

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: D750V3-1012 Jun10

Sporton (Auden) CALIBRATION CERTIFICATE D750V3 - SN: 1012 Object Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits June 11, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A US37292783 06-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205 Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Signature Calibrated by: Dirnce Iliev Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: June 14, 2010

Certificate No: D750V3-1012_Jun10

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D750V3-1012_Jun10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.6 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.13 mW / g
SAR normalized	normalized to 1W	8.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	8.28 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 mW / g
SAR normalized	normalized to 1W	5.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	5.40 mW /g ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.8 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature during test	(23.0 ± 0.2) °C	****	****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.24 mW / g
SAR normalized	normalized to 1W	8.96 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	8.86 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.49 mW / g
SAR normalized	normalized to 1W	5.96 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	5.91 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.3 \Omega + 0.1 j\Omega$	
Return Loss	- 29.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω - 2.1 jΩ
Return Loss	- 33.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.036 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 29, 2009

DASY5 Validation Report for Head TSL

Date/Time: 11.06.2010 11:56:37

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1012

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 750 MHz; $\sigma = 0.93 \text{ mho/m}$; $\varepsilon_r = 42.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.37, 6.37, 6.37); Calibrated: 30.04.2010

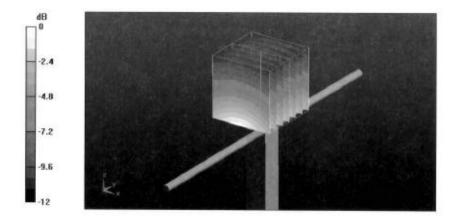
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

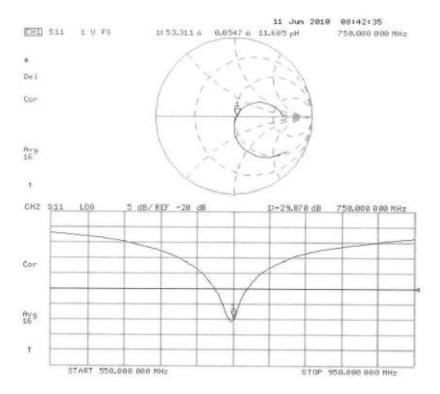
Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)


Pin=250mW; dip=15mm; dist=3.0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.7 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 3.27 W/kg


SAR(1 g) = 2.13 mW/g; SAR(10 g) = 1.38 mW/gMaximum value of SAR (measured) = 2.5 mW/g

0 dB = 2.5 mW/g

Certificate No: D750V3-1012_Jun10

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 11.06.2010 14:16:51

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1012

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: MSL U11 BB

Medium parameters used: f = 750 MHz; $\sigma = 0.97 \text{ mho/m}$; $\varepsilon_r = 55.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.08, 6.08, 6.08); Calibrated: 30.04.2010

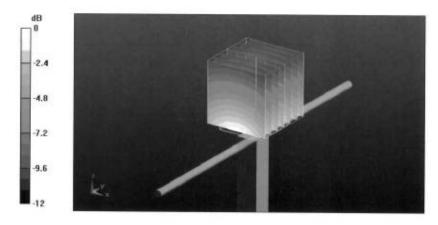
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

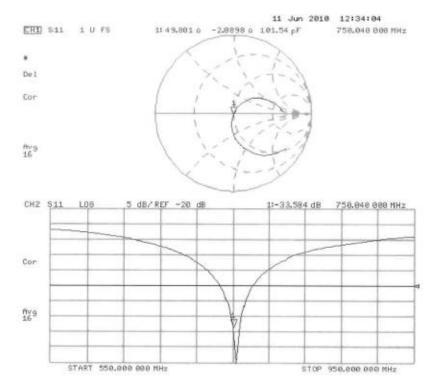
Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)


Pin=250mW; dip=15mm; dist=3.0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.2 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 3.28 W/kg


SAR(1 g) = 2.24 mW/g; SAR(10 g) = 1.49 mW/gMaximum value of SAR (measured) = 2.61 mW/g

0 dB = 2.61 mW/g

Certificate No: D750V3-1012 Jun10

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG

S Schweizerlscher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: D835V2-499_Mar10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE D835V2 - SN: 499 Object QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: March 22, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A US37292783 06-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205_Jun09) Jun-10 DAE4 SN: 601 02-Mar-10 (No. DAE4-601_Mar10) Mar-11 ID# Secondary Standards Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Calibrated by: Dimce fliev Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 22, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-499_Mar10

Page 1 of 9

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-499_Mar10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	Avenue	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 mW / g
SAR normalized	normalized to 1W	9.72 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.71 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 mW / g
SAR normalized	normalized to 1W	6.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.31 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.53 mW / g
SAR normalized	normalized to 1W	10.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.82 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.66 mW / g
SAR normalized	normalized to 1W	6.64 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.49 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω - 3.2 <u>j</u> Ω	
Return Loss	- 28.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω - 5.9 jΩ	
Return Loss	- 24.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,391 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 10, 2003

