS 850, EGPRS 850, WCDMA 850	FCC Part 22	RF99110418C16-2
GSM 1900, GPRS 1900, EGPRS 1900, WCDMA 1900	FCC Part 24	RF99110418C16-3

2. The EUT has following accessories.

NO.	PRODUCT	BRAND	MODEL	DESCRIPTION
1				I/P: 100-240Vac, 50-60Hz, 200mA O/P: 5Vdc, 1A 1.25m non-shielded cable without core Manufacturer: Emerson
2	Power Adapter	hTC	TC X250 (X= U, B, E, C, A)	I/P: 100-240Vac, 50-60Hz, 200mA O/P: 5Vdc, 1A 1.25m non-shielded cable without core Manufacturer: Delta
3				I/P: 100-240Vac, 50-60Hz, 200mA O/P: 5Vdc, 1A 1.25m non-shielded cable without core Manufacturer: Phihong
4	Battery	hTC	BG86100	Rating: 3.8Vdc, 1730mAh, 6.57Whr Manufacturer: HT ENERGY
5	Dattery		0000100	Rating: 3.7Vdc, 1730mAh, 6.40Whr Manufacturer: HT ENERGY
6		Chant Sincere Co., LTD (COXOC)		1.30m shielded cable without core
7	USB cable	Foxlink	DC M410	1.25m shielded cable without core
8		MEC	DC IVI4 IU	1.27m shielded cable without core
9		Chant Sincere Co., LTD (COXOC)		1.27m shielded cable without core
10	Earphone	Cotron	RC E160	1.23m non-shielded cable without core

*Item 4, 9, 10 were the worst for the final test.

3. The communicated functions of EUT listed as below:

		850MHz	1900MHz	
	GSM	\checkmark	\checkmark	
2G	GPRS	\checkmark	\checkmark	
	E-GPRS	\checkmark	\checkmark	With 802.11b/g/n + Bluetooth+GPS
	WCDMA	\checkmark	\checkmark	
3G	HSDPA	\checkmark	\checkmark	
	HSUPA	\checkmark	\checkmark	

4. IMEI Code: 35719704*******

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

FOR GSM, GPRS & E-GPRS:

124 channels are provided to this EUT. Therefore, the low, middle and high channels are chosen for testing.

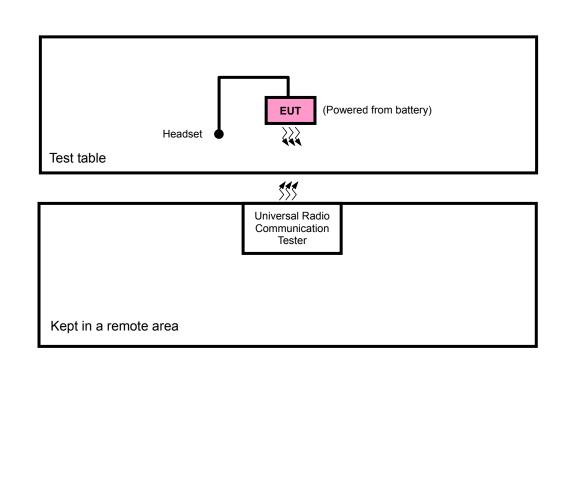
	CHANNEL	FREQUENCY	TX MODE
LOW	128	824.2 MHz	GSM, GPRS, E-GPRS
MIDDLE	190	836.6 MHz	GSM, GPRS, E-GPRS
HIGH	251	848.8 MHz	GSM, GPRS, E-GPRS

NOTE:

- 1. Below 1 GHz, the channel 128, 190, and 251 were pre-tested in chamber. The channel 128 was chosen for final test.
- 2. Above 1 GHz, the channel 128, 190, and 251 were tested individually.
- 3. The worst case for final test is chosen when the power control level set 5.
- 4. The channel space is 0.2MHz.
- 5. The EUT is a GPRS class 10 device (Multislot class: 10, Mobile Terminal B), which provide 2 up-link. After pre-tested both functions, found up-link with 1 time slot is worse, therefore, test results of output power, frequency stability, occupied bandwidth and band edge tests came out from this.
- 6. The EUT is an E-GPRS class 10 device (Multislot class: 10, Mobile Terminal B), which provide 2 up-link. After pre-tested both functions, found up-link with 1 time slot is worse, therefore, test results of output power, frequency stability, occupied bandwidth and band edge tests came out from this.
- 7. The EUT has GSM, GPRS & E-GPRS functions. After pre-testing, GSM function is the worst case for all the emission tests.

FOR WCDMA:

102 channels are provided to this EUT. Therefore, the low, middle and high channels are chosen for testing.


	CHANNEL	FREQUENCY	TX MODE
LOW	4132	826.4 MHz	WCDMA, HSDPA, HSUPA
MIDDLE	4183	836.6 MHz	WCDMA, HSDPA, HSUPA
HIGH	4233	846.6 MHz	WCDMA, HSDPA, HSUPA

NOTE:

- 1. Below 1 GHz, the channel 4132, 4183 and 4233 were pre-tested in chamber. The channel 4132 was chosen for final test.
- 2. Above 1 GHz, the channel 4132, 4183 and 4233 were tested individually.
- 3. The channel space is 0.2MHz.
- After pretest of output power and spurious emission under WCDMA-RMC, WCDMA-AMR & HSDPA, HSUPA mode, find the worst mode is WCDMA-RMC. Therefore, select WCDMA-RMC mode to do final test

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL FOR GSM, GPRS & E-GPRS:

