

Specific Absorption Rate (SAR) Test Report for High Tech Computer Corp. on the Pocket PC Phone

Report No.	: FA792103-1-2-02
Model Name	: NEON100(HT1100)
FCC ID	: NM8NEON100
Date of Testing	: Sep. 29, and Oct. 12~14, 2007
Date of Report	: Dec. 06, 2007
Date of Review	: Dec. 06, 2007

- The test results refer exclusively to the presented test model/sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev.02.

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

1.	State	ment of Compliance	1
2.	Admi	nistration Data	2
	2.1	Testing Laboratory	2
	2.2	Detail of Applicant	2
	2.3	Detail of Manufacturer	2
	2.4	Application Detail	2
3.	Gene	ral Information	3
	3.1	Description of Device Under Test (DUT)	3
	3.2	Product Photo	4
	3.3	Applied Standards:	5
	3.4		6
	3.5		
		3.5.1 Ambient Condition	6
		3.5.2 Test Configuration	6
4.	Spec	fic Absorption Rate (SAR)	7
	4.1		7
_	4.2	SAR Definition	7
5.		Measurement Setup	8
	5.1	DASY4 E-Field Probe System	9
		5.1.1 ET3DV6 E-Field Probe Specification	
		5.1.2 ET3DV6 E-Field Probe Calibration	- 10
		DATA Acquisition Electronics (DAE)	- 11
	5.3	Robot	
	5.4	Measurement Server	- 12
	5.5	SAM Twin Phantom	- 12
	5.6	Device Holder for SAM Twin Phantom	- 14
	5.7	Data Storage and Evaluation	- 15
		5.7.1 Data Storage	- 15
	5.0	5.7.2 Data Evaluation	- 15
~	5.8 T ianu	e Simulating Liquids	- 18
6. 7.	linco	e Simulating Liquids	- 19
7. 8.		Measurement Evaluation	-21
ο.	8.1	Purpose of System Performance Check	
	8.2		- 23
		Validation Results	- 25
9.		ription for DUT Testing Position	- 20
	Moas	urement Procedures	- 20
10.	10 1	Spatial Peak SAR Evaluation	- 28
	10.1	Scan Procedures	- 20
	10.2	SAR Averaged Methods	- 29
	10.0	FCC 3G Policy	- 29
11.	SAR	Test Results	- 30
• • •		Right Cheek with EUT Open	- 30
	11.2	Right Tilted with EUT Open	
	11.3	Left Cheek with EUT Open	- 30
	11.4	Left Tilted with EUT Open	- 31
	11.5	Right Cheek with EUT Close	- 31
	11.6	Right Tilted with EUT Close	- 31
		Left Cheek with EUT Close	
	11.8	Left Tilted with EUT Close	- 32
	11.9	Keypad Up with 1.5cm Gap	- 33
	11.1	0 Keypad Down with 1.5cm Gap	- 34
12.	Refer	ences	- 35
		A - System Performance Check Data	
		B - SAR Measurement Data	
		C - Calibration Data	

- Appendix C Calibration Data Appendix D Product Photo Appendix E Setup Photo

1. <u>Statement of Compliance</u>

The Specific Absorption Rate (SAR) maximum results found during testing for the High Tech Computer Corp. Pocket PC Phone NEON100(HT1100) are as follows (with expanded uncertainty 21.9%):

Position	GSM850 (W/kg)	PCS 1900 (W/kg)	WCDMA Band V (W/kg)
Head	0.421	0.728	0.321
Body (with 1.5cm Gap)	1.39	1.2	0.47

The co-location of GSM/GPRS/EDGE, WCDMA/HSDPA and Bluetooth were also checked. They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

nestsat

Jones Tsai Manager

2. Administration Data

2.1 <u>Testing Laboratory</u>

Company Name :	Sporton International Inc.
Department :	Antenna Design/SAR
Address :	No.52, Hwa-Ya 1 st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,
	TaoYuan Hsien, Taiwan, R.O.C.
Telephone Number :	886-3-327-3456
Fax Number :	886-3-328-4978

2.2 Detail of Applicant

Company Name :	High Tech Computer Corp.
Address :	1F, No.6-3, Baoqiang Rd, Xindian City, Taipei, Taiwan