DASY5 Validation Report for Head TSL

Date/Time: 22.03.2010 10:17:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ mho/m}$; $\varepsilon_r = 42.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009

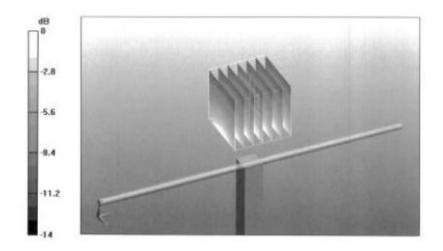
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

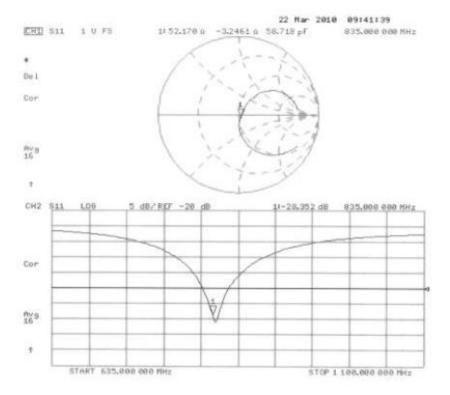
Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.5 V/m; Power Drift = 0.00691 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.58 mW/g


Maximum value of SAR (measured) = 2.84 mW/g

0 dB = 2.84 mW/g

Certificate No: D835V2-499_Mar10

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 22.03.2010 14:07:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

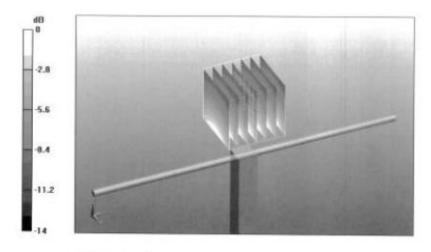
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009

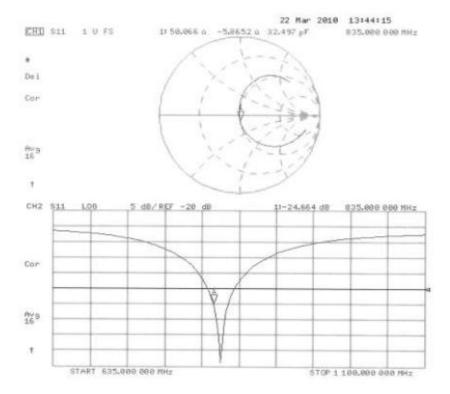
Sensor-Surface: 3mm (Mechanical Surface Detection)


Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.6 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 3.73 W/kg SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.66 mW/g Maximum value of SAR (measured) = 2.94 mW/g

0 dB = 2.94 mW/g

Certificate No: D835V2-499_Mar10

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden)

Certificate No: D1900V2-5d041_Mar10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d041 QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: March 23, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A US37292783 06-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205_Jun09) Jun-10 DAE4 SN: 601 02-Mar-10 (No. DAE4-601_Mar10) Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Signature Calibrated by: Dimce lliev Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 23, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory,

Certificate No: D1900V2-5d041_Mar10

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters; The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d041 Mar10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) "C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.9 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22,0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.57 mW / g
SAR normalized	normalized to 1W	22.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.1 mW/g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.9 \Omega + 5.9 j\Omega$	
Return Loss	- 24.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.3 Ω + 5.7 jΩ	
Return Loss	- 23.1 dB	

General Antenna Parameters and Design

Fellows	
Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 04, 2003

DASY5 Validation Report for Head TSL

Date/Time: 23.03.2010 12:03:30

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009

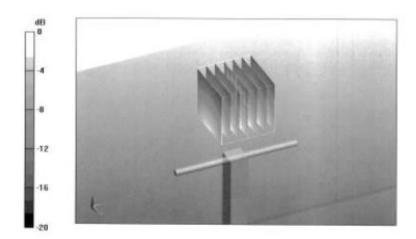
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

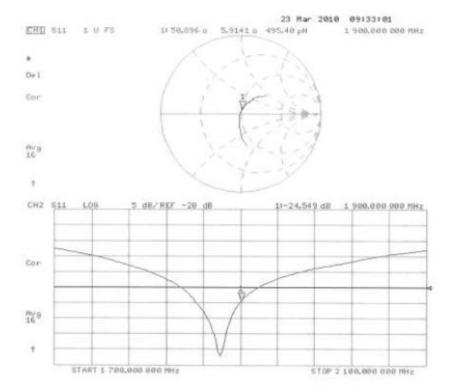
Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.8 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g