CONFIGURE			API		то			DESC	RIPTION
CONFIGURE MODE	OP	FS	ОВ	BE	CE	RE<1G	RE≥1G	DESC	
-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		-
OB: CE: RE≥	1G: Radia	bandwidt d spurious ted emiss	emissions ion above 1	IGHz	BE: Bar	-	ability emission be	elow 1GHz	
Pre-Scan has between avail diversity archi Following cha	been co able moo tecture).	nducteo	to deteri s, data ra	tes, XYZ	axis an	id anteni	na ports (i	f EUT wit	
AVAILABLE	. ,			D CHANN			TION TECH		AXIS
128 t	to 251		128,	, 190, 251		GSM	I, GPRS, EC	SPRS	Z
	- (-)	140 (110	0) 001000		e innai te	51 05 115	ted below		
	LE CHAN	•	Í	TESTED C				TION TECH	HNOLOGY
AVAILAB	. ,	•	Í		HANNEL				HNOLOGY
AVAILAB	BLE CHAN B to 251 DWIDTH udes all t been co able moo	NEL I MEAS est valu nductec dulation	UREMEN e of each to detern s and ant	TESTED C 19 <u>VT</u> : 1 mode, t mine the enna po	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	includes ase mod JT with a	MODULA spectrum le from all intenna di	GSM GSM I plot of w possible versity ar	vorst value combinat
AVAILAB 128 CCUPIED BAN This item inclue each mode. Pre-Scan has between avail Following cha	BLE CHAN B to 251 DWIDTH udes all t been co able moo	I MEAS est valu nducted dulation vas (we	UREMEN e of each to detern s and ant re) select	TESTED C 19 <u>VT</u> : 1 mode, t mine the enna po	o o out only worst-ca rts (if EL e final te	includes ase mod JT with a est as lis	MODULA spectrum le from all intenna di ted below	GSM GSM I plot of w possible versity ar	vorst value combinat chitecture
AVAILAB 128 CCUPIED BAN This item inclu each mode. Pre-Scan has between avail Following cha AVAILAB	BLE CHAN B to 251 DWIDTH Jdes all t been co able moo nnel(s) v	I MEAS est valu nducted dulation vas (we	UREMEN e of each to detern s and ant re) select	TESTED C 19 <u>IT</u> : mode, k mine the enna po ed for th	out only worst-ca rts (if EU e final te	includes ase mod JT with a est as lis	MODULA spectrum le from all intenna di ted below MODULA	GSM GSM plot of w possible versity ar	orst value combinat chitecture
AVAILAB 128 CCUPIED BAN This item inclu each mode. Pre-Scan has between avail Following cha AVAILAB	BLE CHAN B to 251 DWIDTH Udes all t been co able moo nnel(s) v BLE CHAN B to 251	I MEAS est valu nducted dulation vas (we	UREMEN e of each to detern s and ant re) select	TESTED C 19 <u>17</u> : n mode, k mine the enna po ed for th TESTED C	out only worst-ca rts (if EU e final te	includes ase mod JT with a est as lis	MODULA spectrum le from all intenna di ted below MODULA	GSM GSM possible versity ar	orst value combinati chitecture
AVAILAB 128 CCUPIED BAN This item inclu each mode. Pre-Scan has between avail. Following cha AVAILAB 128	BLE CHAN B to 251 DWIDTH Judes all t been co able moo nnel(s) v BLE CHAN B to 251 B to 251 Deen co able moo	NEL I MEAS est valu nducted dulation vas (we NEL MENT: nducted dulation	UREMEN e of each to detern s and ant re) select	TESTED C 19 MT: n mode, t mine the enna poi ed for th TESTED C 128, 19 mine the enna poi	worst-ca o, 251 worst-ca cts (if EL channel	includes ase mod JT with a est as list ase mod JT with a	MODULA spectrum le from all intenna di ted below MODULA GSM le from all intenna di	GSM GSM plot of w possible versity ar TION TECH I, GPRS, EC possible versity ar	vorst value combinat chitecture INOLOGY GPRS
AVAILAB 128 2CUPIED BAN This item inclue each mode. Pre-Scan has between avails Following cha 128 ND EDGE ME Pre-Scan has between avails Following cha	BLE CHAN B to 251 DWIDTH Judes all t been co able moo nnel(s) v BLE CHAN B to 251 B to 251 Deen co able moo	NEL I MEAS est valu nducted dulation vas (we NEL MENT: nducted dulation vas (we	UREMEN e of each to detern s and ant re) select	TESTED C 19 MT: n mode, t mine the enna poi ed for th TESTED C 128, 19 mine the enna poi	worst-ca ts (if EL channel 0, 251 worst-ca channel 0, 251	includes ase mod JT with a est as list ase mod JT with a est as list	MODULA spectrum le from all intenna di ted below GSM le from all intenna di ted below	GSM GSM plot of w possible versity ar TION TECH I, GPRS, EC possible versity ar	vorst value combinati chitecture INOLOGY GPRS combinati

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
128 to 251	128, 190, 251	GSM

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
128 to 251	128	GSM	Z

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
128 to 251	128, 190, 251	GSM	Z

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
OP	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
FS	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
OB	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
EM	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
BE	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
CE	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
RE < 1G	25deg. C, 64%RH, 1008 hPa	120Vac, 60Hz	David Huang
RE ≥ 1G	25deg. C, 64%RH, 1008 hPa	120Vac, 60Hz	David Huang

FOR WCDMA:

OB: CE∶ RE≥ TPUT POWER	OP FS √ √ Output power √ Occupied bandwid Conducted spuriod 1G: Radiated emis MEASUREM	is emissions	BE √ GHz	BE: Bar	RE<1G √ quency stal nd edge : Radiated e	-	DESC	-
OB: CE∶ RE≥ TPUT POWER	Output power Occupied bandwid Conducted spurior 1G: Radiated emis	Ith is emissions		FS: Fre BE: Bar	quency stal	oility		-
OB: CE∶ RE≥ TPUT POWER	Occupied bandwid Conducted spurior 1G: Radiated emis	is emissions	lGHz	BE: Bar	nd edge	-		
	MEASUREM						low 1GHz	
		ENT:						
Pre-Scan has between availa diversity archit Following char	able modulation ecture).	ns, data ra	tes, XYZ	axis an	id antenn	a ports (if	FEUT wit	
AVAILABLE	CHANNEL	TESTE	D CHANNI	EL	MODULAT	TION TECH	NOLOGY	AXIS
4132 te	o 4233	4132,	4183, 423	3		WCDMA		Z
between availa Following char		ere) select		e final te	est as list	ed below.		
	to 4233		418			MODULA	WCDMA	
CUPIED BANI	DWIDTH MEA	ue of each	mode, b	worst-c	ase mode	e from all	possible	combinati
each mode. Pre-Scan has between availa Following char	able modulation	ns and ant	enna poi					chitecture)
each mode. Pre-Scan has between availa Following char	able modulation	ns and ant ere) select	enna poi	e final te	est as list	ed below.		

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4132, 4233	WCDMA

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4132, 4183, 4233	WCDMA

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
4132 to 4233	4132	WCDMA	Z

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
4132 to 4233	4132, 4183, 4233	WCDMA	z

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
OP	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
FS	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
OB	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
EM	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
BE	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
CE	23deg. C, 63%RH, 1008 hPa	120Vac, 60Hz	Brad Wu
RE < 1G	25deg. C, 64%RH, 1008 hPa	120Vac, 60Hz	David Huang
RE≥1G	25deg. C, 64%RH, 1008 hPa	120Vac, 60Hz	David Huang

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 22 ANSI C63.4-2003 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	UNIVERSAL RADIO COMMUNICATION TESTER	R&S	CMU200	104484	NA
2	NJZ-2000 (GPRS+WCDMA SIMULATOR)	JRC	NJZ-2000	ET00054	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA
2	NA

NOTE 1: All power cords of the above support units are non shielded (1.8m).

NOTE 2: Item 1-2 acted as a communication partners to transfer data.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated peak output power shall be according to the specific rule Part 22.913 (a) that "Mobile / Portable station are limited to 7 watts e.r.p".

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESI7	838496/016	Dec. 27, 2010	Dec. 26, 2011
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	100115	Aug. 02, 2010	Aug. 01, 2011
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Apr. 12, 2011	Apr. 11, 2012
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-408	Jan. 06, 2011	Jan. 05, 2012
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 27, 2010	Dec. 26, 2011
Preamplifier Agilent	8449B	3008A01961	Nov. 02, 2010	Nov. 01, 2011
Preamplifier Agilent	8447D	2944A10738	Nov. 02, 2010	Nov. 01, 2011
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	274041/4	Aug. 21, 2010	Aug. 20, 2011
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	283397/4	Aug. 21, 2010	Aug. 20, 2011
Software ADT.	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA	NA
Antenna Tower Controller inn-co GmbH	CO2000	019303	NA	NA
Turn Table ADT.	TT100.	TT93021704	NA	NA
Turn Table Controller ADT.	SC100.	SC93021704	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 9.

3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

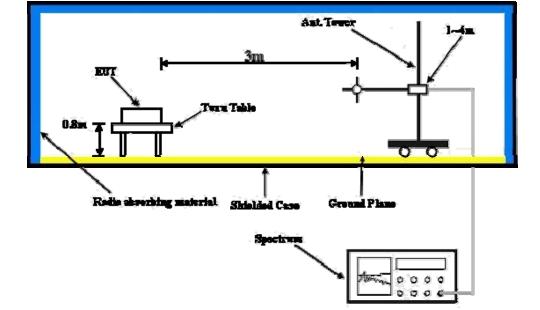
4. The FCC Site Registration No. is 460141.

5. The IC Site Registration No. is IC 7450F-4.

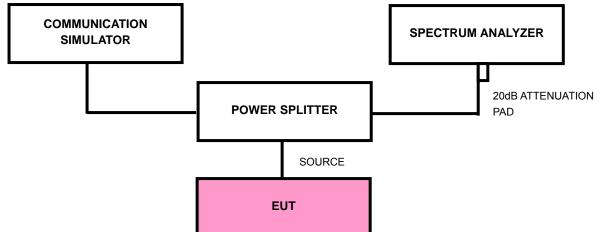
4.1.3 TEST PROCEDURES

EIRP / ERP MEASUREMENT:

- a. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 128, 190 and 251 (GSM, GPRS & E-GPRS) / 4132, 4183 and 4233 (WCDMA) (low, middle and high operational frequency range.) RWB and VBW is 1MHz for GSM, GPRS & EGPRS and 5MHz for WCDMA mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable . Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step c. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- e. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.


