

The formula for each channel can be given as :

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z) U_i = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated :

E-field Probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

with V_i = compensated signal of channel i, (i = x, y, z) Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$\mathbf{E}_{\text{tot}} = \sqrt{\mathbf{E}_{\text{x}}^2 + \mathbf{E}_{\text{y}}^2 + \mathbf{E}_{\text{z}}^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 ζ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

5.8 Test Equipment List

Manager		Town of Manufacture	O and a l. Name la an	Calibration	
Manufacturer	Name of Equipment	i ype/modei	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Field Probe	ET3DV6	1787	May 18, 2010	May 17, 2011
SPEAG	Dosimetric E-Field Probe	ET3DV6	1788	Sep. 21, 2010	Sep. 20, 2011
SPEAG	Dosimetric E-Field Probe	EX3DV4	3731	Jul. 16, 2010	Jul. 15, 2011
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 22, 2010	Mar. 21, 2012
SPEAG	900MHz System Validation Kit	D900V2	190	Jul. 21, 2009	Jul. 20, 2011
SPEAG	1800MHz System Validation Kit	D1800V2	2d076	Jul. 20, 2009	Jul. 19, 2011
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 23, 2010	Mar. 22, 2012
SPEAG	2000MHz System Validation Kit	D2000V2	1010	Sep. 22, 2010	Sep. 21, 2012
SPEAG	2300MHz System Validation Kit	D2300V2	1006	Sep. 24, 2009	Sep. 23, 2011
SPEAG	2450MHz System Validation Kit	D2450V2	736	Jul. 20, 2009	Jul. 19, 2011
SPEAG	2600MHz System Validation Kit	D2600V2	1008	Sep. 24, 2009	Sep. 23, 2011
SPEAG	3500MHz System Validation Kit	D3500V2	1014	Sep. 17, 2009	Sep. 16, 2011
SPEAG	5GHz System Validation Kit	D5GHzV2	1006	Jan. 21, 2010	Jan. 20, 2012
SPEAG	Data Acquisition Electronics	DAE3	577	Aug. 18, 2010	Aug. 17, 2011
SPEAG	Data Acquisition Electronics	DAE4	778	Oct. 22, 2010	Oct. 21, 2011
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	SAM Phantom	QD 000 P40 C	TP-1303	NCR	NCR
SPEAG	SAM Phantom	QD 000 P40 C	TP-1383	NCR	NCR
SPEAG	SAM Phantom	QD 000 P40 C	TP-1446	NCR	NCR
SPEAG	SAM Phantom	QD 000 P40 C	TP-1478	NCR	NCR
SPEAG	ELI4 Phantom	QD 0VA 001 BB	1026	NCR	NCR
SPEAG	ELI4 Phantom	QD 0VA 001 BA	1029	NCR	NCR
Agilent	PNA Series Network Analyzer	E8358A	US40260131	May 06, 2010	May 05, 2011
Agilent	Wireless Communication Test Set	E5515C	MY48360820	Jan. 12, 2010	Jan. 11, 2012
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Feb. 16, 2009	Feb. 15, 2011
R&S	Universal Radio Communication Tester	CMU200	117995	Mar. 19, 2009	Mar. 18, 2011
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
AR	Power Amplifier	5S1G4M2	0328767	NCR	NCR
R&S	Spectrum Analyzer	FSP7	101131	Mar. 05, 2010	Mar. 04, 2011

Table 5.1 Test Equipment List

Note: The calibration certificate of DASY can be referred to appendix C of this report.

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2.

Fig 6.1 Photo of Liquid Height for Head SAR

Fig 6.2 Photo of Liquid Height for Body SAR

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity	
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(ε _r)	
For Head									
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5	
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5	
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0	
2450	55.0	0	0	0	0	45.0	1.80	39.2	
				For Body					
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2	
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0	
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3	
2450	68.6	0	0	0	0	31.4	1.95	52.7	

The following table gives the recipes for tissue simulating liquid.

Table 6.1 Recipes of Tissue Simulating Liquid

Frequency (MHz)	Liquid Type	Conductivity (σ)	±5% Range	Permittivity (ε _r)	±5% Range
835	Head	0.90	0.86 ~ 0.95	41.5	39.4 ~ 43.6
900	Head	0.97	0.92 ~ 1.02	41.5	39.4 ~ 43.6
1800, 1900, 2000	Head	1.40	1.33 ~ 1.47	40.0	38.0 ~ 42.0
2450	Head	1.80	1.71 ~ 1.89	39.2	37.2 ~ 41.2
835	Body	0.97	0.92 ~ 1.02	55.2	52.4 ~ 58.0
900	Body	1.05	1.00 ~ 1.10	55.0	52.3 ~ 57.8
1800, 1900, 2000	Body	1.52	1.44 ~ 1.60	53.3	50.6 ~ 56.0
2450	Body	1.95	1.85 ~ 2.05	52.7	50.1 ~ 55.3

The following table gives the targets for tissue simulating liquid.

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

The fellowing f	الا من يوم ما ما ما ما	h a ma a a a	ree. Ite fer	منصمينا ممانم منازما
The lollowing i	able shows i	ne measunno	resums for	Simulaino ilono
The following t		no mouounig	10001101	onnaiating ngala.

Frequency (MHz)	Liquid Type	Temperature (℃)	Conductivity (σ)	Permittivity (ε _r)	Measurement Date
835	Head	21.6	0.916	41.7	Dec. 21, 2010
835	Body	21.4	0.962	54.6	Dec. 23, 2010
1900	Head	21.2	1.44	38.1	Dec. 21, 2010
1900	Body	21.6	1.52	53.2	Dec. 24, 2010

Table 6.3 Measuring Results for Simulating Liquid

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) κ is the coverage factor

Table 7.1 Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 7.2.

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Standard Uncertainty (1g)		
Measurement System	-	-	-	-			
Probe Calibration	5.5	Normal	1	1	± 5.5 %		
Axial Isotropy	4.7	Rectangular	√3	0.7	± 1.9 %		
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	± 3.9 %		
Boundary Effects	1.0	Rectangular	√3	1	± 0.6 %		
Linearity	4.7	Rectangular	√3	1	± 2.7 %		
System Detection Limits	1.0	Rectangular	√3	1	± 0.6 %		
Readout Electronics	0.3	Normal	1	1	± 0.3 %		
Response Time	0.8	Rectangular	√3	1	± 0.5 %		
Integration Time	2.6	Rectangular	√3	1	± 1.5 %		
RF Ambient Noise	3.0	Rectangular	√3	1	± 1.7 %		
RF Ambient Reflections	3.0	Rectangular	√3	1	± 1.7 %		
Probe Positioner	0.4	Rectangular	√3	1	± 0.2 %		
Probe Positioning	2.9	Rectangular	√3	1	± 1.7 %		
Max. SAR Eval.	1.0	Rectangular	√3	1	± 0.6 %		
Test Sample Related							
Device Positioning	2.9	Normal	1	1	± 2.9 %		
Device Holder	3.6	Normal	1	1	± 3.6 %		
Power Drift	5.0	Rectangular	√3	1	± 2.9 %		
Phantom and Setup							
Phantom Uncertainty	4.0	Rectangular	√3	1	± 2.3 %		
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	± 1.8 %		
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	± 1.6 %		
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	± 1.7 %		
Liquid Permittivity (Meas.) 2.5 Normal 1 0.6							
Combined Standard Uncerta	inty				± 10.7 %		
Coverage Factor for 95 %					K = 2		
Expanded Uncertainty					± 21.4 %		

Table 7.2 Uncertainty Budget of DASY for frequency range 300 MHz to 3 GHz

8. SAR Measurement Evaluation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. Calibrated Dipole

The output power on dipole port must be calibrated to 20 dBm (100 mW) before dipole is connected.

Fig 8.2 Photo of Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Measurement Date	Frequency (MHz)	Targeted SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	Deviation (%)
Dec. 21, 2010	835	9.71	9.57	-1.44
Dec. 23, 2010	835	9.82	8.93	-9.06
Dec. 21, 2010	1900	39.80	41.60	4.52
Dec. 24, 2010	1900	40.00	38.20	-4.50

Table 8.1 Target and Measurement SAR after Normalized

9. DUT Testing Position

This DUT was tested in ten different positions. They are right cheek, right tilted, left cheek, left tilted, front face of the DUT with phantom 1 cm gap, rear face of the DUT with phantom 1 cm gap, left side of the DUT with phantom 1 cm gap, right side of the DUT with phantom 1 cm gap, top side of the DUT with phantom 1 cm gap, bottom side of the DUT with phantom 1 cm gap as illustrated below:

1. Define two imaginary lines on the handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Fig 9.1 Illustration for Handset Vertical and Horizontal Reference Lines

2. Cheek Position

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.2).

Fig 9.2 Illustration for Cheek Position

3. Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.3).

SPORTON INTERNATIONAL INC.
TEL : 886-3-327-3456
FAX : 886-3-328-4978
FCC ID : NM8PG32100

4. Body Worn Position

- (a) To position the device parallel to the phantom surface.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 1 cm.

Fig 9.4 Illustration for Body Worn Position

5. DUT Setup Photos

Please refer to Appendix D for the test setup photos.

