

Specific Absorption Rate (SAR) Test Report

for

High Tech Computer Corp. on the Pocket PC Phone

Report No. : FA860909

Trade Name : NIL

Model Name : NEON400

FCC ID : NM8NEON400

Date of Testing : Jun. 10, 2008 ~ Jun. 11, 2008

Date of Report : Jul. 01, 2008 Date of Review : Jul. 01, 2008

- The test results refer exclusively to the presented test model/sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 02.

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

		ment of Compliance	
2.	Admir	nistration Data	2
	2.1	Testing Laboratory	
	2.2	Detail of Applicant	2
	2.3	Detail of Manufacturer	
	2.4	Application Details	2
3.	Gener	ral Information	3
	3.1	Description of Device under Test (DUT)	3
	3.2	Product Photos	
	3.3	Applied Standards	
	3.4	Device Category and SAR Limits	
	3.5	Test Conditions	
		3.5.1 Ambient Condition	
		3.5.2 Test Configuration	
4.	Speci	fic Absorption Rate (SAR)	
	4.1	Introduction	
	4.2	SAR Definition	
		Measurement Setup	
	5.1	DASY5 E-Field Probe System	
		5.1.1 ET3DV6 E-Field Probe Specification	
		5.1.2 ET3DV6 E-Field Probe Calibration	
	5.2	DATA Acquisition Electronics (DAE)	
	5.3	Robot	
	5.4	Measurement Server	
	5.5	SAM Twin Phantom	
	5.6	Device Holder for SAM Twin Phantom	
	5.7	Data Storage and Evaluation	
		5.7.1 Data Storage	
	- 0	5.7.2 Data Evaluation	
	5.8	Test Equipment List	
		e Simulating Liquids	
		rtainty Assessment	
		Measurement Evaluation	
	8.1	Purpose of System Performance Check	
	8.2	System Setup	
	8.3	Validation Results	
		ription for DUT Testing Position	
10.	Measu	urement Procedures	
	10.1	Spatial Peak SAR Evaluation	
	10.2	Scan Procedures	
	10.3	SAR Averaged Methods	
11.	SAR 1	Fest Results	27
	11.1	Conducted Power	27
	11.2	Test Results for Head	
	11.3	Test Results for Body	29
		ences	31
App	endix	A - System Performance Check Data	
App	endix	B - SAR Measurement Data	
		C - Calibration Data	
		D - CDMA2000 Test Modes	
		E - Product Photos	
		F - Test Setup Photos	
~hh	CHUIN	i iou ouap i noto	

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum results found during testing for the **High Tech Computer Corp. Pocket PC Phone NIL NEON400** are as follows (with expanded uncertainty 21.9 %.):

Position SAR	CDMA2000 Cellular (W/Kg)	CDMA2000 PCS (W/Kg)
Head	0.884	1.19
Body (1.5cm Gap)	0.554	0.722
Body (Holster with 0cm Gap)	0.736	0.751

They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01) and IEEE 1528-2003.

Approved by

Roy Wu Manager

2. Administration Data

2.1 Testing Laboratory

Company Name : Sporton International Inc. **Department :** Antenna Design/SAR

Address: No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,

Test Report No : FA860909

TaoYuan Hsien, Taiwan, R.O.C.

Telephone Number: 886-3-327-3456 **Fax Number:** 886-3-328-4978

2.2 Detail of Applicant

Company Name: High Tech Computer Corp.

Address: 1F, No. 6-3, BogiangRd., Xindian City, Taipei Country, Taiwan

2.3 <u>Detail of Manufacturer</u>

Company Name: High Tech Computer Corp.

Address: 1F, No. 6-3, BoqiangRd., Xindian City, Taipei Country, Taiwan

2.4 Application Details

Date of reception of application:Jun. 09, 2008Start of test:Jun. 10, 2008End of test:Jun. 11, 2008

3. General Information

3.1 Description of Device under Test (DUT)

Description of Device under Test								
Product Feature & Specification								
DUT Type:	Pocket PC Phone							
Trade Name :	NIL							
Model Name :	NEON400							
FCC ID :	NM8NEON400							
Tx Frequency :	CDMA2000 Cellular : 824 MHz ~ 849 MHz CDMA2000 PCS : 1850 MHz ~ 1910 MHz							
Rx Frequency :	CDMA2000 Cellular : 869 ~ 894 MHz CDMA2000 PCS : 1930 ~ 1990 MHz							
Maximum Output Power :	CDMA2000 Cellular (1xRTT) FCH_RC1: 23.79 dBm FCH_RC3: 23.85 dBm FCH+SCH_RC3: 23.85 dBm CDMA2000 Cellular (1xEV-DO) 128Kbps: 24.50dBm 2048Kbps: 24.23 dBm 12288Kbps: 24.44 dBm CDMA2000 PCS (1xRTT) FCH_RC1: 23.81 dBm FCH_RC3: 23.76 dBm FCH+SCH_RC3: 23.90 dBm CDMA2000 PCS (1xEV-DO) 128Kbps: 24.67 dBm 2048Kbps: 24.38 dBm 12288Kbps: 24.67 dBm							
Antenna Type :	Fixed Internal							
Power Rating (DC/AC, Voltage and Current of RF element or PA) :	DC 4.2V / 0.5A							
Digital Modulation Emission :	QPSK							
DUT Stage :	Production Unit							
Application Type :	Certification							

Test Report No : FA860909

3.2 Product Photos

Please refer to Appendix E.

3.3 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Pocket PC Phone is in accordance with the following standards:

Test Report No : FA860909

47 CFR Part 2 (2.1093),

IEEE C95.1-1999,

IEEE C95.3-2002,

IEEE P1528-2003, and

OET Bulletin 65 Supplement C (Edition 01-01)

Preliminary Guidance for Reviewing Applications for Certification of 3G Device. May 2006.

SAR Measurement Procedures for 3G Devices. June 2006.

KDB 648474

KDB 248227

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 Test Conditions

3.5.1 Ambient Condition

5.5.1 Illiotetti Cottatiioti								
Item	HSL_850	MSL_850	HSL_1900	MSL_1900	-	-		
Ambient Temperature (°C)	20-24							
Tissue simulating liquid temperature (°C)	21.4°C	21.3°C	21.6°C	21.5°C	-	-		
Humidity (%)	<60 %							

3.5.2 Test Configuration

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

Measurements were performed on the lowest, middle, and highest channel for each testing position. However, if the SAR is below 3 dB of limit, measurements were performed only on the middle channel.

For SAR testing, EUT is in CDMA2000 link mode, and its crest factor is 1.

FCC revised KDB 648474 on June 23, 2008. According KDB 648474, the stand-alone SAR of Bluetooth and simultaneous transmission SAR are not required because the closest antenna separation distance between the WWAN and BT simultaneous transmitting antennas is 7.5 cm large than 5cm and output power of Bluetooth is 2.26 dBm less than $2P_{Ref}$. The FCC rules please refer to Figure 3.1.

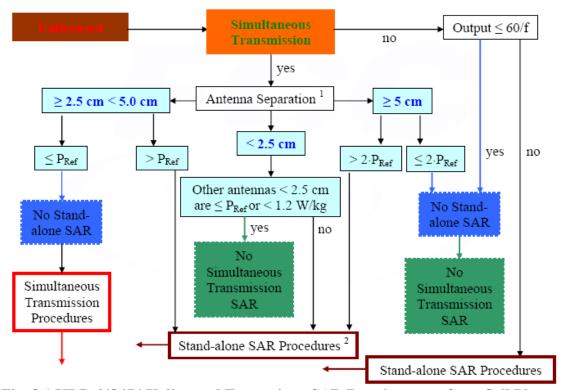


Fig. 3.1 KDB 648474 Unlicensed Transmitter SAR Requirements for a Cell Phone

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Test Report No : FA860909

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where $\,$ is the conductivity of the tissue, $\,$ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

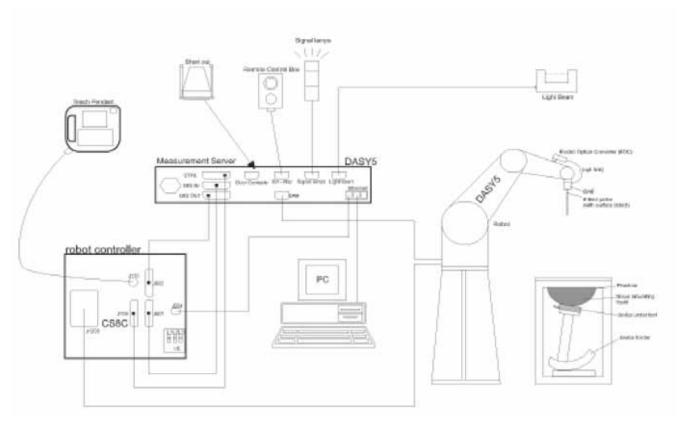


Fig. 5.1 DASY5 System

The DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- ➤ The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- ➤ A computer operating Windows XP
- ➤ DASY5 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- > The SAM twin phantom
- ➤ A device holder
- > Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY5 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 ET3DV6 E-Field Probe Specification

<ET3DV6>

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

system

Built-in shielding against static charges PEEK enclosure material (resistant to organic

solvents)

Frequency 10 MHz to 3 GHz

Directivity ± 0.2 dB in brain tissue (rotation around probe

axis)

 \pm 0.4 dB in brain tissue (rotation perpendicular to probe axis)

Dynamic Range 5 μ W/g to 100mW/g; Linearity: \pm 0.2dB

Surface Detection ± 0.2 mm repeatability in air and clear liquids

on reflecting surface

Dimensions Overall length: 330mm

Tip length: 16mm Body diameter: 12mm Tip diameter: 6.8mm

Distance from probe tip to dipole centers:

2.7mm

Application General dosimetry up to 3GHz

Compliance tests for mobile phones and

Wireless LAN

Fast automatic scanning in arbitrary phantoms

Test Report No : FA860909

Fig. 5.2 Probe Setup on Robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

Test Report No : FA860909

> ET3DV6 sn1788

Sensitivity	X axis : 1.7	72 μV	Y axis : 1.66 μV		Z axis : 1.70 μV
Diode compression point	X axis : 91	mV	Y ax	xis : 93 mV	Z axis : 94 mV
Conversion factor	Frequency (MHz)	X axis		Y axis	Z axis
(Head / Body)	800~1000	6.54 / 6.37		6.54 / 6.37	6.54 / 6.37
	1710~1910	5.28 / 4.75		5.28 / 4.75	5.28 / 4.75
Boundary effect	Frequency (MHz)	Alp	ha	Depth	
(Head / Body)	800~1000	0.22	0.28	3.28 / 2.94	
	1710~1910	0.59	0.63	2.15/ 2.39	

NOTE: The probe parameters have been calibrated by the SPEAG.