Maximum value of SAR (measured) = 12.7 mW/g

0 dB = 12.7 mW/g

Certificate No: D1900V2-5d041_Mar10

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 17.03.2010 12:43:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.58 \text{ mho/m}$; $\epsilon_r = 55$; $\rho = 1000 \text{ kg/m}^3$

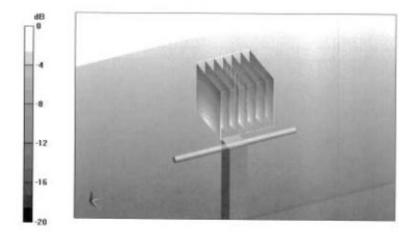
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06,2009

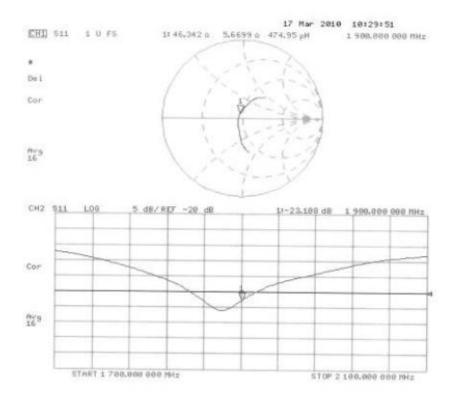
Sensor-Surface: 3mm (Mechanical Surface Detection)


Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.1 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.57 mW/g Maximum value of SAR (measured) = 13.1 mW/g

0 dB = 13.1 mW/g

Certificate No: D1900V2-5d041_Mar10

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio avizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS). The Swiss Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

Client Sporton (Auden)

Certificate No: DAE3-577_Jan11

Calibration procedure(s) QA CAL-06.v22 Calibration procedure for the data acquisition electronics (DAE) Calibration date: January 13, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncortainties with confidence probability are given on the following pages and are part of the certificate. NI calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibrations Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Cartificate No.) Scheduled Calibration Secondary Standards Ceithley Multimeter Type 2001 SN: 0810278 28-Sep-10 (No:10378) Sep-11 Secondary Standards ID # Check Date (in house) Scheduled Check Datibrator Box V1.1 SE UMS 006 AB 1004 07-Jun-10 (in house check) In house check: Jun-11 Name Function Signature Andrea Guntil Technician	CALIBRATION (CERTIFICATE		
Calibration procedure for the data acquisition electronics (DAE) Calibration date: January 13, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncortainties with confidence probability are given on the following pages and are part of the contitioate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Cartificate No.) Scheduled Calibration Secondary Standards Keithley Multimeter Type 2001 SN: 0810278 28-Sep-10 (No:10378) Sep-11 Secondary Standards ID # Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 07-Jun-10 (in house check)	Object	DAE3 - SD 000 D	03 AA - SN: 577	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncortainties with confidence probability are given on the following pages and are part of the confidence. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Cartificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 28-Sep-10 (No:10376) Sep-11 Secondary Standards ID # Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 07-Jun-10 (in house check) In house check: Jun-11	Calibration procedure(s)		dure for the data acquisition	electronics (DAE)
The measurements and the uncortainties with confidence probability are given on the following pages and are part of the contribate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Cartificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 28-Sep-10 (No:10376) Sep-11 Secondary Standards ID # Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 07-Jun-10 (in house check) In house check: Jun-11	Calibration date:	January 13, 2011		
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Colibration Keithley Multimeter Type 2001 SN: 0810278 28-Sep-10 (No:10376) Sep-11 Secondary Standards ID # Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 07-Jun-10 (in house check) In house check: Jun-11	This calibration certificate docum	ents the traceability to natio	onal standards, which realize the physic obability are given on the following pag	eal units of measurements (SI).
Primary Standards ID # Cal Date (Cartificate No.) Scheduled Colibration Keithley Multimeter Type 2001 SN: 0810278 28-Sep-10 (No:10376) Sep-11 Secondary Standards ID # Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 07-Jun-10 (in house check) In house check: Jun-11	All calibrations have been condu	cted in the closed laboratory	facility: environment temperature (22	±3)°C and humidity < 70%.
Keithley Multimeter Type 2001 SN: 0810278 28-Sep-10 (No:10376) Sep-11 Secondary Standards ID & Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 07-Jun-10 (in house check) In house check: Jun-11	Calibration Equipment used (M&	TE critical for calibration)		
Secondary Standards ID # Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 07-Jun-10 (in house check) In house check: Jun-11			Cal Date (Cartificate No.)	Scheduled Calibration
Calibrator Box V1.1 SE UMS 006 AB 1004 07-Jun-10 (in house check) In house check: Jun-11	Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
	Secondary Standards	10.0	Check Date (in house)	Scheduled Check
Calibrated by: Andrea Guntil Approved by: Fin Bombolt R&D Director V. B. Lutture	Calibrator Box V1.1	SE UMS 006 AB 1004	07-Jun-10 (in house check)	In house check: Jun-11
Approved by: Andrea Guntil Technician Technician Fin Bombolt R&D Director		Name	Function	Signature
Approved by: Fin Bomholt R&D Director V Blum	Galibrated by:	Andrea Guntil	Technician	Shill
		Fin Bomholt	R&D Director	W. Flerna
Issued: January 13, 20	Approved by:			I IN 15 Commy

