Appendix C - Calibration All of the instruments Calibration information are listed below. - Dipole _ D835V2 SN:4d082 Calibration No.D835V2-4d082_Jul10 - Dipole _ D1750V2 SN:1008 Calibration No.D1750V2-1008_May11 - Dipole _ D1900V2 SN:5d111 Calibration No.D1900V2-5d111_Jul10 - Dipole _ D2450V2 SN:712 Calibration No.D2450V2-712_Feb11 - Probe _ ES3DV3 SN:3150 Calibration No.ES3-3150_Jan11 - Probe _ EX3DV4 SN:3758 Calibration No.EX3-3758_Feb11 - Probe _ EX3DV3 SN:3519 Calibration No.EX3-3519_Feb11 - DAE _ DAE4 SN:779 Calibration No.DAE4-779_Jan11 Report Number: 1106FS14 Page 113 of 185 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | CALIBRATION | JEITH TOAT | | | |--|--|---|--| | Object | D835V2 - SN: 40 | 1082 | - 1 | | Calibration procedure(s) | QA CAL-05.v7
Calibration proce | edure for dipole validation kits | | | Calibration date: | July 20, 2010 | | | | The measurements and the unco | erfainties with confidence p | probability are given on the following pages a | ind are part of the certificate. | | The measurements and the unco | cted in the closed laborato | probability are given on the following pages a
ry facility: environment temperature (22 \pm 3) | | | The measurements and the unco
All calibrations have been condu
Calibration Equipment used (M& | cted in the closed laborato | ry facility: environment temperature (22 \pm 3) | °C and humidity < 70%. | | The measurements and the unco
All calibrations have been condu
Calibration Equipment used (M&
Primary Standards | cted in the closed laborato | | | | The measurements and the unce
All calibrations have been condu
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A | cted in the closed laborato TE critical for calibration) ID # | ry facility: environment temperature (22 \pm 3) Cal Date (Certificate No.) | °C and humidity < 70%. Scheduled Calibration | | The measurements and the unco
All calibrations have been conductallibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A | cted in the closed laborato TE critical for calibration) ID # GB37480704 | ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) | °C and humidity < 70%. Scheduled Calibration Oct-10 | | The measurements and the unco
All calibrations have been condu
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator | cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 | ry facility: environment temperature (22 ± 3) Call Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) | Scheduled Calibration Oct-10 Oct-10 | | The measurements and the unco
All calibrations have been condu
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination | cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) | Call Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) | Scheduled Calibration Oct-10 Oct-10 Mar-11 | | The measurements and the unco
All calibrations have been condu
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) | Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 | | The measurements and the unco
All calibrations have been condu
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3
DAE4 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) | Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 | | This calibration certificate docum The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) | Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 | | The measurements and the uncolonial calibrations have been conducted. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) | Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | rted in the closed laborato TE critical for calibration) ID # GB37480704 U\$37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) | Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards | ID # GB37480704 US37292783 SN; 5086
(20g) SN; 5047.2 / 06327 SN; 3205 SN; 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) | Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 | | The measurements and the uncomment of the measurements and the uncomment of the measurement measureme | rted in the closed laborato TE critical for calibration) ID # GB37480704 U\$37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 U\$37390585 \$4206 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) | Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN; 5086 (20g) SN; 5047.2 / 06327 SN; 3205 SN; 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) | Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 | Certificate No: D835V2-4d082_Jul10 Page 1 of 9 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Accreditation No.: SCS 108 S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D835V2-4d082_Jul10 Page 2 of 9 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.2 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V4.9 | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.0 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature during test | (23.1 ± 0.2) °C | **** | | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2,40 mW / g | | SAR normalized | normalized to 1W | 9.60 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.65 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.56 mW / g | | SAR normalized | normalized to 1W | 6.24 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.26 mW /g ± 16.5 % (k=2) | Certificate No: D835V2-4d082_Jul10 Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature during test | (22.0 ± 0.2) °C | **** | **** | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.58 mW / g | | SAR normalized | normalized to 1W | 10.3 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 10.0 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.69 mW / g | | SAR normalized | normalized to 1W | 6.76 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.60 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-4d082_Jul10 # Appendix # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7 Ω - 3.