5.2 <u>DATA Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE3 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used. The XL robot series have many features that are important for our application:

Test Report No : FA860909

- ➤ High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ► 6-axis controller

5.4 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with 400 MHz CPU 128 MB chipdisk and 128 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- ➤ Left head
- Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- *Water-sugar based liquid
- *Glycol based liquids

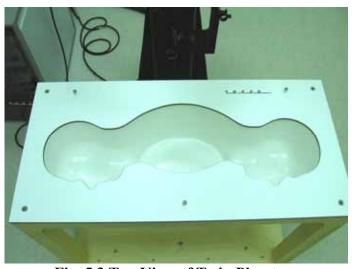


Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $_{\rm r}$ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 <u>Data Storage and Evaluation</u>

5.7.1 Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

Test Report No : FA860909

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY5 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2}

Conversion factor ConvF_i
 Diode compression point dcp_i
 Frequency f

Device parameters: - Frequency f
- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Test Report No : FA860909

with

 V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 $dcp_i = diode\ compression\ point\ (DASY\ parameter)$

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field probes : $E_i = \sqrt{\frac{V_i}{Norm_iConvF}}$

H-field probes : $H_i = \sqrt{V_i} \frac{a_{i0+} a_{i1} f + a_{i2} f^2}{f}$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel *i* in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_X^2 + E_Y^2 + E_Z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with

 P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

^{*} Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

5.8 Test Equipment List

Manufacture	Name of Equipment	Type/Model	Serial Number	Calibration		
Manufacture	Name of Equipment	1 ype/Model	Seriai Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Sep. 26, 2007	Sep. 26, 2008	
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 17, 2008	Mar. 17, 2010	
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 28, 2008	Mar. 28, 2010	
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 16, 2007	Nov. 16, 2008	
SPEAG	Device Holder	N/A	N/A	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1303	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1383	NCR	NCR	
SPEAG	Phantom	QD 0VA 001 BB	1029	NCR	NCR	
SPEAG	Robot	Staubli TX90 XL	F07/554JA1/A/01	NCR	NCR	
SPEAG	Software	DASY5 V5.0 Build 91	N/A	NCR	NCR	
SPEAG	Software	SEMCAD V12.4 Build 52	N/A	NCR	NCR	
SPEAG	Measurement Server	SE UMS 011 AA	1014	NCR	NCR	
Agilent	ENA Series Network Analyzer	E5071B	MY42403579	Apr. 09, 2008	Apr. 09, 2009	
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Dec. 22, 2006	Dec. 22, 2008	
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR	
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR	
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR	
Agilent	Power Meter	E4416A	GB41292344	Feb. 21, 2008	Feb. 20, 2009	
Agilent	Power Sensor	E9327A	US40441548	Feb. 21, 2008	Feb. 20, 2009	

Table 5.1 Test Equipment List

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY5, the phantom must be filled with around 25 liters of homogeneous tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR) or from the flat phantom to the liquid top surface (body SAR) is 15.2cm.

Test Report No : FA860909

The following ingredients for tissue simulating liquid are used:

- ➤ Water: deionized water (pure H₂0), resistivity 16M as basis for the liquid
- Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- ➤ Salt: pure NaCl to increase conductivity
- ➤ Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- ➤ **Preservative**: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- ➤ **DGMBE**: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of head and body tissue simulating liquid for frequency band 850 MHz and 1900 MHz.

Ingredient	HSL-850	MSL-850	HSL-1900	MSL-1900
Water	532.98 g	631.68 g	552.42 g	716.56 g
Cellulose	0 g	0 g	0 g	0 g
Salt	18.3 g	11.72 g	3.06 g	4.0 g
Preventol D-7	2.4 g	1.2 g	0 g	0 g
Sugar	766.0 g	600.0 g	0 g	0 g
DGMBE	0 g	0 g	444.52 g	300.67 g
Total amount	1 liter (1.3 kg)	1 liter (1.3 kg)	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric	f = 835 MHz	f=835 MHz	f= 1900 MHz	f= 1900 MHz
Parameters at	$r=41.5\pm5\%$	$r = 55.2 \pm 5\%$	$r = 40.0 \pm 5\%$	$\varepsilon r = 53.3 \pm 5 \%$,
22°	$= 0.90 \pm 5\% \text{ S/m}$	$= 0.97 \pm 5\% \text{ S/m}$	$= 1.4 \pm 5\% \text{ S/m}$	σ = 1.52±5% S/m

Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Table 6.2 shows the measuring results for head and muscle simulating liquid.

Band	Position	Frequency (MHz)	Permittivity (ε_r)	Conductivity (σ)	Measurement Date	
		824.70	40.8	0.901		
	Head	836.52	40.7	0.912	Jun. 10, 2008	
GSM850		848.31	40.5	0.920		
GSM1030	Body	824.70	56.3	0.977		
		836.52	56.3	0.988	Jun. 11, 2008	
		848.31	56.1	0.997		
		1851.25	38.6	1.37		
	Head	1880.00	38.5	1.40	Jun. 10, 2008	
GSM1900		1908.75	38.4	1.43		
GSW1300		1851.25	51.0	1.47		
	Body	1880.00	50.9	1.50	Jun. 11, 2008	
		1908.75	50.8	1.53		

Table 6.2 Measuring Results for Simulating Liquid

The measuring data are consistent with $r=41.5\pm5\%$ and $=0.9\pm5\%$ for head SAR of CDMA2000 Cellular, $r=55.2\pm5\%$ and $=0.97\pm5\%$ for body SAR of CDMA2000 Cellular, $r=40.0\pm5\%$ and $=1.4\pm5\%$ for head SAR of CDMA2000 PCS, and $r=53.3\pm5\%$ and $=1.52\pm5\%$ for body SAR of CDMA2000 PCS.

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Test Report No : FA860909

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 6.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape	
Multiplying factor ^(a)	1/k (b)	1/ 3	1/ 6	1/ 2	

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) is the coverage factor

Table 7.1 Multiplying Factions for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY5 uncertainty Budget is showed in Table 7.2.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement Equipment						
Probe Calibration	±5.9 %	Normal	1	1	±5.9 %	∞
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	∞
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	±2.7 %	∞
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	∞
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	∞
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	±1.5 %	∞
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Probe Positioner	±0.4 %	Rectangular	$\sqrt{3}$	1	±0.2 %	∞
Probe Positioning	±2.9 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Max. SAR Eval.	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9	145
Device Holder	±3.6 %	Normal	1	1	±3.6	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9	∞
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6	∞
Liquid Permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5	∞
Combined Standard Uncertainty					±10.9	387
Coverage Factor for 95 %		K=2				
Expanded uncertainty (Coverage factor = 2)					±21.9	

Test Report No : FA860909

Table 7.2 Uncertainty Budget of DASY5

8. SAR Measurement Evaluation

Each DASY5 system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY5 software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Test Report No : FA860909

8.1 Purpose of System Performance Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

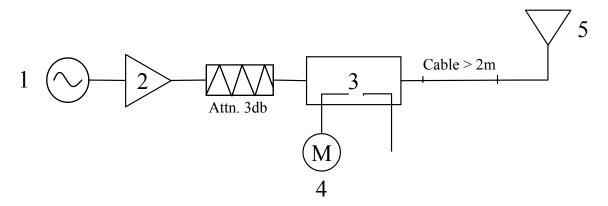


Fig. 8.1 System Setup for System Evaluation

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 835 MHz or 1900 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Band	Position	SAR	Target (W/kg)	Measurement data (W/kg)	Variation	Measurement Date	
	Head	SAR (1g)	9.16	9.92	8.3 %	Jun. 10, 2008	
GSM850	Head	SAR (10g)	6.0	6.46	7.7 %	Juii. 10, 2008	
(835MHz)	Body	SAR (1g)	9.52	9.58	0.6 %	Jun. 11, 2008	
		SAR (10g)	6.37	6.31	-0.9 %		
	Head	SAR (1g)	39.5	39.0	-1.3 %	Lun 10 2009	
GSM1900		SAR (10g)	20.6	20.4	-1.0 %	Jun. 10, 2008	
(1900MHz)	Pody	SAR (1g)	40.1	37.1	-7.5 %	Jun 11 2009	
	Body	SAR (10g)	21.3	19.8	-7.0 %	Jun. 11, 2008	

Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in eight different positions. They are right cheek, right tilted, left cheek, left tilted, face with holster 0cm gap, face with 1.5cm gap, bottom with holster 0cm gap, and bottom with 1.5cm gap as illustrated below:

Test Report No : FA860909

1) "Cheek Position"

- i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.
- ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).

2) "Tilted Position"

- i) To position the device in the "cheek" position described above.
- ii) While maintaining the device the reference planes described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).

3) "Body Worn"

- i) To position the device parallel to the phantom surface.
- ii) To adjust the phone parallel to the flat phantom.
- iii) To adjust the distance between the holster surface and the flat phantom to 0 cm or EUT surface and the flat phantom to 1.5 cm.

Remark: Please refer to Appendix F for the test setup photos.

Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

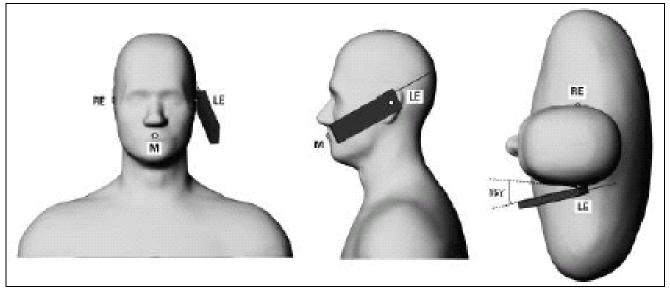


Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

10.Measurement Procedures

The measurement procedures are as follows:

- Linking DUT with base station emulator CMU200 in middle channel
- ➤ Setting CMU200 to allow DUT to radiate maximum output power
- Measuring output power through RF cable and power meter
- ➤ Placing the DUT in the positions described in the last section
- > Setting scan area, grid size and other setting on the DASY5 software
- Taking data for the lowest, middle, and highest channel on each testing position

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

Test Report No : FA860909

- > Power reference measurement
- > Area scan
- > Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

Test Report No : FA860909

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY5, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Conducted Power

Band	CI	CDMA2000 Cellular			CDMA2000 PCS		
Channel	1013	384	777	25	600	1175	
RC1	23.79	23.79	23.69	23.63	23.8	23.81	
RC3	23.85	23.80	23.66	23.57	23.76	23.72	
SCH + RC3	23.85	23.82	23.72	23.64	23.90	23.76	
RTAP 9.6K	24.59	24.45	24.37	24.21	24.41	24.21	
RTAP 38.4K	24.49	24.31	24.30	24.07	24.29	24.04	
RTAP 153.6K	23.98	23.95	23.97	23.82	24.05	23.70	
RETAP 128K	24.25	24.50	24.24	24.67	24.51	24.54	
RETAP 2048K	24.07	24.23	24.06	24.38	24.25	24.23	
RETAP 12258K	24.21	24.44	24.22	24.67	24.50	24.39	

Test Report No : FA860909

11.2 Test Results for Head

Position	Band	Mode	Ch.	EUT	Measured 1g SAR	Measured 10g SAR	Power Drift	Limit	Result
RC	CDMA850	RC1(SO55)	384	Slide Off	0.766	0.502	-0.061	1.6	Pass
RC	CDMA850	RC3(SO55)	384	Slide Off	0.76	0.499	0.00148	1.6	Pass
RT	CDMA850	RC1(SO55)	384	Slide Off	0.555	0.384	-0.105	1.6	Pass
LC	CDMA850	RC1(SO55)	384	Slide Off	0.685	0.494	-0.079	1.6	Pass
LT	CDMA850	RC1(SO55)	384	Slide Off	0.484	0.357	0.121	1.6	Pass
RC	CDMA850	RC1(SO55)	384	Slide Up	0.076	0.051	0.08	1.6	Pass
RT	CDMA850	RC1(SO55)	384	Slide Up	0.02	0.015	0.012	1.6	Pass
LC	CDMA850	RC1(SO55)	384	Slide Up	0.087	0.06	0.152	1.6	Pass
LT	CDMA850	RC1(SO55)	384	Slide Up	0.026	0.021	0.141	1.6	Pass
RC	CDMA850	RC1(SO55)	1013	Slide Off	0.884	0.602	-0.00677	1.6	Pass
RC	CDMA850	RC1(SO55)	777	Slide Off	0.544	0.361	0.00112	1.6	Pass
RC	CDMA1900	RC1(SO55)	600	Slide Off	1.14	0.607	-0.072	1.6	Pass
RC	CDMA1900	RC3(SO55)	600	Slide Off	1.13	0.604	0.014	1.6	Pass
RT	CDMA1900	RC1(SO55)	600	Slide Off	1.12	0.661	0.058	1.6	Pass
LC	CDMA1900	RC1(SO55)	600	Slide Off	0.794	0.494	-0.125	1.6	Pass
LT	CDMA1900	RC1(SO55)	600	Slide Off	1.12	0.664	0.121	1.6	Pass
RC	CDMA1900	RC1(SO55)	600	Slide Up	0.057	0.028	0.066	1.6	Pass
RT	CDMA1900	RC1(SO55)	600	Slide Up	0.061	0.031	0.122	1.6	Pass
LC	CDMA1900	RC1(SO55)	600	Slide Up	0.034	0.022	0.164	1.6	Pass
LT	CDMA1900	RC1(SO55)	600	Slide Up	0.058	0.034	0.137	1.6	Pass
RC	CDMA1900	RC1(SO55)	25	Slide Off	1.15	0.617	-0.06	1.6	Pass
RC	CDMA1900	RC1(SO55)	1175	Slide Off	0.971	0.514	-0.191	1.6	Pass
RC	CDMA1900	RC3(SO55)	25	Slide Off	1.19	0.636	0.00808	1.6	Pass
RC	CDMA1900	RC3(SO55)	1175	Slide Off	0.977	0.521	-0.154	1.6	Pass
RT	CDMA1900	RC1(SO55)	25	Slide Off	1.17	0.706	-0.03	1.6	Pass
RT	CDMA1900	RC1(SO55)	1175	Slide Off	0.954	0.559	-0.106	1.6	Pass
LT	CDMA1900	RC1(SO55)	25	Slide Off	1.18	0.7	0.041	1.6	Pass
LT	CDMA1900	RC1(SO55)	1175	Slide Off	0.935	0.552	-0.179	1.6	Pass

11.3 Test Results for Body

Position	Band	Mode	Ch.	Measured 1g SAR	Measured 10g SAR	Power Drift	Limit	Result
Bottom with Holster 0cm Gap	CDMA850	FCH_RC1	384	0.45	0.316	-0.045	1.6	Pass
Bottom with Holster 0cm Gap	CDMA850	FCH_RC3	384	0.445	0.312	-0.07	1.6	Pass
Bottom with Holster 0cm Gap	CDMA850	FCH+SCH_RC3	384	0.442	0.311	-0.064	1.6	Pass
Bottom with Holster 0cm Gap	CDMA850	RTAP_9.6K	384	0.525	0.364	-0.087	1.6	Pass
Bottom with Holster 0cm Gap	CDMA850	RTAP_38.4K	384	0.489	0.346	-0.193	1.6	Pass
Bottom with Holster 0cm Gap	CDMA850	RTAP_153.6K	384	0.519	0.352	-0.136	1.6	Pass
Face with Holster 0cm Gap	CDMA850	RTAP_9.6K	384	0.282	0.194	0.03	1.6	Pass
Bottom with Holster 0cm Gap	CDMA850	RETAP_128	384	0.481	0.334	-0.062	1.6	Pass
Bottom with Holster 0cm Gap	CDMA850	RTAP_9.6K	1013	0.736	0.511	-0.109	1.6	Pass
Bottom with Holster 0cm Gap	CDMA850	RTAP_9.6K	777	0.46	0.311	0.018	1.6	Pass
Bottom with 1.5 cm Gap	CDMA850	FCH_RC1	384	0.401	0.283	-0.106	1.6	Pass
Bottom with 1.5 cm Gap	CDMA850	FCH_RC3	384	0.393	0.278	-0.051	1.6	Pass
Bottom with 1.5 cm Gap	CDMA850	FCH+SCH_RC3	384	0.424	0.301	-0.144	1.6	Pass
Bottom with 1.5 cm Gap	CDMA850	RTAP_9.6K	384	0.449	0.316	-0.194	1.6	Pass
Bottom with 1.5 cm Gap	CDMA850	RTAP_38.4K	384	0.472	0.333	-0.041	1.6	Pass
Bottom with 1.5 cm Gap	CDMA850	RTAP_153.6K	384	0.378	0.241	-0.077	1.6	Pass
Face with 1.5 cm Gap	CDMA850	RTAP_38.4K	384	0.237	0.167	0.033	1.6	Pass
Bottom with 1.5 cm Gap	CDMA850	RETAP_128	384	0.456	0.321	-0.15	1.6	Pass
Bottom with 1.5 cm Gap	CDMA850	RTAP_38.4K	1013	0.554	0.385	0.119	1.6	Pass
Bottom with 1.5 cm Gap	CDMA850	RTAP_38.4K	777	0.358	0.254	-0.024	1.6	Pass

Position	Band	Mode	Ch.	Measured 1g SAR	Measured 10g SAR	Power Drift	Limit	Result
Bottom with Holster 0cm Gap	CDMA1900	FCH_RC1	600	0.72	0.445	-0.152	1.6	Pass
Bottom with Holster 0cm Gap	CDMA1900	FCH_RC3	600	0.689	0.429	-0.104	1.6	Pass
Bottom with Holster 0cm Gap	CDMA1900	FCH+SCH_RC3	600	0.695	0.432	0.052	1.6	Pass
Bottom with Holster 0cm Gap	CDMA1900	RTAP_9.6K	600	0.751	0.452	0.017	1.6	Pass
Bottom with Holster 0cm Gap	CDMA1900	RTAP_38.4K	600	0.705	0.44	-0.059	1.6	Pass
Bottom with Holster 0cm Gap	CDMA1900	RTAP_153.6K	600	0.64	0.401	-0.05	1.6	Pass
Face with Holster 0cm Gap	CDMA1900	RTAP_9.6K	600	0.317	0.194	0.044	1.6	Pass
Bottom with Holster 0cm Gap	CDMA1900	RETAP_128	600	0.57	0.35	0.079	1.6	Pass
Bottom with Holster 0cm Gap	CDMA1900	RTAP_9.6K	25	0.655	0.418	0.117	1.6	Pass
Bottom with Holster 0cm Gap	CDMA1900	RTAP_9.6K	1175	0.54	0.339	-0.194	1.6	Pass
Bottom with 1.5 cm Gap	CDMA1900	CH_RC1	600	0.577	0.363	-0.099	1.6	Pass
Bottom with 1.5 cm Gap	CDMA1900	FCH_RC3	600	0.568	0.356	0.00668	1.6	Pass
Bottom with 1.5 cm Gap	CDMA1900	FCH+SCH_RC3	600	0.566	0.355	0.006	1.6	Pass
Bottom with 1.5 cm Gap	CDMA1900	RTAP_9.6K	600	0.722	0.44	0.063	1.6	Pass
Bottom with 1.5 cm Gap	CDMA1900	RTAP_38.4K	600	0.688	0.432	0.049	1.6	Pass
Bottom with 1.5 cm Gap	CDMA1900	RTAP_153.6K	600	0.628	0.392	0.041	1.6	Pass
Face with 1.5 cm Gap	CDMA1900	RTAP_9.6K	600	0.298	0.192	0.127	1.6	Pass
Bottom with 1.5 cm Gap	CDMA1900	RETAP_128	600	0.636	0.395	-0.075	1.6	Pass
Bottom with 1.5 cm Gap	CDMA1900	RTAP_9.6K	25	0.656	0.406	-0.131	1.6	Pass
Bottom with 1.5 cm Gap	CDMA1900	RTAP_9.6K	1175	0.496	0.317	-0.174	1.6	Pass

