

SAR TEST REPORT (Mobile Phone)

REPORT NO.: SA110330C13-1

MODEL NO.: PG86300

FCC ID: NM8PG86300

RECEIVED: Mar. 30, 2011

TESTED: May 05 ~ Jun 25, 2011

ISSUED: Jun 27, 2011

APPLICANT: HTC Corporation

ADDRESS: No. 23, Xinghua Rd., Taoyuan City, Taoyuan, 330 Taiwan

- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 55 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

ASE CONTROL RECORD	3						
CERTIFICATION	4						
GENERAL INFORMATION	5						
GENERAL DESCRIPTION OF EUT							
GENERAL DESCRIPTION OF APPLIED STANDARDS	8						
GENERAL INOFRMATION OF THE SAR SYSTEM	9						
TEST EQUIPMENT							
GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION	13						
DESCRIPTION OF SUPPORT UNITS	16						
DESCRIPTION OF ANTENNA LOCATION	17						
DESCRIPTION OF TEST POSITION	18						
DESCRIPTION OF TEST POSITION	18						
TOUCH/CHEEK TEST POSITION	19						
TILT TEST POSITION							
BODY-WORN CONFIGURATION							
RECIPES FOR TISSUE SIMULATING LIQUIDS	21						
SYSTEM VALIDATION	31						
TEST PROCEDURE	31						
VALIDATION RESULTS	33						
SYSTEM VALIDATION UNCERTAINTIES							
TEST RESULTS	35						
TEST PROCEDURES	35						
DESCRIPTION OF TEST CONDITION							
MEASURED SAR RESULTS							
POWER DRIFT TABLE	43						
NO SIMULTANEOUS SAR JUSTIFICATION	51						
SAR LIMITS	54						
INFORMATION ON THE TESTING LABORATORIES	55						
APPENDIX A: TEST DATA							
APPENDIX B: ADT SAR MEASUREMENT SYSTEM							
APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION							
INDIX ETTEST CONFIGURATIONS							
	CERTIFICATION						

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	NA	Jun 27, 2011

1. CERTIFICATION

PRODUCT:Smart PhoneMODEL:PG86300BRAND:hTCAPPLICANT:HTC CorporationTESTED:May 05 ~ Jun 25, 2011TEST SAMPLE:Production UnitSTANDARDS:FCC Part 2 (Section 2.1093)FCC OET Bulletin 65, Supplement C (01-01)RSS-102 Issue 4 (2010-03)

The above equipment (model: PG86300) have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY

in / Specialist

, DATE: Jun 27, 2011

APPROVED BY

Gary Chang / Assistant Manager

, DATE: Jun 27, 2011

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

EUT	Smart Phone			
MODEL NO.	PG86300			
FCC ID	NM8PG86300			
POWER SUPPLY	3.7Vdc (Rechargeable lithium ba 3.8Vdc (Rechargeable lithium ba 5.0Vdc (Power adapter) 5.0Vdc (host equipment)	,		
CLASSIFICATION	Portable device, production unit			
MODULATION TYPE	GMSK / 8PSK / BPSK			
FREQUENCY RANGE	824MHz ~ 849MHz 1930MHz ~ 1990MHz 1712.4MHz ~1752.6MHz			
	GSM 850 band	GSM 1900 band		
	33.52/CH 128: 824.2MHz 33.92/CH 190: 836.6MHz 33.88/CH 251: 848.8MHz	29.86/CH 512: 1850.2MHz 30.31/CH 661: 1880.0MHz 29.20/CH 810: 1909.8MHz		
	GPRS 850 band TS1	GPRS 1900 band TS1		
	33.34/CH 128: 824.2MHz 33.16/CH 190: 836.6MHz 33.23/CH 251: 848.8MHz	29.83/CH 512: 1850.2MHz 30.21/CH 661: 1880.0MHz 29.15/CH 810: 1909.8MHz		
	GPRS 850 band TS2	GPRS 1900 band TS2		
	32.02/CH 128: 824.2MHz 32.11/CH 190: 836.6MHz 32.36/CH 251: 848.8MHz	28.60/CH 512: 1850.2MHz 29.79/CH 661: 1880.0MHz 28.82/CH 810: 1909.8MHz		
CHANNEL	GPRS 850 band TS3	GPRS 1900 band TS3		
FREQUENCIES UNDER TEST AND ITS CONDUCTED OUTPUT POWER(dBm)	30.57/CH 128: 824.2MHz 30.49/CH 190: 836.6MHz 30.82/CH 251: 848.8MHz	28.62/CH 512: 1850.2MHz 30.28/CH 661: 1880.0MHz 28.92/CH 810: 1909.8MHz		
	GPRS 850 band TS4	GPRS 1900 band TS4		
	28.92/CH 128: 824.2MHz 29.09/CH 190: 836.6MHz 29.33/CH 251: 848.8MHz	26.93/CH 512: 1850.2MHz 27.98/CH 661: 1880.0MHz 26.47/CH 810: 1909.8MHz		
	EGPRS 850 band TS1	EGPRS 1900 band TS1		
	27.21 /CH 128: 824.2MHz 27.32/CH 190: 836.6MHz 27.34/CH 251: 848.8MHz	24.52/CH 512: 1850.2MHz 25.67/CH 661: 1880.0MHz 24.43/CH 810: 1909.8MHz		
	EGPRS 850 band TS2	EGPRS 1900 band TS2		
	25.97/CH 128: 824.2MHz 26.13/CH 190: 836.6MHz 26.16/CH 251: 848.8MHz	23.35/CH 512: 1850.2MHz 24.43/CH 661: 1880.0MHz 23.21/CH 810: 1909.8MHz		

I/O PORTS	Refer to user's manual Refer to note as below								
	NA Refer to usor's manual								
MAX. ANTENNA GAIN	850MHz: -3.6dBi 1700MHz: -2.0 dBi 1900MHz: 0.4dBi								
MULTI SLOT CLASS FOR DTM	11 (Maximum 3 Uplink / 4 Downlink)								
DTM	DTM is	suppor	ted						
MULTI SLOT CLASS	12 for G	SPRS /	EG	PRS					
ANTENNA TYPE	Fixed in								
	1900N			.171 m	nW/g	1900M	Hz	1.230 m	ıW/g
(1g)	1700	MHz).552 m	<u> </u>	1700M		z 0.856 mW/g	
MAX. AVERAGE SAR	850N	IHz		1.208 m	8 mW/g 850MHz		Ηz	0.956 mW/g	
		Н	ead	b			Bo	dy	
	1513	1752.	_	21.85	20.60	20.00	20.33	21.65	
	1312 1412	1712.4 1732.4		21.92 21.75	20.72 20.60	21.02 20.65	20.62 20.53	22.12 21.65	
	Channel	Frequer (MHz)	Subtest	Subtest	Subtest 3	Subtest	5	-
	1513	1752.	6	23.22	22 23.03 21.55 21.64 21.85 21.68 HSUPA			21.68	
	1412	1732.4	-	23.44	23.15	21.63	21.89	21.98	21.66
	1312	(MHz 1712.4		RMC 23.26	AMR 22.96	1 21.58	2 21.72	3 21.8	21.6
POWER(dBm)	Channel	Frequer			DMA	Subtest		DPA Subtest	Subtes
		1				A Mode			
FREQUENCIES UNDER TEST AND ITS	32.02/CH 32.17/CH			8MHz		30.35/CH 30.65/CH			
CHANNEL	<mark>(</mark> 0 31.97/Cł	SM + 128: 8	GP 324.	<mark>RS TS1</mark> 2MHz		<mark>(G</mark> 30.42/CH	<mark>SM + G</mark> I 128: 82	PRS TS 4.2MHz	
	25.83/Cł	H 251: 8	848.		М	23.56/CH	l 810: 19		
	25.71/CH 25.72/CH					23.36/CH 24.74/CH			
	EG	PRS 85	50 k	band TS	54	EGP	RS 190	0 band [•]	TS4
	25.88/CH 190: 836.6MHz 25.82/CH 251: 848.8MHz					24.17/CH 661: 1880.0MHz 23.11/CH 810: 1909.8MHz			
	EGPRS 850 band TS3 25.84/CH 128: 824.2MHz				23.27/CH 512: 1850.2MHz				

NOTE:

1. The EUT is a Smart Phone. The test data are separated into following test reports:

	REFERENCE REPORT
SAR test report-247 (WLAN 802.11b/g/n)	SA110330C13
SAR test report-GSM / GPRS/ E-GPRS 850	
SAR test report- GSM / GPRS/ E-GPRS 1900	SA110330C13-1
SAR test report-WCDMA	
RF Exposure (For Bluetooth)	SA110330C13-2

2. The communicated functions of EUT listed as below:

		850MHz	1700MHz	1900MHz	
	GSM	\checkmark		\checkmark	
2G	GPRS	\checkmark		\checkmark	
	E-GPRS	\checkmark		\checkmark	With 802.11b/g/n + Bluetooth + GPS
	WCDMA		\checkmark		+ Blueloolii + GFS
3G	HSDPA		\checkmark		
	HSUPA				

3. IMEI code: 35687104********

4. The EUT has following accessories.

NO.	PRODUCT	BRAND	MODEL	DESCRIPTION
1				I/P: 100-240Vac, 200mA, 50-60Hz O/P: 5Vdc, 1A Manufacture: Emerson
2	Power Adapter	Power Adapter hTC		I/P: 100-240Vac, 200mA, 50-60Hz O/P: 5Vdc, 1A Manufacture: Delta
3				I/P: 100-240Vac, 200mA, 50-60Hz O/P: 5Vdc, 1A Manufacture: Phihong
4	Patton	hTC	BG86100	Rating: 3.8Vdc, 1730mAh, 6.57Whr Manufacture: HT ENERGY
5	Battery	inc	BG00100	Rating: 3.7Vdc, 1730mAh, 6.40Whr Manufacture: HT ENERGY
6		Chant Sincere Co.,		1.30m non-shielded cable w/o core
7		LTD (COXOC)	DO 1440	1.27m non-shielded cable w/o core
8	USB cable	Foxlink	DC M410	1.25m non-shielded cable w/o core
9		MEC		1.27m non-shielded cable w/o core
10	Earphone cable	Merry	RC E160	1.23m non-shielded cable without core

5. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

2.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC 47 CFR Part 2 (2.1093)

FCC OET Bulletin 65, Supplement C (01-01)

RSS-102 Issue 4 (2010-03)

IEEE 1528-2003

All test items have been performed and recorded as per the above standards.

