

Specific Absorption Rate (SAR) Test Report for High Tech Computer Corp. on the Pocket PC Phone

Report No.	: FA792103-04
Model Name	: FOMA HT1100(Neno100)
FCC ID	: NM8NEON100
Date of Testing	: Jan. 10, 2008
Date of Report	: Jan. 14, 2008
Date of Review	: Jan. 14, 2008

- The test results refer exclusively to the presented test model/sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev.01.

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

1.	State	ment of Compliance	1
2.	Admi	nistration Data	2
	2.1	Testing Laboratory	2
	2.2	Detail of Applicant	2
	2.3	Detail of Manufacturer	2
	2.4	Application Detail	2
3.	Gene	ral Information	3
	3.1	Description of Device Under Test (DUT)	3
	3.2		4
	3.3	Applied Standards:	5
	3.4		6
		Test Conditions:	6
	0.0	3.5.1 Ambient Condition	6
		3.5.2 Test Configuration	
4.	Snoci	fic Absorption Rate (SAR)	7
4.	4.1		7
		SAR Definition	7
F	4.Z	Measurement Setup	/
5.			0
	5.1	5.1.1 ET3DV6 E-Field Probe System	9
	5.0	5.1.2 ET3DV6 E-Field Probe Calibration	· 10
		DATA Acquisition Electronics (DAE)	· 11
	5.3		· 12
	5.4	Measurement Server	·12
	5.5	SAM Twin Phantom	·12
	5.6		·14
	5.7	Data Storage and Evaluation	· 15
		5.7.1 Data Storage	· 15
		5.7.2 Data Evaluation	· 15
	5.8	Test Equipment List	· 18
6.	Tissu	e Simulating Liquids	- 19
7.	Unce	rtainty Assessment	· 21
8.	SAR	Measurement Evaluation	
	8.1	Purpose of System Performance Check	· 23
	8.2	System Setup	· 23
	8.3	Validation Results	· 25
9.	Desc	ription for DUT Testing Position	· 26
10.		urement Procedures	
		Spatial Peak SAR Evaluation	
	10.2	Scan Procedures	· 29
	10.3	SAR Averaged Methods	. 29
	10.4	- FCC 3G Policy	- 29
11.	SAR	Test Results	. 30
		Right Cheek with EUT Open	- 30
	11.2	Right Tilted with EUT Open	
	11.3	Left Cheek with EUT Open	- 30
		Left Tilted with EUT Open	
	11.5	Right Cheek with EUT Close	-31
		Right Tilted with EUT Close	
		Left Cheek with EUT Close	
		Left Tilted with EUT Close	
		Keypad Up with 1.5cm Gap	
	11.9	Ceypad Op with 1.5cm Gap	-00 _2∕
10	Defe-	ences	24
			. 20
		A - System Performance Check Data	
		B - SAR Measurement Data C - Calibration Data	

Appendix C - Calibration Data Appendix D - Product Photo Appendix E - Setup Photo

1. <u>Statement of Compliance</u>

The Specific Absorption Rate (SAR) maximum results found during testing for the High Tech Computer Corp. Pocket PC Phone FOMA HT1100(Neno100) are as follows (with expanded uncertainty 21.9%):

Position	GSM850 (W/kg)	PCS 1900 (W/kg)	WCDMA Band V (W/kg)
Head for HW:A01	0.377	0.752	0.256
Body (with 1.5cm Gap) for HW:A01	1.2	1.43	0.357

The co-location of GSM/GPRS/EDGE and Bluetooth and co-location of WCDMA/HSDPA and Bluetooth were also checked. They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Roy Wu Manager

2. Administration Data

2.1 <u>Testing Laboratory</u>

Company Name :	Sporton International Inc.
Department :	Antenna Design/SAR
Address :	No.52, Hwa-Ya 1 st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,
	TaoYuan Hsien, Taiwan, R.O.C.
Telephone Number :	886-3-327-3456
Fax Number :	886-3-328-4978

2.2 Detail of Applicant

Company Name :	High Tech Computer Corp.
Address :	1F, No.6-3, Baoqiang Rd, Xindian City, Taipei, Taiwan

2.3 Detail of Manufacturer

Company Name :	High Tech Computer Corp.
Address :	1F, No.6-3, Baoqiang Rd, Xindian City, Taipei, Taiwan

2.4 Application Detail

Date of reception of application:	Jan. 03, 2008
Start of test :	Jan. 10, 2008
End of test :	Jan. 10, 2008

3. General Information

3.1 Description of Device Under Test (DUT)

DUT Type :	Pocket PC Phone		
Model Name :	FOMA HT1100(Neno100)		
FCC ID :	NM8NEON100		
Tx Frequency :	GSM850 / WCDMA Band V : 824 ~ 849 MHz PCS1900 : 1850 ~ 1910 MHz		
Rx Frequency :	GSM850 / WCDMA Band V : 869 ~ 894 MHz PCS1900 : 1930 ~ 1990 MHz		
HW Version:	XC01 A01		
SW Version:	25.50.30.01 25.70.30.05		
Antenna Type :	Bluetooth: PIFA Antenna		
GPRS / EGPRS Multislot class :	12		
Maximum Output Power to Antenna :	GSM850 : 32.98 dBm(GSM) / 32.83 dBm(GPRS12) / 26.47 dBm(EDGE12) PCS1900 : 29.71 dBm(GSM) / 29.58 dBm(GPRS12) / 25.25 dBm(EDGE12) WCDMA : 23.51 dBm(12.2kbps) / 23.56 dBm(64kbps) / 23.45 dBm(144kbps) Band V 23.40 dBm(384kbps) / 23.85 dBm (12.2k +HSDPA) Bluetooth : 1.18 dBm (1Mbps) / 2.23 dBm (2Mbps) / 2.47 dBm (3Mbps)		
Type of Modulation :	GSM / GPRS : GMSK EDGE : 8PSK WCDMA / HSDPA : QPSK Bluetooth (1Mbps) : GFSK Bluetooth EDR (2Mbps) : /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		
Power Rating :	DC 3.7V		
DUT Stage :	Production Unit		
Application Type :	Certification		
Accessory :	Battery : Simplo, NEON160		

3.2 Product Photo

Please refer to Appendix D

3.3 <u>Applied Standards:</u>

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Pocket PC Phone is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528-2003, and OET Bulletin 65 Supplement C (Edition 01-01) Preliminary Guidance for Reviewing Applications for Certification of 3G Device. May 2006. SAR Measurement Procedures for 3G Devices. June 2006.

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 <u>Test Conditions:</u>

3.5.1 Ambient Condition

Item	HSL_850	MSL_850	HSL_1900	MSL_1900
Ambient Temperature (°C)	20-24			
Tissue simulating liquid temperature (°C)	21.5	21.5	22.1	21.6
Humidity (%)		<6	0 %	

3.5.2 <u>Test Configuration</u>

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT.

Measurements were performed on the lowest, middle, and highest channel for each testing position for head SAR testing. Measurements were performed only on the middle channel if the SAR is below 3 dB of limit for body SAR testing.

The DUT was set from the emulator to radiate maximum output power during all tests.

For Head SAR testing, EUT is in GSM and WCDMA link mode. In GSM link mode, its crest factor is 8.3. In WCDMA link mode, its crest factor is 1.

For body SAR testing, EUT is in GPRS/EDGE or WCDMA/HSDPA link mode. In GPRS/EDGE link mode, its crest factor is 2, because EUT is GPRS/EDGE class 12 device. In WCDMA/HSDPA link mode, its crest factor is 1.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

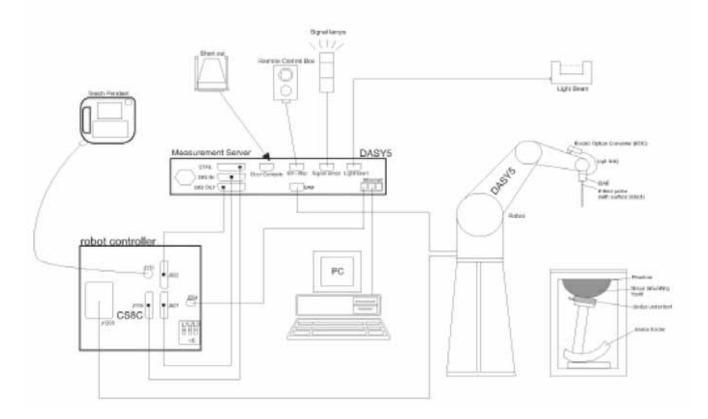
SAR is expressed in units of Watts per kilogram (W/kg)

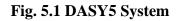
SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \, \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by


$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$


, where is the conductivity of the tissue, is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. <u>SAR Measurement Setup</u>

The DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY5 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY5 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 ET3DV6 E-Field Probe Specification

Construction	Symmetrical design with triangular core	
	Built-in optical fiber for surface detection	
	system	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to	
	organic solvents)	
Frequency	10 MHz to 3 GHz	
Directivity	\pm 0.2 dB in brain tissue (rotation around	
·	probe axis)	
	\pm 0.4 dB in brain tissue (rotation	
	perpendicular to probe axis)	
Dynamic Range	$5 \mu W/g$ to > 100mW/g; Linearity: ±0.2dB	
Surface Detection	± 0.2 mm repeatability in air and clear	
	liquids on reflecting surface	
Dimensions	Overall length: 330mm	
	Tip length: 16mm	
	Body diameter: 12mm	
	Tip diameter: 6.8mm	
	Distance from probe tip to dipole centers:	
	2.7mm	
Application	General dosimetry up to 3GHz	
	Compliance tests for mobile phones and	
	Wireless LAN	
	Fast automatic scanning in arbitrary	
	phantoms	

Fig. 5.2 Probe Setup on Robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

ET3DV6 sn1788

Sensitivity	X axis : 1.72 μV		Y axis : 1.66 μV		Z axis : 1.70 μV
Diode compression point	X axis : 91 mV		Y axis : 93 mV		Z axis : 94 mV
	Frequency (MHz)	X axis		Y axis	Z axis
Conversion factor (Head / Body)	800~1000	6.54 / 6.37		6.54 / 6.37	6.54 / 6.37
	1710~1910	~1910 5.28 / 4.75		5.28 / 4.75	5.28 / 4.75
	Frequency (MHz)	Alpha		Depth	
Boundary effect (Head / Body)	800~1000	0.22 / 0.28		3.28 / 2.94	
	1710~1910	0.59 / 0.63		2.15/ 2.39	

NOTE:

> The probe parameters have been calibrated by the SPEAG.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 <u>Robot</u>

The DASY5 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

5.4 <u>Measurement Server</u>

The DASY5 measurement server is based on a PC/104 CPU board with 400 MHz CPU 128 MB chipdisk and 128 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 <u>SAM Twin Phantom</u>

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- ➢ Left head
- ➢ Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

*Water-sugar based liquid

*Glycol based liquids

Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $_{\rm r}$ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-less media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY5 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcpi
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as :

Test Report No : FA792103-04

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated :

E-field probes :
$$E_i \equiv \sqrt{\frac{V_i}{Norm_iConvF}}$$

H-field probes : $H_i \equiv \sqrt{V_i} \frac{a_{i0+}a_{i1}f + a_{i2}f^2}{f}$
with V_i = compensated signal of channel i ($i = x, y, z$)
 $Norm_i$ = sensor sensitivity of channel i ($i = x, y, z$)
 $V_i = V/(V/m)^2$ for E-field Probes
 $ConvF$ = sensitivity enhancement in solution
 a_{ij} = sensor sensitivity factors for H-field probes
 f = carrier frequency [GHz]
 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel *i* in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} \quad = \quad \sqrt{E_X^2 + E_Y^2 + E_Z^2}$$

z)

y, z)