Test Engineer : $\underline{Gordon\ Lin}\ and\ \underline{Jay\ Lai}$

12.References

- [1] RSS-102 Issued 2, "Radio Frequency Exposure Compliance of Radio Communication Apparatus (All Frequency Bands)", November 2005
- [2] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [3] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21, 2003

Test Report No : FA860909

- [4] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [5] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [6] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [8] DASY5 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/10

System Check Head 835MHz

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 850 Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon_{-} = 40.7$; $\rho = 1000$ kg/m³

Test Report No : FA860909

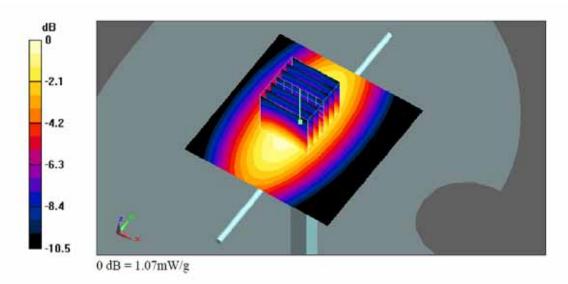
Ambient Temperature: 22.3 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.07 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.7 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.992 mW/g; SAR(10 g) = 0.646 mW/g

Maximum value of SAR (measured) = 1.07 mW/g

Test Report No : FA860909

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/10

System Check Head 1900MH

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³

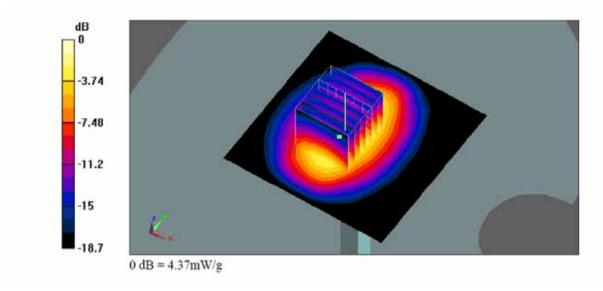
Ambient Temperature: 22.5 °C; Liquid Temperature: 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
 Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.7 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.2 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 7.02 W/kg

SAR(1 g) = 3.9 mW/g; SAR(10 g) = 2.04 mW/g

Maximum value of SAR (measured) = 4.37 mW/g

Test Report No : FA860909

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/6/11

System Check Body 835MHz

DUT: Dipole 835 MHz

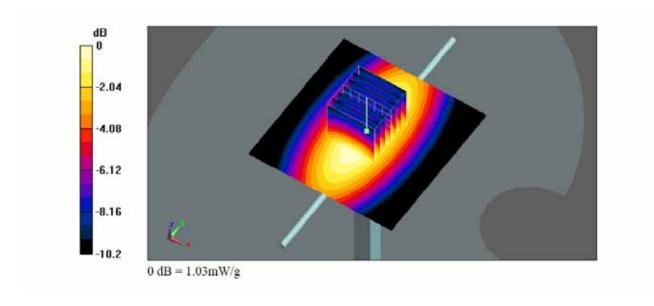
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL .850 Medium parameters used: f = 835 MHz; $\sigma = 0.987$ mho/m; $\epsilon_{\rm c} = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.1 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
 Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.04 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.8 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.958 mW/g; SAR(10 g) = 0.631 mW/gMaximum value of SAR (measured) = 1.03 mW/g

FCC SAR Test Report Test Report No : FA860909

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

System Check_Body_1900MHz

DUT: Dipole 1900 MHz

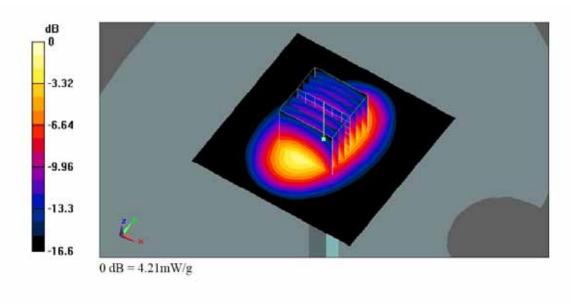
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.7 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.28 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.00706 dB

Peak SAR (extrapolated) = 6.38 W/kg

SAR(1 g) = 3.71 mW/g; SAR(10 g) = 1.98 mW/gMaximum value of SAR (measured) = 4.21 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/10

Right Cheek CDMA850 Ch1013 RC1 SO55 Slide Off

DUT: 860909

Communication System: CDMA; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium: HSL_850 Medium parameters used: f = 825 MHz; $\sigma = 0.901$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³

Test Report No : FA860909

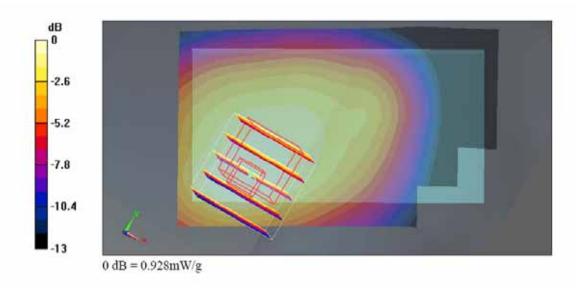
Ambient Temperature: 22.5 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch1013/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.01 mW/g


Ch1013/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.2 V/m; Power Drift = -0.00677 dB

Peak SAR (extrapolated) = 1.4 W/kg

SAR(1 g) = 0.884 mW/g; SAR(10 g) = 0.602 mW/g

Maximum value of SAR (measured) = 0.928 mW/g

Date: 2008/6/10

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Right Tilted CDMA850 Ch384 RC1 SO55 Slide Off

DUT: 860909

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1

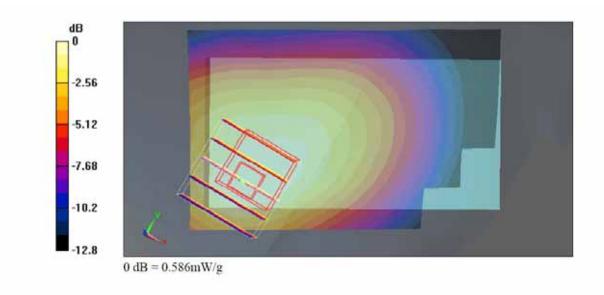
Medium: HSL_850 Medium parameters used: f = 837 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_{\mu} = 40.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch384/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.604 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.1 V/m; Power Drift = -0.105 dB

Peak SAR (extrapolated) = 0.894 W/kg

SAR(1 g) = 0.555 mW/g; SAR(10 g) = 0.384 mW/gMaximum value of SAR (measured) = 0.586 mW/g

Date: 2008/6/10

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Left Cheek CDMA850 Ch384 RC1 SO55 Slide Off

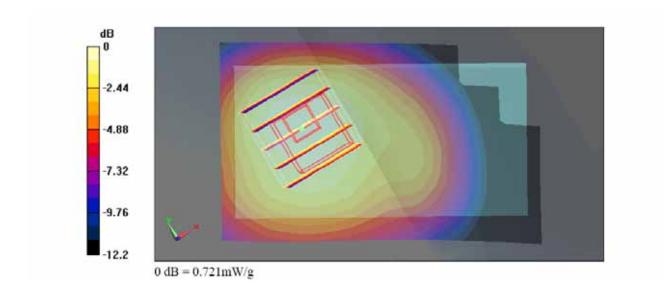
DUT: 860909

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium: HSL 850 Medium parameters used: f = 837 MHz; $\sigma = 0.912$ mho/m; $\epsilon_{-} = 40.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:


- Probe: ET3DV6 SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
 Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch384/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.729 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.5 V/m; Power Drift = -0.079 dB

Peak SAR (extrapolated) = 0.921 W/kg

SAR(1 g) = 0.685 mW/g; SAR(10 g) = 0.494 mW/gMaximum value of SAR (measured) = 0.721 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/10

Left Tilted CDMA850 Ch384 RC1 SO55 Slide Off

DUT: 860909

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1

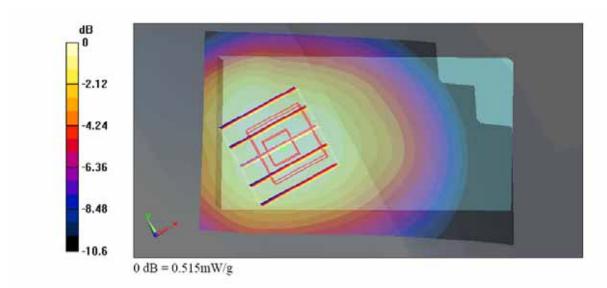
Medium: HSL_850 Medium parameters used: f = 837 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch384/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.491 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.1 V/m; Power Drift = 0.121 dB

Peak SAR (extrapolated) = 0.615 W/kg

SAR(1 g) = 0.484 mW/g; SAR(10 g) = 0.357 mW/gMaximum value of SAR (measured) = 0.515 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/10

Right Cheek_CDMA1900 Ch25_RC3_SO55_Slide Off

DUT: 860909

Communication System: CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Medium: HSL_1900 Medium parameters used: f = 1851.25 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