CONDUCTED POWER MEASUREMENT:

- a. The EUT was set up for the maximum power with GSM, GPRS & EGPRS/WCDMA link data modulation and link up with simulator.
- b. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.


4.1.4 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.5 EUT OPERATING CONDITIONS

- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.1.6 TEST RESULTS

FOR GSM, GPRS & E-GPRS:

FOR GSM MODE

CONDUCTED OUTPUT POWER							
CHANNEL NO.	FREQUENCY (MHz)	RAW VALUE (dBm)	CORRECTION	OUTPUT POWER			
			FACTOR (dB)	dBm	Watt		
128	824.2	8.38	24.80	33.18	2.080		
190	836.6	8.43	24.80	33.23	2.104		
251	848.8	8.33	24.80	33.13	2.056		

FOR GPRS-T1 MODE

CONDUCTED OUTPUT POWER							
CHANNEL NO.	FREQUENCY (MHz)	RAW VALUE (dBm)	CORRECTION	OUTPUT POWER			
			FACTOR (dB)	dBm	Watt		
128	824.2	8.26	24.80	33.06	2.023		
190	836.6	8.34	24.80	33.14	2.061		
251	848.8	8.29	24.80	33.09	2.037		

FOR E-GPRS-T1 MODE

CONDUCTED OUTPUT POWER							
CHANNEL NO.	FREQUENCY (MHz)	RAW VALUE (dBm)	CORRECTION	OUTPUT	POWER		
	· · ·		FACTOR (dB)	dBm	Watt		
128	824.2	1.82	24.80	26.62	0.459		
190	836.6	1.98	24.80	26.78	0.476		
251	848.8	1.86	24.80	26.66	0.463		

REMARKS: 1. Output Power (dBm) = Raw Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB).

FOR GSM MODE

ERP POWER							
CHANNEL NO.	FREQUENCY (MHz)	S.G VALUE (dBm)	CORRECTION	OUTPUT POWER			
	. ,	、 <i>、</i>	FACTOR (dB)	dBm	Watt		
128	824.2	38.8	-8.6	30.2	1.047		
190	836.6	37.8	-8.6	29.2	0.832		
251	848.8	37.7	-8.7	29.0	0.794		

FOR GPRS-T1 MODE

ERP POWER							
CHANNEL NO.	FREQUENCY (MHz)	S.G VALUE (dBm)	CORRECTION	OUTPUT POWER			
	. ,		FACTOR (dB)	dBm	Watt		
128	824.2	38.6	-8.6	30.0	1.000		
190	836.6	37.7	-8.6	29.1	0.813		
251	848.8	37.6	-8.7	28.9	0.776		

FOR E-GPRS-T1 MODE

ERP POWER							
CHANNEL NO.	FREQUENCY (MHz)	S.G VALUE (dBm)	CORRECTION	OUTPUT POWER			
	, , , , , , , , , , , , , , , , , , ,	、 <i>、</i> ,	FACTOR (dB)	dBm	Watt		
128	824.2	31.6	-8.6	23.0	0.200		
190	836.6	30.7	-8.6	22.1	0.162		
251	848.8	30.6	-8.7	21.9	0.155		

REMARKS: 1. Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

FOR WCDMA: WCDMA-AMR MODE

CONDUCTED OUTPUT POWER							
CHANNEL NO.	FREQUENCY (MHz)	RAW VALUE (dBm)	CORRECTION	OUTPUT POWER			
			FACTOR (dB)	dBm	Watt		
4132	826.4	-0.28	24.80	24.52	0.283		
4183	836.6	-0.17	24.80	24.63	0.290		
4233	846.6	-0.26	24.80	24.54	0.284		

WCDMA-RMC MODE

CONDUCTED OUTPUT POWER							
CHANNEL NO.	FREQUENCY (MHz)	RAW VALUE (dBm)	CORRECTION	OUTPUT POWER			
		,	FACTOR (dB)	dBm	Watt		
4132	826.4	-0.18	24.80	24.62	0.290		
4183	836.6	-0.09	24.80	24.71	0.296		
4233	846.6	-0.19	24.80	24.61	0.289		

WCDMA-RMC MODE

ERP POWER						
CHANNEL NO.	FREQUENCY (MHz)	Hz) S.G VALUE (dBm)	CORRECTION	OUTPUT POWER		
	,		FACTOR (dB)	dBm	Watt	
4132	826.4	29.4	-8.6	20.8	0.120	
4183	836.6	29.1	-8.6	20.5	0.112	
4233	846.6	29.2	-8.7	20.6	0.115	

REMARKS: 1. Output Power (dBm) = Raw Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB).

3. Refer to SAR of WWAN test report to check conducted power of HSDPA and HSUPA.

4.2 FREQUENCY STABILITY MEASUREMENT

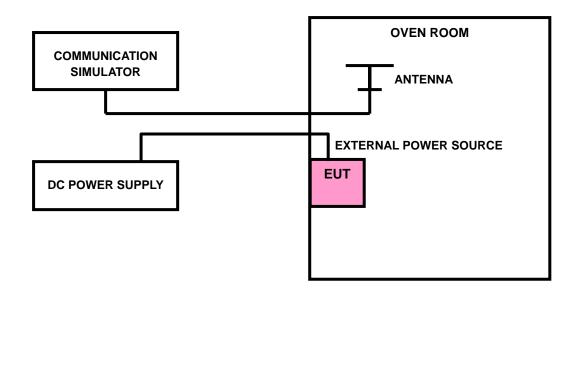
4.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT

According to the FCC part 22.863 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The frequency error rate is according to the JTC standard that the frequency error rate shall be accurate to within 2.5ppm of the received frequency from the base station. The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with the 2.1055(a)(1) –30°C ~55°C.

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Spectrum Analyzer Agilent	E4446A	MY48250266	Aug. 11, 2010	Aug. 10, 2011
Hewlett Packard RF cable	8120-6192	01428251	NA	NA
RF cable	SUCOFLEX 104	257029	Sep. 11, 2010	Sep. 10, 2011
WIT Standard Temperature & Humidity Chamber	MHU-225AU	920409	May 06, 2010	May 05, 2011

4.2.2 TEST INSTRUMENTS

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.



4.2.3 TEST PROCEDURE

- a. Because of the measure the carrier frequency under the condition of the AFC lock, it shall be used the mobile station in the GSM / WCDMA link mode. This is accomplished with the use of the R&S CMU200 / JRC NJZ-2000 simulator station. The oven room could control the temperatures and humidity. The GSM link channel is the 190 and the WCDMA link channel is the 4183.
- b. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- c. EUT is connected the external power supply to control the DC input power. The various Volts from the minimum 3.6Volts to 4.2Volts. Each step shall be record the frequency error rate.
- d. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing.
- e. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.5 TEST RESULTS

FOR GSM:

AFC FREQUENCY ERROR vs. VOLTAGE					
VOLTAGE (Volts) FREQUENCY ERROR (Hz) FREQUENCY ERROR (ppm) LIMIT (ppm)					
4.2	5	0.006	2.5		
3.6	2	0.002	2.5		

NOTE: The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.2Vdc.

