

FCC TEST REPORT (PART 22)

 REPORT NO.:
 RF990210L08

 MODEL NO.:
 PC36100

 RECEIVED:
 Feb. 23, 2010

 TESTED:
 Feb. 26 ~ Mar. 08, 2010

 ISSUED:
 Mar. 14, 2010

APPLICANT: HTC Corporation

ADDRESS: No. 23, Xinghua Rd., Taoyuan City, Taoyuan, 330 Taiwan

- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 51 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Report Format Version 3.0.1

TABLE OF CONTENTS

1	CERTIFICATION	
2	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	5
3	GENERAL INFORMATION	
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	8
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	8
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	11
3.4	DESCRIPTION OF SUPPORT UNITS	
4	TEST TYPES AND RESULTS	12
4.1	OUTPUT POWER MEASUREMENT	12
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	12
4.1.2	TEST INSTRUMENTS	13
4.1.3	TEST PROCEDURES	14
4.1.4	TEST SETUP	15
4.1.5	EUT OPERATING CONDITIONS	15
4.1.6	TEST RESULTS	16
4.2	FREQUENCY STABILITY MEASUREMENT	
4.2.1	LIMITS OF FREQUENCY STABILIITY MEASUREMENT	18
4.2.2	TEST INSTRUMENTS	18
4.2.3	TEST PROCEDURE	19
4.2.4	TEST SETUP	
4.2.5	TEST RESULTS	20
4.3	OCCUPIED BANDWIDTH MEASUREMENT	
4.3.1	LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT	21
4.3.2	TEST INSTRUMENTS	21
4.3.3	TEST SETUP	
4.3.4	TEST PROCEDURES	
4.3.5	EUT OPERATING CONDITION	22
4.3.6	TEST RESULTS	-
4.4	BAND EDGE MEASUREMENT	26
4.4.1	LIMITS OF BAND EDGE MEASUREMENT	
4.4.2	TEST INSTRUMENTS	26
4.4.3	TEST SETUP	
4.4.4	TEST PROCEDURES	
4.4.5	EUT OPERATING CONDITION	27
4.4.6	TEST RESULTS	
4.5	CONDUCTED SPURIOUS EMISSIONS	
4.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	
4.5.2	TEST INSTRUMENTS	
4.5.3	TEST PROCEDURE	32
4.5.4	TEST SETUP	
4.5.5	EUT OPERATING CONDITIONS	32
4.5.6	TEST RESULTS	
4.6	RADIATED EMISSION MEASUREMENT (BELOW 1GHz)	
4.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.6.2	TEST INSTRUMENTS	
4.6.3	TEST PROCEDURES	
4.6.4	DEVIATION FROM TEST STANDARD	41

		AU VALLER AU
4.6.5	TEST SETUP	<u>A D T</u>
4.6.6	EUT OPERATING CONDITIONS	
4.6.7	TEST RESULTS	43
4.7	RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)	44
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	44
4.7.2	TEST INSTRUMENTS	
4.7.3	TEST PROCEDURES	45
4.7.4	DEVIATION FROM TEST STANDARD	45
4.7.5	TEST SETUP	46
4.7.6	EUT OPERATING CONDITIONS	46
4.7.7	TEST RESULTS	47
5 6	INFORMATION ON THE TESTING LABORATORIES APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CH TO THE EUT BY THE LAB	ANGES

1 CERTIFICATION

PRODUCT: Smart Phone **MODEL:** PC36100 BRAND: HTC **APPLICANT: HTC Corporation TESTED:** Feb. 26 ~ Mar. 08, 2010 **TEST SAMPLE: ENGINEERING SAMPLE TEST STANDARDS: FCC Part 22, Subpart H** ANSI C63.4-2003

The above equipment (model: PC36100) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	:	Andrea this	,DATE:	Mar. 14, 2010
		Andrea Hsia / Specialist		

TECHNICAL ACCEPTANCE Responsible for RF

Long Chen Long Chen / Senior Engineer

, DATE: Mar. 14, 2010

APPROVED BY

, DATE: Mar. 14, 2010 : Gary Charg Gary Chang / Assistant Manager

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 22 & Part 2 / IC RSS-132								
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK					
2.1046 22.913 (a)	Maximum Peak Output Power Limit: max. 7 watts e.r.p peak power	PASS	Meet the requirement of limit. Minimum passing margin is 20.3dBm at 836.52MHz.					
2.1055	Frequency Stability AFC Freq. Error vs. Voltage AFC Freq. Error vs. Temperature Limit: max. ±2.5ppm	PASS	Meet the requirement of limit.					
2.1049 (h)	Occupied Bandwidth	PASS	Meet the requirement of limit.					
22.917	Band Edge Measurements	PASS	Meet the requirement of limit.					
2.1051 22.917	Conducted Spurious Emissions	PASS	Meet the requirement of limit.					
2.1053 22.917	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is –26.0dB at 1649.4MHz.					

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	150kHz~30MHz	2.44dB
	30MHz ~ 200MHz	2.93dB
Radiated emissions	200MHz ~1000MHz	2.95dB
	1GHz ~ 18GHz	2.26dB
	18GHz ~ 40GHz	1.94dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION

.1 GENERAL DESCRIPTION OF EUT					
PRODUCT	Smart Phone				
MODEL NO.	PC36100				
FCC ID	NM8PC36100				
	3.7Vdc (Battery)				
POWER SUPPLY	5Vdc (Adapter)				
	5Vdc (host equipment)				
MODULATION TYPE	OQPSK, HPSK				
OPERATING FREQUENCY	824.70MHz ~ 848.31MHz				
NUMBER OF CHANNEL	788				
MAX. ERP POWER	20.3dBm (0.106Watts)				
ANTENNA TYPE	PIFA antenna				
ANTENNA GAIN	-3dBi				
DATA CABLE	Refer to NOTE				
I/O PORTS	Refer to user's manual				
ACCESSORY DEVICES	Refer to NOTE				

NOTE:

1. The EUT is a Smart Phone. The functions of EUT listed as below:

	TEST STANDARD	REFERENCE REPORT
CDMA 850	FCC Part 22	RF990210L08
CDMA 1900	FCC Part 24	RF990210L08-1
WLAN 802.11b/g	FCC Part 15, Subpart C	RF990210L08-2
BLUETOOTH V2.1 wit EDR	(Section 15.247)	RF990210L08-3
WiMAX	FCC Part 27	RF990210L08-4