2.3 Detail of Manufacturer

Company Name :	High Tech Computer Corp.
Address :	1F, No.6-3, Baoqiang Rd, Xindian City, Taipei, Taiwan

2.4 Application Detail

Date of reception of application:	Sep. 21, 2007
Start of test :	Sep. 29, 2007
End of test :	Oct. 14, 2007

3. General Information

3.1 Description of Device Under Test (DUT)

DUT Type :	Pocket PC Phone		
Model Name :	NEON100(HT1100)		
FCC ID :	NM8NEON100		
Tx Frequency :	GSM850 / WCDMA Band V : 824 ~ 849 MHz PCS1900 : 1850 ~ 1910 MHz		
Rx Frequency :	GSM850 / WCDMA Band V : 869 ~ 894 MHz PCS1900 : 1930 ~ 1990 MHz		
HW Version:	XC01		
SW Version:	25.50.30.01		
Antenna Type :	Bluetooth: PIFA Antenna		
GPRS / EGPRS Multislot class :	12		
Maximum Output Power to Antenna :	GSM850 : 32.98 dBm(GSM) / 32.83 dBm(GPRS12) / 26.47 dBm(EDGE12) PCS1900 : 29.71 dBm(GSM) / 29.58 dBm(GPRS12) / 25.25 dBm(EDGE12) WCDMA : 23.51 dBm(12.2kbps) / 23.56 dBm(64kbps) / 23.45 dBm(144kbps) Band V 23.4 dBm(384kbps) / 23.85 dBm (12.2k +HSDPA) Bluetooth : 1.18 dBm (1Mbps) / 2.23 dBm (2Mbps) / 2.47 dBm (3Mbps)		
Type of Modulation :	GSM / GPRS : GMSK EDGE : 8PSK WCDMA / HSDPA : QPSK Bluetooth (1Mbps) : GFSK Bluetooth EDR (2Mbps) : /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		
Power Rating :	DC 3.7V		
DUT Stage :	Production Unit		
Application Type :	Certification		
Accessory :	Battery : Simplo, NEON160		

3.2 Product Photo

Please refer to Appendix D

3.3 <u>Applied Standards:</u>

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Pocket PC Phone is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528-2003, and OET Bulletin 65 Supplement C (Edition 01-01) Preliminary Guidance for Reviewing Applications for Certification of 3G Device. May 2006. SAR Measurement Procedures for 3G Devices. June 2006.

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 <u>Test Conditions:</u>

3.5.1 Ambient Condition

Item	HSL_850	MSL_850	HSL_1900	MSL_1900
Ambient Temperature (°C)	20-24			
Tissue simulating liquid	21.3	21.3	21.2	21.5
temperature (°C)	21.5	21.5	21.2	21.5
Humidity (%)	<60 %			

3.5.2 <u>Test Configuration</u>

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT.

Measurements were performed on the lowest, middle, and highest channel for each testing position for head SAR testing. Measurements were performed only on the middle channel if the SAR is below 3 dB of limit for body SAR testing.

The DUT was set from the emulator to radiate maximum output power during all tests.

For Head SAR testing, EUT is in GSM and WCDMA link mode. In GSM link mode, its crest factor is 8.3. In WCDMA link mode, its crest factor is 1.

For body SAR testing, EUT is in GPRS/EDGE or WCDMA/HSDPA link mode. In GPRS/EDGE link mode, its crest factor is 2, because EUT is GPRS/EDGE class 12 device. In WCDMA/HSDPA link mode, its crest factor is 1.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \, \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where is the conductivity of the tissue, is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. <u>SAR Measurement Setup</u>

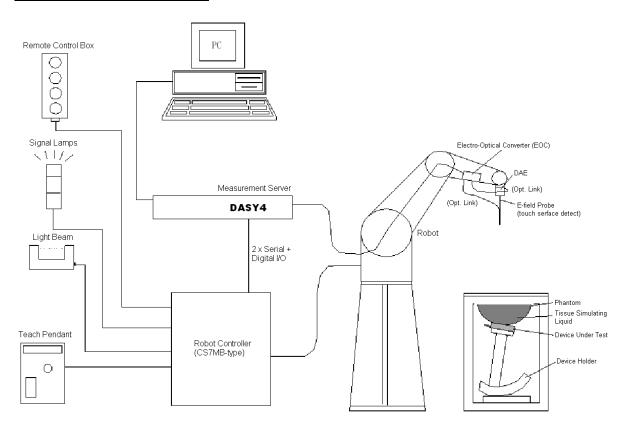


Fig. 5.1 DASY4 System

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY4 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 ET3DV6 E-Field Probe Specification