10. Measurement Procedures

The measurement procedures are as follows:

- (a) For WWAN function, link DUT with base station emulator in highest power channel
- (b) Set base station emulator to allow DUT to radiate maximum output power
- (c) Measure output power through RF cable and power meter
- (d) Place the DUT in the positions described in the last section
- (e) Set scan area, grid size and other setting on the DASY software
- (f) Taking data for the middle channel on each testing position
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

10.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

10.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

10.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

10.5 Power Drift Monitoring

All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

11. SAR Test Results

11.1 Conducted Power (Unit: dBm)

Band	CDMA2000 BC0			CDMA2000 BC1		
Channel	1013	384	777	25	600	1175
Frequency (MHz)	824.70	836.52	848.31	1851.25	1880.00	1908.75
1xRTT RC1+SO55	24.02	24.00	23.97	24.10	24.19	23.95
1xRTT RC3+SO55	24.05	24.14	24.00	24.12	24.24	24.09
1xRTT RC3+SO32 (FCH)	24.02	24.09	23.90	24.08	24.23	23.97
1xRTT RC3+SO32 (SCH)	24.00	24.01	23.87	23.06	23.24	23.96
1xEVDO RTAP 153.6	24.13	24.13	24.05	24.19	23.23	24.05
1xEVDO RETAP 4096	24.09	24.13	24.10	24.11	24.23	24.12

11.2 Test Records for Head SAR Test

Plot No.	Band	Mode	Test Position Channel		Battery	SAR _{1g} (W/kg)
#34	CDMA2000 BC0	RC3+SO55	Right Cheek	384	1	0.898
#08	CDMA2000 BC0	RC3+SO55	Right Cheek	384	2	0.96
#09	CDMA2000 BC0	RC3+SO55	Right Tilted	384	2	0.425
#10	CDMA2000 BC0	RC3+SO55	Left Cheek	384	2	1.17
#11	CDMA2000 BC0	RC3+SO55	Left Tilted	384	2	0.554
#12	CDMA2000 BC0	RC3+SO55	Left Cheek	1013	2	0.805
#13	CDMA2000 BC0	RC3+SO55	Left Cheek	777	2	<mark>1.29</mark>
#14	CDMA2000 BC0	RC3+SO55	Right Cheek	1013	2	0.713
#15	CDMA2000 BC0	RC3+SO55	Right Cheek	777	2	0.757
#35	CDMA2000 BC0	RC3+SO55	Right Cheek	1013	1	0.655
#36	CDMA2000 BC0	RC3+SO55	Right Cheek	777	1	0.909
#31	CDMA2000 BC1	RC3+SO55	Right Cheek	600	1	1.05
#20	CDMA2000 BC1	RC3+SO55	Right Cheek	600	2	1.22
#21	CDMA2000 BC1	RC3+SO55	Right Tilted	600	2	0.616
#22	CDMA2000 BC1	RC3+SO55	Left Cheek	600	2	0.686
#23	CDMA2000 BC1	RC3+SO55	Left Tilted	600	2	0.643
#24	CDMA2000 BC1	RC3+SO55	Right Cheek	25	2	1.07
#25	CDMA2000 BC1	RC3+SO55	Right Cheek	1175	2	<mark>1.24</mark>
#32	CDMA2000 BC1	RC3+SO55	Right Cheek	25	1	1.01
#33	CDMA2000 BC1	RC3+SO55	Right Cheek	1175	1	1.08

11.3 Test Records for Body SAR Test

Plot No.	Band	Mode	Test Position	Separation Distance (cm)	Ch	Battery	Ear- phone	SAR _{1g} (W/kg)
#37	CDMA2000 BC0	RC3+SO32	Rear Face	1	384	1	Without	1.15
#38	CDMA2000 BC0	RC3+SO32	Rear Face	1	384	2	Without	<mark>1.16</mark>
#39	CDMA2000 BC0	RC3+SO32	Front Face	1	384	2	Without	0.918
#40	CDMA2000 BC0	RC3+SO32	Left Side	1	384	2	Without	0.538
#41	CDMA2000 BC0	RC3+SO32	Right Side	1	384	2	Without	0.708
#42	CDMA2000 BC0	RC3+SO32	Top Side	1	384	2	Without	0.035
#43	CDMA2000 BC0	RC3+SO32	Bottom Side	1	384	2	Without	0.209
#44	CDMA2000 BC0	RC3+SO32	Rear Face	1	1013	1	Without	0.906
#45	CDMA2000 BC0	RC3+SO32	Rear Face	1	777	1	Without	1.02
#46	CDMA2000 BC0	RC3+SO32	Rear Face	1	1013	2	Without	0.901
#47	CDMA2000 BC0	RC3+SO32	Rear Face	1	777	2	Without	1.03
#48	CDMA2000 BC0	RC3+SO32	Front Face	1	1013	2	Without	0.466
#49	CDMA2000 BC0	RC3+SO32	Front Face	1	777	2	Without	0.653
#50	CDMA2000 BC0	RC3+SO32	Rear Face	1	384	2	With	0.877
#76	CDMA2000 BC0	RC3+SO32	Rear Face	1	1013	2	With	0.386
#77	CDMA2000 BC0	RC3+SO32	Rear Face	1	777	2	With	0.529
#51	CDMA2000 BC1	RC3+SO32	Rear Face	1	600	1	Without	1.44
#52	CDMA2000 BC1	RC3+SO32	Rear Face	1	600	2	Without	<mark>1.44</mark>
#53	CDMA2000 BC1	RC3+SO32	Front Face	1	600	2	Without	0.866
#54	CDMA2000 BC1	RC3+SO32	Left Side	1	600	2	Without	0.197
#55	CDMA2000 BC1	RC3+SO32	Right Side	1	600	2	Without	0.568
#56	CDMA2000 BC1	RC3+SO32	Top Side	1	600	2	Without	0.106
#57	CDMA2000 BC1	RC3+SO32	Bottom Side	1	600	2	Without	0.66
#58	CDMA2000 BC1	RC3+SO32	Rear Face	1	25	1	Without	1.41
#59	CDMA2000 BC1	RC3+SO32	Rear Face	1	1175	1	Without	1.28
#60	CDMA2000 BC1	RC3+SO32	Rear Face	1	25	2	Without	1.41
#61	CDMA2000 BC1	RC3+SO32	Rear Face	1	1175	2	Without	1.27
#62	CDMA2000 BC1	RC3+SO32	Front Face	1	25	2	Without	0.905
#63	CDMA2000 BC1	RC3+SO32	Front Face	1	1175	2	Without	0.753
#64	CDMA2000 BC1	RC3+SO32	Rear Face	1	600	2	With	1.41
#65	CDMA2000 BC1	RC3+SO32	Rear Face	1	25	2	With	1.19
#66	CDMA2000 BC1	RC3+SO32	Rear Face	1	1175	2	With	1.33

Test Engineer : <u>A-Rod Chen</u>, <u>Andy He</u> and <u>Robert Liu</u>

12. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", June 2001
- [5] SPEAG DASY System Handbook
- [6] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007
- [7] FCC KDB 447498 D01 v04, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", November 2009
- [8] FCC KDB 447498 D02 v02, "SAR Measurement Procedures for USB Dongle Transmitters", November 2009
- [9] FCC KDB 616217 D01 v01r01, "SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens", November 2009
- [10] FCC KDB 616217 D03 v01, "SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers", November 2009
- [11] FCC KDB 648474 D01 v01r05, "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", September 2008
- [12] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [13] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008
- [14] FCC KDB 941225 D04 v01, "Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode", January 27 2010

Appendix A. Plots of System Performance Check

The plots are shown as follows.

System Check_Head_835MHz_101221

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: HSL_850_101221 Medium parameters used: f = 835 MHz; $\sigma = 0.916$ mho/m; $\varepsilon_r = 41.7$; $\rho = 2$

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.21, 6.21, 6.21); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.03 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 34.7 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 1.41 W/kg **SAR(1 g) = 0.957 mW/g; SAR(10 g) = 0.623 mW/g Maximum value of SAR (measured) = 1.03 mW/g**

System Check_Body_835MHz_101223

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: MSL_850_101223 Medium parameters used: f = 835 MHz; $\sigma = 0.962$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(8.84, 8.84, 8.84); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.966 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.7 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 1.31 W/kg **SAR(1 g) = 0.893 mW/g; SAR(10 g) = 0.590 mW/g Maximum value of SAR (measured) = 0.959 mW/g**

System Check_Head_1900MHz_101221

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL_1900_101221 Medium parameters used: f = 1900 MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 38.1$; ρ

= 1000 kg/m^3 Ambient Temperature : 22.7 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.09, 5.09, 5.09); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.93 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.5 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 7.44 W/kg SAR(1 g) = 4.16 mW/g; SAR(10 g) = 2.15 mW/g Maximum value of SAR (measured) = 4.74 mW/g

System Check_Body_1900MHz_101224

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL_1900_101224 Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(7.13, 7.13, 7.13); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.38 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.5 V/m; Power Drift = -0.051 dB Peak SAR (extrapolated) = 7.38 W/kg SAR(1 g) = 3.82 mW/g; SAR(10 g) = 1.93 mW/g Maximum value of SAR (measured) = 4.34 mW/g