_

2. The communicated functions of EUT listed as below:

		850MHz	1900MHz	
	CDMA	\checkmark	\checkmark	
	1*EVDO	\checkmark	\checkmark	With WLAN 802.11b/g + BT 2.1
3G	1*RTT	\checkmark	\checkmark	with EDR + WiMAX + GPS & FM
	IS-95A/B	\checkmark	\checkmark	
	1*EVDO rev. A	\checkmark		

3. The EUT has following accessories.

No.	Product	Brand	Manu- facture	MODEL	Description	Remark
1	Power	hTC	Delta	TC U250	I/P: 100-240Vac, 50-60Hz, 200mA	
2	Adapter	nic	Emerson	TC U250	O/P: 5Vdc, 1A	
3	USB cable	MEC	-		1.4m shielded cable without core	See
4		Foxlink	-		(For data transmission & charging use)	NOTE1
5	Batterv	HT ENERGY	-	RHOD160	Rating: 3.7Vdc, 1500mAh	See
6	Dattery	Formosa	-		Rating: 3.7Vdc, 1500mAh	NOTE2
NOT	-					

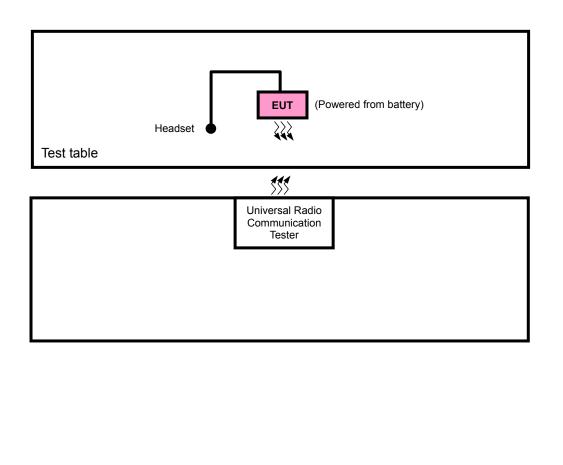
NOTE:

We pre-tested two brands of USB cables and Foxlink USB cable was the worst case for the final test.
 We pre-tested two brands of batteries and Formosa battery was found to be the worst case for final test.

4. MEID Code: A100000D98

5. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES


788 channels are provided to this EUT in the CDMA850 band. Therefore, the low, middle and high channels are chosen for testing.

	CHANNEL	FREQUENCY	TX MODE
LOW	1013	824.70 MHz	RC3 SO55
MIDDLE	384	836.52 MHz	RC3 SO55
HIGH	777	848.31 MHz	RC3 SO55

NOTE:

- 1. Below 1 GHz, the channel 1013, 384 and 777 were pre-tested in chamber. The channel 1013 was the worst case and chosen for final test.
- 2. Above 1 GHz, the channel 1013, 384 and 777 were tested individually.
- 3. The channel space is 0.03MHz.
- 4. In this report, CDMA2000 (RC3 SO55) was the worst case for all test items, therefore, only the data was recorded in the following section.

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

	EUT				APPLICABL	DESCRIPTION				
	CONFIGURE MODE	OP	FS	ОВ	BE	CE	RE<1G	RE≥1G	DESCRIPTION	
	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	
Vhere	OP: Output OB: Occupi CE: Conduc RE≥1G: Rad	ed bandwi cted spurio	us emis		BE RE	: Frequency : Band edg < 1G: Radia	9	on below 1	GHz	
Pr be div		been co able mo tecture).	onduct dulatic	ed to de ons, data	a rates, XY	Z axis ar	id anteni	na ports	II possible combinatio (if EUT with antenna v.	ons
	AVAILABLE	. ,	Ì	,	ESTED CHAI				ION TECHNOLOGY	A
	1013 1	to 777			1013, 384, 7	77			CDMA	
be		able mo	dulatic	ons and	antenna p	orts (if El	JT with a	intenna o	Il possible combinatic liversity architecture). v.	
be	etween avail	able mo innel(s) v	dulatic vas (w	ons and vere) sel	antenna p	orts (if El he final te	JT with a est as list	intenna o ted belov	liversity architecture).	
be	etween avail ollowing cha	able mo innel(s) v CHANNE	dulatic vas (w	ons and vere) sel	antenna p ected for t	orts (if El he final te	JT with a est as list	intenna o ted belov	liversity architecture). v.	
be	etween avail ollowing cha AVAILABLE	able mo innel(s) v CHANNE	dulatic was (w L	ons and vere) sel TE	antenna p ected for t STED CHAN 384	orts (if El he final te	JT with a est as list	intenna o ted belov	liversity architecture). v. ION TECHNOLOGY	
be Fc DCCU ∑ Th ea Pr be	AVAILABLE 1013 t 1013 t JPIED BAN his item inclu ach mode. re-Scan has	able mo nnel(s) v cHANNE to 777 DWIDTH udes all t been co able mo	dulatic was (w L H MEA eest va onduct dulatic	ASUREM Nuclear Selection Solution Solution Selection Solu	antenna p ected for t STED CHAN 384 IENT: ach mode, termine th antenna p	but only e worst-corts (if EL	JT with a est as list includes ase moo JT with a	spectrui de from a untenna c	Iversity architecture). v. ION TECHNOLOGY CDMA m plot of worst value of Il possible combinatio liversity architecture).	of
be Fc DCCU ∑ Th ea Pr be	AVAILABLE 1013 t 1013 t 1013 t 1013 t 1013 t 1013 t 1013 t 1013 t 1013 t 1013 t	able mo innel(s) v CHANNE to 777 DWIDTH udes all t been co able mo innel(s) v	dulatic was (w L H MEA rest va onduct dulatic was (w	ASUREM National Selection SUREM National Selection Survey Selection Survey Selection Survey Selection Survey Selection Survey Selection Survey Selection Survey Selection Survey Survey	antenna p ected for t STED CHAN 384 IENT: ach mode, termine th antenna p	but only but only e worst-corts (if EL	JT with a est as list includes ase moo JT with a est as list	spectrum de from a ntenna c	Iversity architecture). v. ION TECHNOLOGY CDMA m plot of worst value of Il possible combinatio liversity architecture).	of
be Fo Fo DCCU ∑ Th ea ∑ Pr be	AVAILABLE 1013 t 1013 t JPIED BAN nis item inclu ach mode. re-Scan has tween avail pllowing cha	able mo innel(s) v CHANNE to 777 DWIDTH udes all t been cc able mo able mo innel(s) v CHANNE	dulatic was (w L H MEA rest va onduct dulatic was (w	ASUREM National Selection SUREM National Selection Survey Selection Survey Selection Survey Selection Survey Selection Survey Selection Survey Selection Survey Selection Survey Survey	antenna prected for t STED CHAN 384 IENT: ach mode, termine th antenna prected for t	but only but only e worst-co orts (if EL he final te	JT with a est as list includes ase moo JT with a est as list	spectrum de from a ntenna c	Iversity architecture). v. ION TECHNOLOGY CDMA m plot of worst value Il possible combinatio liversity architecture). v.	of
DCCU Th ea Pr be SAND	etween avail ollowing cha AVAILABLE 1013 t JPIED BAN his item inclu ach mode. re-Scan has etween avail ollowing cha AVAILABLE 1013 t DEDGE ME re-Scan has	able mo innel(s) v CHANNE to 777 DWIDTH udes all t been cc able mo innel(s) v cHANNE to 777 ASURE	dulatic was (w L Image: Method was (w was to an duct dulatic was (w L MENT onduct dulatic onduct dulatic was (w L	ASUREM ASUREM alue of ea red to de ons and vere) sel TE ted to de ons and	antenna p ected for t STED CHAN 384 IENT: ach mode, termine th antenna p ected for t STED CHAN 1013, 384, 7 termine th antenna p	but only but only e worst-co orts (if EL he final te NNEL 77 e worst-co orts (if EL	JT with a est as list includes ase moo JT with a est as list ase moo JT with a	Antenna of ted below MODULAT spectrum de from a of ted below MODULAT	In technology CDMA m plot of worst value of in plot of worst value of in possible combination iversity architecture). v. TON TECHNOLOGY CDMA Il possible combination iversity architecture).	of
DCCU Th ea Pr be SAND	etween avail ollowing cha AVAILABLE 1013 t JPIED BAN his item inclu ach mode. re-Scan has etween avail ollowing cha AVAILABLE 1013 t DEDGE ME re-Scan has etween avail	able mo innel(s) v CHANNE to 777 DWIDTH udes all t been cc able mo to 777 CHANNE to 777	dulatic vas (w L Image: Method was (w onduct: dulatic was (w L MENT onduct: dulatic was (w L	ASUREM ASUREM alue of ea red to de ons and vere) sel TE ed to de ons and vere) sel	antenna p ected for t STED CHAN 384 IENT: ach mode, termine th antenna p ected for t STED CHAN 1013, 384, 7 termine th antenna p	but only but only e worst-co orts (if EL he final te NNEL 77 e worst-co orts (if EL he final te	IT with a est as list includes ase moo	Antenna of ted below MODULAT	In technology CDMA m plot of worst value of in plot of worst value of in possible combination iversity architecture). v. TON TECHNOLOGY CDMA Il possible combination iversity architecture).	ofons