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/gEtot = total field strength in V/m= conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm^3

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.8 <u>Test Equipment List</u>

Manufacture	Name of Equipment	Type/Model	Serial Number	Calib	ration
Manufacture	Name of Equipment	Type/1010dei	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Sep. 26, 2007	Sep. 26, 2008
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 15, 2006	Mar. 15, 2008
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 21, 2006	Mar. 21, 2008
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 21, 2006	Nov. 21, 2007
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR
SPEAG	Software	DASY5 V5.0 Build 87	N/A	NCR	NCR
SPEAG	Software	SEMCAD X V12.4 Build 52	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
Agilent	ENA Series Network Analyzer	E5071C	MY46100746	Feb. 21, 2007	Feb. 21, 2008
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Dec. 22, 2006	Dec. 22, 2008
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR
Agilent	Power Meter	E4416A	GB41292344	Feb. 08, 2007	Feb. 08, 2008
Agilent	Power Sensor	E9327A	US40441548	Feb. 08, 2007	Feb. 08, 2008
Agilent	Signal Generator	E8247C	MY43320596	Mar. 01, 2006	Mar. 01, 2008

Table 5.1 Test Equipment List

6. <u>Tissue Simulating Liquids</u>

For the measurement of the field distribution inside the SAM phantom with DASY5, the phantom must be filled with around 25 liters of homogeneous tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR)or from the flat phantom to the liquid top surface (body SAR) is 15.2cm.

The following ingredients for tissue simulating liquid are used:

- **Water**: deionized water (pure H_20), resistivity 16M as basis for the liquid
- Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- Salt: pure NaCl to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- DGMBE: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 – to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of head and body tissue simulating liquid for frequency
band 850MHz and 1900 MHz.

Ingredient	HSL-850	MSL_850	HSL-1900	MSL-1900
Water	532.98 g	631.68 g	552.42 g	716.56 g
Cellulose	0 g	0 g	0 g	0 g
Salt	18.3 g	11.72 g	3.06 g	4.0 g
Preventol D-7	2.4 g	1.2 g	0 g	0 g
Sugar	766.0 g	600.0 g	0 g	0 g
DGMBE	0 g	0 g	444.52 g	300.67 g
Total amount	1 liter (1.3 kg)	1 liter (1.3 kg)	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric Parameters at 22°	$f = 835 \text{ MHz} r = 41.5 \pm 5\%, = 0.90 \pm 5\% \text{ S/m}$	$r = 55.2 \pm 5\%$,	$\begin{array}{l} f{=} 1900 \text{ MHz} \\ \epsilon_{r}{=} 40.0{\pm}5\%, \\ \sigma{=} 1.4{\pm}5\% \text{ S/m} \end{array}$	f= 1900 MHz ϵ_r = 53.3±5 %, σ = 1.52±5% S/m

 Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Bands	Position	Frequency (MHz)	Permittivity (r)	Conductivity ()	Measurement Date		
		824.2	40.5	0.886			
	Head	836.4	40.4	0.899	Jan. 10, 2008		
GSM850 (824 ~ 849 MHz)		848.8	40.3	0.913			
		824.2	55.2	0.956			
	Body	836.4	55.0	0.969	Jan. 10, 2008		
		848.8	54.9	0.981			
		1850.2	39.8	1.36			
	Head	1880.0	39.7	1.39	Jan. 10, 2008		
PCS		1909.8	39.6	1.42			
(1850 ~ 1910 MHz)		1850.2	52.2	1.51			
	Body	1880.0	52.1	1.54	Jan. 10, 2008		
		1909.8	52.0	1.57			
		826.4	40.5	0.889			
	Head	836.4	40.4	0.899	Jan. 10, 2008		
WCDMA Band V		846.6	40.3	0.911			
(824 ~ 849 MHz)		826.4	55.1	0.959			
	Body	836.4	55.0	0.969	Jan. 10, 2008		
		846.6	54.9	0.979			

Table 6.2 shows the measuring results for head and muscle simulating liquid.

Table 6.2 Measuring Results for Muscle Simulating Liquid

The measuring data are consistent with $_{r}$ = 41.5 ± 5% and = 0.90 ± 5% for head GSM850 and WCDMA band V, $_{r}$ = 55.2 ± 5% and = 0.97 ± 5% for body GSM850 and WCDMA band V, $_{r}$ = 40.0 ± 5% and = 1.40 ± 5% for head PCS band, $_{r}$ = 53.3 ± 5%, = 1.52 ± 5% for body PCS band.

7. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	1/k ^(b)	1/ 3	1/ 6	1/ 2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) is the coverage factor

Table 7.1 Multiplying Factions for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY5 uncertainty Budget is showed in Table 7.2.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement Equipment						
Probe Calibration	±5.9 %	Normal	1	1	±5.9 %	8
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	8
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	8
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	00
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	±2.7 %	00
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	00
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	00
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	x
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	±1.5 %	x
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	x
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	x
Probe Positioner	±0.4 %	Rectangular	$\sqrt{3}$	1	±0.2 %	x
Probe Positioning	±2.9 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Max. SAR Eval.	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9	145
Device Holder	±3.6 %	Normal	1	1	±3.6	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9	x
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3	x
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6	∞
Liquid Permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5	∞
Combined Standard Uncertainty					±10.9	387
Coverage Factor for 95 %		K=2				
Expanded uncertainty (Coverage factor = 2)					±21.9	

 Table 7.2 Uncertainty Budget of DASY5

8. SAR Measurement Evaluation

Each DASY5 system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY5 software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 <u>Purpose of System Performance Check</u>

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835MHz and 1900MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

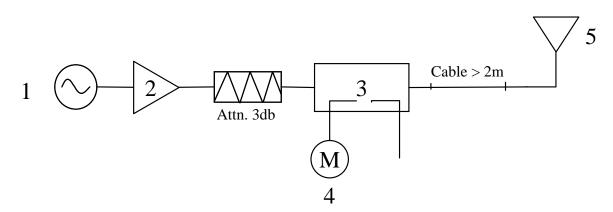


Fig. 8.1 System Evaluation Setup

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 835 MHz or 1900 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Position	Band	SAR	Target (W/kg)	Measurement data (W/kg)	Variation	Measurement Date	
	GSM850	SAR (1g)	9.24	9.17	-0.8 %	Jan. 10, 2008	
	(835MHz)	SAR (10g)	6.07	6.07	0.0 %	Jan. 10, 2008	
Head	PCS (1900MHz)	SAR (1g)	38.4	39.9	3.9 %	Jan. 10, 2008	
пеац		SAR (10g)	20.5	21.4	4.4 %	Jan. 10, 2008	
	WCDMA band V (835MHz)	SAR (1g)	9.24	9.17	-0.8 %	Jan. 10, 2008	
		SAR (10g)	6.07	6.07	0.0 %	Jan. 10, 2008	
	GSM850	SAR (1g)	9.91	9.67	-2.4 %	Jan. 10, 2008	
	(835MHz)	SAR (10g)	6.55	6.38	-2.6 %	Jan. 10, 2008	
Body	PCS	SAR (1g)	41.1	41.5	1.0 %	Jan. 10, 2008	
Бойу	(1900MHz)	SAR (10g)	21.8	21.9	0.5 %	Jan. 10, 2008	
	WCDMA band V	SAR (1g)	9.91	9.67	-2.4 %	Jan. 10, 2008	
	(835MHz)	SAR (10g)	6.55	6.38	-2.6 %	Jan. 10, 2008	

 Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in 10 different positions. They are left cheek with EUT Open, left tilted with EUT Open, right cheek with EUT Open, right tilted with EUT Open, left cheek with EUT Close, left tilted with EUT Close, right cheek with EUT Close, right tilted with EUT Close, body worn with keypad up and body worn with keypad down as illustrated below:

- 1) "Cheek Position"
 - i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.
 - ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).
- 2) "Tilted Position"
 - i) To position the device in the "cheek" position described above.
 - ii) While maintaining the device the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).
- 3) "Body Worn"
 - i) To position the device parallel to the phantom surface.
 - ii) To adjust the phone parallel to the flat phantom.
 - iii) To adjust the distance between the EUT surface and the flat phantom to 1.5 cm.

Remark: Please refer to Appendix E for the test setup photo.

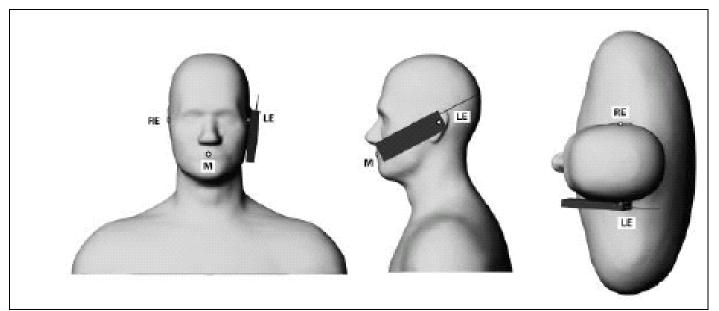


Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

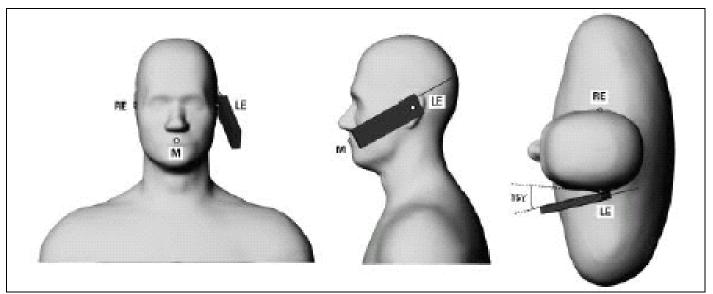


Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

10.<u>Measurement Procedures</u>

The measurement procedures are as follows:

- Linking DUT with base station emulator CMU200 in middle channel
- Setting CMU200 to allow DUT to radiate maximum output power
- Measuring output power through RF cable and power meter
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY5 software
- Taking data for the lowest, middle, and highest channel on each testing position

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 <u>SAR Averaged Methods</u>

In DASY5, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

10.4 FCC 3G Policy

Sample pre-testing of the various modes were preformed and chose the worst case as part of subset testing justification.