2.3 GENERAL INOFRMATION OF THE SAR SYSTEM

DASY4(software 4.7 Build 80) consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4 software defined. The DASY4 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

EX3DV4 ISOTROPIC E-FIELD PROBE

CONSTRUCTION	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
FREQUENCY	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
DIRECTIVITY	\pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)
DYNAMIC RANGE	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
DIMENSIONS	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm)
APPLICATION	Typical distance from probe tip to dipole centers: 1 mm High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

NOTE

- 1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.
- 2. For frequencies above 800MHz, calibration in a rectangular wave-guide is used, because wave-guide size is manageable.
- 3. For frequencies below 800MHz, temperature transfer calibration is used because the wave-guide size becomes relatively large.

TWIN SAM V4.0

CONSTRUCTION The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

SHELL THICKNESS 2 ± 0.2 mm

- FILLING VOLUME Approx. 25 liters
- DIMENSIONS Height: 810 mm; Length: 1000 mm; Width: 500 mm

SYSTEM VALIDATION KITS:

CONSTRUCTION	Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor
CALIBRATION	Calibrated SAR value for specified position and input power at the flat phantom in brain simulating solutions
FREQUENCY	835, 1900
RETURN LOSS	> 20 dB at specified validation position
POWER CAPABILITY	> 100 W (f < 1GHz); > 40 W (f > 1GHz)
OPTIONS	Dipoles for other frequencies or solutions and other calibration conditions upon request

DEVICE HOLDER FOR SAM TWIN PHANTOM

CONSTRUCTION The device holder for the GSM900/DCS1800/PCS1900 GSM/GPRS/CDMA Mobile Phone device is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. The device holder for the portable device makes up of the polyethylene foam. The dielectric parameters of material close to the dielectric parameters of the air.

DATA ACQUISITION ELECTRONICS

CONSTRUCTION The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplex, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe is mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

2.4 TEST EQUIPMENT

FOR SAR MEASURENENT

ITEM	NAME	BRAND	TYPE	SERIES NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
1	SAM Phantom	S & P	QD000 P40 CA	TP-1202	NA	NA
2	Signal Generator	Anritsu	68247B	984703	May 31, 2010	May 30, 2011
3	E-Field Probe	S&P	EX3DV4	3590	Feb. 25, 2011	Feb. 24, 2012
4	DAE	S & P	DAE 3	579	Sep. 20, 2010	Sep. 19, 2011
5	Robot Positioner	Staubli Unimation	NA	NA	NA	NA
			D835V2	4d021	Mar. 23, 2011	Mar. 22, 2012
6	Validation Dipole	S & P	D1900V2	5d022	Jan. 26, 2011	Jan. 25, 2012
	1		D1750V2	1003	Sep. 29, 2010	Sep. 28, 2011
7	Power Meter	Agilent	E4416A	GB41291763	Oct. 22, 2010	Oct. 21, 2011
8	Power Sensor	Agilent	E9327A	US40441181	Oct. 21, 2010	Oct. 20, 2011

NOTE: Before starting the measurement, all test equipment shall be warmed up for 30min.

FOR TISSUE PROPERTY

ITEM	NAME	BRAND	TYPE	SERIES NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
1	Network Analyzer	Agilent	E5071C	MY46104190	Apr. 15, 2011	Apr. 14, 2012
2	Dielectric Probe	Agilent	85070D	US01440176	NA	NA

NOTE:

1. Before starting, all test equipment shall be warmed up for 30min.

2. The tolerance (k=1) specified by Agilent for general dielectric measurements, deriving from inaccuracies in the calibration data, analyzer drift, and random errors, are usually ±2.5% and ±5% for measured permittivity and conductivity, respectively. However, the tolerances for the conductivity is smaller for material with large loss tangents, i.e., less than ±2.5% (k=1). It can be substantially smaller if more accurate methods are applied.

2.5 GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the micro-volt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvFi
	- Diode compression point	dcpi
Device parameters:	- Frequency	F
	- Crest factor	Cf
Media parameters:	- Conductivity	σ
	- Density	ρ

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

Vi	=compensated signal of channel i	(i = x, y, z)
Ui	=input signal of channel I	(i = x, y, z)
Cf	=crest factor of exciting field	(DASY parameter)
dcpi	=diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-fieldprobes:
$$E_i = \sqrt{\frac{V_1}{Norm_i \cdot ConvF}}$$

H-fieldprobes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

Vi	=compensated signal of channel I	(i = x, y, z)
Norm _i	=sensor sensitivity of channel i μV/(V/m)2 E-field Probes	for (i = x, y, z)

ConvF = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

F = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm3

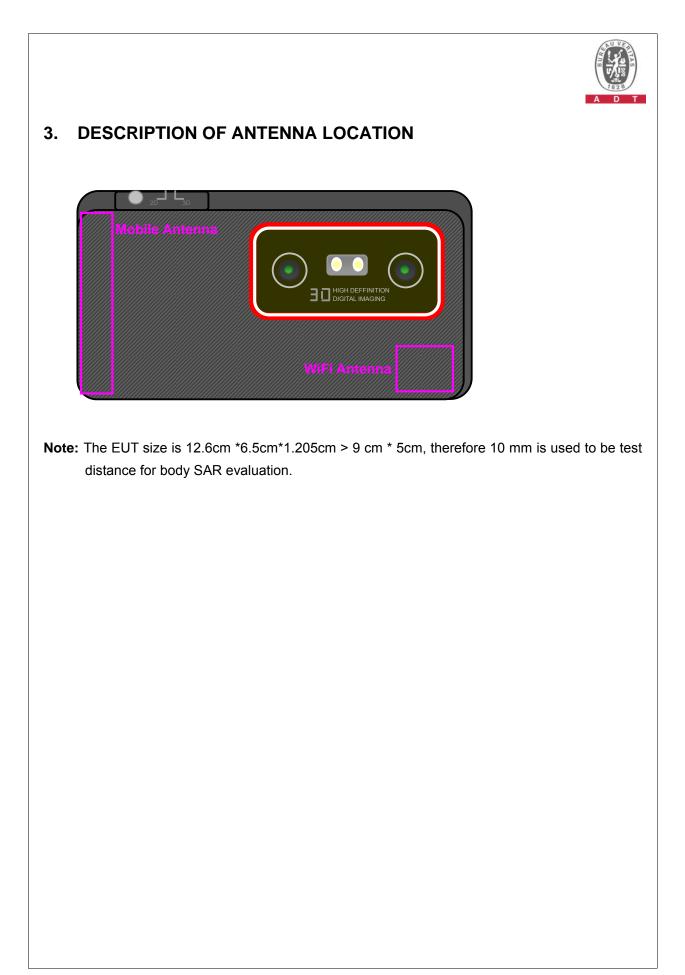
Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

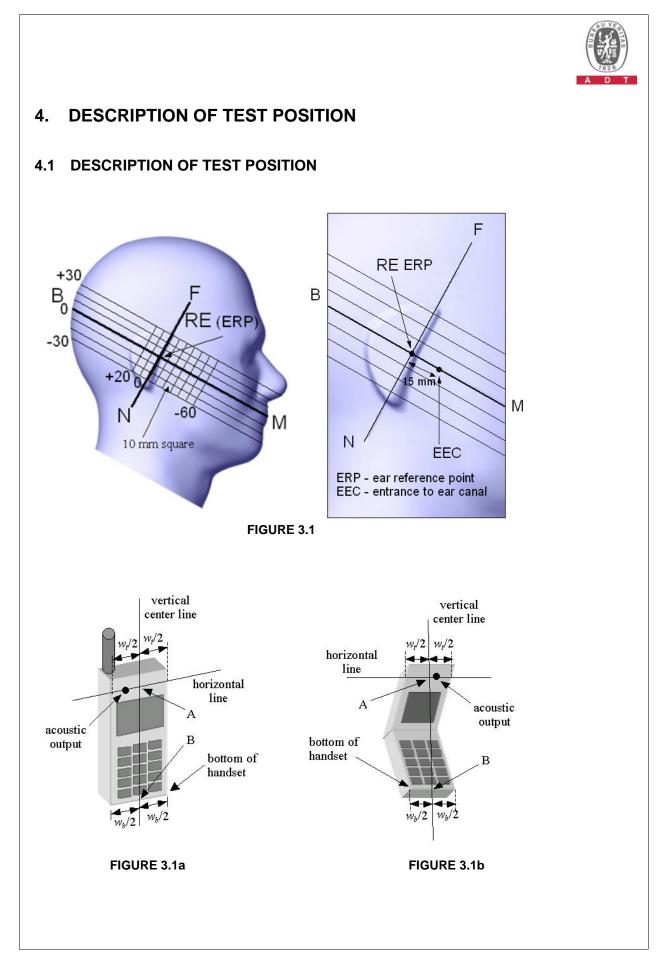
- 1. The extraction of the measured data (grid and values) from the Zoom Scan
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1 g and 10 g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7 x 7 x 7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30 x 30 x 30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (42875 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