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
1013 to 777	1013, 384, 777	CDMA

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
1013 to 777	384	CDMA	х

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
1013 to 777	1013, 384, 777	CDMA	х

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 22 ANSI C63.4-2003 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	HEADSET	NA	NA	NA	NA
2	UNIVERSAL RADIO COMMUNICATION TESTER	R&S	CMU200	104484	NA

NC	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS							
1	1.3m non-shielded cable without core							
2	NA							

NOTE:

1. All power cords of the above support units are non shielded (1.8m).

2. Item 2 acted as a communication partners to transfer data.

3. Item 1 was supplied from client.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated peak output power shall be according to the specific rule Part 22.913 (a) that "Mobile / Portable station are limited to 7 watts e.r.p".

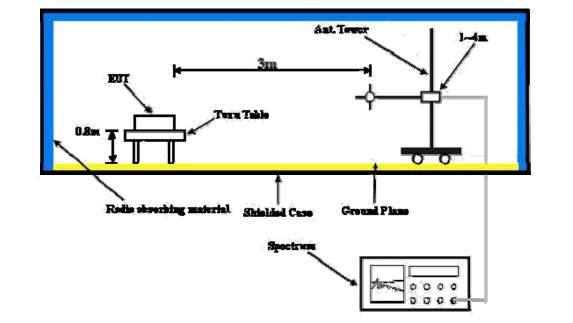
4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESIB7	100212	May 25, 2009	May 24, 2010
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100040	Jul. 07, 2009	Jul. 06, 2010
BILOG Antenna SCHWARZBECK	VULB9168	9168-156	Apr. 30, 2009	Apr. 29, 2010
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-563	Aug. 10, 2009	Aug. 09, 2010
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170242	Dec. 25, 2009	Dec. 24, 2010
Preamplifier Agilent	8449B	3008A01910	Sep. 11, 2009	Sep. 10, 2010
Preamplifier Agilent	8447D	2944A10638	Dec. 21, 2009	Dec. 20, 2010
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	218190/4 231241/4	May 13, 2009	May 12, 2010
RF signal cable Worken	8D-FB	Cable-HYCH9-01	Aug. 17, 2009	Aug. 16, 2010
Software	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower &Turn Table Controller EMCO	2090	NA	NA	NA

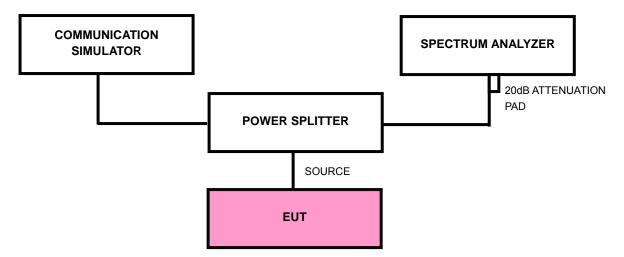
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 9.

- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 460141.
- 5. The IC Site Registration No. is IC 7450F-4.


4.1.3 TEST PROCEDURES

- a. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels: 1013, 384 and 777 (low, middle and high operational frequency range.)
- b. The conducted peak output power used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. The path loss included the splitter loss, cable loss and 20dB pad loss. The spectrum set RB/VB 3MHz, then read peak power value and record to the test. (All transmitted path loss shall be considered in the test report data.)
- c. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- d. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- e. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- f. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 3MHz/10MHz.