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

#08 CDMA2000 BC0_RC3+SO55_Right Cheek_ Ch384_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: HSL_850_101214 Medium parameters used: f = 837 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 41.1$; $\rho =$

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.21, 6.21, 6.21); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch384/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.01 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.8 V/m; Power Drift = -0.190 dB Peak SAR (extrapolated) = 1.34 W/kg SAR(1 g) = 0.960 mW/g; SAR(10 g) = 0.719 mW/g Maximum value of SAR (measured) = 1.01 mW/g

#09 CDMA2000 BC0_RC3+SO55_Right Tilted_ Ch384_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: HSL_850_101214 Medium parameters used: f = 837 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 41.1$; $\rho =$

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.21, 6.21, 6.21); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch384/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.526 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.9 V/m; Power Drift = -0.125 dB Peak SAR (extrapolated) = 0.489 W/kg SAR(1 g) = 0.425 mW/g; SAR(10 g) = 0.323 mW/g Maximum value of SAR (measured) = 0.443 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.9 V/m; Power Drift = -0.125 dB Peak SAR (extrapolated) = 0.761 W/kg SAR(1 g) = 0.388 mW/g; SAR(10 g) = 0.276 mW/g Maximum value of SAR (measured) = 0.444 mW/g

#13 CDMA2000 BC0_RC3+SO55_Left Cheek_ Ch777_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 848.31 MHz;Duty Cycle: 1:1 Medium: HSL_850_101214 Medium parameters used : f = 848.31 MHz; $\sigma = 0.931$ mho/m; $\epsilon_r = 40.9$;

 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.21, 6.21, 6.21); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch777/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.37 mW/g

Ch777/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.8 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 2.01 W/kg SAR(1 g) = 1.29 mW/g; SAR(10 g) = 0.864 mW/g Maximum value of SAR (measured) = 1.36 mW/g

#13 CDMA2000 BC0_RC3+SO55_Left Cheek_ Ch777_Battery2_2D

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 848.31 MHz;Duty Cycle: 1:1 Medium: HSL_850_101214 Medium parameters used : f = 848.31 MHz; $\sigma = 0.931$ mho/m; $\epsilon_r =$

40.9; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.21, 6.21, 6.21); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch777/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.37 mW/g

Ch777/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.8 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 2.01 W/kg SAR(1 g) = 1.29 mW/g; SAR(10 g) = 0.864 mW/g Maximum value of SAR (measured) = 1.36 mW/g

#11 CDMA2000 BC0_RC3+SO55_Left Tilted_ Ch384_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: HSL_850_101214 Medium parameters used: f = 837 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 41.1$; $\rho =$

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.21, 6.21, 6.21); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch384/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.750 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.7 V/m; Power Drift = -0.095 dB Peak SAR (extrapolated) = 1.14 W/kgSAR(1 g) = 0.554 mW/g; SAR(10 g) = 0.385 mW/gMaximum value of SAR (measured) = 0.583 mW/g

 $0 \, dB = 0.583 mW/g$

#25 CDMA2000 BC1_RC3+SO55_Right Cheek_Ch1175_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1908.75 MHz;Duty Cycle: 1:1 Medium: HSL_1900_101221 Medium parameters used: f = 1909 MHz; σ = 1.45 mho/m; ϵ_r = 38.1; ρ

= 1000 kg/m^3 Ambient Temperature : 22.7 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.09, 5.09, 5.09); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch1175/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.20 mW/g

Ch1175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.1 V/m; Power Drift = 0.041 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.701 mW/g Maximum value of SAR (measured) = 1.40 mW/g

#25 CDMA2000 BC1_RC3+SO55_Right Cheek_Ch1175_Battery2_2D

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1908.75 MHz;Duty Cycle: 1:1 Medium: HSL_1900_101221 Medium parameters used: f = 1909 MHz; σ = 1.45 mho/m; ϵ_r = 38.1; ρ

= 1000 kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.09, 5.09, 5.09); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch1175/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.20 mW/g

Ch1175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.1 V/m; Power Drift = 0.041 dB Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.701 mW/g

Maximum value of SAR (measured) = 1.40 mW/g

#21 CDMA2000 BC1_RC3+SO55_Right Tilted_Ch600_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: HSL_1900_101221 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 38.1; ρ

= 1000 kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.09, 5.09, 5.09); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch600/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.812 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.1 V/m; Power Drift = -0.064 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.616 mW/g; SAR(10 g) = 0.316 mW/g Maximum value of SAR (measured) = 0.708 mW/g

#22 CDMA2000 BC1_RC3+SO55_Left Cheek_Ch600_Battery2

DUT:0N2344-01

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: HSL_1900_101221 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 38.1; ρ = 1000 kg/m³

Ambient Temperature : 22.5 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.09, 5.09, 5.09); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch600/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.688 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.3 V/m; Power Drift = 0.192 dB Peak SAR (extrapolated) = 0.967 W/kg SAR(1 g) = 0.686 mW/g; SAR(10 g) = 0.429 mW/g Maximum value of SAR (measured) = 0.735 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.3 V/m; Power Drift = 0.192 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.603 mW/g; SAR(10 g) = 0.330 mW/g Maximum value of SAR (measured) = 0.703 mW/g

 $0 \, dB = 0.703 \, mW/g$

#23 CDMA2000 BC1_RC3+SO55_Left Tilted_Ch600_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: HSL_1900_101221 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 38.1; ρ = 1000 kg/m³

Ambient Temperature : 22.8 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.09, 5.09, 5.09); Calibrated: 2010/5/18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2010/8/18
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch600/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.770 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.9 V/m; Power Drift = -0.038 dBPeak SAR (extrapolated) = 1.29 W/kgSAR(1 g) = 0.643 mW/g; SAR(10 g) = 0.334 mW/gMaximum value of SAR (measured) = 0.720 mW/g

#38 CDMA2000 BC0_RC3+SO32_Rear Face_1cm_Ch384_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850_101223 Medium parameters used: f = 837 MHz; σ = 0.964 mho/m; ϵ_r = 54.5; ρ =

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(8.84, 8.84, 8.84); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch384/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.21 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.2 V/m; Power Drift = 0.175 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.856 mW/g Maximum value of SAR (measured) = 1.22 mW/g

#38 CDMA2000 BC0_RC3+SO32_Rear Face_1cm_Ch384_Battery2_2D

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850_101223 Medium parameters used: f = 837 MHz; $\sigma = 0.964$ mho/m; $\epsilon_r = 54.5$; ρ

= 1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(8.84, 8.84, 8.84); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch384/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.21 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = 0.175 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.856 mW/g

Maximum value of SAR (measured) = 1.22 mW/g

#39 CDMA2000 BC0_RC3+SO32_Front Face_1cm_Ch384_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850_101223 Medium parameters used: f = 837 MHz; σ = 0.964 mho/m; ϵ_r = 54.5; ρ =

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(8.84, 8.84, 8.84); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch384/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.971 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.8 V/m; Power Drift = -0.008 dB Peak SAR (extrapolated) = 1.15 W/kg SAR(1 g) = 0.918 mW/g; SAR(10 g) = 0.680 mW/g Maximum value of SAR (measured) = 0.952 mW/g

#40 CDMA2000 BC0_RC3+SO32_Left Side_1cm_Ch384_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850_101223 Medium parameters used: f = 837 MHz; σ = 0.964 mho/m; ϵ_r = 54.5; ρ =

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(8.84, 8.84, 8.84); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch384/Area Scan (31x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.579 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.0 V/m; Power Drift = -0.080 dB Peak SAR (extrapolated) = 0.759 W/kgSAR(1 g) = 0.538 mW/g; SAR(10 g) = 0.376 mW/gMaximum value of SAR (measured) = 0.570 mW/g

0 dB = 0.570 mW/g
#41 CDMA2000 BC0_RC3+SO32_Right Side_1cm_Ch384_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850_101223 Medium parameters used: f = 837 MHz; σ = 0.964 mho/m; ϵ_r = 54.5; ρ =

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(8.84, 8.84, 8.84); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch384/Area Scan (31x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.751 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.2 V/m; Power Drift = -0.001 dB Peak SAR (extrapolated) = 1.03 W/kg SAR(1 g) = 0.708 mW/g; SAR(10 g) = 0.485 mW/g Maximum value of SAR (measured) = 0.753 mW/g

 $0 \, dB = 0.753 \, mW/g$

#42 CDMA2000 BC0_RC3+SO32_Top Side_1cm_Ch384_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850_101223 Medium parameters used: f = 837 MHz; σ = 0.964 mho/m; ϵ_r = 54.5; ρ = 1000 kg/m³

Ambient Temperature : 22.5 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(8.84, 8.84, 8.84); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch384/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.040 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.81 V/m; Power Drift = -0.023 dB Peak SAR (extrapolated) = 0.047 W/kg SAR(1 g) = 0.035 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.037 mW/g