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.0 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.3 Ω - 4.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.0 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.389ns | |----------------------------------|---------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|------------------|--| | Manufactured on | October 17, 2008 | | Certificate No: D835V2-4d082_Jul10 Page 5 of 9 #### DASY5 Validation Report for Head TSL Date/Time: 20.07.2010 15:48:57 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d082 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163) Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685) # Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.1 V/m; Power Drift = 0.020 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.56 mW/g Maximum value of SAR (measured) = 2.8 mW/g 0 dB = 2.8 mW/g Certificate No: D835V2-4d082 Jul10 # Impedance Measurement Plot for Head TSL Report
Number: 1106FS14 #### **DASY5 Validation Report for Body** Date/Time: 20.07.2010 12:03:13 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d082 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ mho/m}$; $\varepsilon_r = 55$; $p = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010 Sensor-Surface: 3mm (Mechanical Surface Detection) · Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163) Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685) # Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.1 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 3.81 W/kg SAR(1 g) = 2.58 mW/g; SAR(10 g) = 1.69 mW/gMaximum value of SAR (measured) = 2.98 mW/g 0 dB = 2.98 mW/g Certificate No: D835V2-4d082_Jul10 Page 8 of 9 # Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Multilateral Agreement for the recognition of calibration certific Client SGS-TW (Auden) Certificate No: D1750V2-1008_May11 # CALIBRATION CERTIFICATE Object D1750V2 - SN: 1008 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: May 24, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 06-Oct-10 (No. 217-01266) | Oct-11 | | Power sensor HP 8481A | US37292783 | 06-Oct-10 (No. 217-01266) | Oct-11 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-11 (No. 217-01367) | Apr-12 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371) | Apr-12 | | Reference Probe ES3DV3 | SN: 3205 | 29-Apr-11 (No. ES3-3205_Apr11) | Apr-12 | | DAE4 | SN: 601 | 10-Jun-10 (No. DAE4-601_Jun10) | Jun-11 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 | | | Name | Function | Signatute | | Calibrated by: | Claudio Leubler | Laboratory Technician | Val | | Approved by: | Katja Pokovic | Technical Manager | 00 11. | Issued: May 24, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1008_May11 Page 1 of 8 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Service suisse d'etaionnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 # Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D1750V2-1008_May11 Page 2 of 8 # **Measurement Conditions** | DASY Version | DASY5 | V52.6.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | | | | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.34 mha/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 8.89 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 35.9 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 4.73 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 19.0 mW /g ± 16.5 % (k=2) | # **Body TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.3 ± 6 % | 1.44 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | **** | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 9.04 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 36.7 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 4.82 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 19.4 mW / g ± 16.5 % (k=2) | # **Appendix** ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $51.9 \Omega + 0.9 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 33.8 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.4 Ω + 1.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.0 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.223 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint
may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 11, 2009 | ### **DASY5 Validation Report for Head TSL** Date: 24.05.2011 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1008 Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ mho/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.22, 5.22, 5.22); Calibrated: 29.04.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 Measurement SW: DASY52, V52.6.2 Build (424) Postprocessing SW: SEMCAD X, V14.4.4 Build (2829) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.240 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 15.901 W/kg SAR(1 g) = 8.89 mW/g; SAR(10 g) = 4.73 mW/gMaximum value of SAR (measured) = 11.000 mW/g 0 dB = 11.000 mW/g # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Date: 24.05.2011 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1008 Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 1750 MHz; $\sigma = 1.44 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.85, 4.85, 4.85); Calibrated: 29.04.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 Measurement SW: DASY52, V52.6.2 Build (424) Postprocessing SW: SEMCAD X, V14.4.4 Build (2829) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.611 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 15.724 W/kg SAR(1 g) = 9.04 mW/g; SAR(10 g) = 4.82 mW/g Maximum value of SAR (measured) = 11.315 mW/g 0 dB = 11.310 mW/g # Impedance Measurement Plot for Body TSL Report Number: 1106FS14 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ATL (Auden) Accreditation No.: SCS 108 C Certificate No: D1900V2-5d111_Jul10 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d111 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits Calibration date: July 16, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 06-Oct-09 (No. 217-01086) | Oct-10 | | Power sensor HP 8481A | US37292783 | 06-Oct-09 (No. 217-01086) | Oct-10 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 30-Mar-10 (No. 217-01158) | Mar-11 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 30-Mar-10 (No. 217-01162) | Mar-11 | | Reference Probe ES3DV3 | SN: 3205 | 30-Apr-10 (No. ES3-3205_Apr10) | Apr-11 | | DAE4 | SN: 601 | 10-Jun-10 (No. DAE4-601_Jun10) | Jun-11 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-09) | In house check: Oct-10 | | | Name | Function | Signature | | Calibrated by: | Dimce Iliev | Laboratory Technician | Dies | | Approved by: | Katja Pokovic | Technical Manager | 20/10 | Issued: July 19, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: D1900V2-5d111_Jul10 Page 1 of 9 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D1900V2-5d111 Jul10 Page 2 of 9 # Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.2 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | 5,4117, 1954-1957 ALTO STOLE S | Temperature | Permittivity | Conductivity |
--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.3 ± 6 % | 1.43 mho/m ± 6 % | | Head TSL temperature during test | (22.4 ± 0.2) °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 10.1 mW / g | | SAR normalized | normalized to 1W | 40.4 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.9 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.28 mW / g | | SAR normalized | normalized to 1W | 21.1 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 21.0 mW/g ± 16.5 % (k=2) | Certificate No: D1900V2-5d111_Jul10 Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.3 ± 6 % | 1.55 mha/m ± 6 % | | Body TSL temperature during test | (22.4 ± 0.2) °C | **** | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.6 mW / g | | SAR normalized | normalized to 1W | 42.4 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 41.9 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.66 mW / g | | SAR normalized | normalized to 1W | 22.6 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 22.5 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d111_Jul10 Report Number: 1106FS14 # Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.7 Ω + 6.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.6 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | $46.7 \Omega + 6.5 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 22.5 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.202 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|----------------|--| | Manufactured on | March 28, 2008 | | Certificate No: D1900V2-5d111_Jul10 Page 5 of 9 ### **DASY5 Validation Report for Head TSL** Date/Time: 16.07.2010 13:15:00 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d111 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY5 Configuration: - Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010 - · Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 10.06.2010 - Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163) - Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685) # Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.6 V/m; Power Drift = 0.029 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.28 mW/g Maximum value of SAR (measured) = 12.4 mW/g 0 dB = 12.4 mW/g Certificate No: D1900V2-5d111_Jul10 Page 6 of 9 Report Number: 1106FS14 Page 136 of 185 # Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d111_Jul10 ## **DASY5 Validation Report for Body** Date/Time: 13.07.2010 12:57:16 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d111 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.55 \text{ mho/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY5 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 10.06.2010 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163) - Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685) # Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.7 V/m; Power Drift = 0.00345 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.66 mW/g Maximum value of SAR (measured) = 13.3 mW/g 0 dB = 13.3 mW/g Certificate No: D1900V2-5d111_Jul10 Page 8 of 9 Report Number: 1106FS14 Page 138 of 185 # Impedance Measurement Plot for Body TSL Certificate No: D1900V2-5d111_Jul10 Report Number: 1106FS14 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ATL (Auden) Accreditation No.: SCS 108 Certificate No: D2450V2-712_Feb11 | Object | D2450V2 - SN: 712 | |--------------------------|---| | Calibration procedure(s) | QA CAL-05.v8 Calibration procedure for dipole validation kits | | Calibration date: | February 23, 2011 | The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 06-Oct-10 (No. 217-01266) | Oct-11 | | Power sensor HP 8481A | US37292783 | 06-Oct-10 (No. 217-01266) | Oct-11 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 30-Mar-10 (No. 217-01158) | Mar-11 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 30-Mar-10 (No. 217-01162) | Mar-11 | | Reference Probe ES3DV3 | SN: 3205 | 30-Apr-10 (No. ES3-3205_Apr10) | Apr-11 | | DAE4 | SN: 601 | 10-Jun-10 (No. DAE4-601_Jun10) | Jun-11 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP
8481A | MY41092317 | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 | | | Name | Function | Signature | | Calibrated by: | Dimoe Illey | Laboratory Technician | D'Hill | | Approved by: | Katja Pokovic | Technical Manager | 20110 | Issued: February 24, 2011 Certificate No: D2450V2-712_Feb11 Page 1 of 9 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates # Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-712_Feb11 Page 2 of 9 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.1 ± 6 % | 1.73 mha/m ± 6 % | | Head TSL temperature during test | (21.2 ± 0.2) °C | **** | **** | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR normalized | normalized to 1W | 52.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.9 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.08 mW / g | | SAR normalized | normalized to 1W | 24.3 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.94 mho/m ± 6 % | | Body TSL temperature during test | (21.8 ± 0.2) °C | **** | **** | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 12.6 mW / g | | SAR normalized | normalized to 1W | 50.4 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.4 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.83 mW / g | | SAR normalized | normalized to 1W | 23.3 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.3 mW / g ± 16.5 % (k=2) | # Appendix # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.3 Ω + 1.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.0 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | $50.8 \Omega + 5.5 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 25.1 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.146 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|---------------|--| | Manufactured on | July 05, 2002 | | ### DASY5 Validation Report for Head TSL Date/Time: 23.02.2011 12:42:01 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.73 \text{ mho/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 Measurement SW: DASY52, V52.6.1 Build (408) Postprocessing SW: SEMCAD X, V14.4.2 Build (2595) # Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 26.439 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 6.08 mW/g Maximum value of SAR (measured) = 16.525 mW/g 0 dB = 16.530 mW/g # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date/Time: 18.02.2011 14:36:14 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.94 \text{ mho/m}$; $\varepsilon_t = 52.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 Measurement SW: DASY52, V52.6.1 Build (408) Postprocessing SW: SEMCAD X, V14.4.2 Build (2595) # Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.420 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.751 W/kg SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.83 mW/gMaximum value of SAR (measured) = 16.714 mW/g 0 dB = 16.710 mW/g # Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ATL
(Auden) Certificate No: ES3-3150_Jan11 Accreditation No.: SCS 108 | Object | ES3DV3 - SN:3 | 150 | - | |---|--|---|--| | Calibration procedure(s) | | QA CAL-23.v4 and QA CAL-25.v3
edure for dosimetric E-field probes | | | Calibration date: | January 19, 201 | 11 | | | | | probability are given on the following pages an
ory facility: environment temperature $(22 \pm 3)^{\circ}$ C | | | | | | • | | | | | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | rimary Standards
ower meter E4419B | ID#
GB41293874 | Cal Date (Certificate No.)
1-Apr-10 (No. 217-01135) | Scheduled Calibration
Apr-11 | | nimary Standards
ower meter E4419B
ower sensor E4412A | ID# | Cal Date (Certificate No.)
1-Apr-10 (No. 217-01135)
1-Apr-10 (No. 217-01136) | Scheduled Calibration
Apr-11
Apr-11 | | nimary Standards
ower meter E4419B
ower sensor E4412A
ower sensor E4412A | ID#
GB41293874
MY41495277 | Cal Date (Certificate No.)
1-Apr-10 (No. 217-01136)
1-Apr-10 (No. 217-01136)
1-Apr-10 (No. 217-01136) | Scheduled Calibration
Apr-11 | | nimary Standards
ower meter E4419B
ower sensor E4412A
ower sensor E4412A
eference 3 dB Attenuator | ID #
GB41293874
MY41495277
MY41498087 | Cal Date (Certificate No.)