4.1.4 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.5 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

4.1.6 TEST RESULTS

MODE	IX connected	DETECTOR FUNCTION	Average
INPUT POWER (SYSTEM)	120\/ac_60Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 982hPa
TESTED BY	Mark Liao		

	WORST CASE CONDUCTED POWER OF 1x EV-DO											
	FREQ.	Revision A	Release 0	CORR	Revis	ion A	Relea	ase O				
CHANNEL	(MHz)	Revision A	Release 0 CORR. FACTOR (dB)			OUTPUT	POWER					
	()	RAW VAL	UE (dBm)		dBm	mW	dBm	mW				
1013	824.70	19.31	19.44	4.2	23.51	224.4	23.64	231.2				
384	836.52	19.42	19.62	4.2	23.62	230.1	23.82	241.0				
777	848.31	18.63	18.83	4.2	22.83	191.9	23.03	200.9				

	CONDUCTED POWER (1x EV-DO)											
	EREO	128kbps 2048kbps 12288kbps 9.6k			Release 0							
CHANNEL	(MHz)			12288kbps	EVDO-UL: 9.6kbps (dBm)	EVDO-UL: 38.4kbps (dBm)	EVDO-UL: 153.6kbps (dBm)					
1013	824.70	23.51	23.43	23.41	23.64	23.49	23.42					
384	836.52	23.62	23.54	23.47	23.82	23.67	23.63					
777	848.31	22.83	22.75	22.63	23.03	22.98	22.94					

	CDMA 2000 CONDUCTED POWER											
		CDMA 2000		RAW VAL	UE (dBm))	CODD	OUTPUT POWER (dBm)				
CHAN.	FREQ. (MHz)	RC	SO2	SO55	TDSO SO32 (FCH)	TDSO SO32 (FCH+S CH)	CORR. FACTOR (dB)	SO2	SO55	TDSO SO32 (FCH)	TDSO SO32 (FCH+S CH)	
1013	824.70	RC1	19.47	19.54	-	-	4.2	23.67	23.74	-	-	
1013	024.70	RC3	19.51	19.58	19.53	19.49	4.2	23.71	23.78	23.73	23.69	
384	836.52	RC1	19.65	19.68	-	-	4.2	23.85	23.88	-	-	
304	030.32	RC3	19.69	19.76	19.74	19.67	4.2	23.89	23.96	23.94	23.87	
777 848.31	9/9 21	RC1	18.80	18.87	-	-	4.2	23.00	23.07	-	-	
	040.31	RC3	18.81	18.91	18.82	18.84	4.2	23.01	23.11	23.02	23.04	

REMARKS: 1. Peak Output Power (dBm) = Raw Value (dBm) + Correction Factor (dB). 2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB).

3. The value in bold is the worst.

MODE	IX connected	DETECTOR FUNCTION	Peak
INPUT POWER (SYSTEM)	120Vac, 60Hz		25deg. C, 65%RH, 982hPa
TESTED BY	Mark Liao		

	ERP POWER (1x EV-DO)											
5550		EQ S.G. VALUE (dBm)			OUTPUT POWER							
CHANNEL	FREQ. (MHz)		~ ,			ion A	Relea	ase 0				
		Revision A	Release 0		dBm	mW	dBm	mW				
1013	824.70	28.3	28.5	-8.6	19.7	92.3	19.9	96.6				
384	836.52	28.4	28.7	-8.6	19.8	94.4	20.1	101.2				
777	848.31	27.2	27.5	-8.7	18.5	70.0	18.8	75.0				

ERP POWER (RC3 SO55)										
CHANNEL NO.	FREQUENCY (MHz)	S.G. VALUE (dBm)	CORRECTION	OUTPUT	UT POWER					
			FACTOR (dB)	dBm	mW					
1013	824.70	28.7	-8.6	20.1	101.2					
384	836.52	28.9	-8.6	20.3	105.9					
777	848.31	27.7	-8.7	19.0	78.5					

REMARKS: 1. Output Power (dBm) = S.G. Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = TX Antenna Gain (dBi) + Cable Loss (dB)

3. The value in bold is the worst.

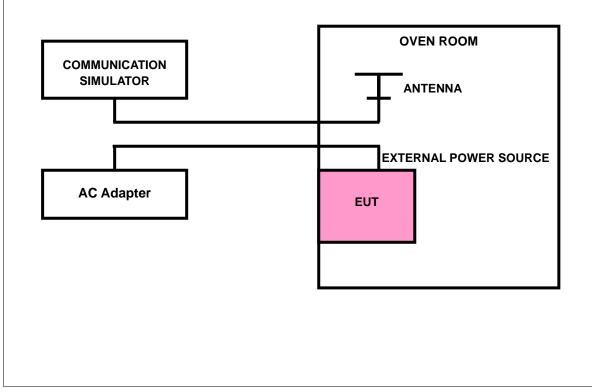
4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT

According to the FCC part 22.355 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The frequency error rate is according to the JTC standard that the frequency error rate shall be accurate to within 2.5ppm of the received frequency from the base station. The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with the 2.1055(a)(1) –30°C ~50°C.

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL	CALIBRATED UNTIL
ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100041	May 13, 2009	May 12, 2010
Hewlett Packard RF cable	8120-6192	01428251	NA	NA
Suhner RF cable	Sucoflex104	204850/4	NA	NA
WIT Standard Temperature & Humidity Chamber	TH-4S-C	W981030	Jun. 29, 2009	Jun. 28, 2010

4.2.2 TEST INSTRUMENTS


NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST PROCEDURE

- a. Because of the measure the carrier frequency under the condition of the AFC lock, it shall be used the mobile station in the CDMA link mode. This is accomplished with the use of the communication simulator station. The oven room could control the temperatures and humidity. The CDMA link channel is the 384.
- b. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- c. EUT is connected the external power supply to control the AC adapter. The various Volts from the minimum 3.6Volts to 4.2Volts. Each step shall be record the frequency error rate.
- d. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing.
- e. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.4 TEST SETUP

4.2.5 TEST RESULTS

MODE	Channel 384	ENVIRONMENTAL CONDITIONS	23deg. C, 63%RH, 982hPa
INPUT POWER (SYSTEM)	120Vac, 60Hz	TESTED BY	Dean Wang