 $0 \, dB = 0.037 \, mW/g$

#43 CDMA2000 BC0_RC3+SO32_Bottom Side_1cm_Ch384_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850_101223 Medium parameters used: f = 837 MHz; σ = 0.964 mho/m; ϵ_r = 54.5; ρ = 1000 kg/m³

Ambient Temperature : 22.4 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(8.84, 8.84, 8.84); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1477
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch384/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.194 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = -0.067 dBPeak SAR (extrapolated) = 0.419 W/kgSAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.105 mW/gMaximum value of SAR (measured) = 0.220 mW/g

 $0 \, dB = 0.220 \, mW/g$

#52 CDMA2000 BC1_RC3+SO32_Rear Face_1cm_Ch600_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900_101224 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ϵ_r = 53.3; ρ =

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(7.13, 7.13, 7.13); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch600/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.35 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.96 V/m; Power Drift = 0.160 dB Peak SAR (extrapolated) = 2.55 W/kg SAR(1 g) = 1.44 mW/g; SAR(10 g) = 0.790 mW/g Maximum value of SAR (measured) = 1.56 mW/g

#52 CDMA2000 BC1_RC3+SO32_Rear Face_1cm_Ch600_Battery2_2D

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900_101224 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.3$; ρ

= 1000 kg/m^3 Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(7.13, 7.13, 7.13); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch600/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.35 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.96 V/m; Power Drift = 0.160 dB Peak SAR (extrapolated) = 2.55 W/kg SAR(1 g) = 1.44 mW/g; SAR(10 g) = 0.790 mW/g Maximum value of SAR (measured) = 1.56 mW/g

#62 CDMA2000 BC1_RC3+SO32_Front Face_1cm_Ch25_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1851.25 MHz;Duty Cycle: 1:1 Medium: MSL_1900_101224 Medium parameters used : f = 1851.25 MHz; σ = 1.48 mho/m; ϵ_r =

53.4; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(7.13, 7.13, 7.13); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch25/Area Scan (41x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.09 mW/g

Ch25/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.2 V/m; Power Drift = -0.064 dBPeak SAR (extrapolated) = 1.37 W/kg SAR(1 g) = 0.905 mW/g; SAR(10 g) = 0.586 mW/gMaximum value of SAR (measured) = 0.952 mW/g

#54 CDMA2000 BC1_RC3+SO32_Left Side_1cm_Ch600_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900_101224 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.3$; $\rho = 1.5$ mho/m; $\epsilon_r = 53.3$; $\epsilon_r = 53.3$; $\epsilon_r = 1.5$ mho/m; $\epsilon_r = 1$

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(7.13, 7.13, 7.13); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch600/Area Scan (31x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.214 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.80 V/m; Power Drift = -0.110 dB Peak SAR (extrapolated) = 0.326 W/kg SAR(1 g) = 0.197 mW/g; SAR(10 g) = 0.113 mW/g Maximum value of SAR (measured) = 0.217 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.80 V/m; Power Drift = -0.110 dB Peak SAR (extrapolated) = 0.248 W/kg SAR(1 g) = 0.159 mW/g; SAR(10 g) = 0.095 mW/g Maximum value of SAR (measured) = 0.176 mW/g

#55 CDMA2000 BC1 RC3+SO32 Right Side 1cm Ch600 Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: MSL_1900_101224 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 53.3$; $\rho =$

 1000 kg/m^3 Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(7.13, 7.13, 7.13); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch600/Area Scan (31x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.644 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = -0.084 dB Peak SAR (extrapolated) = 0.953 W/kgSAR(1 g) = 0.568 mW/g; SAR(10 g) = 0.325 mW/gMaximum value of SAR (measured) = 0.609 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = -0.084 dBPeak SAR (extrapolated) = 0.797 W/kgSAR(1 g) = 0.481 mW/g; SAR(10 g) = 0.284 mW/gMaximum value of SAR (measured) = 0.522 mW/g

 $0 \, dB = 0.522 \, mW/g$

#56 CDMA2000 BC1_RC3+SO32_Top Side_1cm_Ch600_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900_101224 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.3$; $\rho = 2$

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(7.13, 7.13, 7.13); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch600/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.109 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.63 V/m; Power Drift = -0.174 dB Peak SAR (extrapolated) = 0.170 W/kg SAR(1 g) = 0.106 mW/g; SAR(10 g) = 0.062 mW/g Maximum value of SAR (measured) = 0.115 mW/g

#57 CDMA2000 BC1_RC3+SO32_Bottom Side_1cm_Ch600_Battery2

DUT: 0N2344-01

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900_101224 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.3$; $\rho = 2$

1000 kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3731; ConvF(7.13, 7.13, 7.13); Calibrated: 2010/9/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2010/10/22
- Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch600/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.655 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.9 V/m; Power Drift = 0.032 dB Peak SAR (extrapolated) = 1.21 W/kg SAR(1 g) = 0.660 mW/g; SAR(10 g) = 0.348 mW/g Maximum value of SAR (measured) = 0.737 mW/g

Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.

Calibration Laboratory of	
Schmid & Partner	
Engineering AG	
Zeughausstrasse 43, 8004 Zurich, Switzerland	ł

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden) Certificate No: D835V2-499_Mar10

Accreditation No.: SCS 108

C

Object	D835V2 - SN: 49	9	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 22, 2010		
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1	ents the traceability to nati intainties with confidence p cted in the closed laborator TE critical for calibration)	ional standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature (22 ± 3)°0	its of measurements (SI). Id are part of the certificate. C and humidity < 70%.
Primary Standards	10#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A Power sensor HP 8481A	GB37480704 US37292783 SN: 5086 (20g)	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Oct-10 Oct-10 Mar-10
Pererence 20 dB Attenuator lype-N mismatch combination Reference Probe ES3DV3 DAE4	SN: 3205 SN: 601	26-Jun-09 (No. 217-01029) 02-Mar-10 (No. DAE4-601_Mar10)	Mar-10 Jun-10 Mar-11
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	SN: 3205 SN: 601	26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Mar-10 Jun-10 Mar-11 Schodulied Chack
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # MY41092317 100005 US37390585 S4206	26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	Name	26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 3205 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimce Illey	26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Laboratory Technician	Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 3205 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimce Illev Katja Pokovic	26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mart0) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Laboratory Technician	Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich. Switzerland

- Schweizerischer Kalibrierdienst
- Service suisse d'étalonnage
- Servizio svizzero di taratura Swiss Calibration Service
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-499_Mar10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) "C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 mW / g
SAR normalized	normalized to 1W	9.72 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.71 mW /g ± 17.0 % (k=2)
	1	
SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 mW / g
SAR normalized	normalized to 1W	6.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.31 mW /g ± 16.5 % (k=2)

Page 3 of 9

Body TSL parameters

he following parameters and calculations were applied.			
	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.53 mW / g
SAR normalized	normalized to 1W	10.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.82 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.66 mW / g
SAR normalized	normalized to 1W	6.64 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.49 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-499_Mar10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω - 3.2 jΩ	
Return Loss	- 28.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω - 5.9 jΩ	
Return Loss	- 24.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns
Electrical Delay (one direction)	The The

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 10, 2003	

Certificate No: D835V2-499_Mar10

Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 22.03.2010 10:17:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $v_r = 42.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.5 V/m; Power Drift = 0.00691 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.58 mW/g Maximum value of SAR (measured) = 2.84 mW/g

0 dB = 2.84 mW/g

Certificate No: D835V2-499_Mar10

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-499_Mar10

Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 22.03.2010 14:07:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.6 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 3.73 W/kg SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.66 mW/g Maximum value of SAR (measured) = 2.94 mW/g

 $0 \, dB = 2.94 \, mW/g$

Certificate No: D835V2-499_Mar10

Page 8 of 9

•

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-499_Mar10

Page 9 of 9

Calibration Laboratory of	
Schmid & Partner	
Engineering AG	
Zeuchausstrasse 43, 8004 Zurich, Switzerlag	nd.