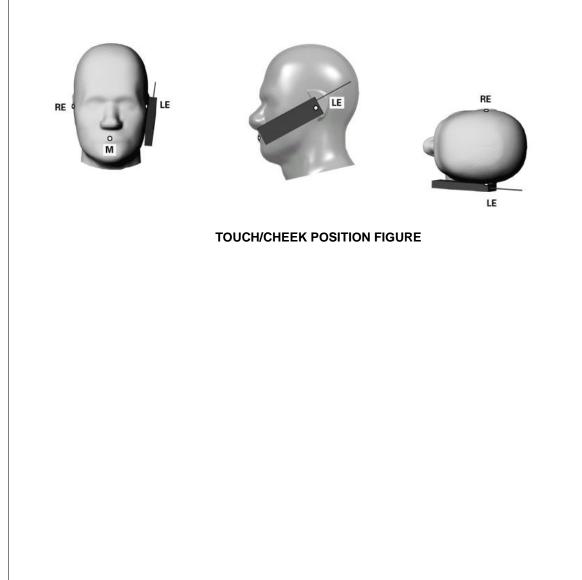

2.6 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

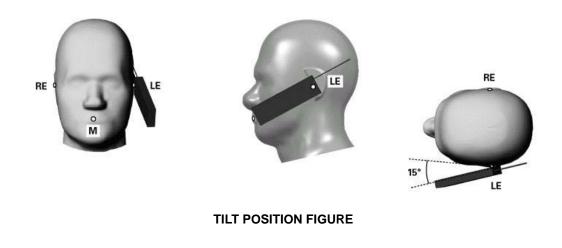
٦	10.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.
	1	Universal Radio Communication Tester	R&S	CMU200	101372
	2	COMMUNICATIONS TESTER-WIRELESS	Agilent	8960 Series 10	MY50260642

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS		
1	ΝΑ		
2	NA		

NOTE: All power cords of the above support units are non shielded (1.8m).



4.1.1 TOUCH/CHEEK TEST POSITION


The head position in Figure 3.1, the ear reference points ERP are 15mm above entrance to ear canal along the B-M line. The line N-F (Neck-Front) is perpendicular to the B-M (Back Mouth) line. The handset device in Figure 3.1a and 3.1b,The vertical centerline pass through two points on the front side of handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A) and the midpoint of the width Wb of the bottom of the handset (point B). The vertical centerline is perpendicular to the horizontal line and pass through the center of the acoustic output. The point A touches the ERP and the vertical centerline of the handset is parallel to the B-M line. While maintaining the point A contact with the ear(ERP), rotate the handset about the line NF until any point on handset is in contact with the cheek of the phantom

4.1.2 TILT TEST POSITION

Adjust the device in the cheek position. While maintaining a point of the handset contact in the ear, move the bottom of the handset away from the mouth by an angle of 15 degrees.

4.1.3 BODY-WORN CONFIGURATION

The handset device attached the belt clip or the holster. The keypad face of the handset is against with the bottom of the flat phantom face and the bottom of the keypad face contact to the bottom of the flat phantom.

When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only accessory that dictates the closest spacing to the body must be tested.

5. RECIPES FOR TISSUE SIMULATING LIQUIDS

For the measurement of the field distribution inside the SAM phantom, the phantom must be filled with 25 litters of tissue simulation liquid.

The following ingredients are used :

• WATER-	Deionized water (pure H20), resistivity _16 M - as basis for the liquid
• SUGAR-	Refined sugar in crystals, as available in food shops - to reduce relative permittivity
• SALT-	Pure NaCI - to increase conductivity
• CELLULOSE-	Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20_C),
	CAS # 54290 - to increase viscosity and to keep sugar in solution
PRESERVATIVE	 Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 - to prevent the spread of bacteria and molds
• DGMBE-	Diethylenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS # 112-34-5 - to reduce relative permittivity

THE RECIPES FOR 835MHz SIMULATING LIQUID TABLE

INGREDIENT	HEAD SIMULATING LIQUID 835MHz (HSL-835)	MUSCLE SIMULATING LIQUID 835MHz (MSL-835)
Water	40.28%	50.07%
Cellulose	02.41%	NA
Salt	01.38%	0.94%
Preventtol D-7	00.18%	0.09%
Sugar	57.97%	48.2%
Dielectric Parameters at 22℃	f = 835MHz ε= 41.5 ± 5% σ= 0.9 ± 5% S/m	f= 835MHz ε= 55.2 ± 5% σ= 0.97 ± 5% S/m

THE RECIPES FOR 1700MHz SIMULATING LIQUID TABLE

INGREDIENT	HEAD SIMULATING LIQUID 1700MHz (HSL-1700)
Water	55.73%
DGBE	43.85%
Salt	0.42%

THE RECIPES FOR 1700MHz SIMULATING LIQUID TABLE

INGREDIENT	BODY SIMULATING LIQUID 1700MHz (MSL-1700)
Water	70.53%
Sugar	29.12%
Cellulose	0.35%

THE RECIPES FOR 1900MHz SIMULATING LIQUID TABLE

INGREDIENT	HEAD SIMULATING LIQUID 1900MHz (HSL-1900)	MUSCLE SIMULATING LIQUID 1900MHz (MSL-1900)
Water	55.24%	70.16%
DGMBE	44.45%	29.44%
Salt	0.306%	00.39%
Dielectric Parameters at 22° C	f= 1900MHz ε= 40.0 ± 5% σ= 1.40 ± 5% S/m	f= 1900MHz ε= 53.3 ± 5% σ= 1.52 ± 5% S/m

Testing the liquids using the Agilent Network Analyzer E8358A and Agilent Dielectric Probe Kit 85070D.The testing procedure is following as

- 1. Turn Network Analyzer on and allow at least 30 min. warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to Network Analyzer will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature (±1°).
- 4. Set water temperature in Agilent-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with >8mm thickness ϵ '=10.0, ϵ "=0.0). If measured parameters do not fit within tolerance, repeat calibration (±0.2 for ϵ ': ±0.1 for ϵ ").
- 7. Conductivity can be calculated from ε " by $\sigma = \omega \varepsilon_0 \varepsilon$ " = ε " f [GHz] / 18.
- 8. Measure liquid shortly after calibration. Repeat calibration every hour.
- 9. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 12. Perform measurements.
- 13. Adjust medium parameters in DASY4 for the frequencies necessary for the measurements ('Setup Config', select medium and press 'Option'-button.

Select the current medium for the frequency of the validation

FOR GSM 850 BAND SIMULATING LIQUID

	YPE	HSL-835			
SIMULAT TEMP.	ING LIQUID	21.3			
TEST DA	TE	May 05, 2011			
TESTED BY			Morrison Huang		
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE MEASUREMENT VALUE ERROR PERCENTAGE (%)			
835.0	Permitivity	41.50	42.86	3.28	
836.6	(ε)	41.50 42.75 3.01		3.01	
835.0	Conductivity	0.90 0.91 1.11			
836.6	(σ) S/m	0.90	0.92	2.22	

LIQUID TYPE		MSL-835			
SIMULATING LIQUID TEMP.		21.1			
TEST DATE			May 06, 2011		
TESTED	ВҮ		Morrison Huang		
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE MEASUREMENT ERROR VALUE PERCENTAGE (%)			
824.2		55.24	57.04	3.26	
835.0	Permitivity	55.20	56.81	2.92	
836.6	(ε)	55.20	56.73	2.77	
848.8		55.16	56.62	2.65	
824.2		0.97	0.98	1.03	
835.0	Conductivity	0.97	0.99	2.06	
836.6	(σ) S/m	0.97	0.99	2.06	
848.8		0.99	1.00	1.01	

LIQUID TYPE		MSL-835		
SIMULATING LIQUID TEMP.		21.1		
TEST DATE			May 07, 2011	
TESTED	BY		Morrison Huang	
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE MEASUREMENT VALUE ERROR PERCENTAGE (%)		
824.2	Permitivity (ε)	55.24	56.79	2.81
835.0		55.20	56.55	2.45
836.6		55.20	56.42	2.21
848.8		55.16	56.34	2.14
824.2		0.97	1.00	3.09
835.0	Conductivity	0.97	1.01	4.12
836.6	(σ) S/m	0.97	1.01	4.12
848.8		0.99	1.02	3.03

FOR PCS 1900 BAND SIMULATING LIQUID

	YPE	HSL-1900				
SIMULAT TEMP.	ING LIQUID	21.3				
TEST DA	TE		May 10, 2011			
TESTED	BY		Morrison Huang			
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE MEASUREMENT ERROR VALUE PERCENTAGE (%				
1880	Permitivity	40.00	40.88	2.20		
1900	(ε)	40.00	40.83	2.08		
1880	Conductivity	1.40	1.42	1.43		
1900	(σ) S/m	1.40	1.43	2.14		