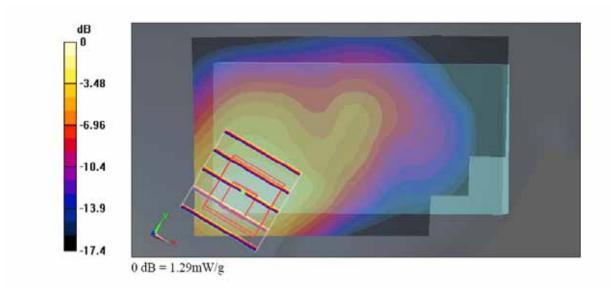
Ambient Temperature: 22.4 °C; Liquid Temperature: 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP: Type: SAM; Serial: TP-1446
 Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch25/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.35 mW/g

Ch25/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21 V/m; Power Drift = 0.00808 dB

Peak SAR (extrapolated) = 2.26 W/kg

SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.636 mW/gMaximum value of SAR (measured) = 1.29 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/10

Right Tilted_CDMA1900 Ch25_RC1_SO55_Slide Off

DUT: 860909

Communication System: CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Medium: HSL 1900 Medium parameters used: f = 1851.25 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon_{-} = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4 °C; Liquid Temperature: 21.6 °C

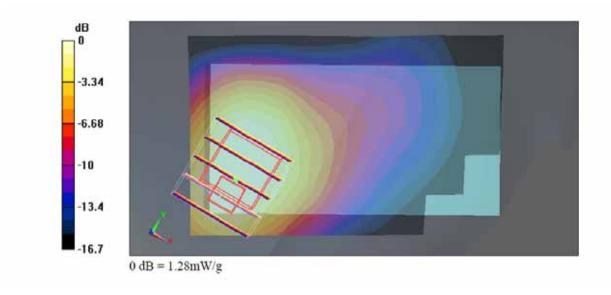
DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
 Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch25/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.39 mW/g


Ch25/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.3 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 2.1 W/kg

SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.706 mW/g

Maximum value of SAR (measured) = 1.28 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/10

Left Cheek CDMA1900 Ch600 RC1 SO55 Slide Off

DUT: 860909

Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: HSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_{\nu} = 38.5$; $\rho = 1000 \text{ kg/m}^3$

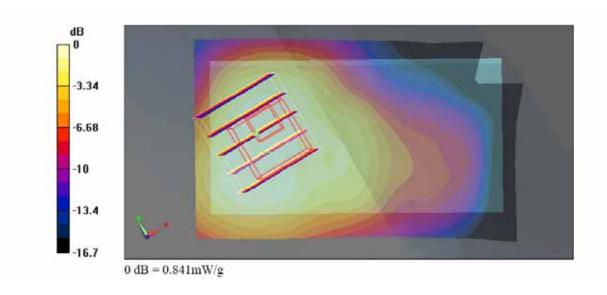
Ambient Temperature: 22.5 °C; Liquid Temperature: 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
 Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch600/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.873 mW/g


Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.1 V/m; Power Drift = -0.125 dB

Peak SAR (extrapolated) = 1.3 W/kg

SAR(1 g) = 0.794 mW/g; SAR(10 g) = 0.494 mW/g

Maximum value of SAR (measured) = 0.841 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/10

Left Tilted CDMA1900 Ch25 RC1 SO55 Slide Off

DUT: 860909

Communication System: CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Medium: HSL_1900 Medium parameters used: f = 1851.25 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C; Liquid Temperature: 21.6 °C

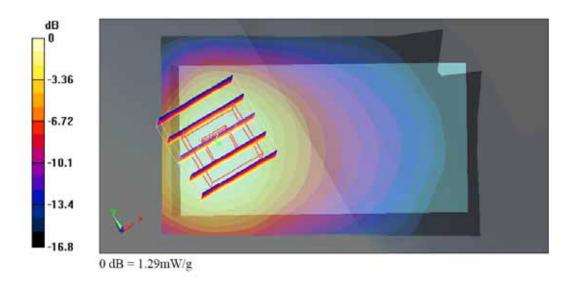
DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP: Type: SAM; Serial: TP-1446
 Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch25/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.33 mW/g


Ch25/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.9 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.700 mW/g

Maximum value of SAR (measured) = 1.29 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA850 Ch384 Face with Holster 0cm Gap 1X-EVDO RTAP 9.6K

DUT: 860909

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1

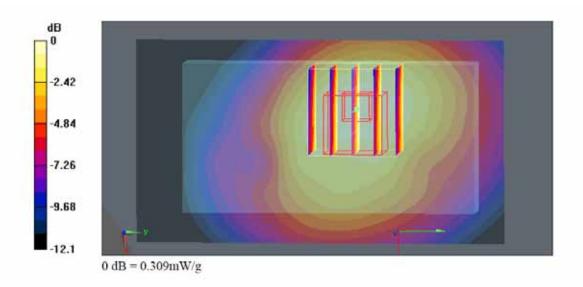
Medium: MSL_850 Medium parameters used: f = 837 MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.2 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
 Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Ch384/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.300 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 0.393 W/kg

SAR(1 g) = 0.282 mW/g; SAR(10 g) = 0.194 mW/gMaximum value of SAR (measured) = 0.309 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA850 Ch1013 Bottom with Holster 0cm Gap 1X-EVDO RTAP 9.6K

DUT: 860909

Communication System: CDMA; Frequency: 824.7 MHz; Duty Cycle: 1:1

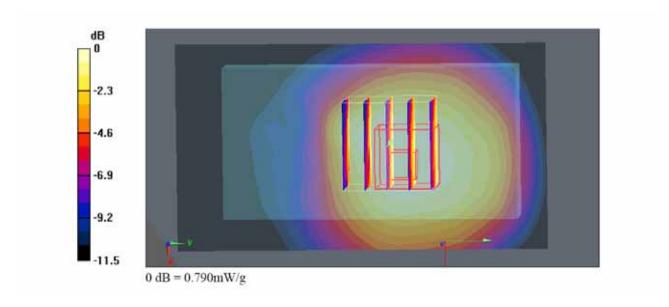
Medium: MSL_850 Medium parameters used: f = 825 MHz; $\sigma = 0.977$ mho/m; $\varepsilon_e = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.2 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
 Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Ch1013/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.835 mW/g

Ch1013/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.3 V/m; Power Drift = -0.109 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.736 mW/g; SAR(10 g) = 0.511 mW/gMaximum value of SAR (measured) = 0.790 mW/g

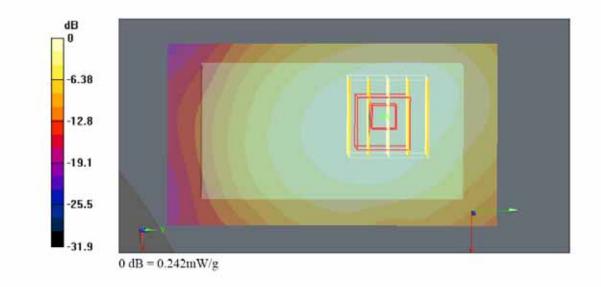
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA850 Ch384 Face with 1.5 cm Gap 1X-EVDO RTAP 38.4K

DUT: 860909

Communication System: CDMA; Frequency: 836.52 MHz;Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 837 MHz; $\sigma = 0.988$ mho/m; $\epsilon_c = 56.3$; $\rho = 1000$ kg/m³


Ambient Temperature: 22.1 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch384/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.242 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.1 V/m; Power Drift = 0.033 dB Peak SAR (extrapolated) = 0.529 W/kg SAR(1 g) = 0.237 mW/g; SAR(10 g) = 0.167 mW/gMaximum value of SAR (measured) = 0.242 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA850 Ch1013 Bottom with 1.5 cm Gap 1X-EVDO RTAP 38.4K

DUT: 860909

Communication System: CDMA; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 825 MHz; $\sigma = 0.977$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.2 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch1013/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.563 mW/g

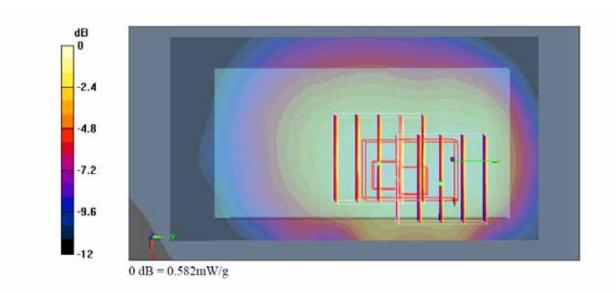
Ch1013/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.3 V/m; Power Drift = 0.119 dB

Peak SAR (extrapolated) = 0.801 W/kg

SAR(1 g) = 0.554 mW/g; SAR(10 g) = 0.385 mW/g

Maximum value of SAR (measured) = 0.586 mW/g


Ch1013/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.3 V/m; Power Drift = 0.119 dB

Peak SAR (extrapolated) = 0.794 W/kg

SAR(1 g) = 0.529 mW/g; SAR(10 g) = 0.367 mW/g

Maximum value of SAR (measured) = 0.582 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA1900 Ch600 Face with Holster 0cm Gap 1X-EVDO RTAP 9.6K

DUT: 860909

Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.6°C; Liquid Temperature: 21.5°C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch600/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.358 mW/g

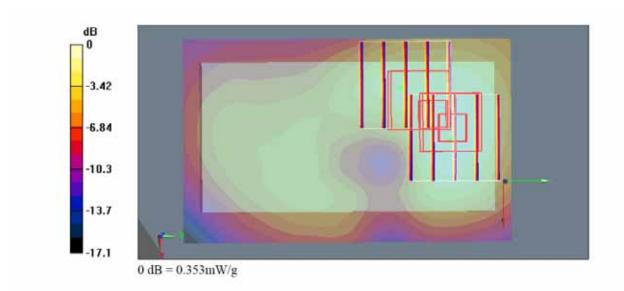
Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 0.697 W/kg

SAR(1 g) = 0.317 mW/g; SAR(10 g) = 0.194 mW/g

Maximum value of SAR (measured) = 0.349 mW/g


Ch600/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dv=8mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 0.516 W/kg

SAR(1 g) = 0.315 mW/g; SAR(10 g) = 0.185 mW/g

Maximum value of SAR (measured) = 0.353 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA1900 Ch600 Bottom with Holster 0cm Gap 1X-EVDO RTAP 9.6K