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden) Client

Certificate No: D1900V2-5d041_Mar10

C

Accreditation No.: SCS 108

Depect	D1900V2 - SN: 5	id041	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 23, 2010		
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Eculoment used (MR1	ents the traceability to nat entainties with confidence p cted in the closed laborato	ional standards, which realize the physical un robability are given on the following pages ar ny facility: environment temperature $(22 \pm 3)^{\circ}$	nts of measurements (SI). nd are part of the certificate. C and humidity < 70%.
Primary Standards		Cal Date (Certificate No.)	Schuchulard Calibration
and the second se	000000		Contraction of an an and
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Chock Date (in brase)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (In house) 18-Oct-02 (In house check Oct-09) 4-Aug-99 (In house check Oct-09) 18-Oct-01 (In house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (In house) 18-Oct-02 (In house check Oct-09) 4-Aug-99 (In house check Oct-09) 18-Oct-01 (In house check Oct-09) Function	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimos Iliev	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (In house) 18-Oct-02 (In house check Oct-09) 4-Aug-99 (In house check Oct-09) 18-Oct-01 (In house check Oct-09) 18-Oct-01 (In house check Oct-09) 18-Oct-01 (In house check Oct-09) Function Laboratory Technician	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Vetwork Analyzer HP 8753E Calibrated by:	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimos Iliev Katja Pokovic	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Chock Date (In house) 18-Oct-02 (In house check Oct-09) 4-Aug-99 (In house check Oct-09) 18-Oct-01 (In house check Oct-09) 18-Oct-01 (In house check Oct-09) 18-Oct-01 (In house check Oct-09) Function Laboratory Technician	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature

Certificate No: D1900V2-5d041_Mar10

Page 1 of 9

Calibration Laboratory of Schmid & Partner

- S Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- C Service suisse d'etalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d041_Mar10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) "C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.8 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
CAD for nominal Hand TOL parameters	and the second s	

Page 3 of 9

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW / g
SAB for nominal Body TSL parameters	normalized to 1W	40.0 mW / a ± 17.0 % (k=2)
overrier normania body roc parametero	FIGHTHANG OG TO TTT	tere inter a g = inter is (inter)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.57 mW / g
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured SAR normalized	condition 250 mW input power normalized to 1W	5.57 mW / g 22.3 mW / g

Certificate No: D1900V2-5d041_Mar10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω + 5.9 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.3 Ω + 5.7 jΩ	
Return Loss	- 23.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	1
Manufactured on	July 04, 2003	1

Certificate No: D1900V2-5d041_Mar10

Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 23.03.2010 12:03:30

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.45 mho/m; ϵ_r = 41.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.8 V/m; Power Drift = 0.040 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g Maximum value of SAR (measured) = 12.7 mW/g

Certificate No: D1900V2-5d041_Mar10

Page 6 of 9

Impedance Measurement Plot for Head TSL

.

Certificate No: D1900V2-5d041_Mar10

Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 17.03.2010 12:43:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\varepsilon_r = 55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06,2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.1 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.57 mW/g Maximum value of SAR (measured) = 13.1 mW/g

Certificate No: D1900V2-5d041_Mar10

Page 8 of 9

Impedance Measurement Plot for Body TSL

14

Certificate No: D1900V2-5d041_Mar10

Page 9 of 9

A Service (SAS) some of the signatorie ognition of calibration ERTIFICATE DAE3 - SD 000 I QA CAL-06.v22 Calibration proce	Acore contificates Centifi 2 2003 AA - SN: 577	ditation No.: SCS 108
DAE3 - SD 000 D QA CAL-06.v22 Calibration proce	Certif 2 203 AA - SN: 577	icals No: DAE3-577_Aug10
DAE3 - SD 000 D QA CAL-06.v22 Calibration proce	503 AA - SN: 577	
DAE3 - SD 000 E QA CAL-06.v22 Calibration proce	003 AA - SN: 577	DEC
QA CAL-06.v22 Calibration proce	The second second second second	
	dure for the data acquisitio	n electronics (DAE)
August 18, 2010	ALL POLY AND A SAME AND A	CLASS OF THE PARTY
oritical for calibration)		
ID# SN: 0810278	Cal Date (Certificate No.) 1-Oct-09 (No: 9055)	Scheduled Calibration Oct-10
		2.575.57
SE UMS 006 AB 1004	07-Jun-10 (in house check)	in house check: Jun-11
Narrie	Function	Signature
Dominique Station	Technicsen	When
	R&D Director	N. FUILING
Pin Bemholt	the state of the second state of the second state of the	and C.D.D.D.C.
	August 18, 2010 s the traceability to nat- intes with confidence p t in the closed laborator ontical for calibration) ID # SE UMS 006 AB 1004 Name	August 18, 2010 s the traceability to national standards, which realize the physicles with confidence probability are given on the following plat in the closed laboratory facility: environment temperature (2 ortical for calibration) 1D # Cal Date (Certificate No.) SN: 0810278 1-Oct-09 (No: 9065) 1D # Check Date (in house) SE UNIS 006 AB 1004 07-Jun-10 (in house check)

Certificate No: DAE3-577_Aug10

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

s

s

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE

DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Aug10

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	404.410 ± 0.1% (k=2)	$403.875 \pm 0.1\%$ (k=2)	404.306 ± 0.1% (k=2)
Low Range	3.93523 ± 0.7% (k=2)	$3.93747 \pm 0.7\%$ (k=2)	$3.95959 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	237.0°±1°
Connector Angle to be used in DASY system	237.0-11-

Certificate No: DAE3-577_Aug10

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200002.4	1.01	0.00
Channel X + Input	20001.90	2.00	0.01
Channel X - Input	-19995.45	3.95	-0.02
Channel Y + Input	200000.9	0.34	0.00
Channel Y + Input	20000.24	0.44	0.00
Channel Y - Input	-19999.83	-0.63	0.00
Channel Z + Input	200009.4	-0.37	-0.00
Channel Z + Input	20001.26	1.66	0.01
Channel Z - Input	-19997.92	1.18	-0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.5	1.47	0.07
Channel X + Input	199.54	-0.56	-0.28
Channel X - Input	-200.29	-0.19	0.10
Channel Y + Input	2000.4	0.46	0.02
Channel Y + Input	199.57	-0.43	-0.22
Channel Y - Input	-200.89	-0.99	0.50
Channel Z + Input	2000.3	0.15	0.01
Channel Z + Input	198.91	-1.19	-0.60
Channel Z - Input	-201.38	-1.18	0.59
	the fact is the second s		

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sac; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (پال)
Channel X	200	15.30	13.68
	- 200	-12.48	-14.07
Channel Y	200	-6.90	-6.73
	- 200	6.05	5.52
Channel Z	200	-1.44	-1.60
	- 200	-0.02	0.09

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	+	2.26	0.76
Channel Y	200	3.71		4.37
Channel Z	200	0.70	0.09	-

Certificate No: DAE3-577_Aug10

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15971	16472
Channel Y	15862	15889
Channel Z	16210	16756

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MQ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.16	-1.80	3.19	0.66
Channel Y	-0.57	-1.98	1.29	0.46
Channel Z	-0.97	-1.74	-0.35	0.30

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25(A

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Voc)	-0.01	-8	-9

Calibration Laboratory of	
Schmid & Partner	
Engineering AG	
Zeughausstrasse 43, 8004 Zurich, Switzerland	

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden) Client

Accreditation No.: SCS 108

Certificate No: DAE4-778_Oct10

С

ALIBRATION	ENTIFICATE				
Dbject	DAE4 - SD 000 D04 BJ - SN: 778				
Calibration procedure(s)	QA CAL-06.v22 Calibration procedure for the data acquisition electronics (DAE)				
Calibration date:	October 22, 2010				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1	ents the traceability to natio rtainties with confidence pro- cted in the closed laboratory TE critical for calibration)	nal standards, which realize the ph obability are given on the following r facility: environment temperature	nysical units of measurements (SI). pages and are part of the certificate. (22 ± 3)°C and humidity < 70%.		
nimary Standards		Cal Date (Certificate No.)	Schaduled Calibration		
eithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11		
econdary Standards	ID #	Check Date (in house)	Scheduled Check		
alibrator Box V1.1	SE UMS 006 AB 1004	07-Jun-10 (in house check)	In house check: Jun-11		
	Marmo	Function	Signature		
allocated by a	and the second second	and the second se			
alibrated by:	Eric Hainfeld	Technician	Elle		
alibrated by:	Eric Hainfeld	Technician R&D Director	W. Bound		
alibrated by:	Enc Hainfeld	Technician R&D Director	W. Butter Issued: October 22, 2010		

Certificate No: DAE4-778_Oct10

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS BRA

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a . result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of . the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, ٠ during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating . modes

Certificate No: DAE4-778_Oct10

Page 2 of 5

SPORTON INTERNATIONAL INC.
DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Ŷ	z
High Range	404.679 ± 0.1% (k=2)	403.480 ± 0.1% (k=2)	405.025 ± 0.1% (k=2)
Low Range	3.98633 ± 0.7% (k=2)	3.96375 ± 0.7% (k=2)	3.99940 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	64.5°±1°
---	----------

Certificate No: DAE4-778_Oct10

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200004.4	1.89	0.00
Channel X + Input	20001.11	1.41	0.01
Channel X - Input	-19998.36	1.54	-0.01
Channel Y + Input	199996.1	3.42	0.00
Channel Y + Input	19999.75	0.35	0.00
Channel Y - Input	-19999.92	-0.12	0.00
Channel Z + Input	200002.7	1.29	0.00
Channel Z + Input	19996.85	-2.55	-0.01
Channel Z - Input	-20004.31	-4.61	0.02

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.0	0.09	0.00
Channel X + Input	200.02	0.02	0.01
Channel X - Input	-198.62	1.48	-0.74
Channel Y + Input	1999.6	-0.58	-0.03
Channel Y + Input	199.13	-0.57	-0.29
Channel Y - Input	-200.71	-0.61	0.31
Channel Z + Input	2000.1	-0.01	-0.00
Channel Z + Input	198.96	-1.14	-0.57
Channel Z - Input	-200.98	-0.98	0.49

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-5.28	-6.07
	- 200	6.79	6.12
Channel Y	200	-1.80	-1.60
	- 200	0.97	0.35
Channel Z	200	-9.76	-9.86
	- 200	7.56	7.61