	YPE	MSL-1900		
SIMULAT TEMP.	ING LIQUID	21.2		
TEST DA	ſE		May 08, 2011	
TESTED	BY		Morrison Huang	
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE	MEASUREMENT VALUE	ERROR PERCENTAGE (%)
1850.2		53.30	54.76	2.74
1880.0	Permitivity (ε)	53.30	54.62	2.48
1900.0		53.30	54.53	2.31
1909.8		53.30	54.41	2.08
1850.2		1.52	1.51	-0.66
1880.0	Conductivity (σ) S/m	1.52	1.54	1.32
1900.0		1.52	1.55	1.97
1909.8		1.52	1.57	3.29

LIQUID T	YPE	MSL-1900		
SIMULAT TEMP.	ING LIQUID	21.5		
TEST DA	TE		May 09, 2011	
TESTED	BY		Morrison Huang	
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE	MEASUREMENT VALUE	ERROR PERCENTAGE (%)
1850.2		53.30	55.18	3.53
1880.0	Permitivity (ε)	53.30	55.04	3.26
1900.0		53.30	54.95	3.10
1909.8		53.30	54.83	2.87
1850.2		1.52	1.48	-2.63
1880.0	Conductivity (σ) S/m	1.52	1.51	-0.66
1900.0		1.52	1.52	0.00
1909.8		1.52	1.54	1.32

FOR WCDMA AWS BAND SIMULATING LIQUID

	YPE	HSL-1700				
SIMULAT TEMP.	ING LIQUID	21.5				
TEST DA	TE		May 11, 2011			
TESTED	BY	Morrison Huang				
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE MEASUREMENT VALUE ERROR PERCENTAGE (%)				
1732.4	Permitivity	40.10	41.65	3.87		
1750.0	(ε)	40.07	3.59			
1732.4	Conductivity	1.36 1.40 2.94				
1750.0	(σ) S/m	1.37	1.41	2.92		

LIQUID T	YPE	MSL-1700		
SIMULAT TEMP.	ING LIQUID		21.8	
TEST DA	TE		May 12, 2011	
TESTED	ВҮ		Morrison Huang	
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE	MEASUREMENT VALUE	ERROR PERCENTAGE (%)
1712.4		53.53	55.24	3.19
1732.4	Permitivity (ε)	53.48	55.13	3.09
1750.0		53.43	55.01	2.96
1752.6		53.42	54.93	2.83
1712.4		1.46	1.49	2.05
1732.4	Conductivity (σ) S/m	1.48	1.51	2.03
1750.0		1.49	1.52	2.01
1752.6		1.49	1.52	2.01

FOR GSM 850 BAND SIMULATING LIQUID

	YPE		HSL-835		
SIMULAT TEMP.	ING LIQUID	21.4			
TEST DA	TE		Jun 22, 2011		
TESTED	ВҮ	Morrison Huang			
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE MEASUREMENT VALUE ERROR PERCENTAGE (%)			
835.0	Permitivity	41.50	42.49	2.39	
836.6	(ε)	41.50	42.35	2.05	
835.0	Conductivity	0.90	0.92	2.22	
836.6	(σ) S/m	0.90	0.93	3.33	

FOR PCS 1900 BAND SIMULATING LIQUID

LIQUID T	YPE		HSL-1900		
SIMULAT TEMP.	ING LIQUID	21.6			
TEST DA	ſE		Jun 21, 2011		
TESTED	BY		Morrison Huang		
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE MEASUREMENT VALUE ERROR PERCENTAGE (%)			
1880	Permitivity	40.00	41.11	2.78	
1900	(E)	40.00	41.09	2.73	
1880	Conductivity	1.40	1.43	2.14	
1900	(σ) S/m	1.40	1.45	3.57	

LIQUID T	YPE	MSL-835		
SIMULAT TEMP.	ING LIQUID	21.5		
TEST DA	TE		Jun 25, 2011	
TESTED	ВҮ		Morrison Huang	
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE	MEASUREMENT VALUE	ERROR PERCENTAGE (%)
824.2		55.24	56.57	2.41
835.0	Permitivity (ε)	55.20	56.36	2.10
836.6		55.20	56.24	1.88
848.8		55.16	56.15	1.79
824.2		0.97	0.99	2.06
835.0	Conductivity (σ) S/m	0.97	1	3.09
836.6		0.97	1	3.09
848.8		0.99	1.01	2.02

6. SYSTEM VALIDATION

The system validation was performed in the flat phantom with equipment listed in the following table. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 250mW RF input power was used.

6.1 TEST PROCEDURE

Before you start the system performance check, need only to tell the system with which components (probe, medium, and device) are performing the system performance check; the system will take care of all parameters. The dipole must be placed beneath the flat phantom section of the SAM Twin Phantom with the correct distance holder in place. The distance holder should touch the phantom surface with a light pressure at the reference marking (little cross) and be oriented parallel to the long side of the phantom. Accurate positioning is not necessary, since the system will search for the peak SAR location, except that the dipole arms should be parallel to the surface. The device holder for the EUT can be left in place but should be rotated away from the dipole.

1. The "Power Reference Measurement" and "Power Drift Measurement" jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above ± 0.1 dB), the system performance check should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below ± 0.02 dB.

2.The "Surface Check" job tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). In that case it is better to abort the system performance check and stir the liquid.

3. The "Area Scan" job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable. If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result.

4. The "Zoom Scan" job measures the field in a volume around the peak SAR value assessed in the previous "Area Scan" job (for more information see the application note on SAR evaluation).

About the validation dipole positioning uncertainty, the constant and low loss dielectric spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom, the error component introduced by the uncertainty of the distance between the liquid (i.e., phantom shell) and the validation dipole in the DASY4 system is less than ± 0.1 mm.

$$SAR_{tolerance}[\%] = 100 \times (\frac{(a+d)^2}{a^2} - 1)$$

As the closest distance is 10mm, the resulting tolerance SAR_{tolerance}[%] is <2%.

6.2 VALIDATION RESULTS

	SYSTEM VALIDATION TEST OF SIMULATING LIQUID							
FREQUENCY (MHz)	REQUIRED SAR (mW/g)	MEASURED SAR (mW/g)	DEVIATION (%)	SEPARATION DISTANCE	TESTED DATE			
HSL 835	2.40 (1g)	2.25	-6.25	15mm	May 05, 2011			
MSL 835	2.56 (1g)	2.49	-2.73	15mm	May 06, 2011			
MSL 835	2.56 (1g)	2.48	-3.13	15mm	May 07, 2011			
HSL 1900	10.40 (1g)	9.73	-6.44	10mm	May 10, 2011			
MSL 1900	10.40 (1g)	10.6	1.92	10mm	May 08, 2011			
MSL 1900	10.40 (1g)	10.6	1.92	10mm	May 09, 2011			
HSL 1750	9.07 (1g)	9.46	4.30	15mm	May 11, 2011			
MSL 1750	9.38 (1g)	9.82	4.69	15mm	May 12, 2011			
HSL 835	2.40 (1g)	2.52	5.00	15	Jun 22, 2011			
HSL 1900	10.40 (1g)	9.75	-6.25	10	Jun 21, 2011			
MSL 835	2.56 (1g)	2.39	-6.64	15mm	Jun 25, 2011			
TESTED BY	Morrison Huang	l						

NOTE: Please see Appendix for the photo of system validation test.

6.3 SYSTEM VALIDATION UNCERTAINTIES

In the table below, the system validation uncertainty with respect to the analytically assessed SAR value of a dipole source as given in the IEEE 1528 standard is given. This uncertainty is smaller than the expected uncertainty for mobile phone measurements due to the simplified setup and the symmetric field distribution.

Error Description	Tolerance Probability Divisor (C _i)		C _i)		dard tainty %)	(v _i)		
				(1g)	(10g)	(1g)	(10g)	
		Measuremen	t System					
Probe Calibration	5.50	Normal	1	1	1	5.50	5.50	∞
Axial Isotropy	0.25	Rectangular	√3	0.7	0.7	0.10	0.10	∞
Hemispherical Isotropy	1.30	Rectangular	√3	0.7	0.7	0.53	0.53	∞
Boundary effects	1.00	Rectangular	√3	1	1	0.58	0.58	8
Linearity	0.30	Rectangular	√3	1	1	0.17	0.17	8
System Detection Limits	1.00	Rectangular	√3	1	1	0.58	0.58	8
Readout Electronics	0.30	Normal	1	1	1	0.30	0.30	8
Response Time	0.80	Rectangular	√3	1	1	0.46	0.46	8
Integration Time	2.60	Rectangular	√3	1	1	1.50	1.50	8
RF Ambient Noise	3.00	Rectangular	√3	1	1	1.73	1.73	9
RF Ambient Reflections	3.00	Rectangular	√3	1	1	1.73	1.73	9
Probe Positioner	0.40	Rectangular	√3	1	1	0.23	0.23	8
Probe Positioning	2.90	Rectangular	√3	1	1	1.67	1.67	8
Max. SAR Eval.	1.00	Rectangular	√3	1	1	0.58	0.58	8
		Test sample	e related					
Sample positioning	1.90	Normal	1	1	1	1.90	1.90	4
Device holder uncertainty	2.80	Normal	1	1	1	2.80	2.80	4
Output power variation-SAR drift measurement	4.50	Rectangular	√3	1	1	2.60	2.60	1
		Dipole Re	elated	-	-	-		Ì
Dipole Axis to Liquid Distance	1.60	Rectangular	√3	1	1	0.92	0.92	4
Input Power Drift	0.83	Rectangular	√3	1	1	0.48	0.48	1
		Phantom and Tiss	ue parame	ters				
Phantom Uncertainty	4.00	Rectangular	√3	1	1	2.31	2.31	∞
Liquid Conductivity (target)	5.00	Rectangular	√3	0.64	0.43	1.85	1.24	∞
Liquid Conductivity (measurement)	4.12	Normal	1	0.64	0.43	2.64	1.77	9
Liquid Permittivity (target)	5.00	Rectangular	√3	0.6	0.49	1.73	1.41	∞
Liquid Permittivity (measurement)	3.53	Normal	1	0.6	0.49	2.12	1.73	9
	Combined S	Standard Uncertain	nty			9.24	8.79	
	Coverag	e Factor for 95%					Kp=2	
	Expanded	I Uncertainty (K=2)			18.49	17.58	