11. SAR Test Results

11.1 <u>Right Cheek with EUT Open</u>

HW Version	Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	I imite	Results
		128	824.2 (Low)	GMSK	32.95	-	-	-	-
	GSM850	189	836.4 (Mid)	GMSK	32.93	-0.085	0.042	1.6	Pass
		251	848.8 (High)	GMSK	32.98	-	-	-	-
		512	1850.2 (Low)	GMSK	29.71	-	-	-	-
XC01	PCS	661	1880.0 (Mid)	GMSK	29.56	0.003	0.069	1.6	Pass
		810	1909.8 (High)	GMSK	29.42	-	-	-	-
		4132	826.4(Low)	GMSK	23.51	-	-	-	-
	WCDMA Band V	4182	836.4(Mid)	GMSK	23.27	-0.15	0.05	1.6	Pass
		4233	846.6(High)	GMSK	23.30	-	-	-	-

11.2 <u>Right Tilted with EUT Open</u>

HW Version	Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
		128	824.2 (Low)	GMSK	32.95	-	-	-	-
	GSM850	189	836.4 (Mid)	GMSK	32.93	0.026	0.027	1.6	Pass
		251	848.8 (High)	GMSK	32.98	-	-	-	-
	PCS	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
XC01		661	1880.0 (Mid)	GMSK	29.56	0.126	0.076	1.6	Pass
		810	1909.8 (High)	GMSK	29.42	-	-	-	-
		4132	826.4(Low)	GMSK	23.51	-	-	-	-
	WCDMA Band V	4182	836.4(Mid)	GMSK	23.27	0.178	0.031	1.6	Pass
		4233	846.6(High)	GMSK	23.30	-	-	-	-

11.3 Left Cheek with EUT Open

HW Version	Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
		128	824.2 (Low)	GMSK	32.95	-	-	-	-
	GSM850	189	836.4 (Mid)	GMSK	32.93	0.06	0.042	1.6	Pass
		251	848.8 (High)	GMSK	32.98	-	-	-	-
	PCS	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
XC01		661	1880.0 (Mid)	GMSK	29.56	0.167	0.038	1.6	Pass
		810	1909.8 (High)	GMSK	29.42	-	-	-	-
		4132	826.4(Low)	GMSK	23.51	-	-	-	-
	WCDMA Band V	4182	836.4(Mid)	GMSK	23.27	0.143	0.043	1.6	Pass
		4233	846.6(High)	GMSK	23.30	-	-	-	-

HW Version	Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
		128	824.2 (Low)	GMSK	32.95	-	-	-	-
	GSM850	189	836.4 (Mid)	GMSK	32.93	-0.087	0.025	1.6	Pass
		251	848.8 (High)	GMSK	32.98	-	-	-	-
	PCS	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
XC01		661	1880.0 (Mid)	GMSK	29.56	0.027	0.067	1.6	Pass
		810	1909.8 (High)	GMSK	29.42	-	-	-	-
		4132	826.4(Low)	GMSK	23.51	-	-	-	-
	WCDMA Band V	4182	836.4(Mid)	GMSK	23.27	0.175	0.025	1.6	Pass
		4233	846.6(High)	GMSK	23.30	-	-	-	-

11.4 Left Tilted with EUT Open

11.5 <u>Right Cheek with EUT Close</u>

HW Version	Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
		128	824.2 (Low)	GMSK	32.95	-	-	-	-
	GSM850	189	836.4 (Mid)	GMSK	32.93	-0.146	0.283	1.6	Pass
		251	848.8 (High)	GMSK	32.98	-	-	-	-
		512	1850.2 (Low)	GMSK	29.71	-	-	-	-
	PCS	661	1880.0 (Mid)	GMSK	29.56	-0.193	0.595	1.6	Pass
XC01		810	1909.8 (High)	GMSK	29.42	-	-	-	-
	WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-0.024	0.181	1.6	Pass
		4182	836.4(Mid)	GMSK	23.27	0.084	0.321	1.6	Pass
		4233	846.6(High)	GMSK	23.30	0.038	0.26	1.6	Pass
	WCDMA Band V with BT On	4182	836.4(Mid)	GMSK	23.27	-0.157	0.281	1.6	Pass
	WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
A01		4182	836.4(Mid)	GMSK	23.27	-0.098	0.256	1.6	Pass
		4233	846.6(High)	GMSK	23.30	-	-	-	-

11.6 <u>Right Tilted with EUT Close</u>

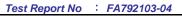
HW Version	Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	GSM850	128	824.2 (Low)	GMSK	32.95	-	-	-	-
		189	836.4 (Mid)	GMSK	32.93	0.172	0.209	1.6	Pass
		251	848.8 (High)	GMSK	32.98	-	-	-	-
	PCS	512	1850.2 (Low)	GMSK	29.71	0.029	0.716	1.6	Pass
		661	1880.0 (Mid)	GMSK	29.56	-0.017	0.679	1.6	Pass
XC01		810	1909.8 (High)	GMSK	29.42	0.057	0.728	1.6	Pass
	PCS with BT On	810	1909.8 (High)	GMSK	29.42	0.016	0.727	1.6	Pass
	WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
		4182	836.4(Mid)	GMSK	23.27	-0.196	0.233	1.6	Pass
		4233	846.6(High)	GMSK	23.30	-	-	-	-

HW Version	Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
XC01	GSM850	128	824.2 (Low)	GMSK	32.95	-0.198	0.209	1.6	Pass
		189	836.4 (Mid)	GMSK	32.93	-0.025	0.304	1.6	Pass
		251	848.8 (High)	GMSK	32.98	-0.152	0.421	1.6	Pass
	GSM850 with BT On	251	848.8 (High)	GMSK	32.98	0.005	0.418	1.6	Pass
	PCS	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
		661	1880.0 (Mid)	GMSK	29.56	-0.041	0.481	1.6	Pass
		810	1909.8 (High)	GMSK	29.42	-	-	-	-
	WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
		4182	836.4(Mid)	GMSK	23.27	-0.124	0.297	1.6	Pass
		4233	846.6(High)	GMSK	23.30	-	-	-	-
A01	GSM850	128	824.2 (Low)	GMSK	32.95	_	-	-	-
		189	836.4 (Mid)	GMSK	32.93	-	-	-	-
		251	848.8 (High)	GMSK	32.98	-0.117	0.377	1.6	Pass

11.7 Left Cheek with EUT Close

11.8 Left Tilted with EUT Close

HW Version	Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
XC01	GSM850	128	824.2 (Low)	GMSK	32.95	-	-	-	-
		189	836.4 (Mid)	GMSK	32.93	-0.06	0.204	1.6	Pass
		251	848.8 (High)	GMSK	32.98	-	-	-	-
	PCS	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
		661	1880.0 (Mid)	GMSK	29.56	-0.062	0.708	1.6	Pass
		810	1909.8 (High)	GMSK	29.42	-	-	-	-
	WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
		4182	836.4(Mid)	GMSK	23.27	-0.046	0.207	1.6	Pass
		4233	846.6(High)	GMSK	23.30	-	-	-	-
A01	PCS	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
		661	1880.0 (Mid)	GMSK	29.56	-	-	-	-
		810	1909.8 (High)	GMSK	29.42	-0.167	0.752	1.6	Pass


11.9 <u>Keypad Up with 1.5cm Gap</u>

HW Version	Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	GSM850	128	824.2 (Low)	GMSK	32.72	-	-	-	-
	(GPRS12)	189	836.4 (Mid)	GMSK	32.70	-0.118	0.256	1.6	Pass
		251	848.8 (High)	GMSK	32.71	-	-	-	-
	GSM850	128	824.2 (Low)	8PSK	26.37	-	-	-	-
	(EDGE12)	189	836.4 (Mid)	8PSK	26.38	-	-	-	-
	(EDGE12)	251	848.8 (High)	8PSK	26.36	-	-	-	-
	PCS	512	1850.2 (Low)	GMSK	28.06	-	-	-	-
	(GPRS12)	661	1880.0 (Mid)	GMSK	28.42	-0.155	0.518	1.6	Pass
	(01 (012)	810	1909.8 (High)	GMSK	28.87	-	-	-	-
	PCS (EDGE12)	512	1850.2 (Low)	8PSK	23.78	-	-	-	-
		661	1880.0 (Mid)	8PSK	24.18	-	-	-	-
		810	1909.8 (High)	8PSK	24.63	-	-	-	-
XC01	WCDMA Band V (RMC 12.2K)	4132	826.4(Low)	GMSK	23.51	-	-	-	-
with		4182	836.4(Mid)	GMSK	23.27	-0.107	0.193	1.6	Pass
Earphone A		4233	846.6(High)	GMSK	23.30	-	-	-	-
	WCDMA Band V (RMC 64K)	4132	826.4(Low)	QPSK	23.56	-	-	-	-
		4182	836.4(Mid)	QPSK	23.40	-	-	-	-
		4233	846.6(High)	QPSK	23.29	-	-	-	-
	WCDMA Band V (RMC 144K)	4132	826.4(Low)	QPSK	23.45	-	-	-	-
		4182	836.4(Mid)	QPSK	23.30	-	-	-	-
		4233	846.6(High)	QPSK	23.34	-	-	-	-
	WCDMA Band V	4132	826.4(Low)	QPSK	23.40	-	-	-	-
	(RMC 384K)	4182	836.4(Mid)	QPSK	23.13	-	-	-	-
		4233	846.6(High)	QPSK	23.36	-	-	-	-
	WCDMA Band V (RMC 12.2K +	4132	826.4(Low)	QPSK	23.85	-	-	-	-
		4182	836.4(Mid)	QPSK	23.82	-	-	-	-
	HSDPA)	4233	846.6(High)	QPSK	23.78	-	-	-	-

Power Measured Conducted Modulation HW Freq. Limits Chan. Band Power Drift 1g SAR Results Version (W/Kg)(MHz) Туре (W/kg)(dBm) (\mathbf{dB}) 128 824.2 (Low) GMSK 32.72 -0.139 0.759 1.6 Pass **GSM850** 189 GMSK 32.70 -0.166 Pass 836.4 (Mid) 1.02 1.6 (GPRS12) 251 848.8 (High) GMSK 32.71 -0.199 1.39 1.6 Pass **GSM850** 848.8 (High) GMSK 32.71 (GPRS12) 251 -0.154 1.35 1.6 Pass with BT On 8PSK 128 824.2 (Low) 26.37 _ **GSM850** 836.4 (Mid) 8PSK 26.38 -0.15 0.356 Pass 189 1.6 (EDGE12) 251 848.8 (High) 8PSK 26.36 -0.096 512 1850.2 (Low) GMSK 28.06 1.2 1.6 Pass PCS 1.6 661 1880.0 (Mid) GMSK 28.42 0.143 1.11 Pass (GPRS12) 810 1909.8 (High) GMSK 28.87 -0.129 1.19 1.6 Pass PCS (GPRS12) 512 1850.2 (Low) GMSK 28.06 -0.016 1.14 1.6 Pass with BT On 512 1850.2 (Low) 8PSK 23.78 PCS 661 1880.0 (Mid) 8PSK 24.18 -0.016 0.413 1.6 Pass (EDGE12) **XC01** 810 1909.8 (High) 8PSK 24.63 ---with 4132 826.4(Low) GMSK 23.51 Earphone A WCDMA Band V 4182 836.4(Mid) GMSK 23.27 -0.141 0.402 1.6 Pass (RMC 12.2K) 4233 846.6(High) GMSK 23.30 _ -_ -826.4(Low) 4132 **OPSK** 23.56 WCDMA Band V 4182 836.4(Mid) **QPSK** 23.400.027 0.42 1.6 Pass (RMC 64K) 4233 846.6(High) **QPSK** 23.29 -_ --4132 826.4(Low) **QPSK** 23.45 -0.055 0.396 1.6 Pass WCDMA Band V 4182 836.4(Mid) **QPSK** 23.30 -0.103 0.427 1.6 Pass (RMC 144K) 23.34 Pass 4233 846.6(High) **QPSK** 0.005 0.47 1.6 WCDMA Band V 4233 **OPSK** 23.34 -0.087 0.441 (RMC 144K) 846.6(High) 1.6 Pass with BT On **OPSK** 23.40 4132 826.4(Low) WCDMA Band V 4182 836.4(Mid) **QPSK** 23.13 0.015 0.419 1.6 Pass (RMC 384K) 4233 **OPSK** 23.36 846.6(High) _ _ _ _ 4132 **QPSK** 23.85 WCDMA Band V 826.4(Low) (RMC 12.2K + 4182 836.4(Mid) **QPSK** -0.07 0.317 1.6 Pass 23.82 HSDPA) 4233 846.6(High) **OPSK** 23.78 ---_ A01 128 824.2 (Low) GMSK 32.72 _ _ _ _ **GSM850** with 189 836.4 (Mid) GMSK 32.70 (GPRS12) Earphone A 251 848.8 (High) GMSK 32.71 -0.162 1.13 1.6 Pass 512 1850.2 (Low) 0.00193 1.35 A01 GMSK 28.06 1.6 Pass PCS with Pass 661 1880.0 (Mid) GMSK 28.42 -0.105 1.43 1.6 (GPRS12) Earphone A 810 1909.8 (High) GMSK 28.87 -0.037 1.31 1.6 Pass 4132 **QPSK** 23.45 A01 826.4(Low) WCDMA Band V with 4182 836.4(Mid) **OPSK** 23.30 (RMC 144K) Earphone A 0.225 4233 846.6(High) **OPSK** -0.12 23.34 1.6 Pass