3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		1.86	-0.66
Channel Y	200	2.28		2.89
Channel Z	200	1.68	-0.15	

Certificate No: DAE4-778_Oct10

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16056	16950
Channel Y	16153	13741
Channel Z	16441	16086

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10 $M\Omega$

	Average (µV)	min. Offset (µV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.32	-2.35	2.08	0.55
Channel Y	-1.83	-2.96	-0.72	0.47
Channel Z	-1.93	-3.00	-0.90	0.45

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ccredited by the Swiss Accredi he Swiss Accreditation Servi ultilateral Agreement for the	tation Service (SAS) ice is one of the signatori recognition of calibration	Accreditation n certificates	n No.: SCS 108
lient Sporton (Aud	en)	Certificate N	o: ET3-1787_May10
CALIBRATION	CERTIFICAT	E	
Dbject	ET3DV6 - SN:1	787	
Calibration procedure(s)	QA CAL-01.v6, Calibration proc	QA CAL-23.v3 and QA CAL-25.v2 edure for dosimetric E-field probe	2 S
Calibration date:	May 18 2010		
This calibration certificate docu The measurements and the unit	ments the traceability to na certainties with confidence	tional standards, which realize the physical un probability are given on the following pages an	its of measurements (SI). Id are part of the certificate.
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M	ments the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration)	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature $(22 \pm 3)^{\circ}$	its of measurements (SI). Id are part of the certificate C and humidity < 70%.
This calibration certificate docu The measurements and the une All calibrations have been cond Calibration Equipment used (Mi Primary Standards	ments the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration)	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C	its of measurements (SI). Id are part of the certificate. C and humidity < 70%.
his calibration certificate docu he measurements and the une all calibrations have been cond alibration Equipment used (M rimary Standards ower meter E44198	ments the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136)	its of measurements (SI). Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Anc.11
This calibration certificate docu The measurements and the une UI calibrations have been cond Calibration Equipment used (Mi Primary Standards Yower meter E44198 Yower sensor E4412A	ments the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	its of measurements (SI). Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11
This calibration certificate docu The measurements and the une Calibrations have been cond Calibration Equipment used (Me Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	ments the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41496277 MY41496087	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	its of measurements (SI). Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11
This calibration certificate docu The measurements and the une All calibrations have been cond Calibration Equipment used (Me Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41496087 SN: S5054 (3c)	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01135)	its of measurements (SI). Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power sensor E44128 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01159)	its of measurements (SI). Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M- Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41496277 MY41496087 SN: S5054 (3c) SN: S5129 (30b)	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161)	its of measurements (SI). Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Mar-11
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (Me Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 97 obe ES3DV2	ID # GB41293874 MY41496277 MY41496087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09)	its of measurements (SI). Id are part of the certificate C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Mar-11 Dec-10
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41495277 MY41496087 SN: S5054 (3c) SN: S5056 (20b) SN: 3013 SN: 660	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10)	its of measurements (SI). Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11
This calibration certificate docu The measurements and the une All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB41293874 MY41496277 MY41496087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house)	its of measurements (SI). Id are part of the certificate C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ments the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41496277 MY41496087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09)	its of measurements (SI). Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (Me Primary Standards Power sensor E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8548C Network Analyzer HP 8753E	ments the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495077 MY41495077 MY41495087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	its of measurements (SI). ad are part of the certificate C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct10
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power sensor E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ments the traceability to na certainties with confidence ucted in the closed laborat %TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	its of measurements (SI). Id are part of the certificate C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct10 Signature
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (Me Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ments the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41496087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name Jeton Kastrati	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	its of measurements (SI). In a repart of the certificate C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct10 Signature
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power sensor E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ments the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41496277 MY41496087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5026 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name Jeton Kastrati	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. 237-01160) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	its of measurements (SI). Id are part of the certificate C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 Signature
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ments the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41496087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5054 (3c) SN: S5086 (20b) SN: S5020 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name Jeton Kastrati Katja Pokovic	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Laboratory Technician	its of measurements (SI). In are part of the certificate C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 Signature Signature

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS CP Z Z BRIARD S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Surias Calibratica Service

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1787_May10

Page 2 of 11

May 18, 2010

Probe ET3DV6

SN:1787

Manufactured:	May 28, 2003
Last calibrated:	May 26, 2009
Recalibrated:	May 18, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1787_May10

Page 3 of 11

SPORTON INTERNATIONAL INC.

May 18, 2010

DASY/EASY - Parameters of Probe: ET3DV6 SN:1787

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.60	1.79	2.10	± 10.1%
DCP (mV) ^B	92.4	95.5	91.0	

Modulation Calibration Parameters

UID	Communication System Name	PAR	_	A dB	B dBuV	с	VR mV	Unc ^E (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX, Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Certificate No: ET3-1787_May10

Page 4 of 11

May 18, 2010

DASY/EASY - Parameters of Probe: ET3DV6 SN:1787

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	6.56	6.56	6.56	0.52	1.96 ± 11.0%
835	± 50 / ± 100	41.9 ± 5%	0.89 ± 5%	6.21	6.21	6.21	0.42	2.23 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	$1.37 \pm 5\%$	5.36	5.36	5.36	0.49	1.18 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	5.09	5.09	5.09	0.66	2.20 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.50	4.50	4.50	0.99	1.63 ± 11.0%

^o The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1787_May10

Page 5 of 11

May 18, 2010

DASY/EASY - Parameters of Probe: ET3DV6 SN:1787

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X C	onvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	6.22	6.22	6.22	0.48	2.20 ± 11.0%
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	6.12	6.12	6.12	0.39	2.45 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	4.72	4.72	4.72	0.63	2.90 ± 11.0%
1900	± 50 / ± 100	$53.3\pm5\%$	1.52 ± 5%	4.47	4.47	4.47	0.88	2.39 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.03	4.03	4.03	0.99	1.35 ± 11.0%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1787 May10

Page 6 of 11

May 18, 2010

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1787_May10

Page 7 of 11

May 18, 2010

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1787_May10

Page 8 of 11

May 18, 2010

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1787_May10

Page 9 of 11

May 18, 2010

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (\, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1787_May10

Page 10 of 11

May 18, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1787_May10

Page 11 of 11

	ich, Switzenand	"Agendalia" (ORA	Swiss Calibration Service
ccredited by the Swiss Accredit he Swiss Accreditation Servi lultilateral Agreement for the	tation Service (SAS) ce is one of the signatori recognition of calibratio	Accreditation les to the EA n certificates	n No.: SCS 108
lient Sporton (Aud	en)	Certificate N	e: EX3-3731_Sep10
CALIBRATION	CERTIFICAT	E	
Object	EX3DV4 - SN:3	731	
Calibration procedure(s)	QA CAL-01.v6, Calibration proc	QA CAL-14.v3, QA CAL-23.v3 an edure for dosimetric E-field probe	nd QA CAL-25.v2 Is
Calibration date:	September 20,	2010	
This calibration certificate docur The measurements and the unc All calibrations have been cond	ments the traceability to na certainties with confidence ucted in the closed laborat	ntional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0	ils of measurements (SI). nd are part of the cerlificate. C and humidity < 70%.
This calibration certificate docur The measurements and the unc All calibrations have been cond Calibration Equipment used (Mi Primary Standards	ments the traceability to na certainties with confidence ucted in the closed laborat STE critical for calibration)	rtional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.)	ils of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
This calibration certificate docur the measurements and the unc ull calibrations have been condi calibration Equipment used (Mil rimary Standards rower meter E4419B	ents the traceability to na certainties with confidence ucted in the closed laborat STE critical for calibration) ID # GB41293874	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136)	ils of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11
This calibration certificate docur The measurements and the unc All calibrations have been condi Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A	ents the traceability to na certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	ils of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11
This calibration certificate docur The measurements and the unc All calibrations have been condi Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41498087	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	ils of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11
This calibration certificate docur The measurements and the unc All calibrations have been condi Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	Antiparties with confidence sertainties with confidence ucted in the closed laborat STE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159)	ils of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11
This calibration certificate docur The measurements and the uno All calibrations have been condi Calibration Equipment used (Mit Calibration Equipment used (M	Antiparties with confidence sertainties with confidence ucted in the closed laborat article for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01159)	ils of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11
This calibration certificate docur The measurements and the uno All calibrations have been condi Calibration Equipment used (Mit Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	Antipage States and St	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01161)	ils of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Mar-11
This calibration certificate docur The measurements and the unc All calibrations have been condi Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09)	ils of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10
This calibration certificate docur the measurements and the unc All calibrations have been condi- calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 970be ES3DV2 DAE4	Antipart in the traceability to na certainties with confidence ucted in the closed laborat STE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10)	ils of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11
This calibration certificate docur The measurements and the uno All calibrations have been condi Calibration Equipment used (M4 Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 9 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	International and a serial and	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house)	ils of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check
This calibration certificate docur The measurements and the unc All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 560 ID # US3642U01700	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09)	ils of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11
This calibration certificate docu The measurements and the uno All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b)	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	ils of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct10
This calibration certificate docur The measurements and the uno All calibrations have been condi Calibration Equipment used (M4 Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 9 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	nents the traceability to na certainties with confidence ucted in the closed laborat STE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	ils of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct10 Signature
This calibration certificate docur The measurements and the uno All calibrations have been cond Calibration Equipment used (M4 Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	Amerita the traceability to na certainties with confidence ucted in the closed laborat STE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55054 (3c) SN: 55056 (20b) SN: 55129 (30b) SN: 55129 (30b) SN: 5129 (30b) SN: 5129 (30b) SN: 5129 (30b) SN: 560 ID # US3842U01700 US37390585 Name Katja Pokovic	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Function	ils of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct10 Signature
This calibration certificate docur The measurements and the uno All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	nerts the traceability to na certainties with confidence ucted in the closed laborat STE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41499087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: S129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name Katja Pokovic Fin Bomholt	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01159) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Technical Manager	ails of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct10 Signature Combulied
This calibration certificate docur The measurements and the uno All calibrations have been cond Calibration Equipment used (Mit Primary Standards Power meter E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ID # US3642U01700 US37390585 Name Katja Pokovic Fin Bomholt	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01159) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Technical Manager	alis of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 Signature Bandhull