DUT: 860909

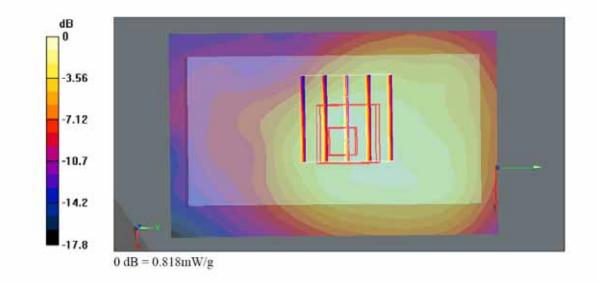
Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.7 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Ch600/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.728 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.6 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.751 mW/g; SAR(10 g) = 0.452 mW/gMaximum value of SAR (measured) = 0.818 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA1900 Ch600 Face with 1.5 cm Gap 1X-EVDO RTAP 9.6K

DUT: 860909

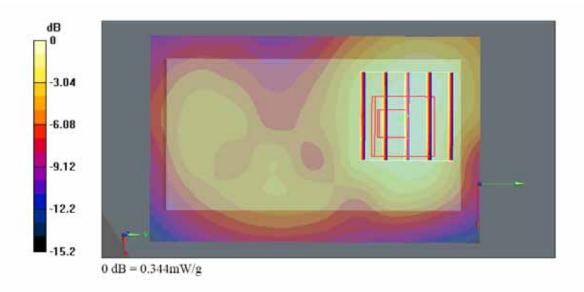
Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_c = 50.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.6°C; Liquid Temperature: 21.5°C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Ch600/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.343 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = 0.127 dB

Peak SAR (extrapolated) = 0.647 W/kg

SAR(1 g) = 0.298 mW/g; SAR(10 g) = 0.192 mW/gMaximum value of SAR (measured) = 0.344 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA1900 Ch600 Bottom with 1.5cm Gap 1X-EVDO RTAP 9.6K

DUT: 860909

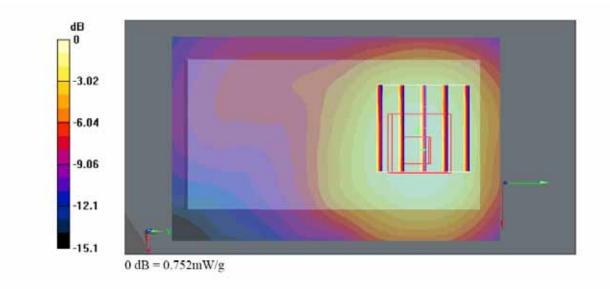
Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.6°C; Liquid Temperature: 21.5°C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Ch600/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.748 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.5 V/m; Power Drift = 0.063 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.722 mW/g; SAR(10 g) = 0.440 mW/gMaximum value of SAR (measured) = 0.752 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/10

Right Cheek CDMA850 Ch1013 RC1 SO55 Slide Off 2D

DUT: 860909

Communication System: CDMA ; Frequency: 824.7 MHz;Duty Cycle: 1:1

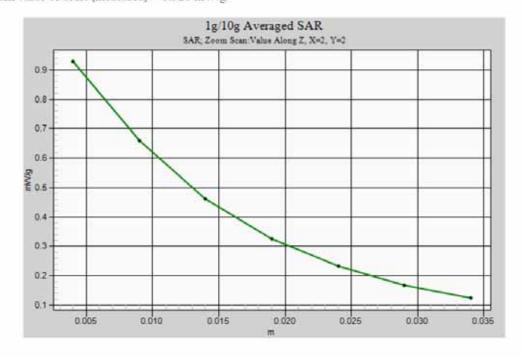
Medium: HSL_850 Medium parameters used: f = 825 MHz; $\sigma = 0.901$ mho/m; $\varepsilon_c = 40.8$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch1013/Area Scan (51x81x1): Measurement grid: dx=15mm, dv=15mm


Maximum value of SAR (interpolated) = 1.01 mW/g

Ch1013/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.2 V/m; Power Drift = -0.00677 dB

Peak SAR (extrapolated) = 1.4 W/kg

SAR(1 g) = 0.884 mW/g; SAR(10 g) = 0.602 mW/gMaximum value of SAR (measured) = 0.928 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/10

Right Cheek_CDMA1900 Ch25_RC3_SO55_Slide Off_2D

DUT: 860909

Communication System: CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1

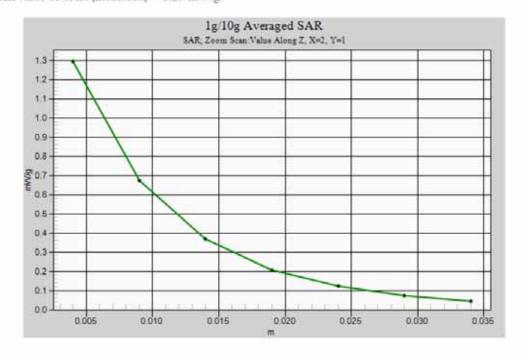
Medium: HSL_1900 Medium parameters used: f = 1851.25 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch25/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.35 mW/g

Ch25/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21 V/m; Power Drift = 0.00808 dB

Peak SAR (extrapolated) = 2.26 W/kg

SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.636 mW/gMaximum value of SAR (measured) = 1.29 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA850 Ch1013 Bottom with Holster 0cm Gap 1X-EVDO RTAP 9.6K 2D

DUT: 860909

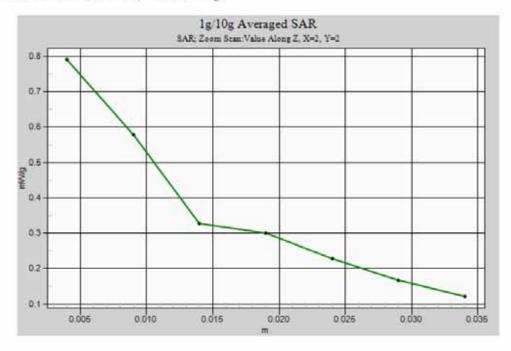
Communication System: CDMA ; Frequency: 824.7 MHz;Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 825 MHz; $\sigma = 0.977$ mho/m; $\varepsilon_c = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.2 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Ch1013/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.835 mW/g

Ch1013/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.3 V/m; Power Drift = -0.109 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.736 mW/g; SAR(10 g) = 0.511 mW/gMaximum value of SAR (measured) = 0.790 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA850 Ch1013 Bottom with 1.5 cm Gap 1X-EVDO RTAP 38.4K 2D

DUT: 860909

Communication System: CDMA ; Frequency: 824.7 MHz;Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 825 MHz; $\sigma = 0.977$ mho/m; $\epsilon_{\nu} = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.2 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch1013/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.563 mW/g

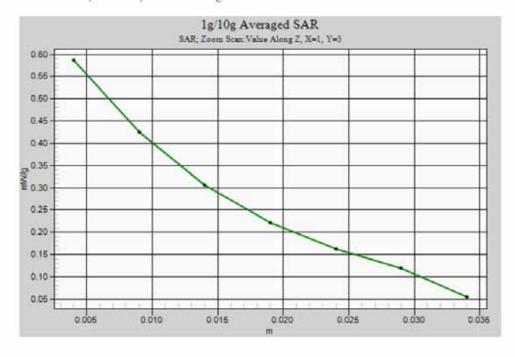
Ch1013/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.3 V/m; Power Drift = 0.119 dB

Peak SAR (extrapolated) = 0.801 W/kg

SAR(1 g) = 0.554 mW/g; SAR(10 g) = 0.385 mW/g

Maximum value of SAR (measured) = 0.586 mW/g


Ch1013/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.3 V/m; Power Drift = 0.119 dB

Peak SAR (extrapolated) = 0.794 W/kg

SAR(1 g) = 0.529 mW/g; SAR(10 g) = 0.367 mW/g

Maximum value of SAR (measured) = 0.582 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/6/11

Body CDMA1900 Ch600 Bottom with Holster 0cm Gap 1X-EVDO RTAP 9.6K 2D

DUT: 860909

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1

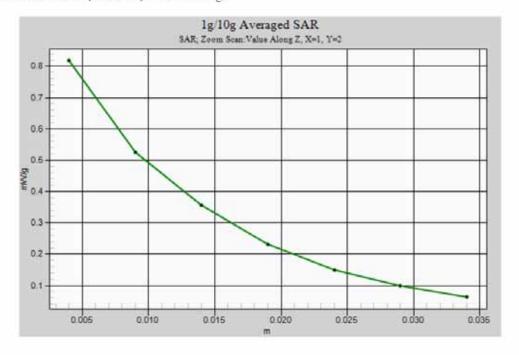
Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_s = 50.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.7 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch600/Area Scan (51x81x1): Measurement grid: dx=15mm, dv=15mm


Maximum value of SAR (interpolated) = 0.728 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.6 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.751 mW/g; SAR(10 g) = 0.452 mW/gMaximum value of SAR (measured) = 0.818 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/6/11

Body CDMA1900 Ch600 Bottom with 1.5cm Gap 1X-EVDO RTAP 9.6K 2D

DUT: 860909

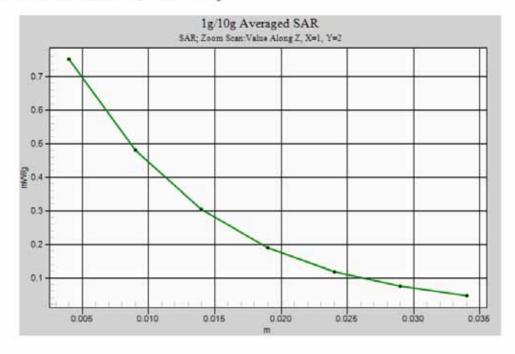
Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_e = 50.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.6 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
 Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Ch600/Area Scan (51x81x1): Measurement grid: dx=15mm, dv=15mm Maximum value of SAR (interpolated) = 0.748 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0; Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.5 V/m; Power Drift = 0.063 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.722 mW/g; SAR(10 g) = 0.440 mW/gMaximum value of SAR (measured) = 0.752 mW/g