11.10Keypad Down with 1.5cm Gap

HW Version	Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
A01	GSM850	128	824.2 (Low)	GMSK	32.72	-0.131	1.08	1.6	Pass
with	(GPRS12)	189	836.4 (Mid)	GMSK	32.70	-0.136	1.07	1.6	Pass
Earphone B	(01 (012)	251	848.8 (High)	GMSK	32.71	-0.174	1.2	1.6	Pass
A01	PCS	512	1850.2 (Low)	GMSK	28.06	-0.151	1.39	1.6	Pass
with	(GPRS12)	661	1880.0 (Mid)	GMSK	28.42	-	-	-	-
Earphone B	(01 (012)	810	1909.8 (High)	GMSK	28.87	-	-	-	-
A01	WCDMA Band V	4132	826.4(Low)	QPSK	23.45	-0.066	0.218	1.6	Pass
with	(RMC 144K)	4182	836.4(Mid)	QPSK	23.30	-0.064	0.357	1.6	Pass
Earphone B		4233	846.6(High)	QPSK	23.34	-0.036	0.259	1.6	Pass

Test Engineer : Eric Huang, Gordon Lin, John Tsai and Jason Wang

12. References

- FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21, 2003
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Date: 2008/1/10

Appendix A - System Performance Check Data

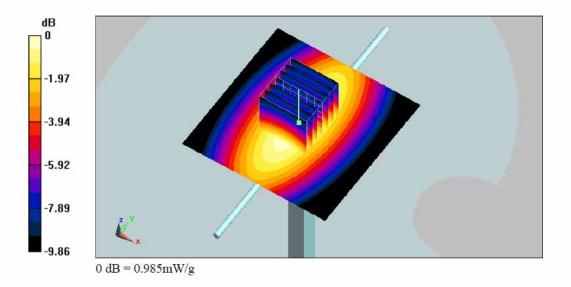
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

System Check_Head_835MHz

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.898$ mho/m; $\varepsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.1 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:


- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446

- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.991 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 34.3 V/m; Power Drift = 0.018 dB Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 0.917 mW/g; SAR(10 g) = 0.607 mW/g Maximum value of SAR (measured) = 0.985 mW/g

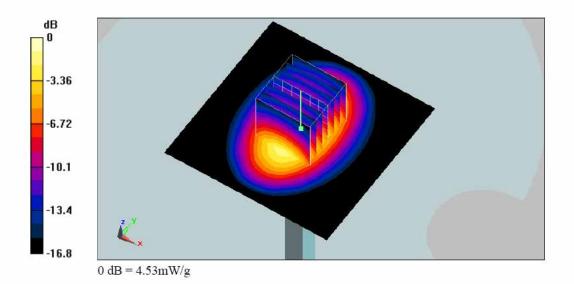
Date: 2008/1/10

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

System Check_Head_1900MHz

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1900 MHz; σ = 1.39 mho/m; ϵ_r = 39.2; ρ = 1000 kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 22.1 °C


DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.6 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.5 V/m; Power Drift = 0.019 dB Peak SAR (extrapolated) = 6.75 W/kg SAR(1 g) = 3.99 mW/g; SAR(10 g) = 2.14 mW/g Maximum value of SAR (measured) = 4.53 mW/g

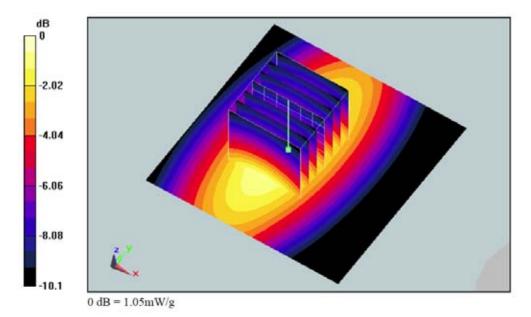
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/1/10

System Check_Body_835MHz

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 835 MHz; σ = 0.965 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Ambient Temperature : 22.8 °C; Liquid Temperature : 21.5 °C


DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.947 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.1 V/m; Power Drift = -0.023 dB Peak SAR (extrapolated) = 1.39 W/kg SAR(1 g) = 0.967 mW/g; SAR(10 g) = 0.638 mW/g Maximum value of SAR (measured) = 1.05 mW/g

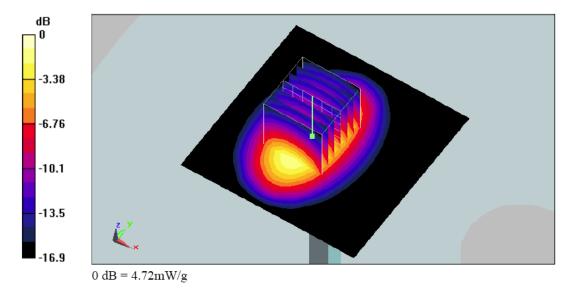
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/1/10

System Check_Body_1900MHz

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.56$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.0 °C; Liquid Temperature : 21.6 °C


DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.85 mW/g

 $\label{eq:product} \begin{array}{l} \mbox{Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.7 V/m; Power Drift = -0.00983 dB \\ \mbox{Peak SAR (extrapolated) = 7.15 W/kg} \\ \mbox{SAR(1 g) = 4.15 mW/g; SAR(10 g) = 2.19 mW/g} \\ \mbox{Maximum value of SAR (measured) = 4.72 mW/g} \end{array}$

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/1/10

Left Cheek GSM850 Ch251_Close

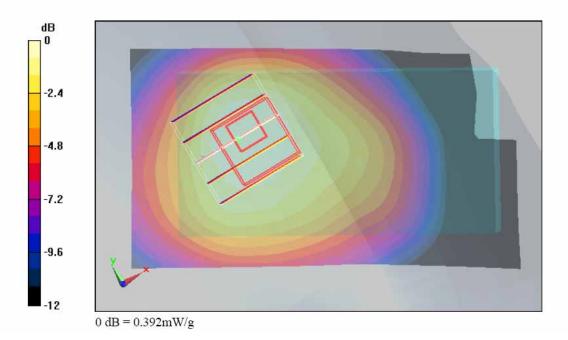
DUT: 792103-04

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:2 Medium: HSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.913$ mho/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.1 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2007/11/16

- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446

- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.411 mW/g

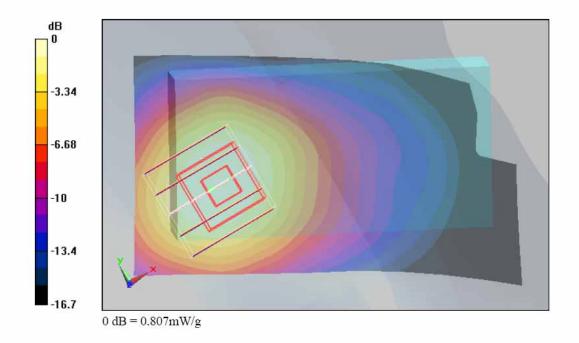
Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.1 V/m; Power Drift = -0.117 dB Peak SAR (extrapolated) = 0.502 W/kg SAR(1 g) = 0.377 mW/g; SAR(10 g) = 0.276 mW/g Maximum value of SAR (measured) = 0.392 mW/g

Date: 2008/1/10

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Left Tilted PCS Ch810 Close

DUT: 792103-04


Communication System: PCS; Frequency: 1909.8 MHz;Duty Cycle: 1:2 Medium: HSL_1900 Medium parameters used: f = 1910 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 22.1 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.843 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.5 V/m; Power Drift = -0.167 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.752 mW/g; SAR(10 g) = 0.467 mW/g Maximum value of SAR (measured) = 0.807 mW/g

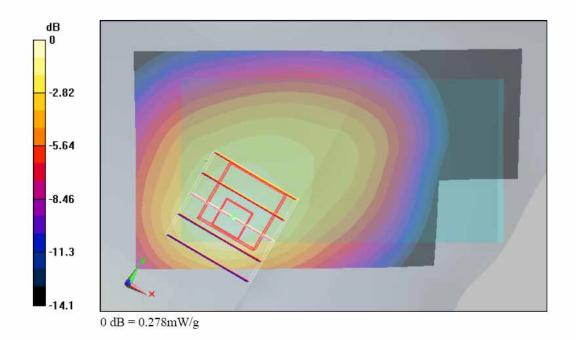
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/1/10

Right Cheek_WCDMA Ch4182_Close

DUT: 792103-04

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\varepsilon_r = 40.4$; $\rho =$


 1000 kg/m^3 Ambient Temperature : 22.4 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

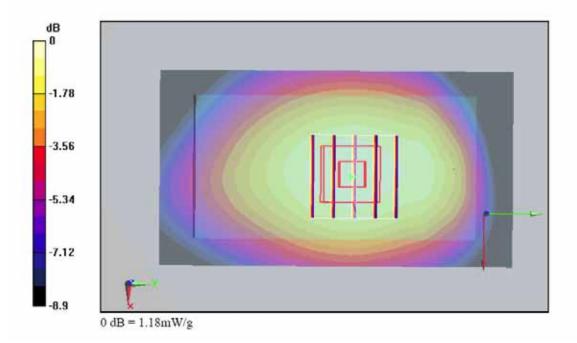
- Probe: ET3DV6 SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
 Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.277 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.5 V/m; Power Drift = -0.098 dB Peak SAR (extrapolated) = 0.446 W/kg SAR(1 g) = 0.256 mW/g; SAR(10 g) = 0.159 mW/gMaximum value of SAR (measured) = 0.278 mW/g

Body_GSM850 Ch251_Keypad Down With 1.5cm Gap_GPRS12_Earphone-B

DUT: 792103-04


Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:2 Medium: MSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.981$ mho/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.8 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

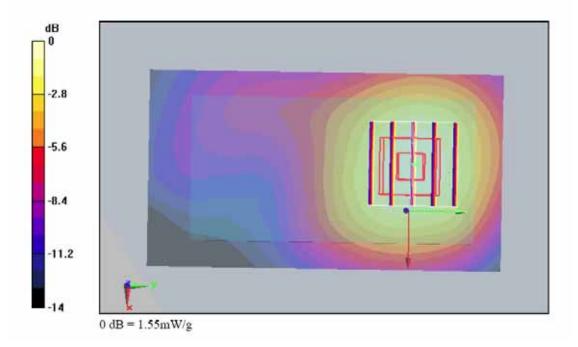
Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.19 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.6 V/m; Power Drift = -0.174 dBPeak SAR (extrapolated) = 1.43 W/kgSAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.826 mW/gMaximum value of SAR (measured) = 1.18 mW/g