AFC FREQUENCY ERROR vs. TEMP.					
ТЕМР. (℃)	FREQUENCY ERROR (Hz)				
55	-11	-0.013	2.5		
50	-9	-0.011	2.5		
40	-8	-0.010	2.5		
30	-7	-0.008 2.5			
20	-3	-0.004 2.5			
10	2	0.002	2.5		
0	5	0.006	2.5		
-10	6	0.007	2.5		
-20	8	0.010	2.5		
-30	-11	-0.013	2.5		

FOR WCDMA:

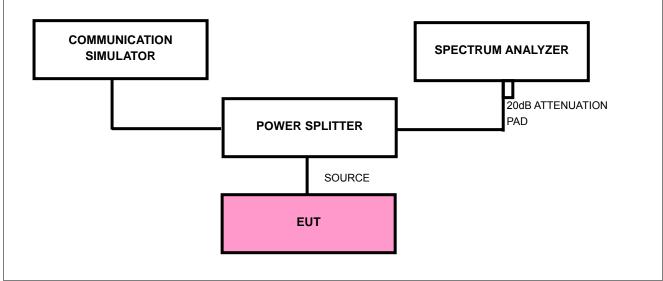
AFC FREQUENCY ERROR vs. VOLTAGE					
VOLTAGE (Volts) FREQUENCY ERROR (Hz) FREQUENCY ERROR (ppm) LIMIT (ppm)					
4.2	11	0.013	2.5		
3.6 5 0.006					

NOTE: The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.2Vdc.

AFC FREQUENCY ERROR vs. TEMP.					
ТЕМР. (℃)	FREQUENCY ERROR (Hz)				
55	-18	-0.022	2.5		
50	-16	-0.019	2.5		
40	-13	-0.016	2.5		
30	-11	-0.013	2.5		
20	-9	-0.011	2.5		
10	-5	-0.006	2.5		
0	0 -8 -0.010				
-10	-6	-0.007	2.5		
-20	-4	-0.005	2.5		
-30	-2	-0.002	2.5		

4.3 OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT


The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the totalmean power of a given emission.

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100039	Jan. 11, 2011	Jan. 10, 2012
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 25, 2010	Jun. 24, 2011
RF cable	SUCOFLEX 104	274403/4	Aug. 20, 2010	Aug. 19, 2011
RF cable	SUCOFLEX 104	250729/4	Aug. 19, 2010	Aug. 18, 2011
RF cable	SUCOFLEX 104	214377/4	Aug. 19, 2010	Aug. 18, 2011
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

4.3.2 TEST INSTRUMENTS

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

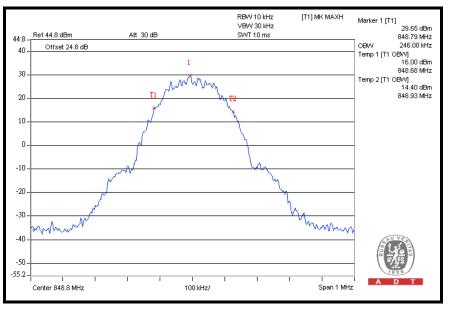
4.3.3 TEST SETUP

4.3.4 TEST PROCEDURES

- a. The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 128, 190 and 251 (GSM / GPRS / E-GPRS) / 4132, 4183 and 4233 (WCDMA) (low, middle and high operational frequency range.)
- b. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss is the worst loss 24.8dB in the transmitted path track.
- c. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.3.5 EUT OPERATING CONDITION

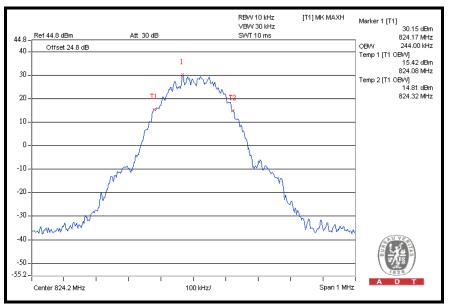
- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled a EUT to export maximum and minimum output power under transmission mode and specific channel frequency.


4.3.6 TEST RESULTS

FOR GSM, GPRS & E-GPRS:

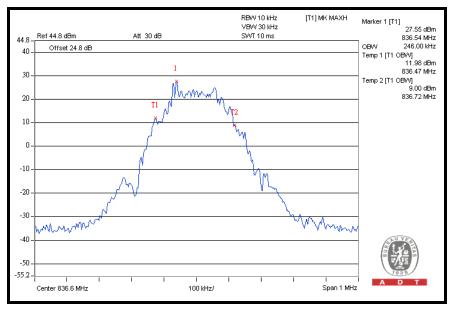
FOR GSM MODE

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (kHz)
128	824.2	244
190	836.6	246
251	848.8	246



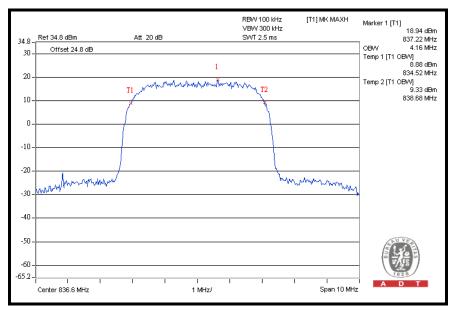
FOR GPRS MODE

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (kHz)
128	824.2	244
190	836.6	242
251	848.8	244



FOR E-GPRS MODE

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (kHz)
128	824.2	238
190	836.6	246
251	848.8	240

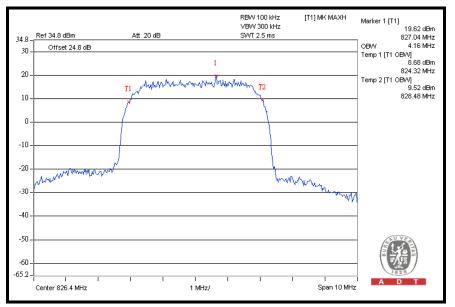


FOR WCDMA:

FOR WCDMA:

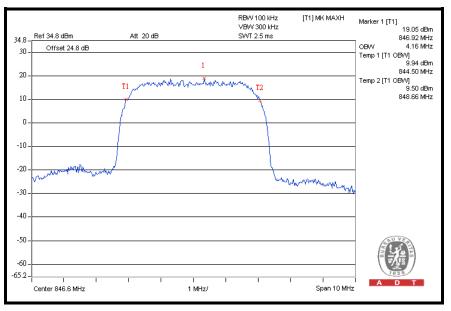
CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (MHz)
4132	826.4	4.14
4183	836.6	4.16
4233	846.6	4.14

CH 4183



FOR HSDPA:

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (MHz)
4132	826.4	4.16
4183	836.6	4.16
4233	846.6	4.14

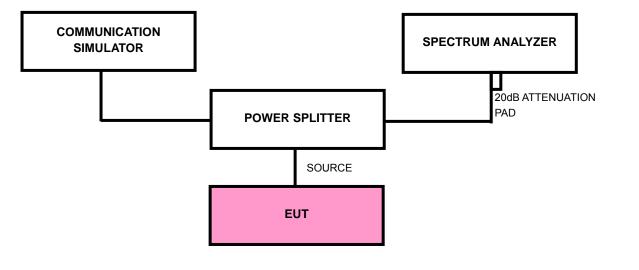


FOR HSUPA:

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (MHz)
4132	826.4	4.14
4183	836.6	4.16
4233	846.6	4.16

4.4 BAND EDGE MEASUREMENT

4.4.1 LIMITS OF BAND EDGE MEASUREMENT


According to FCC 22.917 specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100039	Jan. 11, 2011	Jan. 10, 2012
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 25, 2010	Jun. 24, 2011
RF cable	SUCOFLEX 104	274403/4	Aug. 20, 2010	Aug. 19, 2011
RF cable	SUCOFLEX 104	250729/4	Aug. 19, 2010	Aug. 18, 2011
RF cable	SUCOFLEX 104	214377/4	Aug. 19, 2010	Aug. 18, 2011
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