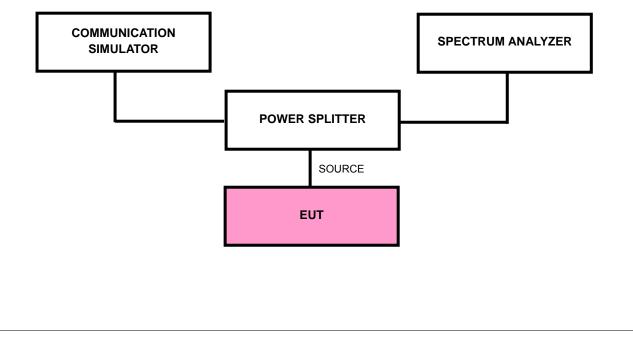
AFC FREQUENCY ERROR vs. VOLTAGE				
VOLTAGE (Volts) FREQUENCY ERROR (Hz) FREQUENCY ERROR (ppm) LIMIT (ppm)				
4.2	-1	-0.001	2.5	
3.6	-2	2.5		

NOTE: The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.2Vdc.

AFC FREQUENCY ERROR vs. TEMP.				
TEMP. (℃)	FREQUENCY ERROR (Hz)	LIMIT (ppm)		
50	-3	-0.004	2.5	
40	-3	-0.004	2.5	
30	-2	-0.002	2.5	
20	-1	-0.001	2.5	
10	-3	-0.004	2.5	
0	-4	-0.005	2.5	
-10	-5	-0.006	2.5	
-20	-6	-0.007	2.5	
-30	-8	-0.010	2.5	

4.3 OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT


According to FCC 2.1049 (h) specified that emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100041	May 13, 2009	May 12, 2010
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 26, 2009	Jun. 25, 2010
RF cable	SUCOFLEX 104	274403/4	Aug. 21, 2009	Aug. 20, 2010
RF cable	SUCOFLEX 104	250729/4	Aug. 20, 2009	Aug. 19, 2010
RF cable	SUCOFLEX 104	214377/4	Aug. 20, 2009	Aug. 19, 2010
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

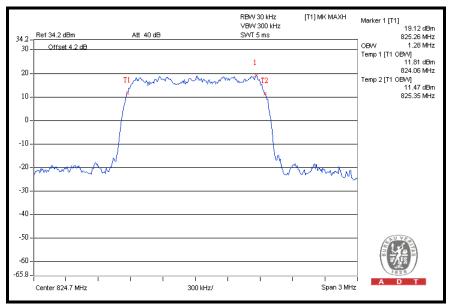
4.3.3 TEST SETUP

4.3.4 TEST PROCEDURES

- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels: 1013, 384 and 777 (low, middle and high operational frequency range.)
- b. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss is the worst loss 4.2dB in the transmitted path track.
- c. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. FCC 2.1049 (h) required a measurement bandwidth is the fundamental emission below 26dB bandwidth.

4.3.5 EUT OPERATING CONDITION

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum and minimum output power under transmission mode and specific channel frequency.

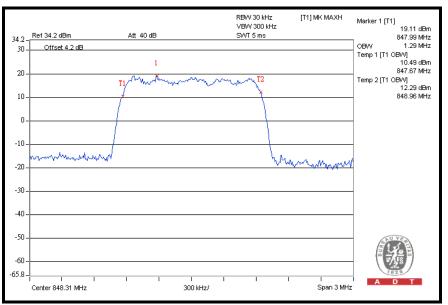


4.3.6 TEST RESULTS

FOR RC3 SO55:

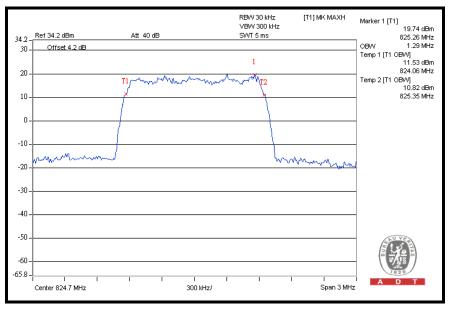
CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (MHz)
1013	824.70	1.28
384	836.52	1.28
777	848.31	1.28

CH 1013



FOR EV-DO Rev. A:

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (MHz)
1013	824.70	1.28
384	836.52	1.29
777	848.31	1.29



FOR EV-DO Rev. 0

CHANNEL	FREQUENCY (MHz)	MAX. OUTPUT POWER -26 dBc BANDWIDTH (MHz)
1013	824.70	1.29
384	836.52	1.29
777	848.31	1.29

4.4 BAND EDGE MEASUREMENT

4.4.1 LIMITS OF BAND EDGE MEASUREMENT

According to FCC 22.917 specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P)dB. In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.4.2 TEST INSTRUMENTS

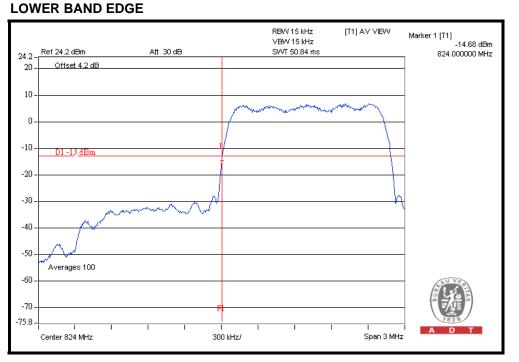
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100041	May 13, 2009	May 12, 2010
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 26, 2009	Jun. 25, 2010
RF cable	SUCOFLEX 104	274403/4	Aug. 21, 2009	Aug. 20, 2010
RF cable	SUCOFLEX 104	250729/4	Aug. 20, 2009	Aug. 19, 2010
RF cable	SUCOFLEX 104	214377/4	Aug. 20, 2009	Aug. 19, 2010
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

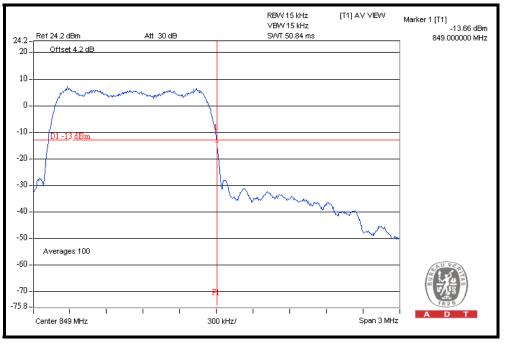
4.4.3 TEST SETUP

4.4.4 TEST PROCEDURES

- a. The EUT was set up for the maximum peak power with CDMA link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels: 1013 and 777 (low and high operational frequency range).
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss is the worst loss 4.2dB in the transmitted path track.
- c. The center frequency of spectrum is the band edge frequency and span is 3MHz. RB of the spectrum is 15kHz and VB of the spectrum is 15kHz.
- d. Record the max trace plot into the test report.