Calibration Laboratory of Schmid & Partner Engineering AG Zeughanisstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics

Connector angle Information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with Inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for Information; Maximum channel Input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = $-100...+300 \ mV$ Low Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

Calibration Factors	X	Y	2
High Range	404.389 ± 0.1% (k=2)	403.857 ± 0.1% (k=2)	404.295 ± 0.1% (k=2)
Low Range	3.93277 ± 0.7% (k=2)	3.93544 ± 0.7% (k=2)	3.95803 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	102.0 ° ± 1 °

Appendix

1. DC Voltage Linearity

High Range	Heading (µV)	Difference (µV)	Error (%)
Channel X + Input	200005.8	1.57	0.00
Channel X + Input	20004.13	3.33	0.02
Channel X - Input	-19995.53	4.67	-0.02
Channel Y + Input	200003.4	0,31	0.00
Channel Y + Input	19999.89	0.09	0.00
Channel Y Input	-20000.18	-0.28	0.00
Channel Z + Input	200002.7	0.22	0.00
Channel Z + Input	19999.37	-0.63	-0.00
Channel Z · Input	-19999.27	0.43	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.0	-0.14	-0,01
Channel X + Input	199.95	-0.05	-0.03
Channel X Input	-200.10	-0.10	0.05
Channel Y + Input	2000.0	-0.12	-0.01
Channel Y + Input	199.43	-0.57	-0.29
Channel Y - Input	-201.05	-1.25	0.63
Channel Z + Input	1999.5	-0.28	-0.01
Channel Z + Input	198,64	-1.56	-0.78
Channel Z - Input	-200,91	-0.81	0.40

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	14.61	12.98
	- 200	-11.87	-13.38
Channel Y	200	-6.98	-7.04
	- 200	5.39	5.42
Channel Z	200	-1.74	-1.94
	- 200	0.61	0.35

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200		3.35	0.10
Channel Y	200	2.66	3	2.41
Channel Z	200	2.57	0.13	

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15969	16221
Channel Y	15855	15246
Chennel Z	16222	17974

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MQ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-1.07	-4.93	0.31	0.67
Channel Y	0.69	-1.59	0.48	0.40
Channel Z	-1.47	-2.56	-0.81	0.32

6. Input Offset Current

Nominal Input circuitry offset current on all charmels: <25fA

7. Input Resistance (Typical values for information)

	Zerolng (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

B. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vec)	+0.01	+6	114
Supply (- Vcc)	-0.01	-8	-9

RTON LAB. Calibration Certificate of DASY

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

Sporton (Aude	Sporton (Auden)		Certificate No: DAE4-778_Oct10	
CALIBRATION C	ERTIFICATE			
Dbject	DAE4 - SD 000 D	04 BJ - SN: 778		
Calibration procedure(s)	QA CAL-06.v22 Calibration proceed	dure for the data acquisi	tion electronics (DAE)	
Calibration date:	October 22, 2010			
The measurements and the unce	rtainties with confidence pro-	obability are given on the following	physical units of measurements (SI). g pages and are part of the certificate. e (22 ± 3)°C and hurnidity < 70%.	
rimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration	
ceithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11	
econdary Standards	ID#	Check Date (in house)	Scheduled Check	
alibrator Box V1,1	SE UMS 006 AB 1004	07-Jun-10 (in house check)	In house check: Jun-11	
Calibrated by:	Name Eric Hainfeld	Function	Signature	
Same served to \$1.	CAS Francisco	Technician		
pproved by:	Fin Bomholt	R&D Director	W. Bound	
This calibration certificate shall no	t be reproduced except in f	ull without written approval of the	Issued: October 22, 2010 laboratory.	

Certificate No: DAE4-778_Oct10 Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Accreditation No.: SCS 108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Y	Z
High Range	404.679 ± 0.1% (k=2)	403.480 ± 0.1% (k=2)	405.025 ± 0.1% (k=2)
Low Range	3.98633 ± 0.7% (k=2)	3.96375 ± 0.7% (k=2)	3.99940 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	64.5°±1°
---	----------

Certificate No: DAE4-778_Oct10 Page 3 of 5