Body_PCS Ch661_Keypad Down with 1.5cm Gap_GPRS12_Earphone-2

DUT: 792103-04

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:2 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature : 22.0 °C; Liquid Temperature : 21.6 °C


DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.54 mW/g

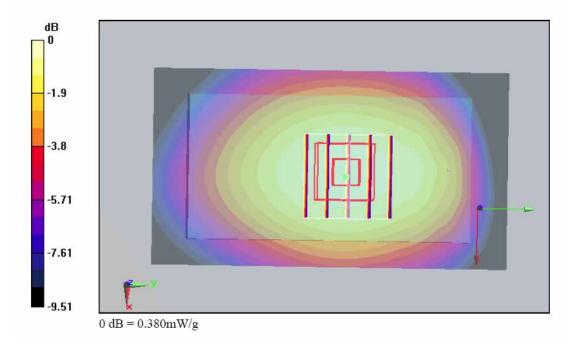
 $\begin{array}{l} \textbf{Ch661/Zoom Scan (5x5x7)/Cube 0: } Measurement grid: dx=8mm, dy=8mm, dz=5mm \\ \text{Reference Value} = 30.1 \ \text{V/m; Power Drift} = -0.105 \ \text{dB} \\ \text{Peak SAR (extrapolated)} = 2.24 \ \text{W/kg} \\ \textbf{SAR(1 g)} = 1.43 \ \text{mW/g; SAR(10 g)} = 0.885 \ \text{mW/g} \\ \text{Maximum value of SAR (measured)} = 1.55 \ \text{mW/g} \\ \end{array}$

Date: 2008/1/10

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body_WCDMA Ch4182_Keypad Down With 1.5cm Gap_RMC 144K_Earphone-B

DUT: 792103-04


Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.969$ mho/m; $\varepsilon_r = 55$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.8 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.377 mW/g

 $\label{eq:characteristic} \begin{array}{l} \mbox{Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.3 V/m; Power Drift = -0.064 dB \\ \mbox{Peak SAR (extrapolated) = 0.458 W/kg} \\ \mbox{SAR(1 g) = 0.357 mW/g; SAR(10 g) = 0.262 mW/g} \\ \mbox{Maximum value of SAR (measured) = 0.380 mW/g} \end{array}$

Date: 2008/1/10

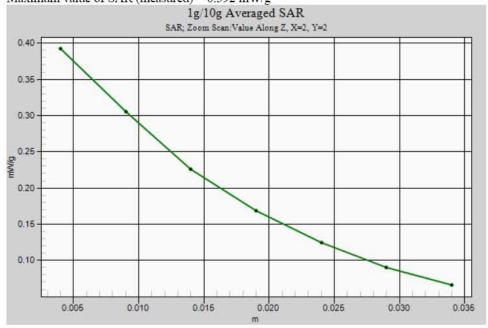
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Left Cheek GSM850 Ch251 Close 2D

DUT: 792103-04

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:2 Medium: HSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.913$ mho/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.1 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:


- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.411 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.1 V/m; Power Drift = -0.117 dB

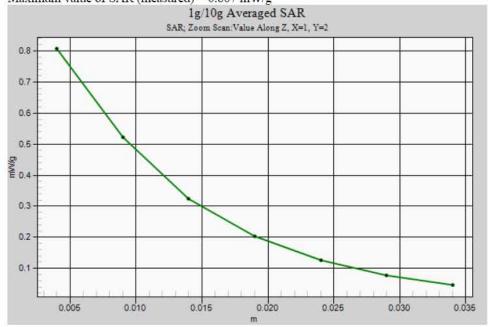
Peak SAR (extrapolated) = 0.502 W/kgSAR(1 g) = 0.377 mW/g; SAR(10 g) = 0.276 mW/gMaximum value of SAR (measured) = 0.392 mW/g

Left Tilted_PCS Ch810_Close_2D

DUT: 792103-04

Communication System: PCS; Frequency: 1909.8 MHz;Duty Cycle: 1:2 Medium: HSL_1900 Medium parameters used: f = 1910 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 22.1 °C

DASY5 Configuration:


- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.843 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.5 V/m; Power Drift = -0.167 dB

Peak SAR (extrapolated) = 1.11 W/kgSAR(1 g) = 0.752 mW/g; SAR(10 g) = 0.467 mW/gMaximum value of SAR (measured) = 0.807 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/1/10

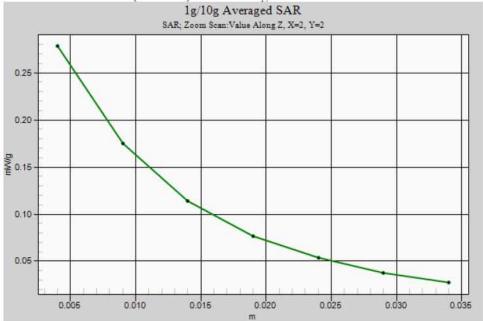
Right Cheek_WCDMA Ch4182_Close_2D

DUT: 792103-04

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\varepsilon_r = 40.4$; $\rho =$

1000 kg/m³ Ambient Temperature : 22.4 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:


- Probe: ET3DV6 SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
 Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.277 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.5 V/m: Power Drift = -0.098 dB Peak SAR (extrapolated) = 0.446 W/kg

SAR(1 g) = 0.256 mW/g; SAR(10 g) = 0.159 mW/g

Maximum value of SAR (measured) = 0.278 mW/g

Body_GSM850 Ch251_Keypad Down With 1.5cm Gap_GPRS12_Earphone-B_2D

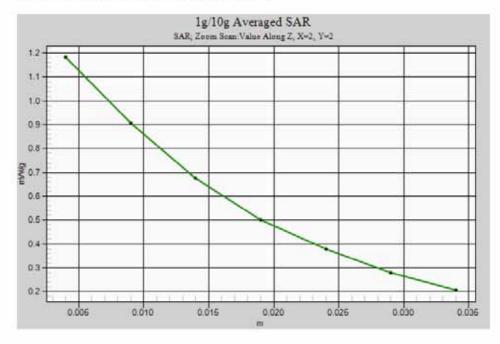
DUT: 792103-04

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:2 Medium: MSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.981$ mho/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.8 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2007/11/16

- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446

- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.19 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.6 V/m; Power Drift = -0.174 dB Peak SAR (extrapolated) = 1.43 W/kg SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.826 mW/g Maximum value of SAR (measured) = 1.18 mW/g

Body_PCS Ch661_Keypad Down with 1.5cm Gap_GPRS12_Earphone-2_2D

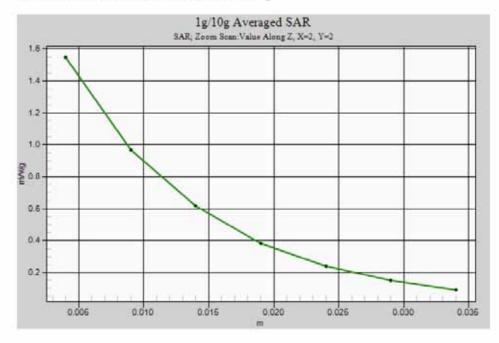
DUT: 792103-04

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:2 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.0 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2007/11/16

- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446

- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.54 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.1 V/m; Power Drift = -0.105 dB Peak SAR (extrapolated) = 2.24 W/kg SAR(1 g) = 1.43 mW/g; SAR(10 g) = 0.885 mW/g Maximum value of SAR (measured) = 1.55 mW/g

Body_WCDMA Ch4182_Keypad Down With 1.5cm Gap_RMC 144K_Earphone-B_2D

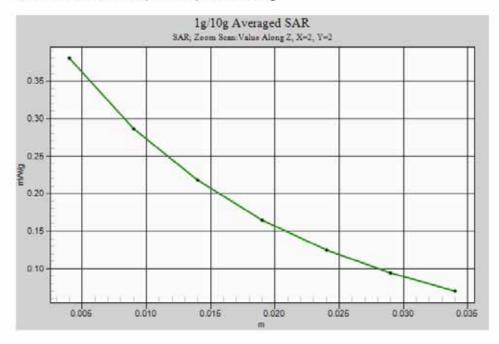
DUT: 792103-04

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.8 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2007/11/16

- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446

- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.377 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.3 V/m; Power Drift = -0.064 dB Peak SAR (extrapolated) = 0.458 W/kg SAR(1 g) = 0.357 mW/g; SAR(10 g) = 0.262 mW/g Maximum value of SAR (measured) = 0.380 mW/g