7. TEST RESULTS

7.1 TEST PROCEDURES

The EUT (Smart Phone) makes a phone call to the communication simulator station. Establish the simulation communication configuration rather the actual communication. Then the EUT could continuous the transmission mode. Adjust the PCL of the base station could controlled the EUT to transmitted the maximum output power. The base station also could control the transmission channel. The SAR value was calculated via the 3D spline interpolation algorithm that has been implemented in the software of DASY4 SAR measurement system manufactured and calibrated by SPEAG. According to the IEEE 1528 / EN 50361, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Verification of the power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

In the zoom scan, the distance between the measurement point at the probe sensor location (geometric center behind the probe tip) and the phantom surface is 2.0 mm and maintained at a constant distance of \pm 1.0 mm during a zoom scan to determine peak SAR locations. The distance is 2mm between the first measurement point and the bottom surface of the phantom.

The measurement time is 0.5 s at each point of the zoom scan. The probe boundary effect compensation shall be applied during the SAR test. Because of the tip of the probe to the Phantom surface separated distances are longer than half a tip probe diameter.

In the area scan, the separation distance is 2mm between the each measurement point and the phantom surface. The scan size shall be included the transmission portion of the EUT. The measurement time is the same as the zoom scan. At last the reference power drift shall be less than $\pm 5\%$.

TEST DATE	TEMPERA	ATURE(°C)		TECTED DV
TEST DATE	AIMBENT	LIQUID	HUMIDITY(%RH)	TESTED BY
May 05, 2011	22.2	21.3	60	Morrison Huang
May 06, 2011	22.4	21.1	61	Morrison Huang
May 07, 2011	22.5	21.3	60	Morrison Huang
May 10, 2011	22.2	21.3	58	Morrison Huang
May 08, 2011	22.3	21.2	58	Morrison Huang
May 09, 2011	22.7	21.5	60	Morrison Huang
May 11, 2011	22.5	21.5	60	Morrison Huang
May 12, 2011	22.9	21.8	57	Morrison Huang
Jun 21, 2011	22.7	21.6	62	Morrison Huang
Jun 22, 2011	22.3	21.4	58	Morrison Huang
Jun 25, 2011	22.5	21.6	56	Morrison Huang

7.2 DESCRIPTION OF TEST CONDITION

7.3 MEASURED SAR RESULTS

FOR 850 BAND

Battery (Manufacture: HT ENERGY, Rating: 3.8Vdc

HEAD POSITION									
			RIG	ЭHT	LEFT				
Communication Mode	CHAN.	FREQ. (MHz)	CHEEK TILT		CHEEK	TILT			
GSM 850	190	836.6	0.538	0.321	0.587	0.264			
GPRS TS1	190	836.6	0.513	0.322	0.612	0.32			
GPRS TS2	190	836.6	0.572	0.376	0.621	0.335			
GSM+GPRS TS1	190	836.6	1.051	0.643	1.199	0.584			
GSM+GPRS TS2	190	836.6	1.11	0.697	1.208	0.599			

Battery (Manufacture: HT ENERGY, Rating: 3.7Vdc

	HEAD POSITION									
			RIG	ЭHT	LEFT					
Communication Mode	CHAN.	FREQ. (MHz)	CHEEK TILT		CHEEK	TILT				
GSM 850	190	836.6	0.582	0.351	0.529	0.257				
GPRS TS1	190	836.6	0.503	0.322	0.59	0.306				
GPRS TS2	190	836.6	0.564	0.399	0.675	0.334				
GSM+GPRS TS1	190	836.6	1.085	0.673	1.119	0.563				
GSM+GPRS TS2	190	836.6	1.146	0.75	1.204	0.591				

Note: Multi-slot class for DTM is 11 which support max 3 uplink slots. The SAR value of DTM (GSM+GPRS TS1 or TS2) is calculated by adding standalone GSM and GPRS directly not measured. This is allowed by "KDB# 941225-D04 SAR for GSM E GPRS Dual Xfer Mode v01". EGPRS is not tested since the conducted power of GPRS is higher than EGPRS. This is accepted by FCC in tracking no.282288

	BODY POSITION									
	Distance between EUT and phantom is 10mm									
Communication Mode	CHAN. FREQ. (MHz) Back Front Right Edge Left Edge Bottom									
GSM 850	190	836.6	0.743	0.381	0.336	0.447	0.159			
GPRS850 TS1	190	836.6	0.758	0.401	0.344	0.394	0.158			
	128	824.2	0.665	-	-	-	-			
GPRS850 TS2	190	836.6	0.825	0.374	-	-	-			
	251	848.8	0.869	-	-	-	-			
GPRS850 TS3	190	836.6	0.702	0.379	-	-	-			
GPRS850 TS4	190	836.6	0.675	0.416	-	-	-			
GSM+GPRS TS1	190	836.6	Measured	0.782	0.68	0.841	0.317			
GSM+GPRS TS2	190	836.6	Measured	0.755	-	-	-			

Battery (Manufacture: HT ENERGY, Rating: 3.8Vdc

Note: Multi-slot class for DTM is 11 which support max 3 uplink slots. Except back position, the SAR value for DTM at other positions is calculated by adding standalone GSM and GPRS SAR value as allowed in "KDB# 941225-D04 SAR for GSM E GPRS Dual Xfer Mode v01". The DTM SAR value on back configurations have a calculated value higher than 75 % of SAR limit, therefore, these configurations are selected for DTM SAR measurement to get actual measurement value. EGPRS is not tested since the conducted power of GPRS is higher than EGPRS. This is accepted by FCC in tracking no.282288

Measured SAR value for DTM at back position

Communication Mode	CHAN.	FREQ. (MHz)	Back
	128	824.2	0.759
GSM 850 (GSM + GPRS TS1)	190	836.6	0.851
. ,	251	848.8	0.855
	128	824.2	0.755
GSM 850 (GSM + GPRS TS2)	190	836.6	0.916
· ·	251	848.8	0.956

			BODY P	OSITION					
	Distance between EUT and phantom is 10mm								
Communication Mode	CHAN.	CHAN. FREQ. (MHz) Back Front Right Edge Left Edge Bottom Edge							
	128	824.2	0.749	-	-	-	-		
GSM 850	190	836.6	0.824	0.416	0.252	0.243	0.176		
	251	848.8	0.755	-	-	-	-		
GPRS850 TS1	190	836.6	0.711	0.397	0.235	0.229	0.167		
GPRS850 TS2	190	836.6	0.742	0.403	-	-	-		
	128	824.2	0.814	-	-	-	-		
GPRS850 TS3	190	836.6	0.821	0.440	-	-	-		
	251	848.8	0.890	-	-	-	-		
GPRS850 TS4	190	836.6	0.780	0.447	-	-	-		
GSM+GPRS TS1	190	836.6	Measured	0.813	0.487	0.472	0.343		
GSM+GPRS TS2	190	836.6	Measured	0.819	-	-	-		

Battery (Manufacture: HT ENERGY, Rating: 3.7Vdc

Note: Multi-slot class for DTM is 11 which support max 3 uplink slots. Except back position, the SAR value for DTM at other positions is calculated by adding standalone GSM and GPRS SAR value as allowed in "KDB# 941225-D04 SAR for GSM E GPRS Dual Xfer Mode v01". The DTM SAR value on back configurations have a calculated value higher than 75 % of SAR limit, therefore, these configurations are selected for DTM SAR measurement to get actual measurement value. EGPRS is not tested since the conducted power of GPRS is higher than EGPRS. This is accepted by FCC in tracking no.282288

Measured SAR value for DTM at back position

Communication Mode	CHAN.	FREQ. (MHz)	Back
	128	824.2	0.690
GSM 850 (GSM + GPRS TS1)	190	836.6	0.820
· · ·	251	848.8	0.701
	128	824.2	0.757
GSM 850 (GSM + GPRS TS2)	190	836.6	0.858
	251	848.8	0.844

