Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 S C Client ATL (Auden) Certificate No: D2450V2-712_Feb09 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 712 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits Calibration date: February 11, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 08-Oct-08 (No. 217-00898) | Oct-09 | | Power sensor HP 8481A | US37292783 | 08-Oct-08 (No. 217-00898) | Oct-09 | | Reference 20 dB Attenuator | SN: S5086 (20g) | 01-Jul-08 (No. 217-00864) | Jul-09 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Jul-08 (No. 217-00867) | Jul-09 | | Reference Probe ES3DV2 | SN: 3025 | 28-Apr-08 (No. ES3-3025_Apr08) | Apr-09 | | DAE4 | SN: 601 | 14-Mar-08 (No. DAE4-601_Mar08) | Mar-09 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-07) | In house check: Oct-09 | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-07) | In house check: Oct-09 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-08) | In house check: Oct-09 | | | Name | Function | Signature | | Calibrated by: | Mike Meili | Laboratory Technician | d'itein | | Approved by: | Katja Pokovic | Technical Manager | 100 m | Issued: February 11, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-712_Feb09 Page 1 of 9 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-712_Feb09 Page 2 of 9 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V5.0 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | ¥ . | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.0 ± 6 % | 1.82 mho/m ± 6 % | | Head TSL temperature during test | (22.0 ± 0.2) °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.1 mW / g | | SAR normalized | normalized to 1W | 52.4 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 51.8 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.13 mW / g | | SAR normalized | normalized to 1W | 24.5 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 24.3 mW /g ± 16.5 % (k=2) | Certificate No: D2450V2-712_Feb09 Page 3 of 9 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # **Body TSL parameters** The following parameters and calculations were applied. | The following parameters are seen and | Temperature | Permittivity | Conductivity | |---------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.9 ± 6 % | 2.00 mho/m ± 6 % | | Body TSL temperature during test | (21.1 ± 0.2) °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.2 mW / g | | SAR normalized | normalized to 1W | 52.8 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 52.3 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.18 mW / g | | SAR normalized | normalized to 1W | 24.7 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 24.7 mW /g ± 16.5 % (k=2) | Certificate No: D2450V2-712_Feb09 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.7 Ω + 1.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.2 dB | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.5 Ω + 5.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.0 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.158 ns | |----------------------------------|----------| | Electrical Delay (one direction) | 1.130115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------| | Manufactured on | July 5, 2002 | Certificate No: D2450V2-712_Feb09 Page 5 of 9 ## DASY5 Validation Report for Head TSL Date/Time: 04.02.2009 12:44:28 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN712 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.82 \text{ mho/m}$; $\varepsilon_r = 38$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) #### DASY5 Configuration: Probe: ES3DV2 - SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 28.04.2008 Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Scrial: 1001 Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45 #### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.6 V/m; Power Drift = 0.00522 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.13 mW/g Maximum value of SAR (measured) = 15.8 mW/g 0 dB = 15.8 mW/g Certificate No: D2450V2-712 Feb09 # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date/Time: 11.02.2009 11:51:07 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 54$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) #### DASY5 Configuration: Probe: ES3DV2 - SN3025; ConvF(4.07, 4.07, 4.07); Calibrated: 28.04.2008 Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45 # Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.8 V/m; Power Drift = 0.00271 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.18 mW/g Maximum value of SAR (measured) = 16.4 mW/g 0 dB = 16.4 mW/g # Impedance Measurement Plot for Body TSL Certificate No: D2450V2-712 Feb09 Page 9 of 9 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ATL (Auden) Accreditation No.: SCS 108 Certificate No: ES3-3150_Apr09 # CALIBRATION CERTIFICATE Object ES3DV3 - SN:3150 QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes Calibration date: Calibration procedure(s) April 28, 2009 (Additional Conversion Factors) Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 1-Apr-09 (No. 217-01030) | Apr-10 | | Power sensor E4412A | MY41495277 | 1-Apr-09 (No. 217-01030) | Apr-10 | | Power sensor E4412A | MY41498087 | 1-Apr-09 (No. 217-01030) | Apr-10 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 31-Mar-09 (No. 217-01026) | Mar-10 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 31-Mar-09 (No. 217-01028) | Mar-10 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 31-Mar-09 (No. 217-01027) | Mar-10 | | Reference Probe ES3DV2 | SN: 3013 | 2-Jan-09 (No. ES3-3013_Jan09) | Jan-10 | | DAE4 | SN: 660 | 9-Sep-08 (No. DAE4-660_Sep08) | Sep-09 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Oct-07) | In house check: Oct-09 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-08) | In house check: Oct-09 | | | Name | Function | Signature | | Calibrated by: | Katja Pokovic | Technical