Construction	Symmetrical design with triangular core	
	Built-in optical fiber for surface detection	
	system	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic solvents)	
Calibration	Simulating tissue at frequencies of 900MHz, 1.8GHz and 2.45GHz for brain and muscle (accuracy ±8%)	
Frequency	10 MHz to $>$ 3 GHz	
Directivity	\pm 0.2 dB in brain tissue (rotation around probe axis)	
	\pm 0.4 dB in brain tissue (rotation perpendicular to probe axis)	
Dynamic Range	5 μ W/g to $> 100 mW/g;$ Linearity: $\pm 0.2 dB$	
Surface Detection	± 0.2 mm repeatability in air and clear liquids on reflecting surface	
Dimensions	Overall length: 330mm	
	Tip length: 16mm	
	Body diameter: 12mm	
	Tip diameter: 6.8mm	
	Distance from probe tip to dipole centers: 2.7mm	
Application	General dosimetry up to 3GHz	
	Compliance tests for mobile phones and Wireless LAN	
	Fast automatic scanning in arbitrary phantoms	

Fig. 5.2 Probe Setup on Robot

5.1.2 <u>ET3DV6 E-Field Probe Calibration</u>

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

ET3DV6 sn1787

Sensitivity	X axis : 1.63 μV Υ		Y axis : 1.66 µV		Z axis : 2.08 μV
Diode compression point	X axis : 92 mV Y axi		Y axis : 96 mV		Z axis : 91 mV
	Frequency (MHz)	X axis		Y axis	Z axis
Conversion factor (Head / Body)	800~1000	6.58 / 6.10		6.58 / 6.10	6.58 / 6.10
	1710~1910	5.16 / 4.68		5.16 / 4.68	5.16 / 4.68
	Frequency (MHz)	Alp	ha	Depth	
Boundary effect (Head / Body)	800~1000	0.32 /	0.36	2.42 / 2.52	
	1710~1910	0.50 /	0.61	2.61 / 2.56	

NOTE:

> The probe parameters have been calibrated by the SPEAG.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 <u>Robot</u>

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASYS system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

5.4 <u>Measurement Server</u>

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 <u>SAM Twin Phantom</u>

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- ➢ Left head
- ➢ Right head
- ➢ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

*Water-sugar based liquid

*Glycol based liquids

Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity r = 3 and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-less media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcpi
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as :

Test Report No : FA792103-1-2-02

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated :

E-field probes :
$$E_i = \sqrt{\frac{V_i}{Norm_iConvF}}$$

H-field probes : $H_i = \sqrt{V_i} \frac{a_{i0+}a_{i1}f + a_{i2}f^2}{f}$
with V_i = compensated signal of channel i ($i = x, y, z$)
 $Norm_i$ = sensor sensitivity of channel i ($i = x, y, z$)
 $\mu V/(V/m)2$ for E-field Probes
 $ConvF$ = sensitivity enhancement in solution
 a_{ij} = sensor sensitivity factors for H-field probes
 f = carrier frequency [GHz]
 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel *i* in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} \quad = \quad \sqrt{E_X^2 + E_Y^2 + E_Z^2}$$

z)

y, z)

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/gEtot = total field strength in V/m= conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm^3

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.8 <u>Test Equipment List</u>

Manufacture	Nome of Equipment	Type/Model	Serial Number	Calib	ration
Manufacture	Name of Equipment	i ype/iviodei	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1787	Aug. 28, 2007	Aug. 28, 2008
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 15, 2006	Mar. 15, 2008
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 21, 2006	Mar. 21, 2008
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 21, 2006	Nov. 21, 2007
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR
SPEAG	Software	DASY4 V4.7 Build 55	N/A	NCR	NCR
SPEAG	Software	SEMCAD V1.8 Build 176	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
Agilent	ENA Series Network Analyzer	E5071C	MY46100746	Feb. 21, 2007	Feb. 21, 2008
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Dec. 22, 2006	Dec. 22, 2008
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR
Agilent	Power Meter	E4416A	GB41292344	Feb. 08, 2007	Feb. 08, 2008
Agilent	Power Sensor	E9327A	US40441548	Feb. 08, 2007	Feb. 08, 2008
Agilent	Signal Generator	E8247C	MY43320596	Mar. 01, 2006	Mar. 01, 2008