FOR 1900 BAND

Battery (Manufacture: HT ENERGY, Rating: 3.8Vdc

	HEAD POSITION								
				ЭHT	LEFT				
Communication Mode	CHAN.	FREQ. (MHz)	CHEEK TILT		CHEEK	TILT			
PCS1900	661	1880.0	0.493	0.290	0.486	0.357			
GPRS TS1	661	1880.0	0.466	0.263	0.577	0.355			
GPRS TS2	661	1880.0	0.653	0.41	0.591	0.587			
PCS +GPRS TS1	661	1880.0	0.959	0.553	1.063	0.712			
PCS +GPRS TS2	661	1880.0	1.146	0.7	1.077	0.944			

Battery (Manufacture: HT ENERGY, Rating: 3.7Vdc

HEAD POSITION								
			RIG	SHT	LEFT			
Communication Mode	CHAN.	FREQ. (MHz)	CHEEK TILT		CHEEK	TILT		
PCS1900	661	1880.0	0.512	0.299	0.469	0.386		
GPRS TS1	661	1880.0	0.441	0.441 0.248		0.328		
GPRS TS2	661	1880.0	0.623	0.446	0.702	0.513		
PCS +GPRS TS1	661	1880.0	0.953	0.547	0.919	0.714		
PCS +GPRS TS2	661	1880.0	1.135	0.745	1.171	0.899		

Note: Multi-slot class for DTM is 11 which support max 3 uplink slots. The SAR value of DTM (GSM+GPRS TS1 or TS2) is calculated by adding standalone GSM and GPRS directly not measured. This is allowed by "KDB# 941225-D04 SAR for GSM E GPRS Dual Xfer Mode v01". EGPRS is not tested since the conducted power of GPRS is higher than EGPRS. This is accepted by FCC in tracking no.282288

Battery (Manufacture: HT ENERGY, Rating: 3.8Vdc

	BODY POSITION									
Distance between EUT and phantom is 10mm										
Communication Mode	CHAN.	FREQ. (MHz)	Back	Front	Right Edge	Left Edge	Bottom Edge			
PCS1900	661	1880.0	0.461	0.375	0.250	0.086	0.258			
GPRS1900 TS1	661	1880.0	0.435	0.347	-	-	-			
GPRS1900 TS2	661	1880.0	0.686	0.543	-	-	-			
	512	1850.2	0.704	0.671	-	-	-			
GPRS1900 TS3	661	1880.0	1.230	0.913	0.449	0.216	0.632			
	810	1909.8	0.778	0.787	-	-	-			
GPRS1900 TS4	661	1880.0	0.776	0.748	-	-	-			
PCS +GPRS TS1	661	1880.0	0.896	0.722	-	-	-			
PCS +GPRS TS2	661	1880.0	1.147	0.918	-	-	-			

Battery (Manufacture: HT ENERGY, Rating: 3.7Vdc

			BODY POSI	TION					
Distance between EUT and phantom is 10mm									
Communication Mode	CHAN.	FREQ. (MHz)	Back	Front	Right Edge	Left Edge	Bottom Edge		
PCS1900	661	1880.0	0.442	0.422	0.181	0.102	0.330		
GPRS1900 TS1	661	1880.0	0.420	0.319	-	-	-		
GPRS1900 TS2	661	1880.0	0.662	0.516	-	-	-		
	512	1850.2	0.706	-	-	-	-		
GPRS1900 TS3	661	1880.0	1.000	0.766	0.408	0.222	0.615		
	810	1909.8	0.660	-	-	-	-		
GPRS1900 TS4	661	1880.0	0.550	0.734	-	-	-		
PCS +GPRS TS1	661	1880.0	0.862	0.741	-	-	-		
PCS +GPRS TS2	661	1880.0	1.104	0.938	-	-	-		

Note: Multi-slot class for DTM is 11 which support max 3 uplink slots. The SAR value of DTM (GSM+GPRS TS1 or TS2) is calculated by adding standalone GSM and GPRS directly not measured. This is allowed by "KDB# 941225-D04 SAR for GSM E GPRS Dual Xfer Mode v01". EGPRS is not tested since the conducted power of GPRS is higher than EGPRS. This is accepted by FCC in tracking no.282288

FOR WCDMA AWS BAND

HEAD POSITION									
			RIG	ЭНТ	LEFT				
Communication Mode	CHAN.	FREQ. (MHz)	CHEEK TILT CHEEK TILT						
TES	T MODE		Battery (Manufacture: HT ENERGY, Rating: 3.8Vdc)						
WCDMA	1412	1732.4	0.552	0.318	0.388	0.369			
TES	T MODE		Battery (Manufacture: HT ENERGY, Rating: 3.7Vdc)						
WCDMA	1513	1752.6	0.527 0.314 0.507 0.354						

			BODY P	OSITION				
		Distance b	etween EUT	and phantor	n is 10mm			
Communication Mode	CHAN.	CHAN. FREQ. (MHz) Back Front Right Edge Left Edge Edge						
TES	T MODE		Battery	/ (Manufactu	re: HT ENER	GY, Rating: 3	3.8Vdc)	
	1312	1712.4	0.690	-	-	-	-	
WCDMA	1412	1732.4	0.839	0.543	0.280	0.059	0.331	
	1513	1752.6	0.756	-	-	-	-	
TES	T MODE		Battery (Manufacture: HT ENERGY, Rating: 3.7Vdc)					
	1312	1712.4	0.795	-	-	-	-	
WCDMA	1412	1732.4	0.856	0.536	0.246	0.071	0.261	
	1513	1752.6	0.790	-	-	-	-	

NOTE:

1. In this testing, the limit for General Population Spatial Peak averaged over **1g**, **1.6W/kg**, is applied.

2. Please see the Appendix A for the data.

3. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

4. Temperature of Liquid is 22±1°C

 Body SAR is not required for handsets with HSDPA capabilities since the maximum average output of each RF channel with HSDPA active is less than ¼ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit.

7.4 POWER DRIFT TABLE

FOR 850 BAND (5/5~5/7)

Test			Communication	Test	Test	Power	(dBm)	Power
Mode	Configuration	Test Position	Mode	Channel	Frequency (MHz)	Begin	After	Drift (%)
1		Right Head Cheek				33.92	33.80	-2.73
2	HT ENERGY Battery (3.8Vdc),	Right Head Tilt	GSM850	190	836.6	33.92	33.79	-2.95
3	without headset	Left Head Cheek	G310050	190	830.0	33.92	33.78	-3.17
4		Left Head Tilt				33.92	33.77	-3.39
5		Right Head Cheek				33.92	33.76	-3.62
6	HT ENERGY Battery (3.7Vdc),	Right Head Tilt	GSM850	190	836.6	33.92	33.75	-3.84
7	without headset	Left Head Cheek	GSIM050	190	030.0	33.92	33.74	-4.06
8		Left Head Tilt				33.92	33.73	-4.28
9	HT ENERGY Battery (3.8Vdc), with headset	Back 10mm	GSM850	190	836.6	33.92	33.81	-2.50
10	HT ENERGY Battery (3.8Vdc), with headset	Back 10mm	GPRS850 TS1	190	836.6	33.16	33.04	-2.73
	HT ENERGY			128	824.2	32.02	31.89	-2.95
11	Battery (3.8Vdc),	Back 10mm	GPRS850 TS2	190	836.6	32.11	31.97	-3.17
	with headset			251	848.8	32.36	32.21	-3.39
12	HT ENERGY	Deals 10mm	GPRS850 TS3	100	936.6	30.49	30.33	-3.62
13	Battery (3.8Vdc), with headset	Back 10mm	GPRS850 TS4	190	836.6	29.09	28.92	-3.84
	HT ENERGY			128	824.2	33.52	33.50	-0.46
14	Battery (3.7Vdc),	Back 10mm	GSM850	190	836.6	33.92	33.89	-0.69
	with headset			251	848.8	33.88	33.84	-0.92

Test			Communication	Test	Test	Power	(dBm)	Power
Mode	Configuration	Test Position	Mode	Channel	Frequency (MHz)	Begin	After	Drift (%)
15			GPRS850 TS1	100	000.0	33.16	33.11	-1.14
16	Battery (3.7Vdc), with headset	Back 10mm	GPRS850 TS2	190	836.6	32.11	32.05	-1.37
	HT ENERGY			128	824.2	30.57	30.50	-1.60
17	Battery (3.7Vdc),	Back 10mm	GPRS850 TS3	190	836.6	30.49	30.41	-1.83
	with headset			251	848.8	30.82	30.73	-2.05
18	HT ENERGY Battery (3.7Vdc), with headset	Back 10mm	GPRS850 TS4	190	836.6	29.09	28.99	-2.28
19	HT ENERGY Battery (3.8Vdc), with headset	Front 10mm	GSM850	190	836.6	33.92	33.88	-0.92
20			GPRS850 TS1			33.16	33.11	-1.14
21	HT ENERGY	Front 10mm	GPRS850 TS2	190	836.6	32.11	32.05	-1.37
22	Battery (3.8Vdc), with headset		GPRS850 TS3	190	030.0	30.49	30.42	-1.60
23			GPRS850 TS4			29.09	29.01	-1.83
24	HT ENERGY Battery (3.7Vdc), with headset	Front 10mm	GSM850	190	836.6	33.92	33.79	-2.95
25			GPRS850 TS1			33.16	33.02	-3.17
26	HT ENERGY	Front 10mm	GPRS850 TS2	100	026.6	32.11	31.96	-3.39
27	Battery (3.7Vdc), with headset	Front 10mm	GPRS850 TS3	190	836.6	30.49	30.33	-3.62
28			GPRS850 TS4			29.09	28.92	-3.84
29	HT ENERGY	Right edge	GSM850	400	000.0	33.92	33.88	-0.92
30	Battery (3.8Vdc), with headset	10mm	GPRS850 TS1	190	836.6	33.16	33.11	-1.14
31	HT ENERGY	Right edge	GSM850	400	000.0	33.92	33.86	-1.37
32	Battery (3.8Vdc), with headset	10mm	GPRS850 TS1	190	836.6	33.16	33.09	-1.60
33	HT ENERGY	Loft odgo 10mm	GSM850	100	936.6	33.92	33.82	-2.28
34	Battery (3.8Vdc), with headset	Left edge 10mm	GPRS850 TS1	190	836.6	33.16	33.05	-2.50
35	HT ENERGY		GSM850	100	000.0	33.92	33.80	-2.73
36	Battery (3.8Vdc), with headset	Left edge 10mm	GPRS850 TS1	190	836.6	33.16	33.03	-2.95
37	HT ENERGY	Bottom edge	GSM850	400	000.0	33.92	33.76	-3.62
38	Battery (3.8Vdc), with headset	10mm	GPRS850 TS1	190	836.6	33.16	32.99	-3.84
39	HT ENERGY	Bottom edge	GSM850	100	00000	33.92	33.74	-4.06
40	Battery (3.8Vdc), with headset	10mm	GPRS850 TS1	190	836.6	33.16	32.97	-4.28