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNISS CRUBRATO

S

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx, y, z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	o rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- Techniques", December 2003
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y,z = NORMx, y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3731_Sep10

Page 2 of 11

September 20, 2010

Probe EX3DV4

SN:3731

Manufactured: Last calibrated: Repaired: Recalibrated: October 19, 2009 July 16, 2010 September 8, 2010 September 20, 2010

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3731_Sep10

Page 3 of 11

September 20, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3731

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.51	0.53	0.56	± 10.1%
DCP (mV) ^B	87.1	87.4	87.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	с	VR mV	Unc ^e (k=2)
10000	CW	0.00	х	0.00	0.00	1.00	300	± 1.5%
			Y	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

* The uncertainties of NormX, Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

* Numerical linearization parameter: uncartainty not required.

⁶ Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3731_Sep10

Page 4 of 11

September 20, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3731

Calibration Parameter Determined in Head Tissue Simulating Media

Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
± 50 / ± 100	41.5 ± 5%	$0.90 \pm 5\%$	8.85	8.85	8.85	0.60	0.69 ± 11.0%
± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.46	7.46	7.46	0.75	0.60 ± 11.0%
± 50 / ± 100	39.5 ± 5%	1.67 ± 5%	7.16	7.16	7.16	0.47	0.71 ± 11.0%
± 50 / ± 100	39.0 ± 5%	$1.96 \pm 5\%$	6.88	6.88	6.88	0.31	0.95 ± 11.0%
± 50 / ± 100	$37.9\pm5\%$	2.91 ± 5%	6.60	6.60	6.60	0.20	1.50 ± 13.1%
± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	4.83	4.83	4.83	0.35	1.90 ± 13.1%
±50/±100	$35.9 \pm 5\%$	4.76 ± 5%	4.46	4.46	4.46	0.38	1.90 ± 13.1%
± 50 / ± 100	$35.6\pm5\%$	4.96 ± 5%	4.46	4.46	4.46	0.42	1.90 ± 13.1%
± 50 / ± 100	$35.5 \pm 5\%$	5.07 ± 5%	4.07	4.07	4.07	0.48	1.90 ± 13.1%
± 50 / ± 100	$35.3 \pm 5\%$	5.27 ± 5%	4.22	4.22	4.22	0.50	1.90 ± 13.1%
	Validity $(MHz)^{c}$ $\pm 50 / \pm 100$ $\pm 50 / \pm 100$	Validity [MHz] ^c Permittivity ± 50 / ± 100 41.5 ± 5% ± 50 / ± 100 40.0 ± 5% ± 50 / ± 100 39.5 ± 5% ± 50 / ± 100 39.0 ± 5% ± 50 / ± 100 37.9 ± 5% ± 50 / ± 100 36.0 ± 5% ± 50 / ± 100 35.9 ± 5% ± 50 / ± 100 35.6 ± 5% ± 50 / ± 100 35.5 ± 5% ± 50 / ± 100 35.3 ± 5%	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Validity [MHz] ^c Permittivity Conductivity ConvFX $\pm 50 / \pm 100$ $41.5 \pm 5\%$ $0.90 \pm 5\%$ 8.85 $\pm 50 / \pm 100$ $40.0 \pm 5\%$ $1.40 \pm 5\%$ 7.46 $\pm 50 / \pm 100$ $39.5 \pm 5\%$ $1.67 \pm 5\%$ 7.16 $\pm 50 / \pm 100$ $39.0 \pm 5\%$ $1.67 \pm 5\%$ 6.88 $\pm 50 / \pm 100$ $39.0 \pm 5\%$ $1.96 \pm 5\%$ 6.60 $\pm 50 / \pm 100$ $37.9 \pm 5\%$ $2.91 \pm 5\%$ 6.60 $\pm 50 / \pm 100$ $36.0 \pm 5\%$ $4.66 \pm 5\%$ 4.83 $\pm 50 / \pm 100$ $35.9 \pm 5\%$ $4.76 \pm 5\%$ 4.46 $\pm 50 / \pm 100$ $35.5 \pm 5\%$ $5.07 \pm 5\%$ 4.07 $\pm 50 / \pm 100$ $35.5 \pm 5\%$ $5.07 \pm 5\%$ 4.22	Validity [MHz] ⁶ Permittivity Conductivity ConvF X ConvF Y $\pm 50 / \pm 100$ $41.5 \pm 5\%$ $0.90 \pm 5\%$ 8.85 8.85 $\pm 50 / \pm 100$ $40.0 \pm 5\%$ $1.40 \pm 5\%$ 7.46 7.46 $\pm 50 / \pm 100$ $39.5 \pm 5\%$ $1.67 \pm 5\%$ 7.16 7.16 $\pm 50 / \pm 100$ $39.0 \pm 5\%$ $1.96 \pm 5\%$ 6.88 6.88 $\pm 50 / \pm 100$ $39.0 \pm 5\%$ $2.91 \pm 5\%$ 6.60 6.60 $\pm 50 / \pm 100$ $37.9 \pm 5\%$ $2.91 \pm 5\%$ 4.83 4.83 $\pm 50 / \pm 100$ $36.0 \pm 5\%$ $4.66 \pm 5\%$ 4.46 4.46 $\pm 50 / \pm 100$ $35.9 \pm 5\%$ $4.76 \pm 5\%$ 4.46 4.46 $\pm 50 / \pm 100$ $35.5 \pm 5\%$ $5.07 \pm 5\%$ 4.07 4.07 $\pm 50 / \pm 100$ $35.5 \pm 5\%$ $5.07 \pm 5\%$ 4.22 4.22	Validity [MHz]°PermittivityConductivityConvF XConvF YConvF Z $\pm 50 / \pm 100$ $41.5 \pm 5\%$ $0.90 \pm 5\%$ 8.85 8.85 8.85 8.85 $\pm 50 / \pm 100$ $40.0 \pm 5\%$ $1.40 \pm 5\%$ 7.46 7.46 7.46 $\pm 50 / \pm 100$ $39.5 \pm 5\%$ $1.67 \pm 5\%$ 7.16 7.16 7.16 $\pm 50 / \pm 100$ $39.0 \pm 5\%$ $1.96 \pm 5\%$ 6.88 6.88 6.88 $\pm 50 / \pm 100$ $37.9 \pm 5\%$ $2.91 \pm 5\%$ 6.60 6.60 6.60 $\pm 50 / \pm 100$ $36.0 \pm 5\%$ $4.66 \pm 5\%$ 4.83 4.83 4.83 $\pm 50 / \pm 100$ $35.9 \pm 5\%$ $4.76 \pm 5\%$ 4.46 4.46 4.46 $\pm 50 / \pm 100$ $35.6 \pm 5\%$ $4.96 \pm 5\%$ 4.07 4.07 4.07 $\pm 50 / \pm 100$ $35.5 \pm 5\%$ $5.07 \pm 5\%$ 4.07 4.07 4.07 $\pm 50 / \pm 100$ $35.5 \pm 5\%$ $5.27 \pm 5\%$ 4.22 4.22 4.22	Validity [MHz] ⁶ PermittivityConductivityConvF XConvF YConvF ZAlpha $\pm 50 / \pm 100$ $41.5 \pm 5\%$ $0.90 \pm 5\%$ 8.85 8.85 8.85 0.60 $\pm 50 / \pm 100$ $40.0 \pm 5\%$ $1.40 \pm 5\%$ 7.46 7.46 7.46 0.75 $\pm 50 / \pm 100$ $39.5 \pm 5\%$ $1.67 \pm 5\%$ 7.16 7.16 7.16 0.47 $\pm 50 / \pm 100$ $39.0 \pm 5\%$ $1.96 \pm 5\%$ 6.88 6.88 6.88 0.31 $\pm 50 / \pm 100$ $37.9 \pm 5\%$ $2.91 \pm 5\%$ 6.60 6.60 6.60 0.20 $\pm 50 / \pm 100$ $36.0 \pm 5\%$ $4.66 \pm 5\%$ 4.83 4.83 4.83 0.35 $\pm 50 / \pm 100$ $35.9 \pm 5\%$ $4.76 \pm 5\%$ 4.46 4.46 0.42 $\pm 50 / \pm 100$ $35.6 \pm 5\%$ $4.96 \pm 5\%$ 4.46 4.46 0.42 $\pm 50 / \pm 100$ $35.5 \pm 5\%$ $5.07 \pm 5\%$ 4.07 4.07 4.07 0.48 $\pm 50 / \pm 100$ $35.5 \pm 5\%$ $5.27 \pm 5\%$ 4.22 4.22 4.22 0.50