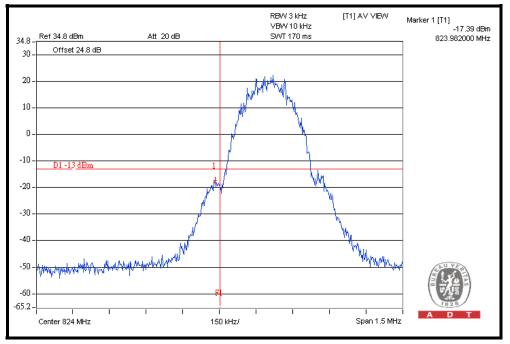
4.4.3 TEST SETUP

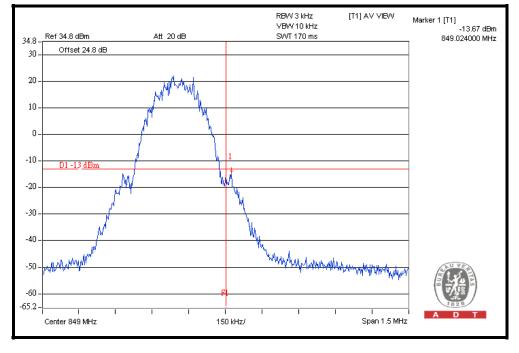
4.4.4 TEST PROCEDURES

- a. The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels, 128 and 251 (GSM/GPRS/ E-GPRS) / 4132 and 4233 (WCDMA) (low and high operational frequency range.)
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss is the worst loss 24.8dB in the transmitted path track.
- c. The center frequency of spectrum is the band edge frequency and span is 1.5 MHz. RB of the spectrum is 3kHz and VB of the spectrum is 10kHz (GSM/GPRS/ E-GPRS).
- d. The center frequency of spectrum is the band edge frequency and span is 10MHz. RB of the spectrum is 100kHz and VB of the spectrum is 300kHz (WCDMA).
- e. Record the max trace plot into the test report.

4.4.5 EUT OPERATING CONDITION

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

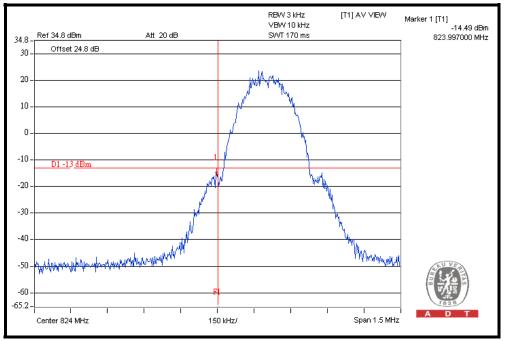


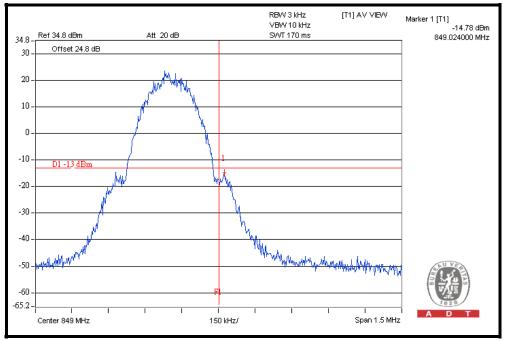

4.4.6 TEST RESULTS

FOR GSM / GPRS / E-GPRS:

FOR GSM

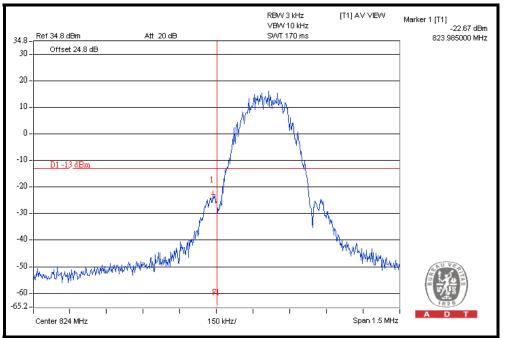
LOWER BAND EDGE

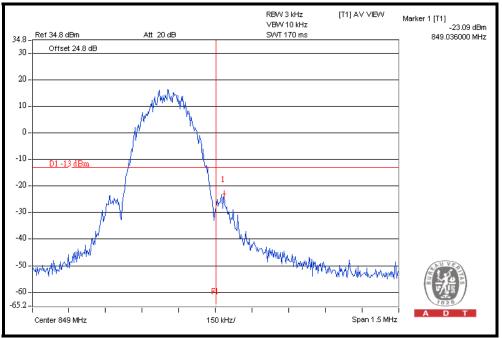




FOR GPRS MODE

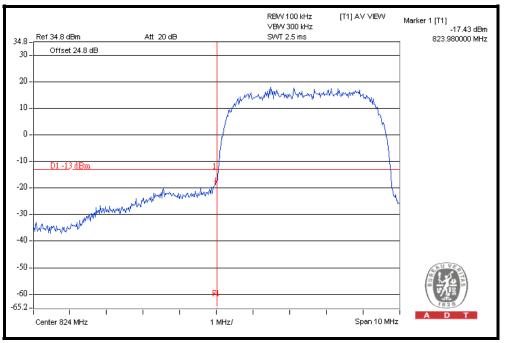
LOWER BAND EDGE

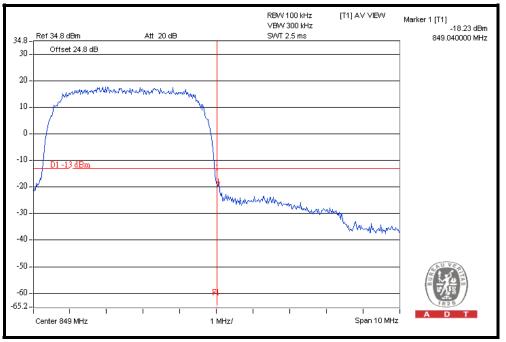




FOR E-GPRS MODE

LOWER BAND EDGE

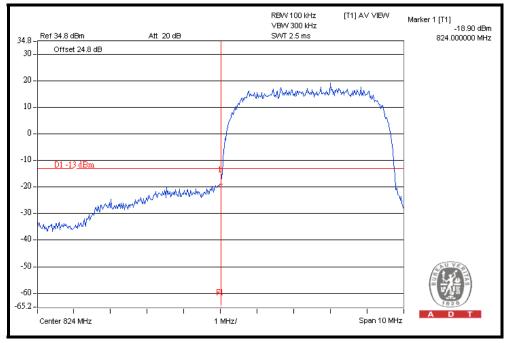


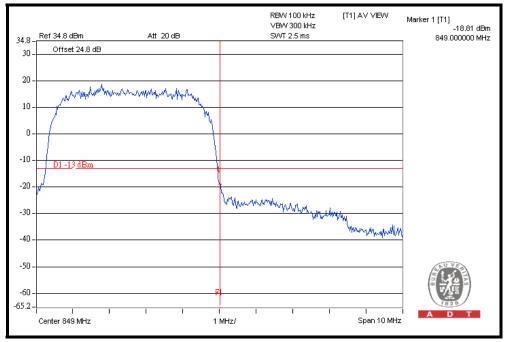


FOR WCDMA:

WCDMA MODE

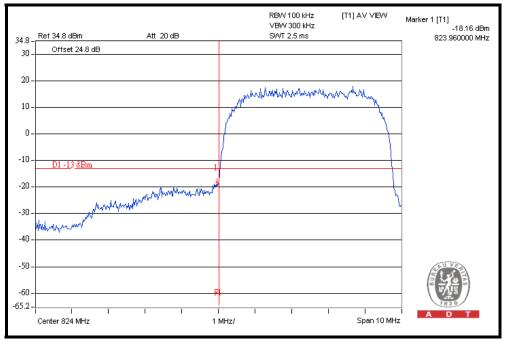
LOWER BAND EDGE

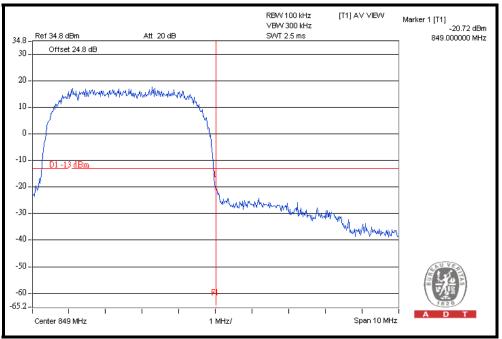




HSDPA MODE

LOWER BAND EDGE





HSUPA MODE

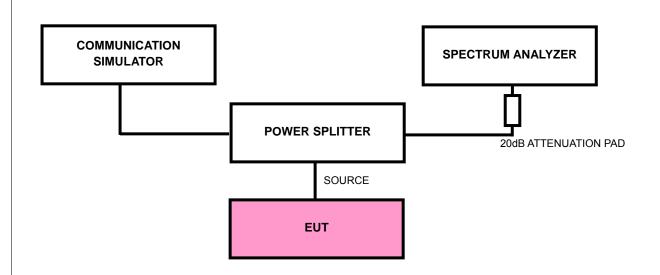
LOWER BAND EDGE

4.5 CONDUCTED SPURIOUS EMISSIONS

4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

In the FCC 22.917, On any frequency outside a licensee's frequency block within GPRS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The emission limit equal to -13dBm.

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100039	Jan. 11, 2011	Jan. 10, 2012
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 25, 2010	Jun. 24, 2011
RF cable	SUCOFLEX 104	274403/4	Aug. 20, 2010	Aug. 19, 2011
RF cable	SUCOFLEX 104	250729/4	Aug. 19, 2010	Aug. 18, 2011
RF cable	SUCOFLEX 104	214377/4	Aug. 19, 2010	Aug. 18, 2011
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA


4.5.2 TEST INSTRUMENTS

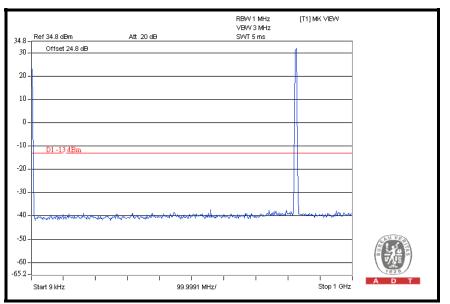
NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

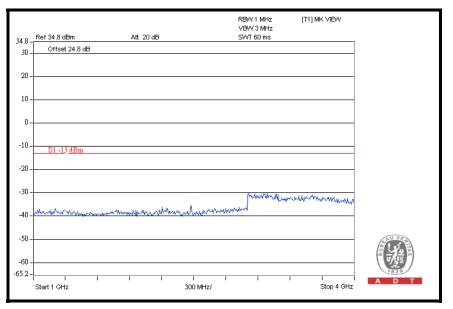
4.5.3 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 128, 190 and 251 (GSM) / 4132, 4183 and 4233 (WCDMA) (low, middle and high operational frequency range.)
- b. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss are the worst loss 24.8dB in the transmitted path track.
- c. When the spectrum scanned from 9kHz to 1GHz, it shall be connected to the band reject filter attenuated the carried frequency. The spectrum set RB=1MHz, VB=3MHz.
- d. When the spectrum scanned from 1GHz to 9GHz, it shall be connected to the high pass filter attenuated the carried frequency. The spectrum set RB=1MHz, VB=3MHz.

4.5.4 TEST SETUP

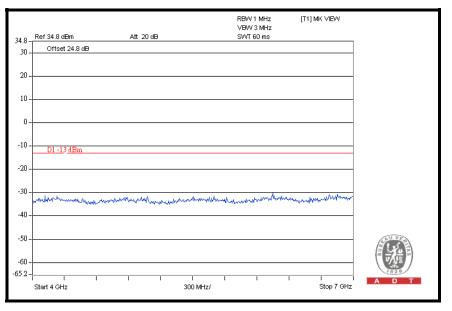
4.5.5 EUT OPERATING CONDITIONS


- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

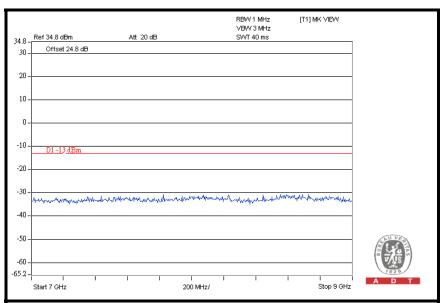

4.5.6 TEST RESULTS

FOR GSM:

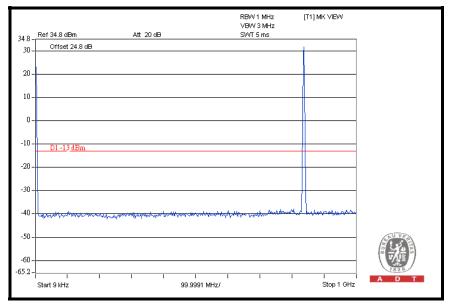
CH 128: 9kHz ~ 1GHz



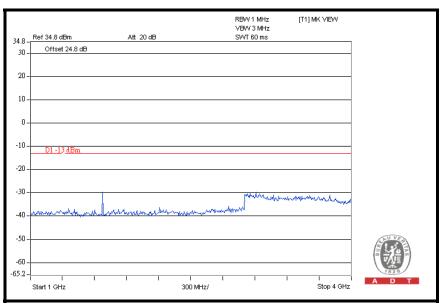
1GHz ~ 4GHz



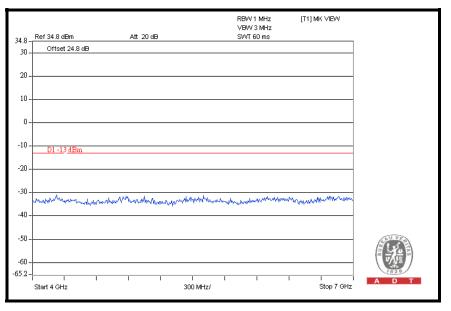
4GHz ~ 7GHz



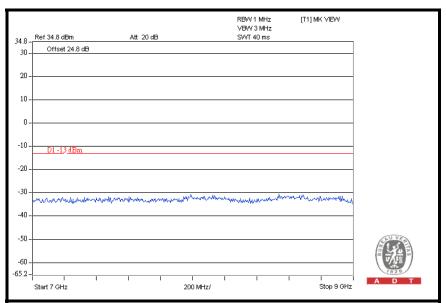
7GHz ~ 9GHz



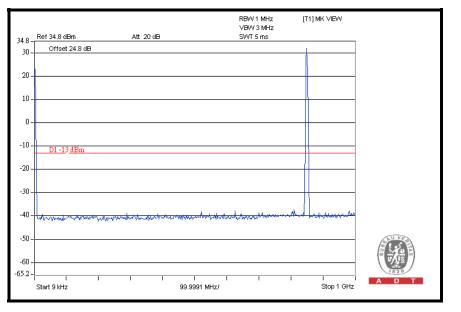
CH 190: 9kHz ~ 1GHz



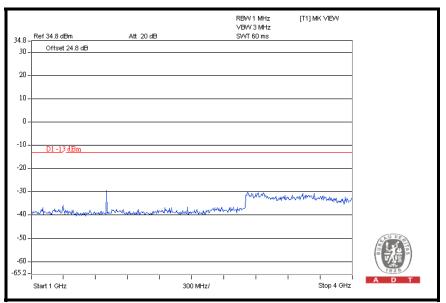
 $^{1 \}text{GHz} \sim 4 \text{GHz}$



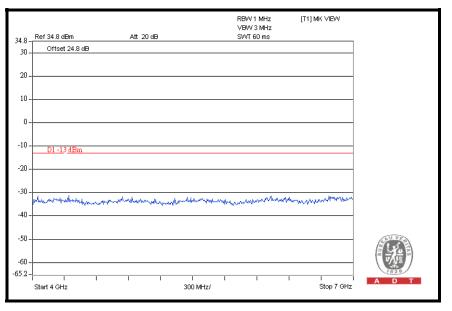
4GHz ~ 7GHz



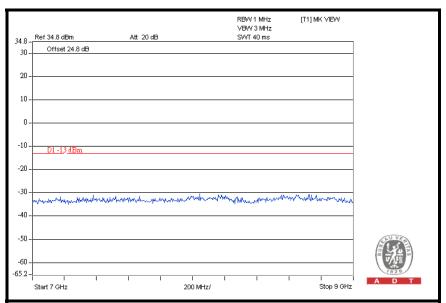
7GHz ~ 9GHz



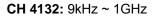
CH 251: 9kHz ~ 1GHz

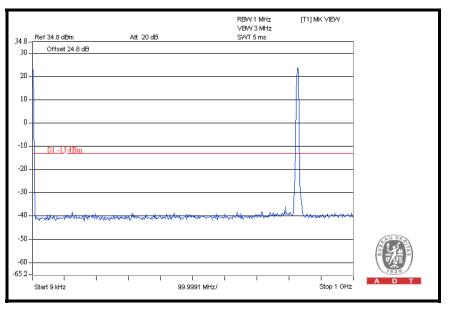


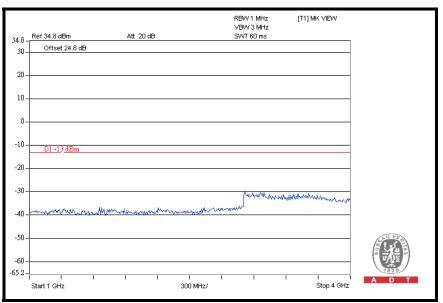
1GHz ~ 4GHz



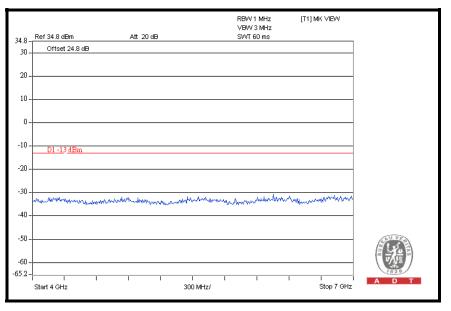
4GHz ~ 7GHz



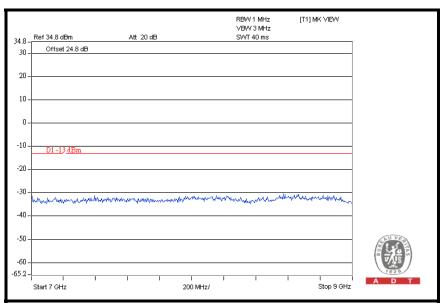

7GHz ~ 9GHz



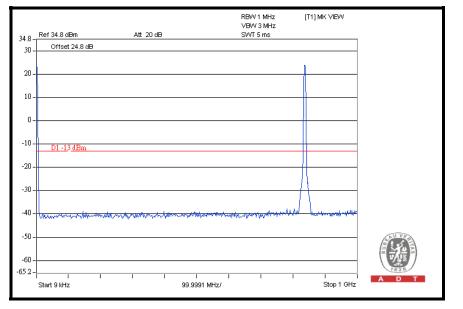
FOR WCDMA:



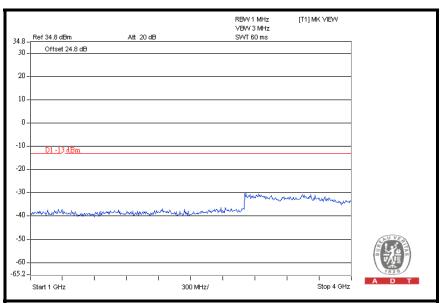
1GHz ~ 4GHz



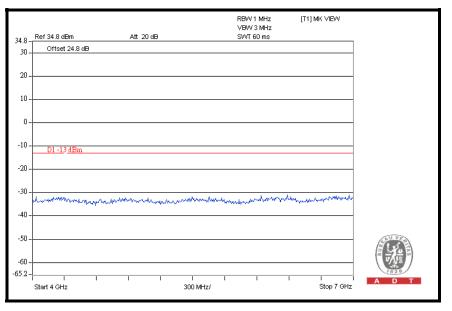
4GHz ~ 7GHz



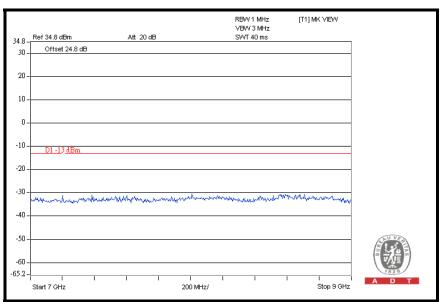
7GHz ~ 9GHz



CH 4183: 9kHz ~ 1GHz



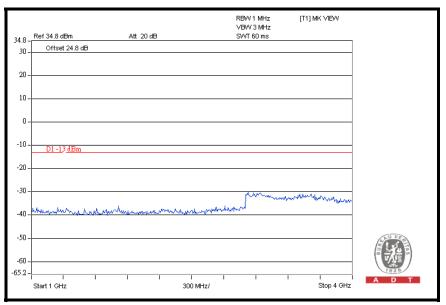
¹GHz ~ 4GHz



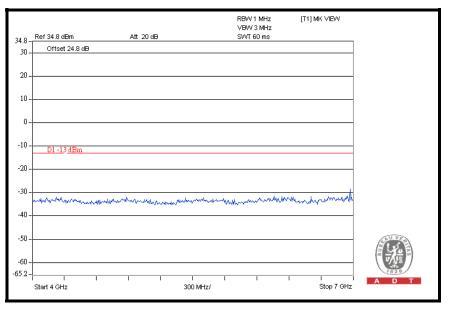
4GHz ~ 7GHz



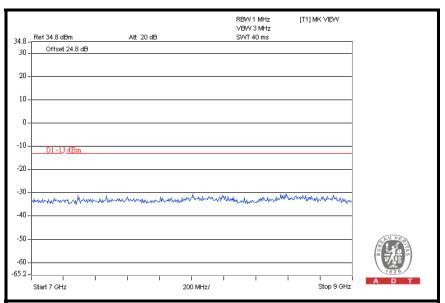
7GHz ~ 9GHz



CH 4233: 9kHz ~ 1GHz



1GHz ~ 4GHz



4GHz ~ 7GHz

7GHz ~ 9GHz

4.6 RADIATED EMISSION MEASUREMENT (BELOW 1GHz)

4.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 24.238(a), On any frequency outside a licensee's frequency block within USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The emission limit equal to –13dBm. So the limit of emission is the same absolute specified line.

LIMIT (dBm)	EQUIVALENT FIELD STRENGTH AT 3m (dBuV/m) (NOTE)		
-13	82.2		

NOTE: The following formula is used to convert the equipment radiated power to field strength.

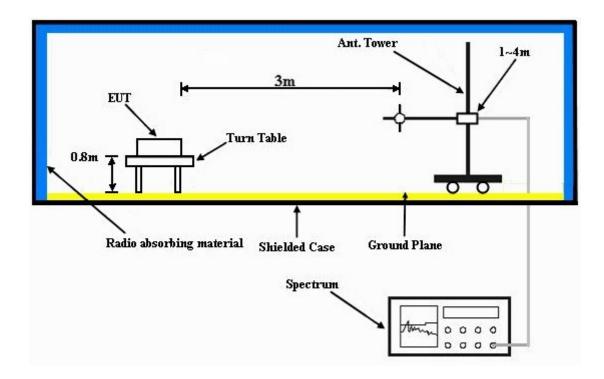
E = [1000000 I (30P)] / 3 uV/m, where P is Watts.

4.6.2 TEST INSTRUMENTS

Same as 4.1.2.

4.6.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.