FOR 1900 BAND (5/9~5/12)

Test			Communication	Test	Test	Power	(dBm)	Power
Mode	Configuration	Test Position	Mode	Channel	Frequency (MHz)	Begin	After	Drift (%)
41		Right Head Cheek				30.31	30.27	-0.92
42	HT ENERGY	Right Head Tilt	PCS1900	661	1880.0	30.31	30.26	-1.14
43	Battery (3.8Vdc), without headset	Left Head Cheek	PC31900	001	1000.0	30.31	30.25	-1.37
44		Left Head Tilt				30.31	30.24	-1.60
45		Right Head Cheek				30.31	30.23	-1.83
46	HT ENERGY	Right Head Tilt	BCS1000	661	1000.0	30.31	30.22	-2.05
47	Battery (3.7Vdc), without headset	Left Head Cheek	PCS1900	661	1880.0	30.31	30.21	-2.28
48		Left Head Tilt				30.31	30.20	-2.50
49	HT ENERGY Battery (3.8Vdc), with headset	Back 10mm	PCS1900	661	1880.0	30.31	30.24	-1.60
50	HT ENERGY	Back 10mm	GPRS1900 TS1	004	1000.0	30.21	30.13	-1.83
51	Battery (3.8Vdc), with headset	Back 10mm	GPRS1900 TS2	661	1880.0	29.79	29.70	-2.05
	HT ENERGY			512	1850.2	28.62	28.52	-2.28
52	Battery (3.8Vdc),	Back 10mm	GPRS1900 TS3	661	1880.0	30.28	30.17	-2.50
	with headset			810	1909.8	28.92	28.80	-2.73
53	HT ENERGY Battery (3.8Vdc), with headset	Back 10mm	GPRS1900 TS4	661	1880.0	27.98	27.85	-2.95
54	HT ENERGY Battery (3.7Vdc), with headset	Back 10mm	PCS1900	661	1880.0	30.31	30.13	-4.06

Test			Communication	Test	Test	Power	(dBm)	Power
Mode	Configuration	Test Position	Mode	Channel	Frequency (MHz)	Begin	After	Drift (%)
55	HT ENERGY	Dock 10mm	GPRS1900 TS1	661	1990.0	30.21	30.02	-4.28
56	Battery (3.7Vdc), with headset	Back 10mm	GPRS1900 TS2	661	1880.0	29.79	29.59	-4.50
	HT ENERGY			512	1850.2	28.62	28.61	-0.23
57	Battery (3.7Vdc),	Back 10mm	GPRS1900 TS3	661	1880.0	30.28	30.26	-0.46
	with headset			810	1909.8	28.92	28.89	-0.69
58	HT ENERGY Battery (3.7Vdc), with headset	Back 10mm	GPRS1900 TS4	661	1880.0	27.98	27.94	-0.92
59	HT ENERGY Battery (3.8Vdc), with headset	Front 10mm	PCS1900	661	1880.0	30.31	30.13	-4.06
60	HT ENERGY	E	GPRS1900 TS1	004	1000.0	30.21	30.02	-4.28
61	Battery (3.8Vdc), with headset	Front 10mm	GPRS1900 TS2	661	1880.0	29.79	29.59	-4.50
	HT ENERGY			512	1850.2	28.62	28.61	-0.23
62	Battery (3.8Vdc),	Front 10mm	GPRS1900 TS3	661	1880.0	30.28	30.26	-0.46
	with headset			810	1909.8	28.92	28.89	-0.69
63	HT ENERGY Battery (3.8Vdc), with headset	Front 10mm	GPRS1900 TS4	661	1880.0	27.98	27.94	-0.92

Test			Communication	Test	Test	Power	(dBm)	Power
Mode	Configuration	Test Position	Mode	Channel	Frequency (MHz)	Begin	After	Drift (%)
64	HT ENERGY Battery (3.7Vdc), with headset	Front 10mm	PCS1900	661	1880.0	30.31	30.22	-2.05
65			GPRS1900 TS1			30.21	30.11	-2.28
66	HT ENERGY	Front 10mm	GPRS1900 TS2	661	1880.0	29.79	29.68	-2.50
67	Battery (3.7Vdc), with headset		GPRS1900 TS3	001	1000.0	30.28	30.16	-2.73
68			GPRS1900 TS4			27.98	27.85	-2.95
69	HT ENERGY	Right edge	PCS1900	661	1880.0	30.31	30.11	-4.50
70	Battery (3.8Vdc), with headset	10mm	GPRS1900 TS3	661	1880.0	30.28	30.27	-0.23
71	HT ENERGY	Right edge	PCS1900	004	1880.0	30.31	30.29	-0.46
72	Battery (3.8Vdc), with headset	10mm	GPRS1900 TS3	661		30.28	30.25	-0.69
73	HT ENERGY		PCS1900	004	1000.0	30.31	30.25	-1.37
74	Battery (3.8Vdc), with headset	Left edge 10mm	GPRS1900 TS3	661	1880.0	30.28	30.21	-1.60
75	HT ENERGY		PCS1900	004	1000.0	30.31	30.23	-1.83
76	Battery (3.8Vdc), with headset	Left edge 10mm	GPRS1900 TS3	661	1880.0	30.28	30.19	-2.05
77	HT ENERGY	Bottom edge	PCS1900	004	1000.0	30.31	30.19	-2.73
78	Battery (3.8Vdc), with headset	10mm	GPRS1900 TS3	661	1880.0	30.28	30.15	-2.95
79	HT ENERGY	Bottom edge	PCS1900	004	1000.0	30.31	30.17	-3.17
80	Battery (3.8Vdc), with headset	10mm	GPRS1900 TS3	661	1880.0	30.28	30.13	-3.39

FOR WCDMA AWS BAND

Test			Communication	Test	Test	Power	(dBm)	Power
Mode	Configuration	Test Position	Mode	Channel	Frequency (MHz)	Begin	After	Drift (%)
1		Right Head Cheek				23.44	23.36	-1.83
2	HT ENERGY	Right Head Tilt		1410	1732.4	23.44	23.35	-2.05
3	Battery (3.8Vdc), without headset	Left Head Cheek	WCDMA	1412		23.44	23.34	-2.28
4		Left Head Tilt				23.44	23.33	-2.50
5		Right Head Cheek				23.44	23.32	-2.73
6	HT ENERGY	Right Head Tilt			(-0) (23.44	23.31	-2.95
7	Battery (3.7Vdc), without headset	Left Head Cheek	WCDMA	1412	1732.4	23.44	23.30	-3.17
8		Left Head Tilt				23.44	23.29	-3.39
	HT ENERGY			1312	1712.4	23.26	23.07	-4.28
9	Battery (3.8Vdc),	Back 10mm	WCDMA	1412	1732.4	23.44	23.24	-4.50
	with headset			1513	1752.6	23.22	23.21	-0.23
	HT ENERGY			1312	1712.4	23.26	23.24	-0.46
10	Battery (3.7Vdc),	Back 10mm	WCDMA	1412	1732.4	23.44	23.41	-0.69
	with headset			1513	1752.6	23.22	23.18	-0.92
11	HT ENERGY Battery (3.8Vdc), with headset	Front 10mm	WCDMA	1412	1732.4	23.44	23.38	-1.37
12	HT ENERGY Battery (3.7Vdc), with headset	Front 10mm	WCDMA	1412	1732.4	23.44	23.37	-1.60
13	HT ENERGY Battery (3.8Vdc), with headset	Right edge	WCDMA	1412	1732.4	23.44	23.35	-2.05
14	HT ENERGY Battery (3.7Vdc), with headset	10mm	WCDMA	1412	1732.4	23.44	23.34	-2.28
15	HT ENERGY Battery (3.8Vdc), with headset	Loft adda 10mm	WCDMA	1412	1732.4	23.44	23.32	-2.73
16	HT ENERGY Battery (3.7Vdc), with headset	Left edge 10mm	WCDMA	1412	1732.4	23.44	23.31	-2.95
17	HT ENERGY Battery (3.8Vdc), with headset	Pottom odgo 10mm	WCDMA	1412	1732.4	23.44	23.29	-3.39
18	HT ENERGY Battery (3.7Vdc), with headset	Bottom edge 10mm	WCDMA	1412	1732.4	23.44	23.28	-3.62