Test Report No : FA792103-04

Appendix C – Calibration Data

credited by the Swiss Federal (e Swiss Accreditation Servic			: SCS 108
itilateral Agreement for the r			
ent Sporton (Aude	en)	Certificate No: D	835V2-499_Mar06
	and the second sec		
ALIBRATION (CERTIFICATE		
	D0251/0 0NH 40	0	And a state of the state of the
Dbject	D835V2 - SN: 49	9	
			U. C.
Calibration procedure(s)	QA CAL-05.v6	dure for dipole validation kits	
	Calibration proce		
			NE MANAGE ZEMAN
	March 15, 2006		and the second
Calibration date:	Warch 15, 2006		
Condition of the calibrated item	In Tolerance		
		onal standards, which realize the physical units of robability are given on the following pages and are	
he measurements and the unce	artainties with confidence p	robability are given on the following pages and are	e part of the certificate.
he measurements and the unce	artainties with confidence p		e part of the certificate.
he measurements and the unce Il calibrations have been condu	artainties with confidence p cted in the closed laborator	robability are given on the following pages and are	e part of the certificate.
he measurements and the unce Il calibrations have been condu Salibration Equipment used (M&	artainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages and are y facility: environment temperature (22 ± 3) °C and	e part of the certificate. I humidity < 70%.
he measurements and the unce Il calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages and are y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.)	e part of the certificate. I humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516)	t humidity < 70%. Scheduled Calibration Oct-06
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ertainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages and are y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.)	e part of the certificate. I humidity < 70%. Scheduled Calibration
he measurements and the unce	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516)	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06
he measurements and the unce all calibrations have been condu- calibration Equipment used (M& rimary Standards rower meter EPM-442A rowers ensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00516)	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06
he measurements and the unce all calibrations have been condu- calibration Equipment used (M& rimary Standards rower meter EPM-442A rower sensor HP 8481A teference 20 dB Attenuator teference 20 dB Attenuator teference 10 dB Attenuator	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r)	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00598) 11-Aug-05 (METAS, No 251-00498)	spart of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Prower meter EPM-442A Prower sensor HP 8481A Reference 20 dB Attenuator	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05)	2 part of the certificate. 1 humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06 Oct-06
The measurements and the unce Ill calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601	robability are given on the following pages and are y facility: environment temperature (22 ± 3)*C and Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06
he measurements and the unce all calibrations have been condu- calibration Equipment used (M& trimary Standards rower meter EPM-442A rower sensor HP 8481A keference 20 dB Attenuator keference 10 dB Attenuator keference Probe ET3DV6 iAE4 iecondary Standards rower sensor HP 8481A	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID #	robability are given on the following pages and are y facility: environment temperature (22 ± 3)*C and Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. DAE4-601_Dec05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house)	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check
he measurements and the unce all calibrations have been condu- calibration Equipment used (M& trimary Standards rower meter EPM-442A rower sensor HP 8481A ceference 20 dB Attenuator ceference 20 dB Attenuator ceference Probe ET3DV6 iAE4 econdary Standards rower sensor HP 8481A ceperator Agilent E4421B	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check. Oct-07
The measurements and the unce All calibrations have been condu calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards	artainties with confidence p cted in the closed laborator TE chical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 507 SN 601 ID # MY41092317 MY41000675	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nor-05)	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Nov-07
he measurements and the unce all calibrations have been condu- talibration Equipment used (M& trimary Standards tower meter EPM-442A tower sensor HP 8481A teference 20 dB Attenuator teference 20 dB Attenuator teference Probe ET3DV6 teference Probe ET3D	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41092317 MY41092317 MY41092317 MY41092355 S4206	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Not-05) 18-Oct-01 (SPEAG, in house check Not-05)	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Nov-07 In house check: Nov-07 In house check: Nov-06 Signature
he measurements and the unce all calibrations have been condu- talibration Equipment used (M& trimary Standards tower meter EPM-442A tower sensor HP 8481A teference 20 dB Attenuator teference 20 dB Attenuator teference Probe ET3DV6 teference Probe ET3D	artainties with confidence p cted in the closed laborator TE chitcal for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41000875 US37390585 S4206 Name	robability are given on the following pages and are y facility: environment temperature (22 ± 3)*C and Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Nov-07 In house check: Nov-07 In house check: Nov-06 Signature
he measurements and the unce all calibrations have been condu- calibration Equipment used (M& trimary Standards "ower meter EPM-442A "ower sensor HP 8481A teference 20 dB Attenuator Reference Probe ET3DV6 DAE4 econdary Standards rower sensor HP 8481A Segenerator Agilent E4421B letwork Analyzer HP 8753E " calibrated by:	artainties with confidence p cted in the closed laborator TE chical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g) SN: 5047.2 (10r) SN 601 ID # MY41092317 MY41000675 US37390585 S4206 Name Judith Müller	robability are given on the following pages and are y facility: environment temperature (22 ± 3)*C and Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Not-05) 18-Oct-01 (SPEAG, in house check Not-05) 18-Oct-01 (SPEAG, in house check Not-05) Function Laboratory Technician	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Nov-07 In house check: Nov-07
he measurements and the unce all calibrations have been condu- talibration Equipment used (M& trimary Standards tower meter EPM-442A tower sensor HP 8481A teference 20 dB Attenuator teference 20 dB Attenuator teference Probe ET3DV6 teference Probe ET3D	artainties with confidence p cted in the closed laborator TE chitcal for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41000875 US37390585 S4206 Name	robability are given on the following pages and are y facility: environment temperature (22 ± 3)*C and Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Nov-07 In house check: Nov-07 In house check: Nov-06 Signature
he measurements and the unce all calibrations have been condu- calibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A leference 20 dB Attenuator leference 20 dB Attenuator leference Probe ET3DV6 IAE4 econdary Standards ower sensor HP 8481A F generator Aglient E4421B letwork Analyzer HP 8753E	artainties with confidence p cted in the closed laborator TE chical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g) SN: 5047.2 (10r) SN 601 ID # MY41092317 MY41000675 US37390585 S4206 Name Judith Müller	robability are given on the following pages and are y facility: environment temperature (22 ± 3)*C and Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Not-05) 18-Oct-01 (SPEAG, in house check Not-05) 18-Oct-01 (SPEAG, in house check Not-05) Function Laboratory Technician	e part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Nov-07 In house check: Nov-07 In house check: Nov-06 Signature

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-499_Mar06

Page 2 of 9

.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.94mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	2.35 mW / g
SAR normalized	normalized to 1W	9.40 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.24 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 mW / g
SAR normalized	normalized to 1W	6.12 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.07 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-499_Mar06

Page 3 of 9

 $\hat{\mathbf{r}}_{i}$

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.8±6%	0.98 mho/m ± 6 %
Body TSL temperature during test	(21.4 ± 0.2) °C	1 <u>1111</u> 1) (1)	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	2.45 mW / g
SAR normalized	normalized to 1W	9.80 mW/g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.91 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 mW/g
SAR normalized	normalized to 1W	6.48 mW/g
SAR for nominal Body TSL parameters 2	normalized to 1W	6.55 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-499 Mar06

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 2.9 jΩ	
Return Loss	- 29.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω - 5.1 JΩ	
Return Loss	- 24.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391ns	
----------------------------------	---------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 10, 2003

Page 5 of 9

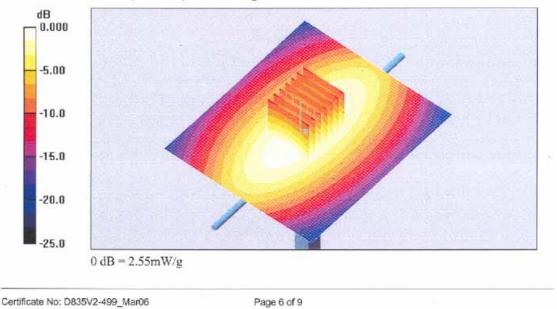
DASY4 Validation Report for Head TSL

Date/Time: 15.03.2006 12:51:44

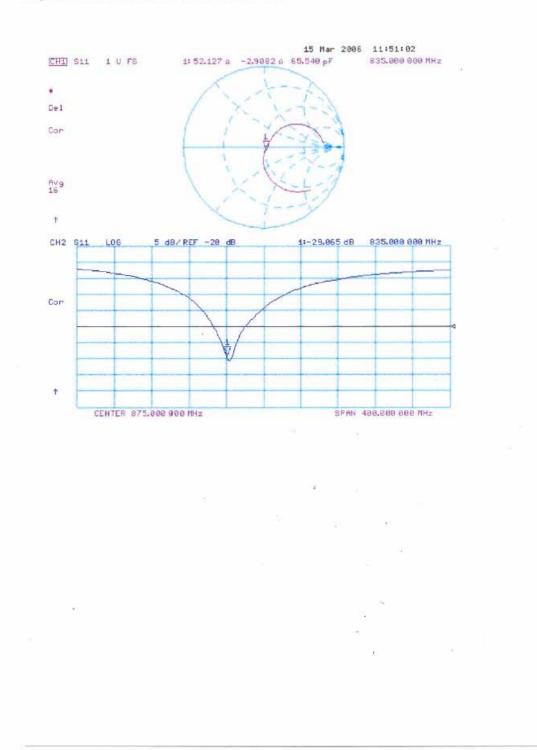
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 835 MHz; $\sigma = 0.942$ mho/m; $\epsilon_r = 42.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165


Pin = 250 mW; d = 10 mm/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.54 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.7 V/m; Power Drift = -0.008 dBPeak SAR (extrapolated) = 3.53 W/kgSAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.53 mW/gMaximum value of SAR (measured) = 2.55 mW/g

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-499_Mar06

Page 7 of 9

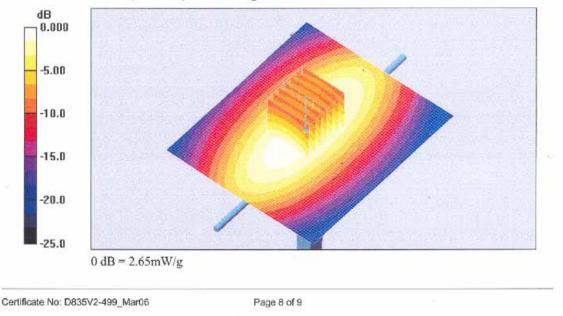
DASY4 Validation Report for Body TSL

Date/Time: 14.03.2006 12:37:15

Test Laboratory: SPEAG, Zurich, Switzerland

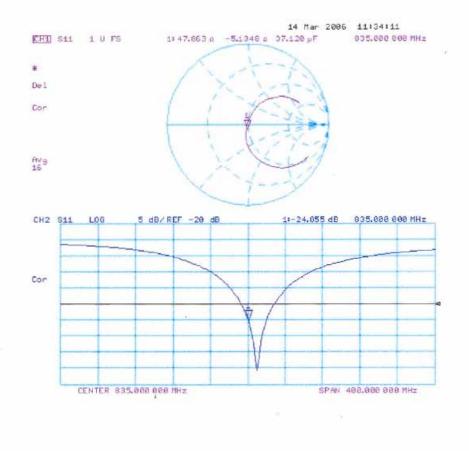
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: MSL U10; Medium parameters used: f = 835 MHz; $\sigma = 0.972$ mho/m; $\epsilon_r = 56.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(5.84, 5.84, 5.84); Calibrated: 28.10.2005
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165

Pin = 250 mW; d = 10 mm/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.63 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.3 V/m; Power Drift = 0.026 dBPeak SAR (extrapolated) = 3.51 W/kgSAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.62 mW/gMaximum value of SAR (measured) = 2.65 mW/g

Certificate No: D835V2-499_Mar06

Page 9 of 9

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

NO

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Certificate No: D1900V2-5d041_Mar06

Object	D1900V2 - SN: 5	d041		
Calibration procedure(s)	QA CAL-05.v6	dure for dipole validation kits		
	Calibration procedure for upole validation kits			
Calibration date:	March 21, 2006			
Condition of the calibrated item	In Tolerance			
some and the calibrated rem	in rolerance			
		onal standards, which realize the physical units of		
The measurements and the unce	artainties with confidence p	robability are given on the following pages and are	e part of the certificate.	
All calibrations have been condu	cted in the closed laborator	ry facility: environment temperature (22 ± 3)°C and	d humidity < 70%.	
Calibration Equipment used (M&	TE critical for calibration)			
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
Power meter EPM-442A	GB37480704	04-Oct-05 (METAS, No. 251-00516)	Oct-06	
Power sensor HP 8481A	US37292783	04-Oct-05 (METAS, No. 251-00516)	Oct-06	
	SN: 5086 (20g)	11-Aug-05 (METAS, No 251-00498)	Aug-06	
Reference 20 dB Attenuator				
	SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06	
Reference 10 dB Attenuator	SN: 5047.2 (10r) SN: 1507	11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05)	Aug-06 Oct-06	
Reference 10 dB Attenuator Reference Probe ET3DV6		그 가슴에 걸 것 같은 것이 없는 것 것 것 같은 것은 것을 잘 했다. 것 같아요. 것 같아요. 것 것 같아요.	20078-022	
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards	SN: 1507 SN: 601 ID #	28-Oct-05 (SPEAG, No. ET3-1507_Oct05)	Oct-06	
Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	SN: 1507 SN: 601 ID # MY41092317	28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	Oct-06 Dec-06	
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	SN: 1507 SN: 601 ID # MY41092317 MY41000675	28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07	
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	SN: 1507 SN: 601 ID # MY41092317	28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	Oct-06 Dec-06 Scheduled Check In house check: Oct-07	
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	SN: 1507 SN: 601 ID # MY41092317 MY41000675	28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07	
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 6481A RF generator Agilent E4421B	SN: 1507 SN: 601 ID # MY41092317 MY41000675	28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07	
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	SN: 1507 SN: 601 ID # MY41092317 MY41000675 US37390585 S4206	28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 Signature	
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards	SN: 1507 SN: 601 ID # MY41092317 MY41000675 US37390585 S4206 Name	28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function	Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 Signature	
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 6481A RF generator Agilent E4421B Network Analyzer HP 8753E - Calibrated by:	SN: 1507 SN: 601 ID # MY41092317 MY41000675 US37390585 S4206 Name Judith Müller	28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function Laboratory Technician	Oct-06 Dec-06 In house check: Oct-07 In house check: Nov-07 In house check: Nov-06	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