^o The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3731_Sep10

Page 5 of 11

September 20, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3731

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	8.84	8.84	8.84	0.49	0.79 ± 11.0%
1900	± 50 / ± 100	$53.3\pm5\%$	$1.52\pm5\%$	7.13	7.13	7.13	0.65	0.66 ± 11.0%
2300	± 50 / ± 100	$52.8\pm5\%$	1.85 ± 5%	7.12	7.12	7.12	0.37	0.88 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	6.85	6.85	6.85	0.32	0.97 ± 11.0%
3500	± 50 / ± 100	$51.3 \pm 5\%$	3.31 ± 5%	6.02	6.02	6.02	0.30	1.43 ± 13.1%
5200	± 50 / ± 100	$49.0\pm5\%$	$5.30 \pm 5\%$	3.87	3.87	3.87	0.60	1.95 ± 13.1%
5300	± 50 / ± 100	48.9 ± 5%	$5.42 \pm 5\%$	3.63	3.63	3.63	0.60	1.95 ± 13.1%
5500	± 50 / ± 100	48.6 ± 5%	$5.65 \pm 5\%$	3.44	3.44	3.44	0.63	1.95 ± 13.1%
5600	± 50 / ± 100	48.5 ± 5%	5.77 ± 5%	3.20	3.20	3.20	0.65	1.95 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	$6.00 \pm 5\%$	3.55	3.55	3.55	0.60	1.95 ± 13.1%

^E The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3731_Sep10

Page 6 of 11

September 20, 2010

(TEM-Cell:ifi110 EXX, Waveguide: R22) 1.5 1.4 1.3 Frequency response (normalized) 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz] -O-TEM

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3731_Sep10

Page 7 of 11

September 20, 2010

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3731_Sep10

Page 8 of 11

September 20, 2010

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3731_Sep10

Page 9 of 11

September 20, 2010

Conversion Factor Assessment

Deviation from Isotropy in HSL

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3731_Sep10

Page 10 of 11

September 20, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3731_Sep10

Page 11 of 11

Appendix D. Test Setup Photos

Right Cheek

Right Tilted

Left Cheek

Left Tilted

Front Face of the DUT with Phantom 1 cm Gap (DUT without Earphone)

Page Number: D1 of D2Report Issued Date: Jan. 14, 2011Report Version: Rev. 01

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : NM8PG32100

Rear Face of the DUT with Phantom 1 cm Gap (DUT with Earphone)

Rear Face of the DUT with Phantom 1 cm Gap (DUT without Earphone)

Left Side of the DUT with Phantom 1 cm Gap (DUT without Earphone)

Right Side of the DUT with Phantom 1 cm Gap (DUT without Earphone)

Top Side of the DUT with Earphone 1 cm Gap (DUT without Earphone)

Bottom Side of the DUT with Earphone 1 cm Gap (DUT without Earphone)

Page Number: D2 of D2Report Issued Date: Jan. 14, 2011Report Version: Rev. 01

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : NM8PG32100

Appendix E. FCC 3G SAR Measurement Procedures

Conducted Output Power:

The EUT was tested according to the requirements of the FCC 3G procedures and the 3.1.2.3.4.

A detailed analysis of the output power verification is provided as the table below:

	Reverse Traffic Channel	Test Mode	Radio Configuration					Low Ch	Mid. Ch	High Ch
Function Type			Forward Traffic Channel (Fwd)	Reverse Traffic Channel (Rvs)	Service Option	Data Rates	Power Control	1013	384	777
	FCH	1	1	1	55	Full	All Up	24.02	24.00	23.97
		3	3	3	55	Full	All Up	24.05	24.14	24.00
CDMA2000		3	3	3	32	Full	All Up	24.02	24.09	23.90
Cellular	SCH	3	3	3	32	FCH:Full,SCH 9.6	All Up	24.00	24.01	23.87
	EVDO Rev.0		Subtyp	e:0		RTAP 153.6	All Up	24.13	24.13	24.05
	EVDO Rev.A		Subtyp	e:0		RETAP 4096	All Up	24.09	24.13	24.10

	Reverse Traffic Channel	Test Mode	Radio Configuration					Low Ch	Mid. Ch	High Ch
Function Type			Forward Traffic Channel (Fwd)	Reverse Traffic Channel (Rvs)	Service Option	Data Rates	Power Control	25	600	1175
	FCH	1	1	1	55	Full	All Up	24.10	24.19	23.95
		3	3	3	55	Full	All Up	24.12	24.24	24.09
CDMA2000		3	3	3	32	Full	All Up	24.08	24.23	23.97
PCS	SCH	3	3	3	32	FCH:Full,SCH 9.6	All Up	23.06	23.24	23.96
	EVDO Rev.0	Subtype:0				RTAP 153.6	All Up	24.19	23.23	24.05
	EVDO Rev.A		Subtyp	be:0		RETAP 4096	All Up	24.11	24.23	24.12

CDMA2000 Setup Configuration:

Setup Configuration

- 1. The EUT was connected to System Simulator, Agilent 8960. Refer to the drawing of Setup Configuration.
- 2. The RF path losses were compensated into the measurements.
- 3. A call was established between EUT and System Simulator with following setting:
 - a. For 1xRTT, set the Radio Configuration and the Service Option
 - b. For 1xEV-DO, set the Protocol Release and Data Rate
 - c. Set the Power Control to All Up Bits
- 4. The transmitted maximum output power was recorded.

	Call Setup Screen								
Call Control	Active Cell Operating Mode	Call Parms							
	Interviewent of proceeding theory Horizon of proceeding theory Hobile Station Information ESN (Hex): ESN (Dec): HCC: HNC: HSIN: Slot Class: Slot Class: Slot Class: Slot Class:	Cell Pouer -86.00 dBm/1.23 IIHz Cell Band US PCS Channel 1175							
Close Nenu	FCH Service Option Service Option Soft Coopback Service Option fr Service Option Soft Coopback Service Option fr Soft (Uoice) Soft Coopback Service Option fr Soft Coopback Soft Coopback Soft Coopback Soft Coopback Soft Coopback Soft Coopback Soft Coopback Soft Coopback	Protocol Rev <u>6 (IS-2000-0)</u> Radio Config (Fud1, Rvs1) S055 (Loopback) FCH Service Option Setup							
	Active Cell Sys Type: IS-2000 Idle IntRef Offset	1 of 4							

1xRTT setting for Radio Configuration 1 with Service Option 55

1xRTT setting for Radio Configuration 3 with Service Option 55

Call Setup Screen								
Call Control	Active Cell Operating Mode	Call Parms						
		Cell Pouer						
	Nobile Station Information	-86.00						
	ESN (Hex):	dBm/1.23 fHz						
	HCC-	Cell Band						
		US PCS						
	IISIN:							
	Slot Class:	Channel						
	Slot Cycle Index:	1175						
	FCH Service uption Setup Value	Protocol Rou						
	Service Option free Service Option Soft (Loopback)	6 (IS-2000-0)						
	Service Option f(S02 (Loopback) \$09 (Loopback)							
	Service Option free S032 (Hoice) S032 (+ SCH)	Dadia Contin						
	Service Option f(SUS) S055 (Loopback)	Kdulu Culifiy						
	Service Option f(S055 (Loopback)							
		5032 (+ 50H)						
Close		FCH Service						
llenu	5052 (+ 5LH)	Option Setup _V						
	Active Cell Sys Type: IS-2000							
	Idle							
	IntRef Offset	1 of 4						

1xRTT setting for Radio Configuration 3 with Service Option 32

	Call Setup Screen								
Call Control	Active Cell Operating Mode	Call Parms							
Operating Node	erating Node								
Active Cell	Active Cell Access Terminal Information (AT Reported)								
	Session Seed: Harduare ID Type (Hex): Harduare ID (Hex): Harduare ID (Decimal):	Pur Ctrl Step 1.0 dB							
	Access Terminal Information (AN Assigned)	Call Drop Timer							
Start Data Connection	UATI 024:	On							
	UATI Color Code: HAC Index:	Call Limit Hodo							
Close	Protocol Release	Off							
Handoff	Session Applo 0 (1:(EU=DO)) Application Test Applica A (1:(EU=DO-A)) Application Limited TAP: B (1:(EU=DO-B)) A AT Directed Z Z	Protocol Rel 0 (1xEV-DO)							
Al nax Pouer									
23 dBm/1.23NHz	Active Cell Sys Type: IS-856								
1 of 3	IntRef Offset PLSub0 RTAP	2 of 3							

1xEV-DO setting for Protocol Release (Rev.0 or Rev.A)

1xEV-DO setting for RTAP data rate (153.6 kbps)