1-Apr-10 (No. 217-01135)
1-Apr-10 (No. 217-01136) | Scheduled Calibration
Apr-11
Apr-11
Apr-11 | | rimary Standards fower meter E4419B fower sensor E4412A fower sensor E4412A feference 3 dB Attenuator feference 20 dB Attenuator | ID #
GB41293874
MY41495277
MY41498087
SN: S5054 (3c) | Cal Date (Certificate No.) 1-Apr-10 (No. 217-01135) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) | Scheduled Calibration
Apr-11
Apr-11
Apr-11
Mar-11 | | rimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) | Cal Date (Certificate No.) 1-Apr-10 (No. 217-01135) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) | Scheduled Calibration
Apr-11
Apr-11
Apr-11
Mar-11 | | Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) | Cal Date (Certificate No.) 1-Apr-10 (No. 217-01135) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) | Scheduled Calibration
Apr-11
Apr-11
Apr-11
Mar-11
Mar-11 | | Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 | Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) | Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 | | rimary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 RAE4 | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 | Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-860_Apr10) | Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 | | Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 AE4 Recondary Standards RF generator HP 8848C | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 | Cal Date (Certificate No.) 1-Apr-10 (No. 217-01135) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) | Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check | | Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8548C | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 | Cal Date (Certificate No.) 1-Apr-10 (No. 217-01135) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-680_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) | Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11 | | Calibration Equipment used (Mé Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3842U01700 US37390585 | Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) | Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 | Certificate No: ES3-3150_Jan11 Page 1 of 10 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical
uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: ES3-3150 Jan11 Page 2 of 10 # Probe ES3DV3 SN:3150 Manufactured: June 12, 2007 Last calibrated: January 27, 2010 Recalibrated: January 19, 2011 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ES3-3150_Jan11 Page 3 of 10 Report Number: 1106FS14 Page 151 of 185 ## DASY/EASY - Parameters of Probe: ES3DV3 SN:3150 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 1.25 | 1.24 | 1.23 | ± 10.1% | | DCP (mV) ^B | 102.3 | 100.4 | 101.1 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dBuV | С | VR
mV | Unc ^E
(k=2) | |-------|---------------------------|------|---|---------|-----------|------|----------|---------------------------| | 10000 | cw | 0.00 | X | 0.00 | 0.00 | 1.00 | 149.9 | ± 2.4 % | | | | | Y | 0.00 | 0.00 | 1.00 | 149.5 | | | | | | Z | 0.00 | 0.00 | 1.00 | 149.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ES3-3150_Jan11 Page 4 of 10 Report Number: 1106FS14 Page 152 of 185 ^{*} The uncertainties of NormX,Y,Z do not affect the E-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: ES3DV3 SN:3150 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] | Validity [MHz] ^C | Permittivity | Conductivity | ConvF X Co | nvF Y | ConvF Z | Alpha | Depth Unc (k=2) | |---------|-----------------------------|--------------|----------------|------------|-------|---------|-------|-----------------| | 835 | ±50/±100 | 41.5 ± 5% | $0.90 \pm 5\%$ | 6.15 | 6.15 | 6.15 | 0.77 | 1.14 ± 11.0% | | 1810 | ±50/±100 | 40.0 ± 5% | $1.40 \pm 5\%$ | 5.28 | 5.28 | 5.28 | 0.49 | 1.53 ± 11.0% | | 1900 | ±50/±100 | 40.0 ± 5% | 1.40 ± 5% | 5.18 | 5.18 | 5.18 | 0.42 | 1.65 ± 11.0% | ^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: ES3-3150_Jan11 Page 5 of 10 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ES3-3150_Jan11 Page 6 of 10 Report Number: 1106FS14 Page 154 of 185 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ES3-3150_Jan11 Page 7 of 10 ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ES3-3150_Jan11 Page 8 of 10 ## **Conversion Factor Assessment** ## Deviation from Isotropy in HSL Error (6, 9), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: ES3-3150_Jan11 Page 9 of 10 ## Other Probe Parameters | Sensor Arrangement | Triangular | |---|----------------| | Connector Angle (°) | Not applicable | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | Certificate No: ES3-3150_Jan11 Page 10 of 10 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | ATL (Auden) | 7011 | Certif | ficate No: DAE4-779_Jan11 | |-------------------------------|--------------------------------------|--|--| | CALIBRATION C | ERTIFICATE | | | | Object | DAE4 - SD 000 D | 04 BJ - SN: 779 | | | Calibration procedure(s) | QA CAL-06.v22