BRA

SWISS s Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d041 Mar06

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.75 mW / g
SAR normalized	normalized to 1W	39.0 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	38.4 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.17 mW / g
SAR normalized	normalized to 1W	20.7 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.5 mW/g±16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-5d041_Mar06

Page 3 of 9

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	41.1 mW/g±17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm (10 g) of Body ISL SAR measured	condition 250 mW input power	5.40 mW / g
	actionet.	5.40 mW / g 21.6 mW / g
SAR measured	250 mW input power	

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-5d041_Mar06

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 5.1 jΩ	
Return Loss	- 24.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω + 6.3 jΩ	
Return Loss	- 23.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns	÷.,
----------------------------------	----------	-----

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 4, 2003	

Certificate No: D1900V2-5d041_Mar06

Page 5 of 9

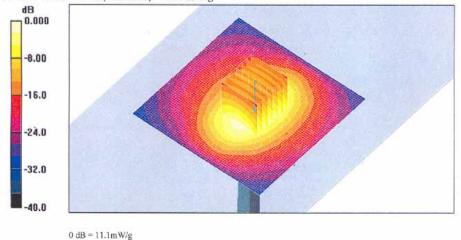
DASY4 Validation Report for Head TSL

Date/Time: 14.03.2006 16:18:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ_r = 39.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

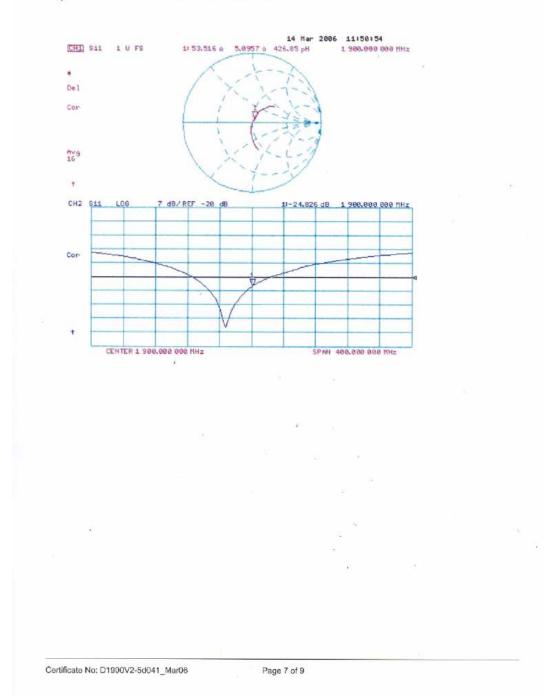

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165

Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.7 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.9 V/m; Power Drift = -0.093 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.75 mW/g; SAR(10 g) = 5.17 mW/gMaximum value of SAR (measured) = 11.1 mW/g



Certificate No: D1900V2-5d041_Mar06

Page 6 of 9

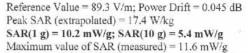
Impedance Measurement Plot for Head TSL

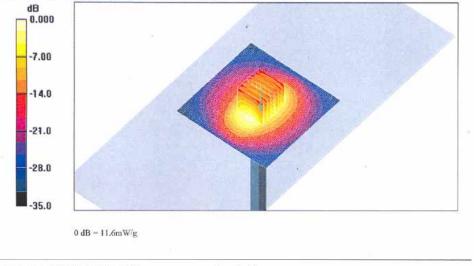
DASY4 Validation Report for Body TSL

Date/Time: 21.03.2006 13:59:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

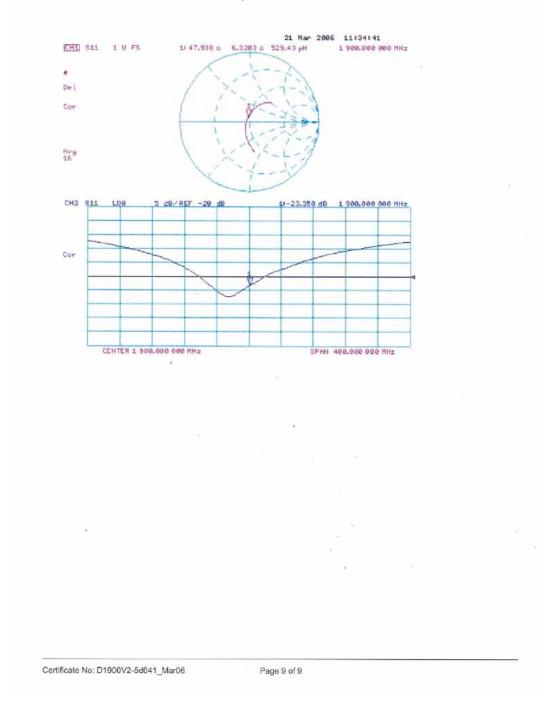

 $\begin{array}{l} Communication \ System: \ CW; \ Frequency: \ 1900 \ MHz; \ Duty \ Cycle: \ 1:1 \\ Medium: \ MSL \ U10; \\ Medium \ parameters \ used: \ f = 1900 \ MHz; \ \sigma = 1.54 \ mho/m; \ \epsilon_r = 54.7; \ \rho = 1000 \ kg/m^3 \\ Phantom \ section: \ Flat \ Section \\ Measurement \ Standard: \ DASY4 \ (High \ Precision \ Assessment) \\ \end{array}$


DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(4.3, 4.3, 4.3); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm



Certificate No: D1900V2-5d041_Mar06

Page 8 of 9

Impedance Measurement Plot for Body TSL

Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zurich,	of Switzerland	AC MRA C C C C C C C C C C C C C C C C C C C	Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accreditation he Swiss Accreditation Service in	s one of the signatories	to the EA	No.: SCS 108
luitilateral Agreement for the rec lient Sporton (Auden)	•		DAE3-577_Nov07
CALIBRATION CI	ERTIFICATE		
Dbject	DAE3 - SD 000 D	03 AA - SN: 577	
Calibration procedure(s)	QA CAL-06.v12 Calibration proces	fure for the data acquisition elect	ronics (DAE)
albration date:	November 16, 200	07	NAMES OF A
Condition of the calibrated item	In Tolerance		and the second second
he measurements and the uncerta	ainties with confidence pro	nal standards, which realize the physical unit obability are given on the following pages and facility: environment temperature (22 ± 3)°C	are part of the certificate.
he measurements and the uncerta	ainties with confidence pro		are part of the certificate.
he measurements and the uncerta Il calibrations have been conducte alibration Equipment used (M&TE	inties with confidence pro id in the closed laboratory critical for calibration)	obability are given on the following pages and r facility: environment temperature (22 ± 3)*C	are part of the certificate. and humidity < 70%.
he measurements and the uncerta Il calibrations have been conducte alibration Equipment used (M&TE rimary Standards	inties with confidence provident in the closed laboratory critical for calibration)	obability are given on the following pages and	are part of the certificate.
he measurements and the uncerta Il calibrations have been conducte alibration Equipment used (M&TE rimary Standards luke Process Calibrator Type 702	inties with confidence provident in the closed laboratory critical for calibration)	obability are given on the following pages and recility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.)	are part of the certificate. and humidity < 70%. Scheduled Calibration
he measurements and the uncerta Il calibrations have been conducte calibration Equipment used (M&TE rimary Standards luke Process Calibrator Type 702 eithley Multimeter Type 2001	Inities with confidence provident in the closed laboratory critical for calibration)	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcal AG, No: 6467)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08
The measurements and the uncerta NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	Inties with confidence pro- id in the closed laboratory critical for calibration) ID # SN: 6295803 SN: 0810278	chability are given on the following pages and facility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcal AG, No: 6467) 03-Oct-07 (Elcal AG, No: 6465)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08 Oct-08
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	Inties with confidence pro- id in the closed laboratory critical for calibration) ID # SN: 6295803 SN: 0810278 ID #	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcal AG, No: 6465) 03-Oct-07 (Elcal AG, No: 6465)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Scheduled Check
The measurements and the uncerta NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	Inties with confidence provide in the closed laboratory critical for calibration) ID # SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004	cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcal AG, No: 6467) 03-Oct-07 (Elcal AG, No: 6465) Check Date (in house) 25-Jun-07 (SPEAG, in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Scheduled Check In house check Jun-08
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Trimary Standards Fluke Process Calibrator Type 702 (eithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	Inties with confidence pro- id in the closed laboratory critical for calibration) ID # SN: 6295803 SN: 0810278 ID #	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcal AG, No: 6465) 03-Oct-07 (Elcal AG, No: 6465)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Scheduled Check In house check Jun-08
The measurements and the uncerta NI calibrations have been conducte Calibration Equipment used (M&TE Trimary Standards Fluke Process Calibrator Type 702 Leithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	Inties with confidence provide in the closed laboratory critical for calibration) ID # SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004 Name	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcat AG, No: 6467) 03-Oct-07 (Elcat AG, No: 6465) Check Date (in house) 25-Jun-07 (SPEAG, in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Scheduled Check In house check Jun-08
The measurements and the uncerta	Inities with confidence provide in the closed laboratory critical for calibration) ID # SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004 Name Dominique Staffan	bability are given on the following pages and (facility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcat AG, No: 6467) 03-Oct-07 (Elcat AG, No: 6465) Check Date (in house) 25-Jun-07 (SPEAG, in house check) Function Technician	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Scheduled Check In house check Jun-08

Certificate No: DAE3-577_Nov07

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SHISS CRUE Z

s

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Multilateral Agreement for the recognition of calibration certificates

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov07

Page 2 of 5

. .

DC Voltage Measurement

A/D - Converter Resolution nominal

 High Range:
 1LSB =
 6.1μV
 full range =
 -100...+300 mV

 Low Range:
 1LSB =
 61nV
 full range =
 -100...+3mV

 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	z
High Range	404.432 ± 0.1% (k=2)	403.884 ± 0.1% (k=2)	404.331 ± 0.1% (k=2)
Low Range	3.94218 ± 0.7% (k=2)	3.94771 ± 0.7% (k=2)	3.94526 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DAST system	Connector Angle to be used in DASY system	268 ° ± 1 °
---	---	-------------

Page 3 of 5

Appendix

1. DC Voltage Lir	nearity
-------------------	---------

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	199999.3	0.00
Channel X + Input	20000	20005.75	0.03
Channel X - Input	20000	-19997.67	-0.01
Channel Y + Input	200000	199999.5	0.00
Channel Y + Input	20000	20002.82	0.01
Channel Y - Input	20000	-20004.40	0.02
Channel Z + Input	200000	199999.6	0.00
Channel Z + Input	20000	20005.54	0.03
Channel Z - Input	20000	-20001.11	0.01

Low Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000.1	0.00
Channel X + Input	200	199.12	-0.44
Channel X - Input	200	-200.64	0.32
Channel Y + Input	2000	2000	0.00
Channel Y + Input	200	199.96	-0.02
Channel Y - Input	200	-201.00	0.50
Channel Z + Input	2000	1999.9	0.00
Channel Z + Input	200	199.05	-0.47
Channel Z - Input	200	-201.08	0.54

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Averaĝe Reading (µV)	Low Range Average Reading (µV)
Channel X	200	13.88	12.97
	- 200	-12.40	-14.29
Channel Y	200	-6.32	-6.22
	- 200	5.34	5.31
Channel Z	200	1.08	0.59
	- 200	-1.42	-1.66

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.14	0.16
Channel Y	200	1.52		3.87
Channel Z	200	0.23	0.75	

Certificate No: DAE3-577_Nov07

Page 4 of 5

.