Manager | The Kay | | Approved by: | Niels Kuster | Quality Manager | X | Issued: April 29, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: ES3-3150_Apr09 Page 1 of 5 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., ϑ = 0 is normal to probe axis Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 # Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: ES3-3150_Apr09 Page 2 of 5 ES3DV3 SN:3150 April 28, 2009 # Probe ES3DV3 SN:3150 # **Additional Conversion Factors** Manufactured: June 12, 2007 Last calibrated: January 20, 2009 Recalibrated: April 28, 2009 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ES3-3150_Apr09 Page 3 of 5 ES3DV3 SN:3150 April 28, 2009 # DASY - Parameters of Probe: ES3DV3 SN:3150 Sensitivity in Free Space^A Diode Compression^B NormX 1.25 ± 10.1% $\mu V/(V/m)^2$ DCP X 93 mV NormY 1.26 ± 10.1% $\mu V/(V/m)^2$ DCP Y 95 mV NormZ 1.25 ± 10.1% $\mu V/(V/m)^2$ DCP Z 94 mV Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 5. TSL 1900 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR_{be} [%] Without Correction Algorithm 11.8 8.0 SAR_{be} [%] With Correction Algorithm 0.9 0.6 #### Sensor Offset Probe Tip to Sensor Center 2.0 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ES3-3150_Apr09 Page 4 of 5 A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8). ⁸ Numerical linearization parameter: uncertainty not required. ES3DV3 SN:3150 April 28, 2009 # **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^C | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|--------------|----------------|-------|-------|--------------------| | 835 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.90 ± 5% | 0.59 | 1.41 | 6.05 ± 11.0% (k=2) | | 1900 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.38 | 2.11 | 5.12 ± 11.0% (k=2) | | | | | | | | | | | 835 | ± 50 / ± 100 | Body | 55.2 ± 5% | $0.97 \pm 5\%$ | 0.99 | 1.13 | 6.02 ± 11.0% (k=2) | | 1900 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.41 | 2.15 | 4.81 ± 11.0% (k=2) | Certificate No: ES3-3150_Apr09 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ATL (Auden) Certificate No: DAE3-393_Aug09 Accreditation No.: SCS 108 # **CALIBRATION CERTIFICATE** DAE3 - SD 000 D03 AA - SN: 393 Object Calibration procedure(s) QA CAL-06.v20 Calibration procedure for the data acquisition electronics (DAE) August 24, 2009 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 30-Sep-08 (No: 7670) | Sep-09 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Calibrator Box V1.1 | SE UMS 006 AB 1004 | 05-Jun-09 (in house check) | In house check: Jun-10 | Calibrated by: Name Andrea Guntli Function Technician Signature Approved by: Fin Bomholt **R&D Director** Issued: August 26, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE3-393_Aug09 Page 1 of 5 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE3-393 Aug09 Page 2 of 5 # **DC Voltage Measurement** A/D - Converter Resolution nominal $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1} \mu\mbox{V} \;, & \mbox{full range} = & \mbox{-100...+300 mV} \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \;, & \mbox{full range} = & \mbox{-1......+3mV} \\ \mbox{DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec} \end{array}$ | Calibration Factors | х | Υ | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 403.906 ± 0.1% (k=2) | 404.156 ± 0.1% (k=2) | 404.066 ± 0.1% (k=2) | | Low Range | 3.99061 ± 0.7% (k=2) | 3.96370 ± 0.7% (k=2) | 3.96389 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 303.5 ° ± 1 ° | |-------------------------------------------|---------------| |-------------------------------------------|---------------| Certificate No: DAE3-393_Aug09 Page 3 of 5 # **Appendix** 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200006.9 | -2.85 | -0.00 | | Channel X + Input | 20003.94 | 4.04 | 0.02 | | Channel X - Input | -19994.54 | 5.36 | -0.03 | | Channel Y + Input | 200007.3 | -1.44 | -0.00 | | Channel Y + Input | 19999.38 | -0.52 | -0.00 | | Channel Y - Input | -19996.11 | 3.79 | -0.02 | | Channel Z + Input | 200005.3 | -2.72 | -0.00 | | Channel Z + Input | 19995.60 | -4.30 | -0.02 | | Channel Z - Input | -20007.61 | 0.04 | 0.04 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 1999.8 | -0.09 | -0.00 | | Channel X + Input | 199.02 | -0.78 | -0.39 | | Channel X - Input | -201.46 | -1.36 | 0.68 | | Channel Y + Input | 2000.1 | -0.03 | -0.00 | | Channel Y + Input | 198.18 | -1.72 | -0.86 | | Channel Y - Input | -202.53 | -2.43 | 1.21 | | Channel Z + Input | 1999.9 | -0.12 | -0.01 | | Channel Z + Input | 197.86 | -2.14 | -1.07 | | Channel Z - Input | -202.57 | -2.37 | 1.18 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|--------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 13.46 | 11.20 | | | - 200 | -9.35 | -11.28 | | Channel Y | 200 | 9.96 | 9.34 | | | - 200 | -10.98 | -11.10 | | Channel Z | 200 | 4.16 | 3.81 | | | - 200 | -5.83 | -5.62 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 3.58 | 0.25 | | Channel Y | 200 | 2.49 | - | 5.70 | | Channel Z | 200 | 3.07 | -0.41 | | Certificate No: DAE3-393_Aug09 # 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16158 | 17049 | | Channel Y | 16025 | 16973 | | Channel Z | 16453 | 17372 | # 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.30 | -1.39 | 0.81 | 0.27 | | Channel Y | -0.46 | -1.50 | 0.96 | 0.31 | | Channel Z | -0.14 | -1.43 | 1.13 | 0.33 | # 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance | | Zeroing (MOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channe! X | 0.2000 | 200.6 | | Channel Y | 0.2000 | 200.4 | | Channel Z | 0.2001 | 200.2 | 8. Low Battery Alarm Voltage (verified during pre test) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (verified during pre test) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.0 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE3-393_Aug09 Page 5 of 5