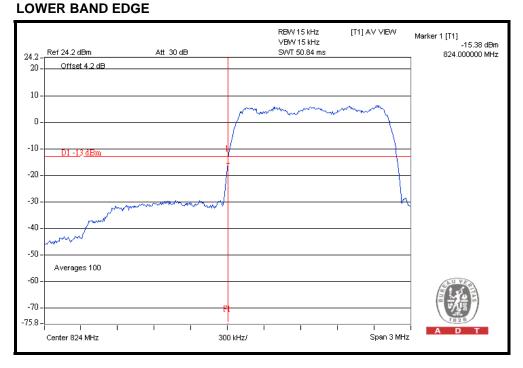

4.4.5 EUT OPERATING CONDITION

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

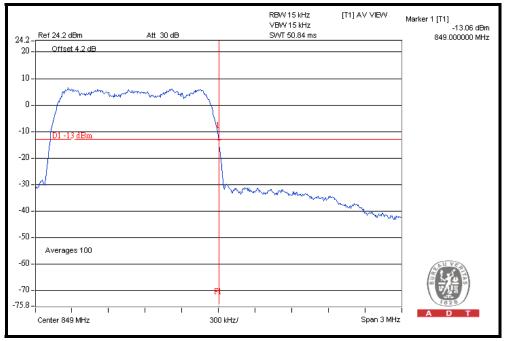


4.4.6 TEST RESULTS

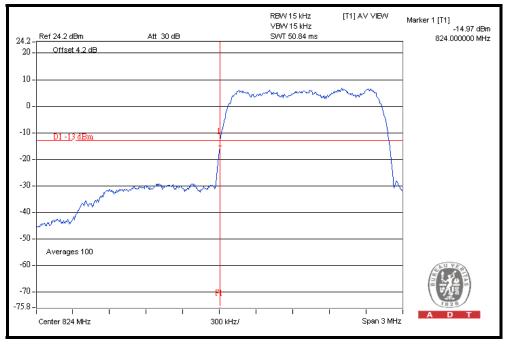
FOR RC3 SO55:

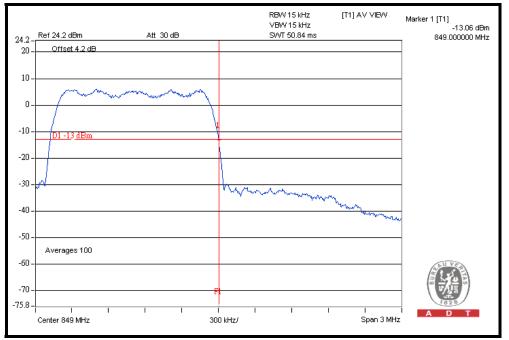


HIGHER BAND EDGE



FOR EV-DO Rev. A:


HIGHER BAND EDGE



FOR EV-DO Rev. 0:

LOWER BAND EDGE

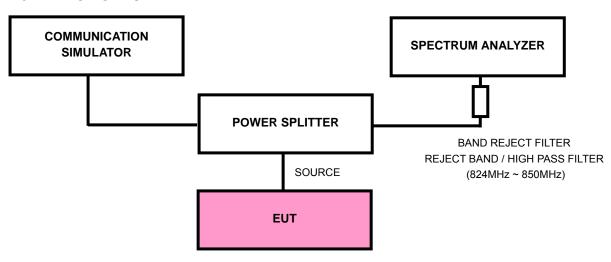
HIGHER BAND EDGE

4.5 CONDUCTED SPURIOUS EMISSIONS

4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

In the FCC 22.917, On any frequency outside a licensee's frequency block within GSM850 spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The limit of emission equal to -13dBm.

4.5.2 TEST INSTRUMENTS


DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100041	May 13, 2009	May 12, 2010
Wainwright Instruments Band Reject Filter	WRCG 824/849-810/ 863-60/9SS	SN1	Mar. 26, 2009	Mar. 25, 2010
WI Highpass filter	WHK1.5/15G-10ST	SN1	Mar. 31, 2009	Mar. 30, 2010
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 26, 2009	Jun. 25, 2010
RF cable	SUCOFLEX 104	274403/4	Aug. 21, 2009	Aug. 20, 2010
RF cable	SUCOFLEX 104	250729/4	Aug. 20, 2009	Aug. 19, 2010
RF cable	SUCOFLEX 104	214377/4	Aug. 20, 2009	Aug. 19, 2010
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

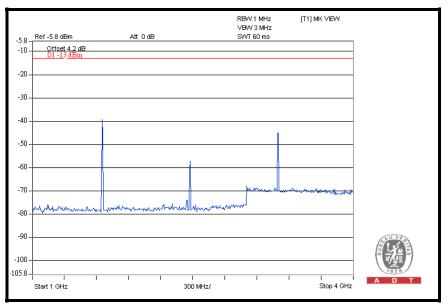
4.5.3 TEST PROCEDURE

- a. The EUT was set up for the maximum peak power with CDMA link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 1013, 384 and 777 (low, middle and high operational frequency range.)
- b. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss are the worst loss 4.2dB in the transmitted path track.
- c. When the spectrum scanned from 9kHz to 1GHz, it shall be connected to the band reject filter attenuated the carried frequency. The spectrum set RB=1MHz, VB=3MHz.
- d. When the spectrum scanned from 1GHz to 9GHz, it shall be connected to the high pass filter attenuated the carried frequency. The spectrum set RB=1MHz, VB=3MHz.