Table 5.1 Test Equipment List

6. <u>Tissue Simulating Liquids</u>

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR)or from the flat phantom to the liquid top surface (body SAR) is 15.2cm.

The following ingredients for tissue simulating liquid are used:

- **Water**: deionized water (pure H_20), resistivity 16M as basis for the liquid
- Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- Salt: pure NaCl to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- DGMBE: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 – to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of head and body tissue simulating liquid for frequency band 850MHZ, 1900 MHz.

Ingredient	HSL-850	MSL_850	HSL-1900	MSL-1900
Water	532.98 g	631.68 g	552.42 g	716.56 g
Cellulose	0 g	0 g	0 g	0 g
Salt	18.3 g	11.72 g	3.06 g	4.0 g
Preventol D-7	2.4 g	1.2 g	0 g	0 g
Sugar	766.0 g	600.0 g	0 g	0 g
DGMBE	0 g	0 g	444.52 g	300.67 g
Total amount	1 liter (1.3 kg)	1 liter (1.3 kg)	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric Parameters at 22°	$f = 835 \text{ MHz} = 41.5 \pm 5\%, = 0.90 \pm 5\% \text{ S/m}$	f=835 MHz r = 55.2 \pm 5%, = 0.97 \pm 5% S/m		f= 1900 MHz ϵ_r = 53.3±5 %, σ = 1.52±5% S/m

 Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Bands	Position	Frequency (MHz)	Permittivity (r)	Conductivity ()	Measurement Date	
		824.2	40.5	0.886		
	Head	836.4	40.4	0.899	Oct. 13, 2007	
GSM850 (824 ~ 849 MHz)		848.8	40.3	0.913		
		824.2	54.4	0.957		
	Body	836.4	54.3	0.969	Oct. 12, 2007	
		848.8	54.1	0.983		
		1850.2	39.8	1.36		
	Head	1880.0	39.7	1.38	Oct. 14, 2007	
PCS		1909.8	39.6	1.42		
(1850 ~ 1910 MHz)		1850.2	53.9	1.45		
	Body	1880.0	53.9	1.48	Oct. 12, 2007	
		1909.8	53.8	1.52		
		826.4	40.5	0.889		
	Head	836.4	40.4	0.899	Oct. 13, 2007	
WCDMA Band V (824 ~ 849 MHz)		846.6	40.3	0.911		
		826.4	54.6	0.960		
	Body	836.4	54.4	0.970	Sep. 29, 2007	
		846.6	54.3	0.981		

Table 6.2 shows the measuring results for head and muscle simulating liquid.

Table 6.2 Measuring Results for Muscle Simulating Liquid

The measuring data are consistent with $_{r}=55.2 \pm 5\%$ and $=0.97 \pm 5\%$ for body GSM 850 band and WCDMA Band V, $_{r}=53.3 \pm 5\%$, $=1.52 \pm 5\%$ for body PCS band.

7. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Distributions		Triangular	U-shape
Multiplying factor ^(a)	1/k ^(b)	1/ 3	1/ 6	1/ 2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) is the coverage factor

Table 7.1 Multiplying Factions for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement Equipment		-				
Probe Calibration	±5.9 %	Normal	1	1	±5.9 %	x
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	x
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	x
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	x
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	±2.7 %	x
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	x
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	x
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	x
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	±1.5 %	x
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	x
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	x
Probe Positioner	±0.4 %	Rectangular	$\sqrt{3}$	1	±0.2 %	x
Probe Positioning	±2.9 %	Rectangular	$\sqrt{3}$	1	±1.7 %	x
Max. SAR Eval.	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	x
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9	145
Device Holder	±3.6 %	Normal	1	1	±3.6	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9	x
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8	x
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6	x
Liquid Permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5	x
Combined Standard Uncertainty					±10.9	387
Coverage Factor for 95 %		K=2				
Expanded uncertainty (Coverage factor = 2)					±21.9	