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Test Report No : FA860909

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON			
CALIBRATION (CERTIFICATE		
Object	D835V2 - SN: 49	9	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 17, 2008		
Condition of the calibrated item	In Tolerance		
All calibrations have been condu	cted in the closed laborator	y facility: environment temperature (22 ± 3)°C and	d humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		Alternative Conference (1997)
Calibration Equipment used (M&	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter EPM-442A	TE critical for calibration) ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736)	Scheduled Calibration Oct-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736)	Scheduled Calibration Oct-08 Oct-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	TE critical for calibration) ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736)	Scheduled Calibration Oct-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718)	Scheduled Calibration Oct-08 Oct-08 Aug-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08)	Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07)	Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07)	Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07)	Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07)	Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07)	Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08
Calibration Equipment used (M&	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07)	Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08

Certificate No: D835V2-499_Mar08

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

Test Report No : FA860909

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossarv:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x.v.z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result

Certificate No: D835V2-499 Mar08

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	\$
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.29 mW/g
SAR normalized	normalized to 1W	9.16 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.16 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.50 mW/g
SAR normalized	normalized to 1W	6.00 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.00 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-499_Mar08

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	-	2000

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 mW/g
SAR normalized	normalized to 1W	9.84 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.52 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.63 mW / g
SAR normalized	normalized to 1W	6.52 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	6.37 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-499_Mar08

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 2.3 jΩ
Return Loss	- 28.9 dB

Test Report No : FA860909

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω - 3.3 jΩ	
Return Loss	- 29.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 10, 2003

Certificate No: D835V2-499_Mar08

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 17.03.2008 11:32:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41.5$; $\rho = 1000$ kg/m³

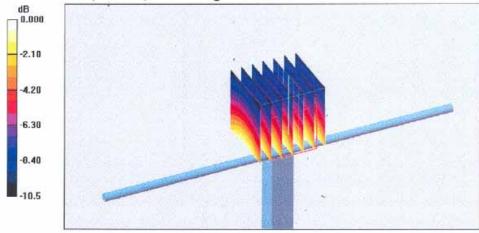
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(6.09, 6.09, 6.09); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

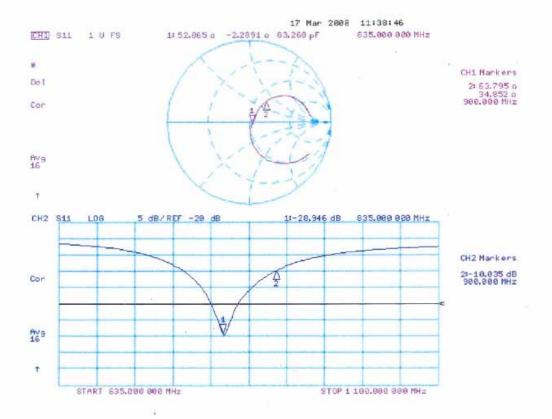
Unnamed procedure/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.9 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.5 mW/g


Maximum value of SAR (measured) = 2.58 mW/g

0 dB = 2.58 mW/g

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-499_Mar08

Page 7 of 9

DASY4 Validation Report for Body TSL

Date/Time: 10.03.2008 12:48:36

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900;

Medium parameters used: f = 835 MHz; $\sigma = 1 \text{ mho/m}$; $\varepsilon_r = 54$; $\rho = 1000 \text{ kg/m}^3$

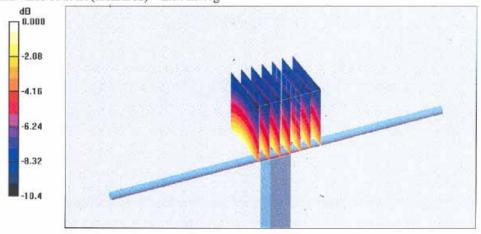
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.85, 5.85, 5.85); Calibrated: 01.03.2008
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

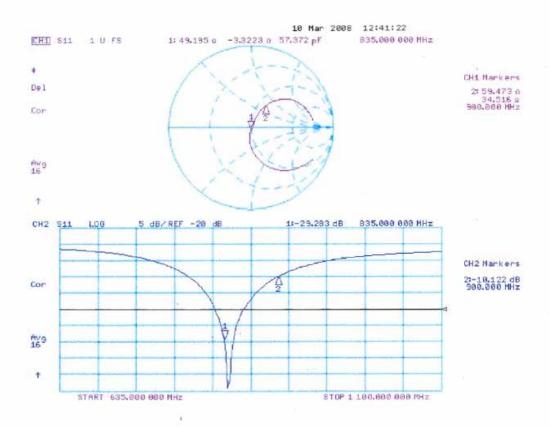
Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.8 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.63 mW/g


Maximum value of SAR (measured) = 2.64 mW/g

0 dB = 2.64 mW/g

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-499_Mar08

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: D1900V2-5d041_Mar08 Client Sporton (Auden) CALIBRATION CERTIFICATE D1900V2 - SN: 5d041 Object QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits March 18, 2008 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Power meter EPM-442A GB37480704 04-Oct-07 (METAS, No. 217-00736) Oct-08 Power sensor HP 8481A US37292783 04-Oct-07 (METAS, No. 217-00736) Oct-08 SN: 5086 (20g) Reference 20 dB Attenuator 07-Aug-07 (METAS, No 217-00718) Aug-08 Reference 10 dB Attenuator SN: 5047.2 (10r) 07-Aug-07 (METAS, No 217-00718) Aug-08 Reference Probe ES3DV2 Mar-09 SN: 3025 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) DAF4 SN 909 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Sep-07 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (SPEAG, in house check Oct-07) In house check: Oct-08 RF generator R&S SMT-06 100005 4-Aug-99 (SPEAG, in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Oct-07) In house check: Oct-08 Power meter EPM-442A GB37480704 04-Oct-07 (METAS, No. 217-00736) Oct-08 Function Calibrated by: Marcel Fehr Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: March 18, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d041_Mar08

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Test Report No : FA860909

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d041_Mar08

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	V
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	1.47 mho/m ± 6 %
Head TSL temperature during test	(21.1 ± 0.2) °C		- Name

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.1 mW/g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	39.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.20 mW / g
SAR normalized	normalized to 1W	20.8 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.6 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d041_Mar08

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

1511	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature during test	(21.4 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW/g
SAR for nominal Body TSL parameters ²	normalized to 1W	40.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5,44 mW / g
SAR normalized	normalized to 1W	21.8 mW/g
SAR for nominal Body TSL parameters ²	normalized to 1W	21.3 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d041_Mar08

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.0 \Omega + 5.1 j\Omega$	
Return Loss	- 24.2 dB	

Test Report No : FA860909

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω + 6.1 j Ω	
Return Loss	- 23.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 04, 2003

Certificate No: D1900V2-5d041_Mar08

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 18.03.2008 12:05:10

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

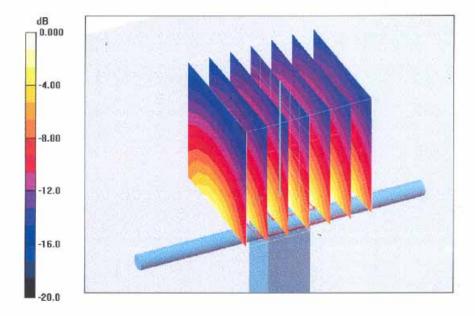
Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

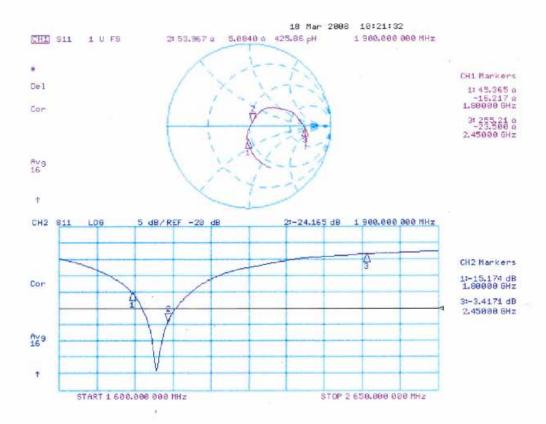
DASY4 Configuration:


- Probe: ES3DV2 SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.7 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 19.1 W/kg


SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.2 mW/g Maximum value of SAR (measured) = 11.8 mW/g

0 dB = 11.8 mW/g

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d041_Mar08

Page 7 of 9

DASY4 Validation Report for Body TSL

Date/Time: 14.03.2008 13:22:24

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

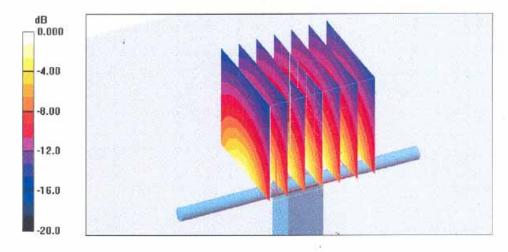
Medium: MSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ mho/m}$; $\epsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

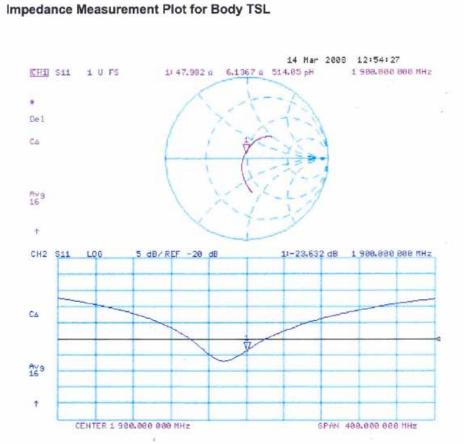
Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Probe: ES3DV2 SN3025; ConvF(4.5, 4.5, 4.5); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.7 V/m: Power Drift = 0.004 dB


Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.44 mW/g Maximum value of SAR (measured) = 12.0 mW/g