Calibration process | dure for the data acquisitio | on electronics (DAE) | | Calibration date: | January 31, 2011 | 5 - 1 | | | The measurements and the unce | rtainties with confidence pro | nal standards, which realize the phy
obability are given on the following p
y facility: environment temperature (2 | pages and are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Keithley Multimeter Type 2001 | SN: 0810278 | 28-Sep-10 (No:10376) | Sep-11 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Calibrator Box V1.1 | SE UMS 006 AB 1004 | 07-Jun-10 (in house check) | In house check: Jun-11 | | | Name | Function | Signature | | Calibrated by: | Andrea Guntli | Technician | - Julie | | Approved by: | Fin Bomholt | R&D Director | V Rouno | | | | | Issued: January 31, 2011 | Certificate No: DAE4-779_Jan11 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-779_Jan11 Page 2 of 5 ## DC Voltage Measurement A/D - Converter Resolution nominal full range = -100...+300 mV full range = -1......+3mV 6.1μV , 61nV , High Range: 1LSB = Low Range: 1LSB = DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Y | z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.517 ± 0.1% (k=2) | 403.748 ± 0.1% (k=2) | 403.972 ± 0.1% (k=2) | | Low Range | 3.96927 ± 0.7% (k=2) | 3.98585 ± 0.7% (k=2) | 3.99915 ± 0.7% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 155.5°±1° | |---|-----------| | | | Certificate No: DAE4-779_Jan11 Page 3 of 5 ### **Appendix** 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200001.8 | 6.19 | 0.00 | | Channel X + Input | 20003.75 | 4.25 | 0.02 | | Channel X - Input | -19996.56 | 3.04 | -0.02 | | Channel Y + Input | 200005.0 | 0.90 | 0.00 | | Channel Y + Input | 20000.78 | 1.38 | 0.01 | | Channel Y - Input | -19996.43 | 2.97 | -0.01 | | Channel Z + Input | 200002.2 | -1.15 | -0.00 | | Channel Z + Input | 19999.59 | 0.19 | 0.00
| | Channel Z - Input | -19995.05 | 4.35 | -0.02 | | | | | | | Low Range | Reading (µV) | Difference (µV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.4 | 0.25 | 0.01 | | Channel X + Input | 200.27 | 0.37 | 0.18 | | Channel X - Input | -199.08 | 1.12 | -0.56 | | Channel Y + Input | 2000.1 | 0.19 | 0.01 | | Channel Y + Input | 199.01 | -0.89 | -0.45 | | Channel Y - Input | -199.30 | 0.50 | -0.25 | | Channel Z + Input | 1999.6 | -0.40 | -0.02 | | Channel Z + Input | 199.22 | -0.88 | -0.44 | | Channel Z - Input | -200.27 | -0.37 | 0.19 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -3.66 | -5.39 | | | - 200 | 5.82 | 4.90 | | Channel Y | 200 | 13.39 | 13.58 | | | - 200 | -14.98 | -15.16 | | Channel Z | 200 | 2.20 | 2.53 | | | - 200 | -4.84 | -4.61 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.33 | -0.57 | | Channel Y | 200 | 1.97 | | 3.29 | | Channel Z | 200 | 1.19 | -0.28 | - | Certificate No: DAE4-779_Jan11 Page 4 of 5 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15613 | 15134 | | Channel Y | 15831 | 16218 | | Channel Z | 16150 | 17743 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time: 3 sec Input 10MO | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -0.26 | -1.03 | 0.79 | 0.42 | | Channel Y | 0.52 | -1.04 | 2.07 | 0.58 | | Channel Z | -2.22 | -3.25 | -0.85 | 0.44 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-779_Jan11 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ATL (Auden) Certificate No: EX3-3519_Feb11 Accreditation No.: SCS 108 ## CALIBRATION CERTIFICATE Object EX3DV3 - SN:3519 Calibration procedure(s) QA CAL-01.v7, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v3 Calibration procedure for dosimetric E-field probes Calibration date: February 25, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (5i). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 1D | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | G841293874 | 01-Apr-10 (No. 217-01136) | Apr-11 | | Power sensor E4412A | MY41495277 | 01-Apr-10 (No. 217-01136) | Apr-11 | | Power sensor E4412A | MY41498087 | 01-Apr-10 (No. 217-01136) | Apr-11 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 30-Mar-10 (No. 217-01159) | Mar-11 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 30-Mar-10 (No. 217-01161) | Mar-11 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 30-Mar-10 (No. 217-01160) | Mar-11 | | Reference Probe ES3DV2 | SN: 3013 | 29-Dec-10 (No. ES3-3013_Dec10) | Dec-11 | | DAE4 | SN: 654 | 23-Apr-10 (No. DAE4-654_Apr10) | Apr-11 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 | | | | | | Calibrated by: Name Function Signature Technical Manager Approved by: Niels Kuster Quality Manager Issued: February 25, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3519_Feb11 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., a = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". December 2003 Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization ⊕ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. - VR: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No. EX3-3519_Feb11 Page 2 of 11 # Probe EX3DV3 SN:3519 Manufactured: Calibrated: March 8, 2004 February 25, 2011 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3519_Feb11 Page 3 of 11 ## DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.82 | 0.71 | 0.72 | ± 10.1 % | | DCP (mV) ⁶ | 99.0 | 98.5 | 100.8 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc ^E
(k=2) | |-------|---------------------------|------|---|---------|---------|---------|----------
---------------------------| | 10000 | CW | 0.00 | X | 0.00 | 0.00 | 1.00 | 107.3 | ±1.9 % | | | 1000 | | Y | 0.00 | 0.00 | 1.00 | 110.4 | | | | | | Z | 0.00 | 0.00 | 1.00 | 136.5 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3519_Feb11 ^{The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.} ## DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^f | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-----------------------|---------|---------|---------|-------|---------------|----------------| | 2000 | 40.0 | 1.40 | 9.25 | 9.25 | 9.25 | 0.53 | 0.78 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.08 | 5.08 | 5.08 | 0.30 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.60 | 4.60 | 4.60 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.13 | 4.13 | 4.13 | 0.50 | 1.80 | ± 13.1 % | Certificate No: EX3-3519_Feb11 ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ## DASY/EASY - Parameters of Probe: EX3DV3- SN:3519 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|--------------------------|-----------------------|---------|---------|---------|-------|---------------|----------------| | 2000 | 53.3 | 1.52 | 9.31 | 9.31 | 9.31 | 0.72 | 0.68 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 8.67 | 8.67 | 8.67 | 0.69 | 0.67 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 8.17 | 8.17 | 8.17 | 0.79 | 0.58 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.75 | 7.75 | 7.75 | 0.79 | 0.54 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 7.11 | 7.11 | 7.11 | 0.31 | 1.34 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.36 | 4.36 | 4.36 | 0.52 | 1.95 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.14 | 4.14 | 4.14 | 0.55 | 1.95 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.88 | 3.88 | 3.88 | 0.55 | 1.95 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.56 | 3.56 | 3.56 | 0.65 | 1.95 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.94 | 3.94 | 3.94 | 0.58 | 1.95 | ± 13.1 % | Certificate No: EX3-3519_Feb11 ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of sissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3519_Feb11 Page 7 of 11 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3519_Feb11 Page 8 of 11 Report Number: 1106FS14 ## Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3519_Feb11 Page 9 of 11 ## **Conversion Factor Assessment** ## Deviation from Isotropy in Air Error (φ, θ), f = 900 MHz -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EX3-3519_Feb11 Page 10 of 11 ## DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|----------------| | Connector Angle (") | Not applicable | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | | | 1151 1251 | Certificate No: EX3-3519_Feb11 Page 11 of 11 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Fullen Research Pasitus (Ausen) Certificate No: EX-3758_Feb11 Accreditation No.: SCS 108 ### CALIBRATION CERTIFICATE Objec EX3DV4 - SN:3758 Calibration procedure(s) QA CAL-01 v7, QA CAL-23 v4, QA CAL-25 v3 Calibration procedure for dosimetric E-field probes Calibration date: February 14, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-10 (No. 217-01136) | Apr-11 | | Power sensor E4412A | MY41495277 | 01-Apr-10 (No. 217-01136) | Apr-11 | | Power sensor E4412A | MY41498087 | 01-Apr-10 (No. 217-01136) | Apr-11 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 30-Mar-10 (No. 217-01159) | Mar-11 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 30-Mar-10 (No. 217-01161) | Mar-11 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 30-Mar-10 (No. 217-01160) | Mar-11 | | Reference Probe ES3DV2 | SN: 3013 | 29-Dec-10 (No. ES3-3013_Dec10) | Dec-11 | | DAE4 | SN: 654 | 23-Apr-10 (No. DAE4-654_Apr10) | Apr-11 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 | Name Function Signature Calibrated by: Jelon Kastreti Laboratory Technician Approved by: Kirtja Foktovic Technicial Manager: Issued: February 14, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX-3758_Feb11 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization on rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but
determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. - VR: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX-3758 Feb11 Page 2 of 11 # Probe EX3DV4 SN:3758 Manufactured: Calibrated: March 16, 2010 February 14, 2011 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX-3758_Feb11 Page 3 of 11 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3758 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | | |--|----------|----------|----------|-----------|--| | Norm (µV/(V/m) ²) ^A | 0.50 | 0.51 | 0.55 | ± 10.1 % | | | DCP (mV) ⁸ | 98.3 | 100.2 | 101.2 | J. E. C. | | Modulation Calibration Parameters | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc ^E
(k=2) | |-------|---------------------------|-------------|------|---------|---------|---------|----------|---------------------------| | 10000 | CW | 0.00 X 0.00 | 0.00 | 0.00 | 1.00 | 116.7 | ±2.2 % | | | | | | Y | 0.00 | 0.00 | 1.00 | 113.4 | | | | | | Z | 0.00 | 0.00 | 1.00 | 126.2 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX-3758_Feb11 A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3758 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 835 | 41.5 | 0.90 | 9.30 | 9.30 | 9.30 | 0.71 | 0.66 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 7.86 | 7.86 | 7.86 | 0.79 | 0.58 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.80 | 7.80 | 7.80 | 0.72 | 0.59 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 7.90 | 7.90 | 7.90 | 0.61 | 0.62 | ± 12.0 % | Certificate No: EX-3758_Feb11 Page 5 of 11 ^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^r At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ## DASY/EASY - Parameters of Probe: EX3DV4- SN:3758 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 835 | 55.2 | 0.97 | 9.39 | 9.39 | 9.39 | 0.60 | 0.73 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 8.14 | 8.14 | 8.14 | 0.62 | 0.75 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.83 | 7.83 | 7.83 | 0.55 | 0.77 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 8.10 | 8.10 | 8.10 | 0.40 | 0.95 | ± 12.0 % | $^{^{\}text{C}}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Report Number: 1106FS14 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Report Number: 1106FS14 ## Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX-3758_Feb11 Page 9 of 11 ## **Conversion Factor Assessment** ## Deviation from Isotropy in Air Error (φ, θ), f = 900 MHz Certificate No: EX-3758_Feb11 Page 10 of 11 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3758 ### Other Probe Parameters | Sensor Arrangement | Triangular | | | | |---|----------------|--|--|--| | Connector Angle (°) | Not applicable | | | | | Mechanical Surface Detection Mode | enabled | | | | | Optical Surface Detection Mode | disable | | | | | Probe Overall Length | 337 mr | | | | | Probe Body Diameter | 10 mm | | | | | Tip Length | 9 mm | | | | | Tip Diameter | 3 mm | | | | | Probe Tip to Sensor X Calibration Point | 1 mm | | | | | Probe Tip to Sensor Y Calibration Point | 1 mm | | | | | Probe Tip to Sensor Z Calibration Point | 1 mm | | | | | Recommended Measurement Distance from Surface | 2 mm | | | | Certificate No: EX-3758_Feb11