 Table 7.2 Uncertainty Budget of DASY

8. SAR Measurement Evaluation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 <u>Purpose of System Performance Check</u>

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835MHz and 1900MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

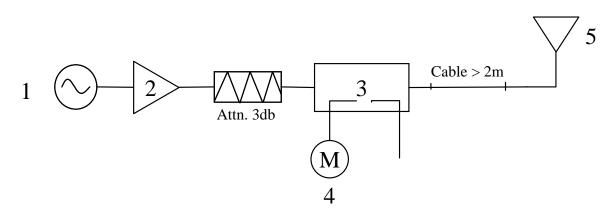


Fig. 8.1 System Evaluation Setup

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 835 MHz or 1900 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Position	Band	SAR	Target (W/kg)	Measurement data (W/kg)	Variation	Measurement Date
	GSM850	SAR (1g)	9.24	9.54	3.2 %	Oct. 13, 2007
	(835MHz)	SAR (10g)	6.07	6.3	3.8 %	001. 13, 2007
Head	PCS	SAR (1g)	38.4	36.1	-6.0 %	Oct. 14, 2007
Head	(1900MHz)	SAR (10g)	20.5	19	-7.3 %	000. 14, 2007
	WCDMA band V	SAR (1g)	9.24	9.54	3.2 %	Oct. 13, 2007
	(835MHz)	SAR (10g)	6.07	6.3	3.8 %	001. 13, 2007
	GSM850	SAR (1g)	9.91	10.2	2.9 %	Oct. 12, 2007
	(835MHz)	SAR (10g)	6.55	6.79	3.7 %	000.12,2007
Body	PCS	SAR (1g)	41.1	39.4	-4.1 %	Oct. 12, 2007
Douy	(1900MHz)	SAR (10g)	21.8	21 -3.7 %		000.12,2007
	WCDMA band V	SAR (1g)	9.91	9.95	4.0 %	Sep. 29, 2007
	(835MHz)	SAR (10g)	6.55	6.58	0.5 %	5cp. 29, 2007

 Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in 10 different positions. They are left cheek with EUT Open, left tilted with EUT Open, right cheek with EUT Open, right tilted with EUT Open, left cheek with EUT Close, left tilted with EUT Close, right cheek with EUT Close, right tilted with EUT Close, body worn with keypad up and body worn with keypad down as illustrated below:

- 1) "Cheek Position"
 - i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.
 - ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).
- 2) "Tilted Position"
 - i) To position the device in the "cheek" position described above.
 - ii) While maintaining the device the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).
- 3) "Body Worn"
 - i) To position the device parallel to the phantom surface.
 - ii) To adjust the phone parallel to the flat phantom.
 - iii) To adjust the distance between the EUT surface and the flat phantom to 1.5 cm.

Remark: Please refer to Appendix E for the test setup photo.

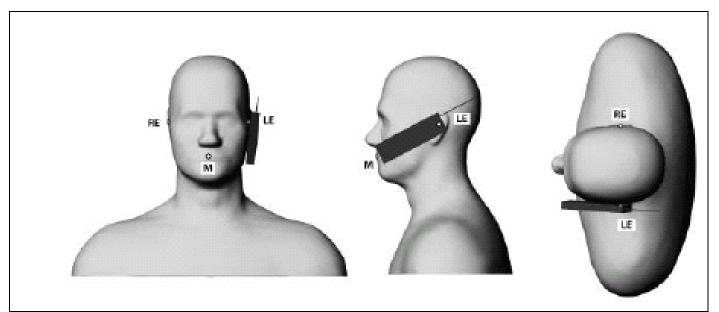


Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

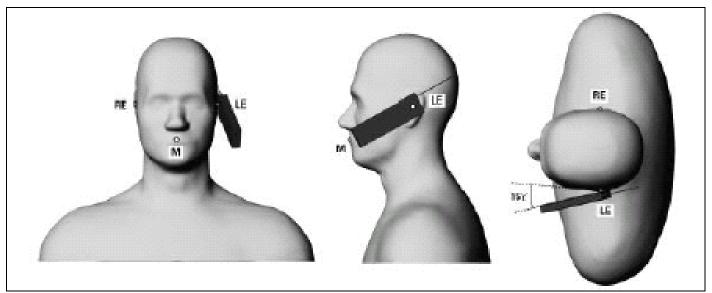


Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

10.<u>Measurement Procedures</u>

The measurement procedures are as follows:

- Linking DUT with base station emulator CMU200 in middle channel
- Setting CMU200 to allow DUT to radiate maximum output power
- Measuring output power through RF cable and power meter
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY4 software
- Taking data for the lowest, middle, and highest channel on each testing position

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 <u>SAR Averaged Methods</u>

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

10.4 FCC 3G Policy

Sample pre-testing of the various modes were preformed and chose the worst case as part of subset testing justification.

11. SAR Test Results

11.1 <u>Right Cheek with EUT Open</u>

Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	128	824.2 (Low)	GMSK	32.95	-	-	-	-
GSM850	189	836.4 (Mid)	GMSK	32.93	-0.085	0.042	1.6	Pass
	251	848.8 (High)	GMSK	32.98	-	-	-	-
	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
PCS	661	1880.0 (Mid)	GMSK	29.56	0.003	0.069	1.6	Pass
	810	1909.8 (High)	GMSK	29.42	-	-	-	-
	4132	826.4(Low)	GMSK	23.51	-	-	-	-
WCDMA Band V	4182	836.4(Mid)	GMSK	23.27	-0.15	0.05	1.6	Pass
	4233	846.6(High)	GMSK	23.30	-	-	-	-

11.2 Right Tilted with EUT Open

Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	128	824.2 (Low)	GMSK	32.95	-	-	-	-
GSM850	189	836.4 (Mid)	GMSK	32.93	0.026	0.027	1.6	Pass
	251	848.8 (High)	GMSK	32.98	-	-	-	-
	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
PCS	661	1880.0 (Mid)	GMSK	29.56	0.126	0.076	1.6	Pass
	810	1909.8 (High)	GMSK	29.42	-	-	-	-
WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
	4182	836.4(Mid)	GMSK	23.27	0.178	0.031	1.6	Pass
	4233	846.6(High)	GMSK	23.30	-	_	-	-

11.3 Left Cheek with EUT Open

Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	128	824.2 (Low)	GMSK	32.95	-	-	-	-
GSM850	189	836.4 (Mid)	GMSK	32.93	0.06	0.042	1.6	Pass
	251	848.8 (High)	GMSK	32.98	-	-	-	-
	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
PCS	661	1880.0 (Mid)	GMSK	29.56	0.167	0.038	1.6	Pass
	810	1909.8 (High)	GMSK	29.42	-	-	-	-
WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
	4182	836.4(Mid)	GMSK	23.27	0.143	0.043	1.6	Pass
	4233	846.6(High)	GMSK	23.30	-	-	-	-

Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	128	824.2 (Low)	GMSK	32.95	-	-	-	-
GSM850	189	836.4 (Mid)	GMSK	32.93	-0.087	0.025	1.6	Pass
	251	848.8 (High)	GMSK	32.98	-	-	-	-
	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
PCS	661	1880.0 (Mid)	GMSK	29.56	0.027	0.067	1.6	Pass
	810	1909.8 (High)	GMSK	29.42	-	-	-	-
WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
	4182	836.4(Mid)	GMSK	23.27	0.175	0.025	1.6	Pass
	4233	846.6(High)	GMSK	23.30	-	-	-	-

11.4 Left Tilted with EUT Open

11.5 <u>Right Cheek with EUT Close</u>

Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	128	824.2 (Low)	GMSK	32.95	-	-	-	-
GSM850	189	836.4 (Mid)	GMSK	32.93	-0.146	0.283	1.6	Pass
	251	848.8 (High)	GMSK	32.98	-	-	-	-
	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
PCS	661	1880.0 (Mid)	GMSK	29.56	-0.193	0.595	1.6	Pass
	810	1909.8 (High)	GMSK	29.42	-	-	-	-
	4132	826.4(Low)	GMSK	23.51	-0.024	0.181	1.6	Pass
WCDMA Band V	4182	836.4(Mid)	GMSK	23.27	0.084	0.321	1.6	Pass
	4233	846.6(High)	GMSK	23.30	0.038	0.26	1.6	Pass
WCDMA Band V with BT On	4182	836.4(Mid)	GMSK	23.27	-0.157	0.281	1.6	Pass