0 dB = 12.0 mW/g

Certificate No: D1900V2-5d041_Mar08

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: DAE3-577 Nov07 CALIBRATION CERTIFICATE DAE3 - SD 000 D03 AA - SN: 577 Object QA CAL-06.v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Calibration date: November 16, 2007 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Fluke Process Calibrator Type 702 SN: 6295803 04-Oct-07 (Elcal AG, No: 6467) Oct-08 Oct-08 Keithley Multimeter Type 2001 SN: 0810278 03-Oct-07 (Elcal AG, No: 6465) Check Date (in house) Scheduled Check Secondary Standards ID# Calibrator Box V1.1 SE UMS 006 AB 1004 25-Jun-07 (SPEAG, in house check) In house check Jun-08 Function Calibrated by: Dominique Steffen Technician Fin Bomholt R&D Director Approved by: Issued: November 16, 2007 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-577_Nov07

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary

DAE Connector angle data acquisition electronics

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov07

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.432 ± 0.1% (k=2)	403.884 ± 0.1% (k=2)	404.331 ± 0.1% (k=2)
Low Range	3.94218 ± 0.7% (k=2)	3.94771 ± 0.7% (k=2)	3.94526 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	268°±1°
Commoder range to be accommodate to continue	200 2 1

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	200000	199999.3	0.00
Channel X + Input	20000	20005.75	0.03
Channel X - Input	20000	-19997.67	-0.01
Channel Y + Input	200000	199999.5	0.00
Channel Y + Input	20000	20002.82	0.01
Channel Y - Input	20000	-20004.40	0.02
Channel Z + Input	200000	199999.6	0.00
Channel Z + Input	20000	20005.54	0.03
Channel Z - Input	20000	-20001.11	0.01

Low Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000.1	0.00
Channel X + Input	200	199.12	-0.44
Channel X - Input	200	-200.64	0.32
Channel Y + Input	2000	2000	0.00
Channel Y + Input	200	199.96	-0.02
Channel Y - Input	200	-201.00	0.50
Channel Z + Input	2000	1999.9	0.00
Channel Z + Input	200	199.05	-0.47
Channel Z - Input	200	-201.08	0.54

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Averaģe Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.88	12.97
	- 200	-12.40	-14.29
Channel Y	200	-6.32	-6.22
	- 200	5.34	5.31
Channel Z	200	1.08	0.59
	- 200	-1.42	-1.66

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	1.14	0.16
Channel Y	200	1.52	-	3.87
Channel Z	200	0.23	0.75	-

Certificate No: DAE3-577_Nov07

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15969	16269
Channel Y	15848	16148
Channel Z	16203	16661

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.12	-1.70	1.72	0.50
Channel Y	-2.46	-3.42	-1.39	0.44
Channel Z	-0.78	-2.16	0.00	0.29

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)	
Channel X	0.2000	199.3	
Channel Y	0.2001	199.9	
Channel Z	0.1999	199.4	

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.0	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Certificate No: DAE3-577_Nov07

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: ET3-1788_Sep07

Accreditation No.: SCS 108

Object	ET3DV6 - SN:1788					
Calibration procedure(s)	QA CAL-01 v6 Calibration procedure for dosimetric E-field probes					
Calibration date:	September 26,	2007				
Condition of the calibrated item	In Tolerance	The state of the bright is				
All calibrations have been conduct Calibration Equipment used (M&		ory facility: environment temperature (22 ± 3)°C and	a hurrecity < 70%.			
	1	등에게 하게 되었다는 그 맛이 그리고 어떻게 하셨습니다.	- 전하는 중앙상당보이다 기원			
South Will Table to Partie of the Property of the State o	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration			
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08			
Power meter E4419B Power sensor E4412A	GB41293874 MY41495277	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Mar-08 Mar-08			
Power meter E4419B Power sensor E4412A Power sensor E4412A	GB41293874 MY41495277 MY41498067	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Mar-08 Mar-08 Mar-08			
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	G841293874 MY41495277 MY41498087 SN: S5054 (3c)	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719)	Mar-08 Mar-08 Mar-06 Aug-08			
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	G841293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08			
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	G841293874 MY41495277 MY41498087 SN: S5054 (3c)	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720)	Mar-08 Mar-08 Mar-06 Aug-08			
Primary Standards Power mater E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08			
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 854	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07) Check Date (in house)	Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08			
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2	GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 854	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07)	Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08			
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07) Check Date (in house) 4-Aug-69 (SPEAG, in house check Nov-05)	Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07			
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: \$5129 (30b) SN: \$654 ID # U\$3642U01700 U\$37390585	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07			

Certificate No: ET3-1788_Sep07

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF DCP

sensitivity in TSL / NORMx,y,z diode compression point

Polarization o

φ rotation around probe axis

Polarization 8

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, v.z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,v,z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, v, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788 Sen07

Page 2 of 9

ET3DV6 SN:1788

September 26, 2007

Probe ET3DV6

SN:1788

Manufactured:

May 28, 2003

Last calibrated:

September 19, 2006

Modified:

September 24, 2007

Recalibrated:

September 26, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788_Sep07

Page 3 of 9

ET3DV6 SN:1788

September 26, 2007

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in Free Space ^A				Diode Compression ^B		
١	NormX	1.72 ± 10.1%	$\mu V/(V/m)^2$	DCP X	91 mV	
1	NormY	1.66 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	93 mV	
	NormZ	1.70 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	94 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	6.2	3.3
SAR _{be} [%]	With Correction Algorithm	0.4	1.0

TSL

1810 MHz

Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	12.0	8.1	
SAR _{be} [%]	With Correction Algorithm	0.2	0.1	

Sensor Offset

Probe Tip to Sensor Center

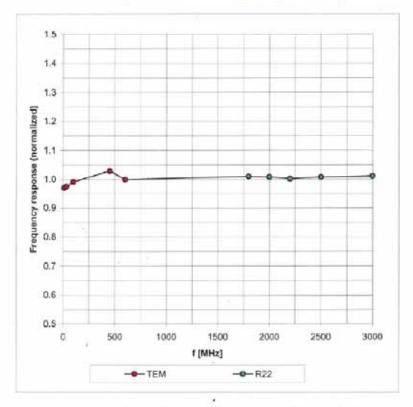
2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1788_Sep07

Page 4 of 9

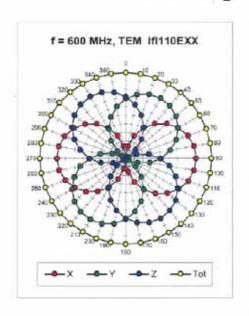
[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

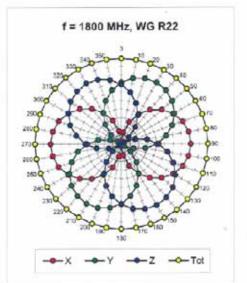

^{*} Numerical linearization parameter; uncertainty not required.

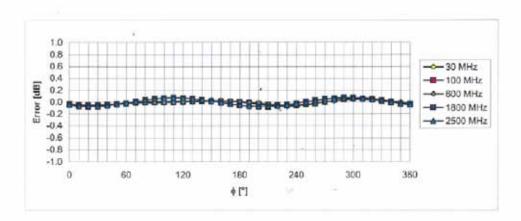
September 26, 2007

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

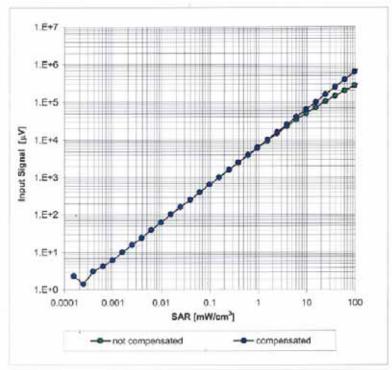

Certificate No: ET3-1788_Sep07

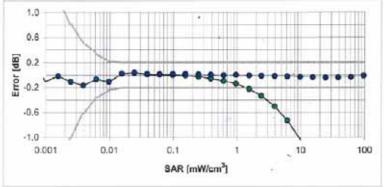

Page 5 of 9

September 26, 2007

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

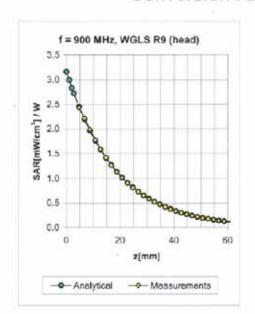

Certificate No: ET3-1788_Sep07

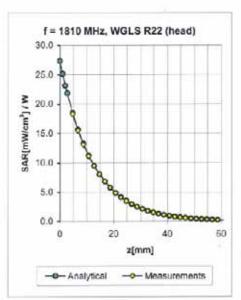

Page 6 of 9

September 26, 2007

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1788_Sep07

Page 7 of 9

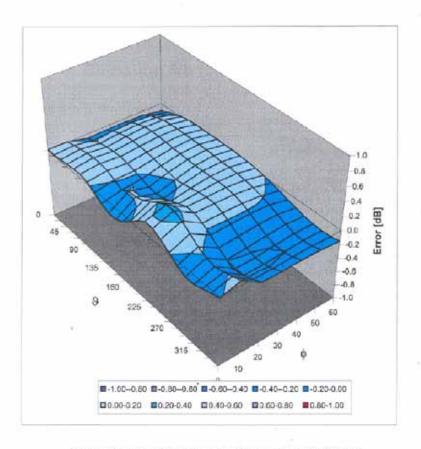
September 26, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	$0.97 \pm 5\%$	0.22	3.28	6.54 ± 11.0% (k=2)
1810	±50/±100	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.59	2.15	5.28 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	40.0 ± 5%	$1.40 \pm 5\%$	0.60	2.23	4.87 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	$1.80 \pm 5\%$	0.61	2.39	4.58 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.28	2.94	6.37 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.63	2.39	4.75 ± 11.0% (k=2)
2000	\pm 50 / \pm 100	Body	53.3 ± 5%	1.52 ± 5%	0.63	2.33	4.36 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.61	2.58	4.17 ± 11.8% (k=2)

Certificate No: ET3-1788_Sep07

Page 8 of 9


^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

September 26, 2007

Deviation from Isotropy in HSL

Error (φ, Θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep07

Page 9 of 9