NOTE: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.6.6 EUT OPERATING CONDITIONS

- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.6.7 TEST RESULTS

FOR GSM:

MODE	TX channel 128	FREQUENCY RANGE	Below 1000 MHz
ENVIRONMENTAL CONDITIONS	25deg. C, 64%RH, 1008hPa	INPUT POWER	120Vac, 60 Hz
TESTED BY	David Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	92.20	43.9	82.2	-38.4	2.00 H	112	35.00	8.90	
2	158.30	46.7	82.2	-35.6	1.00 H	106	32.20	14.50	
3	230.22	51.6	82.2	-30.7	2.00 H	277	38.80	12.80	
4	381.84	38.8	82.2	-43.5	1.00 H	241	21.00	17.80	
5	467.37	36.1	82.2	-46.2	2.00 H	241	16.00	20.10	
6	636.49	32.2	82.2	-50.1	1.00 H	196	8.70	23.50	
	AN	TENNA POL	ARITY & T	EST DIST	ANCE: VE		AT 3 M	_	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	90.26	37.7	82.2	-44.6	1.00 V	322	29.10	8.60	
2	160.24	42.2	82.2	-40.1	1.00 V	106	27.70	14.50	
3	238.00	46.1	82.2	-36.2	1.00 V	76	33.00	13.10	
4	451.82	37.8	82.2	-44.5	1.00 V	100	18.10	19.70	
5	636.49	32.7	82.2	-49.6	1.00 V	70	9.20	23.50	
6	826.99	36.3	82.2	-46.0	1.00 V	178	9.20	27.10	

NOTE:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. This is valid for all 3 channels.

FOR WCDMA:

MODE	TX channel 4132	FREQUENCY RANGE	Below 1000 MHz
	23deg. C, 65%RH, 1008hPa	INPUT POWER	120Vac, 60 Hz
TESTED BY	David Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	92.20	43.9	82.2	-38.4	2.00 H	109	35.00	8.90	
2	160.24	46.9	82.2	-35.4	2.00 H	118	32.40	14.50	
3	232.16	51.5	82.2	-30.8	1.00 H	280	38.60	12.90	
4	381.84	39.0	82.2	-43.3	1.00 H	265	21.20	17.80	
5	498.48	35.0	82.2	-47.3	2.00 H	247	14.10	20.90	
6	702.59	33.6	82.2	-48.7	1.00 H	10	9.50	24.10	
	A	NTENNA POL	ARITY & T	EST DIST	ANCE: VI		AT 3 M		
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	88.32	37.3	82.2	-45.0	2.00 V	10	28.40	8.90	
2	158.30	40.3	82.2	-42.0	2.00 V	10	25.80	14.50	
3	228.28	44.6	82.2	-37.7	2.00 V	214	31.90	12.70	
4	463.49	33.6	82.2	-48.7	2.00 V	124	13.60	20.00	
5	535.41	35.8	82.2	-46.5	1.00 V	127	14.00	21.80	
6	716.19	33.2	82.2	-49.1	1.00 V	310	8.70	24.50	

NOTE:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. This is valid for all 3 channels.

4.7 RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

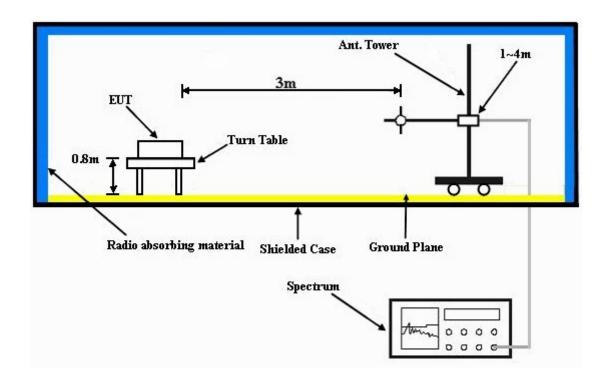
4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 22.917 (a), On any frequency outside a licensee's frequency block within GPRS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$. The emission limit equal to -13 dBm.

4.7.2 TEST INSTRUMENTS

Same as 4.1.2.

4.7.3 TEST PROCEDURES


- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15dBi.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.7.6 EUT OPERATING CONDITIONS

- a. The EUT makes a call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.7.7 TEST RESULTS

FOR GSM BAND:

MODE	TX channel 128	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 64%RH, 1008hPa
TESTED BY	David Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)		
1	1648.4	61.6	-13.0	-40.4	7.6	-32.8		
2	2472.6	71.6	-13.0	-31.1	8.4	-22.7		
3	3296.8	42.3	-13.0	-61.7	9.9	-51.8		
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
	AN	FENNA POLAR	ITY & TEST DI	STANCE: VERT	TICAL AT 3 M			
No.	ANT Freq. (MHz)	ENNA POLAR Emission Level (dBuV)	ITY & TEST DI	STANCE: VERT S.G Power Value (dBm)	ICAL AT 3 M Correction Factor (dB)	Power Value (dBm)		
No. 1		Emission Level		S.G Power	Correction			
No. 1	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	(dBm)		

MODE	IX channel 190	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 64%RH, 1008hPa
TESTED BY	David Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)		
1	1673.2	56.7	-13.0	-45.1	7.7	-37.4		
2	2509.8	71.4	-13.0	-30.9	8.4	-22.5		
3	3346.4	42.1	-13.0	-61.5	9.9	-51.6		
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
	AN	ENNA POLAR	ITY & TEST DI	STANCE: VERT	ICAL AT 3 M			
No.	AN Freq. (MHz)	ENNA POLAR Emission Level (dBuV)	ITY & TEST DI	STANCE: VERT S.G Power Value (dBm)	ICAL AT 3 M Correction Factor (dB)	Power Value (dBm)		
No.		Emission Level		S.G Power	Correction			
No. 1 2	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	(dBm)		

MODE	TX channel 251	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 64%RH, 1008hPa
TESTED BY	David Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)		
1	1697.6	59.5	-13.0	-43.1	7.9	-35.2		
2	2546.4	62.8	-13.0	-40.0	8.5	-31.5		
3	3395.2	42.4	-13.0	-61.5	9.9	-51.6		
	AN	TENNA POLAR	ITY & TEST DI	STANCE: VERT	ICAL AT 3 M	_		
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)		
1	1697.6	64.5	-13.0	-38.1	7.9	-30.2		
2	2546.4	56.3	-13.0	-46.5	8.5	-38.0		

FOR WCDMA BAND:

MODE	TX channel 4132	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 64%RH, 1008hPa
TESTED BY	David Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1652.8	56.5	-13.0	-45.5	7.6	-37.9
2	2479.2	40.5	-13.0	-62.2	8.4	-53.8
3	3305.6	41.9	-13.0	-61.9	9.9	-52.0
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1652.8	51.7	-13.0	-50.3	7.6	-42.7
2	2479.2	44.8	-13.0	-57.9	8.4	-49.5
-	-					

MODE	TX channel 4183	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 64%RH, 1008hPa
TESTED BY	David Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1673.2	45.8	-13.0	-56.0	7.7	-48.3
2	2509.8	45.9	-13.0	-56.4	8.4	-48.0
3	3346.4	42.5	-13.0	-61.2	9.9	-51.3
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1673.2	46.8	-13.0	-55.0	7.7	-47.3
2	2509.8	39.3	-13.0	-63.0	8.4	-54.6
3	3346.4	41.5	-13.0	-62.2	9.9	-52.3

MODE	TX channel 4233	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 64%RH, 1008hPa
TESTED BY	David Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1693.2	54.4	-13.0	-48.1	7.9	-40.2
2	2539.8	40.2	-13.0	-62.6	8.5	-54.1
3	3386.4	41.4	-13.0	-62.5	9.9	-52.6
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
	AN			STANCE. VENT		_
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
No. 1		Emission Level		S.G Power	Correction	
No. 1 2	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	(dBm)

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5.phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343

Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----