11.6 <u>Right Tilted with EUT Close</u>

Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	128	824.2 (Low)	GMSK	32.95	-	-	-	-
GSM850	189	836.4 (Mid)	GMSK	32.93	0.172	0.209	1.6	Pass
	251	848.8 (High)	GMSK	32.98	-	-	-	-
	512	1850.2 (Low)	GMSK	29.71	0.029	0.716	1.6	Pass
PCS	661	1880.0 (Mid)	GMSK	29.56	-0.017	0.679	1.6	Pass
	810	1909.8 (High)	GMSK	29.42	0.057	0.728	1.6	Pass
PCS with BT On	810	1909.8 (High)	GMSK	29.42	0.016	0.727	1.6	Pass
	4132	826.4(Low)	GMSK	23.51	-	-	-	-
WCDMA Band V	4182	836.4(Mid)	GMSK	23.27	-0.196	0.233	1.6	Pass
	4233	846.6(High)	GMSK	23.30	-	-	-	-

Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
GSM850	128	824.2 (Low)	GMSK	32.95	-0.198	0.209	1.6	Pass
	189	836.4 (Mid)	GMSK	32.93	-0.025	0.304	1.6	Pass
	251	848.8 (High)	GMSK	32.98	-0.152	0.421	1.6	Pass
GSM850 with BT On	251	848.8 (High)	GMSK	32.98	0.005	0.418	1.6	Pass
PCS	512	1850.2 (Low)	GMSK	29.71	-	-	-	
	661	1880.0 (Mid)	GMSK	29.56	-0.041	0.481	1.6	Pass
	810	1909.8 (High)	GMSK	29.42	-	-	-	-
WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
	4182	836.4(Mid)	GMSK	23.27	-0.124	0.297	1.6	Pass
	4233	846.6(High)	GMSK	23.30	-	-	-	-

11.7 Left Cheek with EUT Close

11.8 Left Tilted with EUT Close

Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
GSM850	128	824.2 (Low)	GMSK	32.95	-	-	-	-
	189	836.4 (Mid)	GMSK	32.93	-0.06	0.204	1.6	Pass
	251	848.8 (High)	GMSK	32.98	-	-	-	-
PCS	512	1850.2 (Low)	GMSK	29.71	-	-	-	-
	661	1880.0 (Mid)	GMSK	29.56	-0.062	0.708	1.6	Pass
	810	1909.8 (High)	GMSK	29.42	-	-	-	-
WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
	4182	836.4(Mid)	GMSK	23.27	-0.046	0.207	1.6	Pass
	4233	846.6(High)	GMSK	23.30	-	-	-	-

Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
CSN 1950	128	824.2 (Low)	GMSK	32.72	-	-	-	-
GSM850 (GPRS12)	189	836.4 (Mid)	GMSK	32.70	-0.118	0.256	1.6	Pass
(01 (012)	251	848.8 (High)	GMSK	32.71	-	-	-	-
GSM850	128	824.2 (Low)	8PSK	26.37	-	-	-	-
(EDGE12)	189	836.4 (Mid)	8PSK	26.38	-	-	-	-
(LDGL12)	251	848.8 (High)	8PSK	26.36	-	-	-	-
PCS	512	1850.2 (Low)	GMSK	28.06	-	-	-	-
(GPRS12)	661	1880.0 (Mid)	GMSK	28.42	-0.155	0.518	1.6	Pass
(01 K 512)	810	1909.8 (High)	GMSK	28.87	-	-	-	-
DCC	512	1850.2 (Low)	8PSK	23.78	-	-	-	-
PCS (EDGE12)	661	1880.0 (Mid)	8PSK	24.18	-	-	-	-
(EDGE12)	810	1909.8 (High)	8PSK	24.63	-	-	-	-
WCDMA Dord V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
WCDMA Band V (RMC 12.2K)	4182	836.4(Mid)	GMSK	23.27	-0.107	0.193	1.6	Pass
(RWC 12.2R)	4233	846.6(High)	GMSK	23.30	-	-	-	-
WCDMA Band V	4132	826.4(Low)	QPSK	23.56	-	-	-	-
(RMC 64K)	4182	836.4(Mid)	QPSK	23.40	-	-	-	-
(KWC 04K)	4233	846.6(High)	QPSK	23.29	-	-	-	-
WCDMA Dand V	4132	826.4(Low)	QPSK	23.45	-	-	-	-
WCDMA Band V (RMC 144K)	4182	836.4(Mid)	QPSK	23.30	-	-	-	-
(RMC 144R)	4233	846.6(High)	QPSK	23.34	-	-	-	-
WCDMA Band V	4132	826.4(Low)	QPSK	23.40	-	-	-	-
(RMC 384K)	4182	836.4(Mid)	QPSK	23.13	-	-	-	-
(INITE JOHN)	4233	846.6(High)	QPSK	23.36	-		-	_
WCDMA Band V	4132	826.4(Low)	QPSK	23.85	-	-	-	-
(RMC 12.2K + HSDPA)	4182	836.4(Mid)	QPSK	23.82	-	_	-	-
	4233	846.6(High)	QPSK	23.78	-	-	-	-