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15969	16269
Channel Y	15848	16148
Channel Z	16203	16661

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.12	-1.70	1.72	0.50
Channel Y	-2.46	-3.42	-1.39	0.44
Channel Z	-0.78	-2.16	0.00	0.29

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.3
Channel Y	0.2001	199.9
Channel Z	0,1999	199.4

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	* *7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.0	W +6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Certificate No: DAE3-577_Nov07

Page 5 of 5

Test Report No : FA792103-04

Calibration Laborator Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zuric			ichweizerischer Kalibrierdienst ervice suisse d'étalonnage ervizio svizzero di taratura wiss Calibration Service
coredited by the Swiss Federal (he Swiss Accreditation Servic	양성 영어의 물건을 가지 않는 것이 이야한 것 같은 식물법이 했다.		.: SCS 108
Multilateral Agreement for the n	CONTRACTOR OF A CONTRACTOR		ET3-1788_Sep07
CALIBRATION	CERTIFICAT	E	
Object	ET3DV6 - SN:1	788	
Calibration procedure(s)	QA CAL-01.v6 Calibration proc	edure for dosimetric E-field probes	
Calibration date:	September 26,	2007	
	 Figure strategy with the strategy strategy and strategy and strategy strategy and s		
The measurements and the unce	ertainties with confidence	tional standards, which realize the physical units of probability are given on the following pages and are	e part of the certificate.
This calibration certificate docum The measurements and the unce All calibrations have been condu	ients the traceability to na intainties with confidence cted in the closed laborat	승규는 그 그들을 즐기는 것은 것을 만들었다. 그는 것을 많은 것을 다 가지 않는 것을 가지 않는 것을 하는 것을 수가 있다. 것을 하는 것을 하는 것을 하는 것을 수가 있는 것을 수가 있는 것을 수가 있다. 것을 하는 것을 수가 있는 것을 수가 있다. 것을 수가 있는 것을 수가 있다. 것을 수가 있는 것을 수가 있다. 것을 수가 있는 것을 수가 있다. 것을 수가 있는 것을 수가 있다. 것을 수가 있는 것을 수가 있다. 것을 수가 있는 것을 수가 있다. 것을 수가 있는 것을 수가 있다. 것을 수가 있는 것을 수가 있다. 것을 것을 수가 있는 것을 수가 있다. 것을 것 같이 것을 수가 있는 것을 것을 수가 있는 것을 수가 있는 것을 수가 있는 것을 수가 있는 것을 것 같이	e part of the certificate.
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ents the traceability to na atlainties with confidence cted in the closed laborat TE critical for calibration)	probability are given on the following pages and an ory facility: environment temperature $(22 \pm 3)^{\circ}$ C and	e part of the certificate. d humidity < 70%.
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ients the traceability to na intainties with confidence cted in the closed laborat	probability are given on the following pages and an	e part of the certificate.
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198	ents the traceability to na artainties with confidence cted in the closed laborat TE critical for calibration) ID #	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.)	e part of the certificate. d humidity < 70%. Scheduled Calibration
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A	ents the traceability to na entainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sansor E4412A Reference 3 dB Attenuator	ents the traceability to na rtainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Mar-08 Aug-08
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power mater E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ents the traceability to na rtainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41203874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Aug-08
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power mater E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	ents the traceability to na entainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-00720)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Aug-08
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 9 robe ES3DV2	ents the traceability to na rtainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41203874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Aug-08
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power motor E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ents the traceability to na entainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 SN: 3013 SN: 654	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Aug-08 Aug-08 Jan-08 Aug-08 Jan-08 Aug-08 Jan-08 Apr-08 Scheduled Check
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power mater E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ents the traceability to na entainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 854	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-0070) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. DAE4-654_Apr07)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Aug-08 Jan-08 Apr-08
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power mater E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	Interfaceability to na Interfainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. DAE4-654_Apr07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Aug-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ents the traceability to na rtainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3842U01700 US37390585	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Aug-08 Jan-08 Aug-08 Jan-08 Acr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07
This calibration certificate docum The measurements and the unce	ents the traceability to na rtainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3842U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00671) 9-Mar-07 (SPEAG, No. 217-00720) 4-Jan-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) Function	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Aug-08 Jan-08 Aug-08 Jan-08 Acr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07

Calibration Laboratory of Schmid & Partner Engineering AG Zeuebaugstrasse 43, 8004 Zurich, Switzerland

S Schwei Service Service Service S Service S Schwei S Schwei

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization (p	φ rotation around probe axis
Polarization 8	9 rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization ⊕ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(i)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a
 flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788 Sep07

Page 2 of 9

September 26, 2007

Probe ET3DV6

SN:1788

Manufactured: Last calibrated: Modified: Recalibrated: May 28, 2003 September 19, 2006 September 24, 2007 September 26, 2007

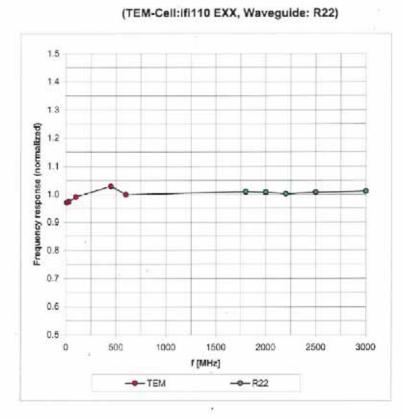
Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

4

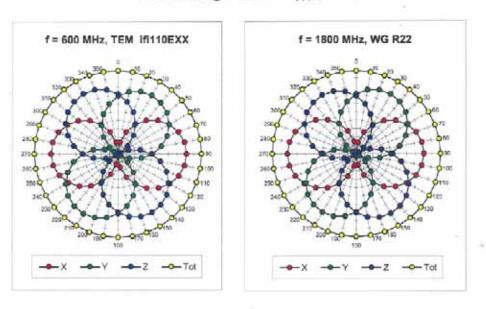
Certificate No: ET3-1788_Sep07

Page 3 of 9

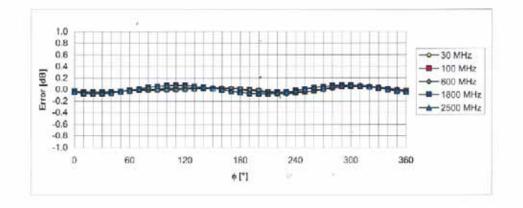

Sensitivity in Fr	ee Spac	e ^A		Diode	Compression
NormX		2 ± 10.1%	μV/(V/m) ²	DCP X	91 mV
NormY		2 ± 10.1%	μV/(V/m) ²	DCP X	93 mV
NormZ		0 ± 10.1%	μV/(V/m) ² μV/(V/m) ²	DCP Z	93 mV 94 mV
Sensitivity in Ti	ssue Sin	nulating Li	quid (Conver	sion Factors)
Please see Page 8.		3			
Boundary Effect	:t				
TSL	900 MHz	Typical S/	AR gradient: 5 % (per mm	
Sensor Cent	ler to Phanto	om Surface D	stance	3.7 mm	4.7 mm
SAR _{be} [%]		t Correction A		6.2	3.3
SAR _{be} [%]	With C	orrection Algo	rithm	0.4	1.0
TSL 1	810 MHz	Typical SA	R gradient: 10 %	per mm	
Sensor Cent	ier to Phanto	om Surface D	stance	3.7 mm	4.7 mm
SAR _{be} [%]		t Correction A		12.0	8.1
SAR _{be} [%]	With C	orrection Algo	rithm	0.2	0.1
Sensor Offset					
Probe Tip to	Sensor Cer	nter		2.7 mm	
				24	
The reported unco					
measurement mu corresponds to a					al distribution
* The uncertainties of Nom	X.Y.Z do not a	ffect the E ² -field (incertainty inside TSL (660 Page 8).	

September 26, 2007

Frequency Response of E-Field


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

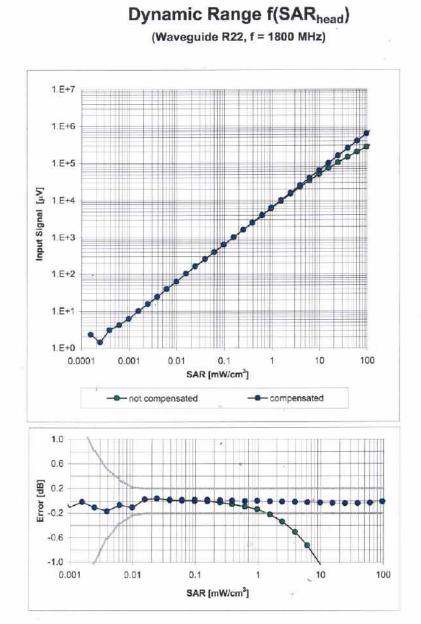
Certificate No: ET3-1788_Sep07


Page 5 of 9

September 26, 2007

Receiving Pattern (\$), 9 = 0°

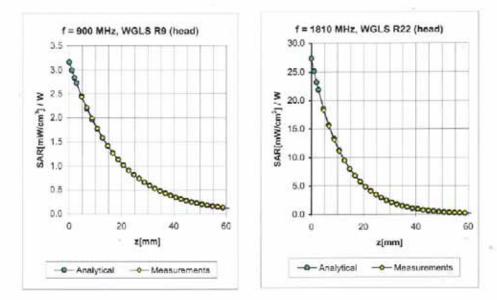
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ET3-1788_Sep07

Page 6 of 9

September 26, 2007

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1788_Sep07

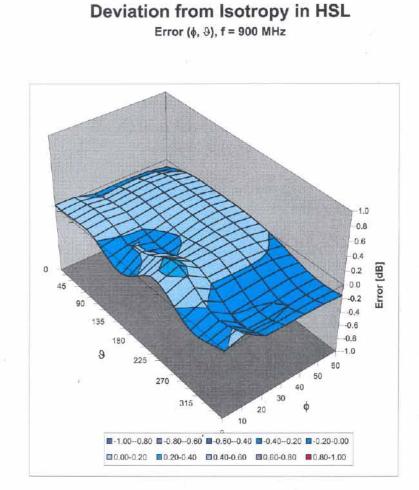
Page 7 of 9

. 4

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL.	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	±50/±100	Head	41.5±5%	$0.97 \pm 5\%$	0.22	3.28	6.54 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	$1.40\pm5\%$	0.59	2.15	5.28 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.60	2.23	4.87 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	$1.80\pm5\%$	0.61	2.39	4.58 ± 11.8% (k=2)
				× .			
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.28	2.94	6.37 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	$53.3\pm6\%$	1.52 ± 5%	0.63	2.39	4.75 ± 11.0% (k=2)
2000	±50/±100	Body	$53.3\pm5\%$	$1.52 \pm 5\%$	0.63	2.33	4.36 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.61	2.58	4.17 ± 11.8% (k=2)

⁶ The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Certificate No: ET3 1788_Scp07

Page 8 of 9

September 26, 2007

September 26, 2007

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep07

Page 9 of 9