4.5.4 TEST SETUP

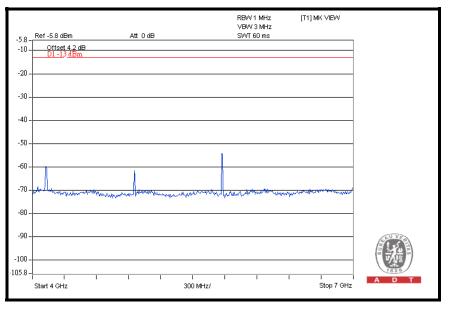

4.5.5 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator
- b. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

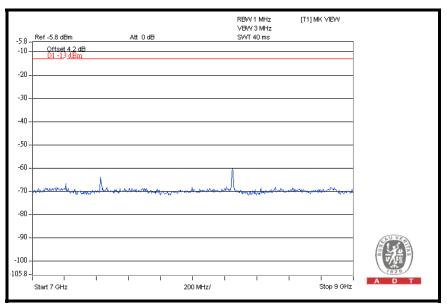


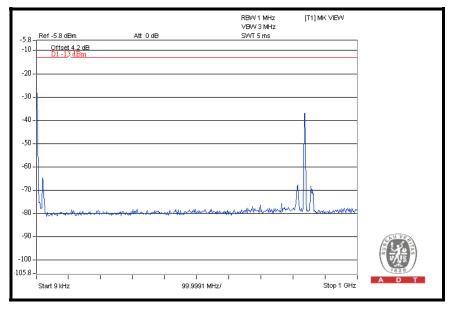
4.5.6 TEST RESULTS

CH 1013: 9kHz ~ 1GHz

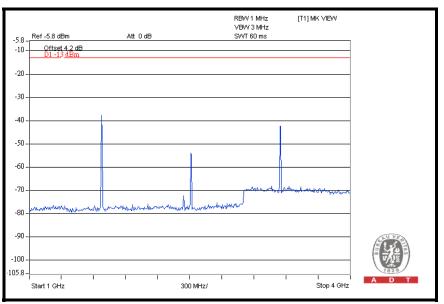


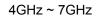
1GHz ~ 4GHz

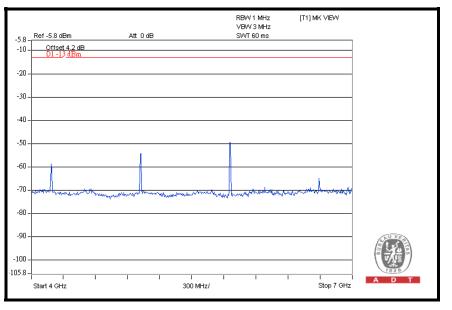




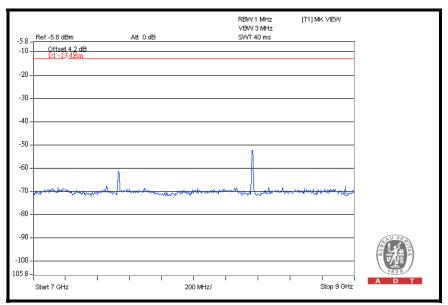
⁷GHz ~ 9GHz

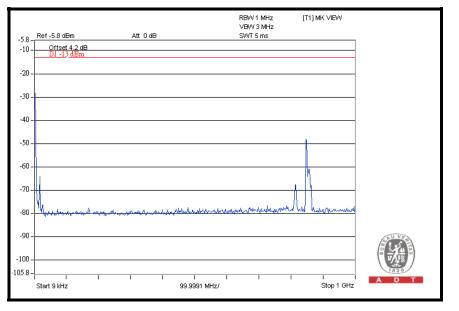



CH 384: 9kHz ~ 1GHz

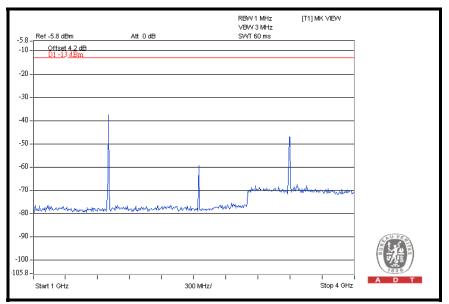


 $^{1 \}text{GHz} \sim 4 \text{GHz}$

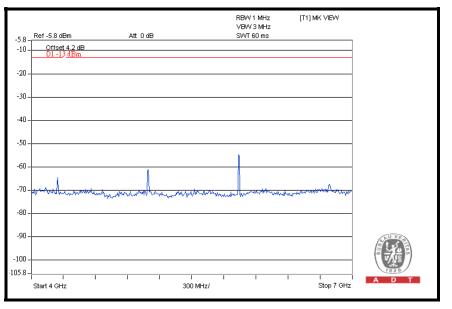




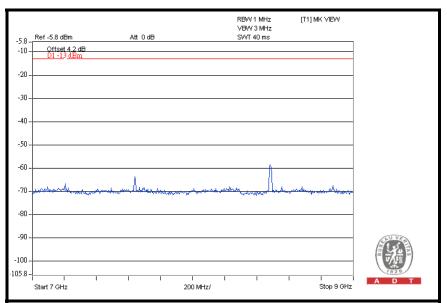
⁷GHz ~ 9GHz



CH 777: 9kHz ~ 1GHz



1GHz ~ 4GHz



7GHz ~ 9GHz

4.6 RADIATED EMISSION MEASUREMENT (BELOW 1GHz)

4.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 22.917, On any frequency outside a licensee's frequency block within GSM850 spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P)dB. The limit of emission equal to –13dBm. So the limit of emission is the same absolute specified line.

LIMIT (dBm)	EQUIVALENT FIELD STRENGTH AT 3m (dBuV/m) (NOTE)
-13	82.2

NOTE: The following formula is used to convert the equipment radiated power to field strength.

E = [1000000 $\sqrt{(30P)}$] / 3 uV/m, where P is Watts.

4.6.2 TEST INSTRUMENTS

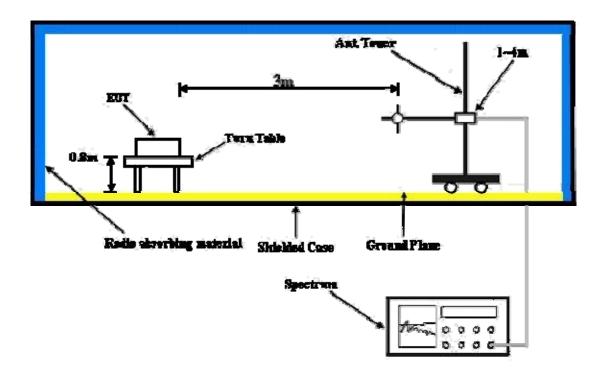
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESIB7	100212	May 25, 2009	May 24, 2010
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100040	Jul. 07, 2009	Jul. 06, 2010
BILOG Antenna SCHWARZBECK	VULB9168	9168-156	Apr. 30, 2009	Apr. 29, 2010
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-563	Aug. 10, 2009	Aug. 09, 2010
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170242	Dec. 25, 2009	Dec. 24, 2010
Preamplifier Agilent	8449B	3008A01910	Sep. 11, 2009	Sep. 10, 2010
Preamplifier Agilent	8447D	2944A10638	Dec. 21, 2009	Dec. 20, 2010
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	218190/4 231241/4	May 13, 2009	May 12, 2010
RF signal cable Worken	8D-FB	Cable-HYCH9-01	Aug. 17, 2009	Aug. 16, 2010
Software ADT_Radiated_ V7.6.15.9.2		NA	NA	NA
Antenna Tower EMCO	2070/2080		NA	NA
Turn Table 2087-2.03		NA	NA	NA
Antenna Tower &Turn Table Controller EMCO	2090	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 9.

- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 460141.
- 5. The IC Site Registration No. is IC 7450F-4.

4.6.3 TEST PROCEDURES


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.6.6 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.6.7 TEST RESULTS

MODE TX channel 384 F		FREQUENCY RANGE	Below 1000MHz
ENVIRONMENTAL CONDITIONS	····,	INPUT POWER (SYSTEM)	120Vac, 60Hz
TESTED BY	Tim Mie		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	64.99	41.0	82.2	-41.3	1.50 H	46	27.90	13.10
2	156.35	45.4	82.2	-36.9	2.00 H	43	31.10	14.30
3	189.40	41.6	82.2	-40.7	1.50 H	214	30.50	11.10
4	416.83	40.0	82.2	-42.3	1.00 H	49	21.50	18.50
5	613.17	33.9	82.2	-48.4	2.00 H	262	11.10	22.80
6	823.11	33.4	82.2	-48.9	1.50 H	19	6.90	26.50
	_	ANTENNA		(& TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	39.72	53.6	82.2	-28.70	2.00 V	193	38.40	15.20
2	76.65	45.6	82.2	-36.70	1.00 V	352	35.80	9.80
3	226.33	47.4	82.2	-34.90	1.50 V	169	35.10	12.30
4	335.19	36.9	82.2	-45.40	1.00 V	244	21.60	15.30
5	733.69	33.1	82.2	-49.20	2.00 V	235	7.70	25.40
6	908.64	35.7	82.2	-46.60	2.00 V	193	7.60	28.10

NOTE:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. This is valid for all 3 channels.

4.7 RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

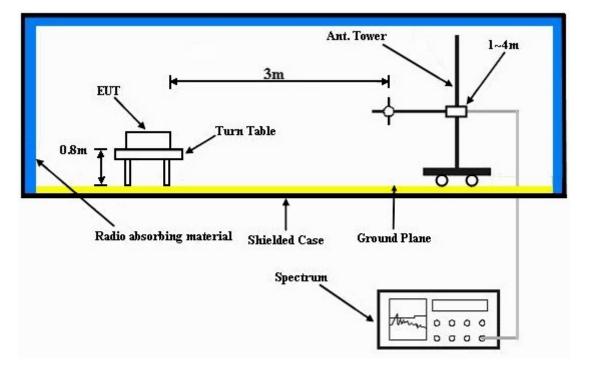
4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 22.917 (a), On any frequency outside a licensee's frequency block within GSM spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$. The limit of emission equal to -13 dBm.

4.7.2 TEST INSTRUMENTS

Same as 4.6.2

4.7.3 TEST PROCEDURES


- a. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels: 1013, 384 and 777 (low, middle and high operational frequency range.)
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- e. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.7.6 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.7.7 TEST RESULTS

MODE	Channel 1013	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz		26deg [°] C, 66%RH, 988hPa
TESTED BY	Dean Wang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	1649.4	54.9	-13.0	-46.6	7.6	-39.0		
2	2474.1	44.8	-13.0	-57.9	8.4	-49.5		
3	3298.8	49.0	-13.0	-55.6	9.9	-45.7		
4	4123.5	48.7	-13.0	-55.4	9.7	-45.7		
	AN	FENNA POLAR	ITY & TEST DI	STANCE: VERT	ICAL AT 3 m			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	1649.4	53.0	-13.0	-48.7	7.6	-41.1		
2	2474.1	45.2	-13.0	-57.9	8.4	-49.5		
3	3298.8	51.0	-13.0	-53.0	9.9	-43.1		
4	4123.5	51.8	-13.0	-52.4	9.7	-42.7		

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

MODE	Channel 384	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	26deg [°] C, 66%RH, 988hPa
TESTED BY	Dean Wang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	1673.04	54.3	-13.0	-47.3	7.7	-39.6		
2	2509.56	44.5	-13.0	-58.3	8.4	-49.9		
3	3346.08	47.1	-13.0	-57.3	9.9	-47.4		
4	4182.6	47.1	-13.0	-56.8	9.7	-47.1		
	AN	FENNA POLAR	ITY & TEST DI	STANCE: VERT	TICAL AT 3 m			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	1673.04	51.2	-13.0	-51.3	7.7	-43.6		
2	2509.56	42.7	-13.0	-60.0	8.4	-51.6		
3	3346.08	50.0	-13.0	-54.2	9.9	-44.3		
4	4182.60	48.4	-13.0	-56.0	9.7	-46.3		

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

MODE	Channel 777	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	26deg [°] C, 66%RH, 988hPa
TESTED BY	Dean Wang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	1696.62	52.7	-13.0	-49.7	7.9	-41.8		
2	2544.93	42.2	-13.0	-60.9	8.5	-52.4		
3	3393.24	45.9	-13.0	-59.1	9.9	-49.2		
4	4241.55	46.1	-13.0	-57.6	9.7	-47.9		
	AN	FENNA POLAR	ITY & TEST DI	STANCE: VERT	TICAL AT 3 m			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV)	LIMIT (dBm)	S.G POWER VALUE (dBm)	CORRECTION FACTOR (dB)	POWER VALUE (dBm)		
1	1696.62	49.8	-13.0	-52.6	7.9	-44.7		
2	2544.93	41.2	-13.0	-61.7	8.5	-53.2		
3	3393.24	48.6	-13.0	-56.2	9.9	-46.3		
4	4241.55	46.6	-13.0	-57.4	9.7	-47.7		

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

5 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

6 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----