FOR 850 BAND (6/22) and 1900 BAND (6/21)

Test			Communication	Test	Test	Power	(dBm)	Power
Mode	Configuration	Test Position	Mode	Channel	Frequency (MHz)	Begin	After	Drift (%)
1		Right Head Cheek				33.16	33.04	-2.73
2	HT ENERGY	Right Head Tilt	GPRS 850 TS1	190	836.6	33.16	33.03	-2.95
3	Battery (3.8Vdc), without headset	Left Head Cheek	GPR3 050 151	190	030.0	33.16	33.02	-3.17
4		Left Head Tilt				33.16	33.01	-3.39
5		Right Head Cheek				32.11	31.95	-3.62
6	HT ENERGY	Right Head Tilt	GPRS 850 TS2	190	836.6	32.11	31.94	-3.84
7	Battery (3.8Vdc), without headset	Left Head Cheek	GPR5 800 152	190	830.0	32.11	31.93	-4.06
8		Left Head Tilt			[32.11	31.92	-4.28
9		Right Head Cheek				33.16	33.05	-2.50
10	HT ENERGY	Right Head Tilt	GPRS 850 TS1	100	936.6	33.16	33.04	-2.73
11	Battery (3.7Vdc), without headset	Left Head Cheek	GPR5 850 151	190	836.6	33.16	33.03	-2.95
12		Left Head Tilt					33.02	-3.17
13		Right Head Cheek				32.11	31.96	-3.39
14	HT ENERGY	Right Head Tilt	GPRS 850 TS2	190	836.6	32.11	31.95	-3.62
15	Battery (3.7Vdc), without headset	Left Head Cheek	GPR3 000 132	190		32.11	31.94	-3.84
16		Left Head Tilt				32.11	31.93	-4.06
17		Right Head Cheek				30.21	30.02	-4.28
18	HT ENERGY	Right Head Tilt	GPRS 1900 TS1	661	1880	30.21	30.01	-4.50
19	Battery (3.8Vdc), without headset	Left Head Cheek	GPRS 1900 131	001	1000	30.21	30.20	-0.23
20		Left Head Tilt				30.21	30.19	-0.46
21		Right Head Cheek				29.79	29.76	-0.69
22	HT ENERGY	Right Head Tilt	GPRS 1900 TS2	661	1880	29.79	29.75	-0.92
23	Battery (3.8Vdc), without headset	Left Head Cheek	GPR3 1900 132	001	1000	29.79	29.74	-1.14
24		Left Head Tilt				29.79	29.73	-1.37
25		Right Head Cheek				30.21	30.14	-1.60
26	HT ENERGY Battery (3.7Vdc),	Right Head Tilt	GPRS 1900 TS1	661	1880	30.21	30.13	-1.83
27	without headset	Left Head Cheek	ULU2 1900 191	001	1000	30.21	30.12	-2.05
28		Left Head Tilt				30.21	30.11	-2.28
29		Right Head Cheek				29.79	29.68	-2.50
30	HT ENERGY	Right Head Tilt		664	1000	29.79	29.67	-2.73
31	Battery (3.7Vdc), without headset	Left Head Cheek	GPRS 1900 TS2	661	1880	29.79	29.66	-2.95
32		Left Head Tilt				29.79	29.65	-3.17

FOR 850 BAND (6/25)

Test			Communication	Test	Test	Power	(dBm)	Power
Mode	Configuration	Test Position	Mode	Channel	Frequency (MHz)	Begin	After	Drift (%)
	HT ENERGY			128	824.2	31.97	31.85	-2.73
1	Battery (3.8Vdc),	Back 10mm	GSM850 (GSM + GPRS TS1)	190	836.6	32.02	31.85	-3.84
	with headset		(251	848.8	32.17	32.01	-3.62
	HT ENERGY			128	824.2	30.42	30.22	-4.50
2	Battery (3.8Vdc),	Back 10mm	GSM850 (GSM + GPRS TS2)	190	836.6	30.35	30.15	-4.50
	with headset		(,	251	848.8	30.65	30.45	-4.50
	HT ENERGY			128	824.2	31.97	31.85	-2.73
3	Battery (3.7Vdc),	Back 10mm	GSM850 (GSM + GPRS TS1)	190	836.6	32.02	31.92	-2.28
	with headset		(251	848.8	32.17	32.05	-2.73
	HT ENERGY			128	824.2	30.42	30.25	-3.84
4	Battery (3.7Vdc),	Back 10mm	GSM850 (GSM + GPRS TS2)	190	836.6	30.35	30.17	-4.06
	with headset		()	251	848.8	30.65	30.48	-3.84

7.5 NO SIMULTANEOUS SAR JUSTIFICATION

The device has mobile (GSM / WCDMA), Wi-Fi and Bluetooth function. 850 and 1900MHz band can not be used at the same time. GSM and WCDMA can not transmit simultaneously. Wi-Fi and Bluetooth use same antenna but both functions will not active in the same time since time-sharing technology is used

SAR evaluation for Transmitter

Since the output power > 60/f(GHz), SAR is necessary for mobile and Wi-Fi function The max output power of Bluetooth is $1.4mW < 24 mW (2.P_{Ref})$ and antenna separation between mobile and Bluetooth is 10.15 cm > 5 cm. Therefore, SAR evaluation is not necessary.

Hot spot function

DTM is supported for the device. Hot spot function supports simultaneous transmission mode as below

Configuration	GSM voice	GSM data	WCDMA	WIFI	BT
1	Х	0	Х	0	0
2	0	0	Х	0	0
3	Х	Х	0	0	0

Antenna separation distance (cm)

	Mobile	Wi-Fi	Bluetooth
Mobile		10.15	10.15
Wi-Fi	10.15		0
Bluetooth	10.15	0	

Note: Wi-Fi and Bluetooth use same antenna but can not work at the same time.

Sum of max SAR value for simultaneous transmission (Unit: W/kg)

Head position

Battery	Frequency band (MHz)	Test conf	iguration	GSM+GPRS	Wi-Fi	Sum of MAX SAR value of each band
		Right	Cheek	1.110	0.446	1.556
3.8Vdc	850	Right	Tilt	0.697	0.336	1.033
3.0VUC	000	Left	Cheek	1.208	0.390	1.598
		Left	Tilt	0.599	0.291	0.890
		Right	Cheek	1.146	0.446	1.592
3.8Vdc	1000	Right	Tilt	0.700	0.336	1.036
5.0VuC	1900	Left	Cheek	1.077	0.390	1.467
		Left	Tilt	0.944	0.291	1.235
		Right	Cheek	1.146	0.446	1.592
0.7\/da	050	Right	Tilt	0.750	0.321	1.071
3.7Vdc	850	Left	Cheek	1.204	0.349	1.553
		Left	Tilt	0.591	0.301	0.892
		Right	Cheek	1.135	0.446	1.581
2 7)/d-	1000	Right	Tilt	0.745	0.321	1.066
3.7Vdc	1900	Left	Cheek	1.171	0.349	1.520
		Left	Tilt	0.899	0.301	1.200

Battery	Frequency band (MHz)	Test confi	Test configuration		Wi-Fi	Sum of MAX SAR value of each band
		Right	Cheek	0.552	0.446	0.998
2 0) (da	1700	Right	Tilt	0.318	0.336	0.654
3.8Vdc	1700	Left	Cheek	0.388	0.39	0.778
		Left	Tilt	0.369	0.291	0.66
		Right	Cheek	0.527	0.446	0.973
2 7\/da	1700	Right	Tilt	0.314	0.321	0.635
3.7Vdc	1700	Left	Cheek	0.507	0.349	0.856
		Left	Tilt	0.354	0.301	0.655

Sum of max SAR value for all test configurations is < 1.6 W/kg, simultaneous transmission SAR is not required for head position

Body position

Battery	Frequency band (MHz)	Test side	GSM	Wi-Fi	Sum of MAX SAR value of each band
3.8Vdc	850	Back	0.956	0.199	1.155
	1900		1.147	0.199	1.346
3.7Vdc	850		0.858	0.222	1.080
	1900		1.104	0.222	1.326

Battery	Frequency band (MHz)	Test side	WCDMA	Wi-Fi	Sum of MAX SAR value of each band
3.8Vdc	1700	Deek	0.839	0.199	1.038
3.7Vdc	1700	Back	0.856	0.222	1.078

Sum of max SAR value for all test configurations is < 1.6 W/kg, simultaneous transmission SAR is not required for body position

Conclusion

Distance between simultaneous transmitting antennas is > 5cm and max sum of SAR value is <1.6 W / kg. Accordingly, simultaneous Transmission SAR is not required for this device.

7.6 SAR LIMITS

	SAR (W/kg)			
HUMAN EXPOSURE	(General Population / Uncontrolled Exposure Environment)	(Occupational / controlled Exposure Environment)		
Spatial Average (whole body)	0.08	0.4		
Spatial Peak (averaged over 1 g)	1.6	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

NOTE: This limits accord to 47 CFR 2.1093 - Safety Limit.

8. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5.phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.