11.9 Keypad Up with 1.5cm Gap

Band	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
GSM850 (GPRS12)	128	824.2 (Low)	GMSK	32.72	-0.139	0.759	1.6	Pass
	189	836.4 (Mid)	GMSK	32.70	-0.166	1.02	1.6	Pass
(01R012)	251	848.8 (High)	GMSK	32.71	-0.199	1.39	1.6	Pass
GSM850 (GPRS12) with BT On	251	848.8 (High)	GMSK	32.71	-0.154	1.35	1.6	Pass
GSM850	128	824.2 (Low)	8PSK	26.37	-	-	-	-
(EDGE12)	189	836.4 (Mid)	8PSK	26.38	-0.15	0.356	1.6	Pass
(EDGE12)	251	848.8 (High)	8PSK	26.36	-	-	-	-
DCG	512	1850.2 (Low)	GMSK	28.06	-0.096	1.2	1.6	Pass
PCS (GPRS12)	661	1880.0 (Mid)	GMSK	28.42	0.143	1.11	1.6	Pass
(01K312)	810	1909.8 (High)	GMSK	28.87	-0.129	1.19	1.6	Pass
PCS (GPRS12) with BT On	512	1850.2 (Low)	GMSK	28.06	-0.016	1.14	1.6	Pass
PCS	512	1850.2 (Low)	8PSK	23.78	-	-	-	-
(EDGE12)	661	1880.0 (Mid)	8PSK	24.18	-0.016	0.413	1.6	Pass
(EDGE12)	810	1909.8 (High)	8PSK	24.63	-	-	-	-
WCDMA Band V	4132	826.4(Low)	GMSK	23.51	-	-	-	-
(RMC 12.2K)	4182	836.4(Mid)	GMSK	23.27	-0.141	0.402	1.6	Pass
(KWC 12.2K)	4233	846.6(High)	GMSK	23.30	-	-	-	-
	4132	826.4(Low)	QPSK	23.56	-	-	-	-
WCDMA Band V (RMC 64K)	4182	836.4(Mid)	QPSK	23.40	0.027	0.42	1.6	Pass
$(\mathbf{KWC} \ \mathbf{04K})$	4233	846.6(High)	QPSK	23.29	-	-	-	-
	4132	826.4(Low)	QPSK	23.45	-0.055	0.396	1.6	Pass
WCDMA Band V (RMC 144K)	4182	836.4(Mid)	QPSK	23.30	-0.103	0.427	1.6	Pass
(RMC 144K)	4233	846.6(High)	QPSK	23.34	0.005	0.47	1.6	Pass
WCDMA Band V (RMC 144K) with BT On	4233	846.6(High)	QPSK	23.34	-0.087	0.441	1.6	Pass
	4132	826.4(Low)	QPSK	23.40	-	-	-	-
WCDMA Band V (RMC 384K)	4182	836.4(Mid)	QPSK	23.13	0.015	0.419	1.6	Pass
	4233	846.6(High)	QPSK	23.36	-	-	-	-
WCDMA Band V	4132	826.4(Low)	QPSK	23.85	-	-	-	-
(RMC 12.2K + HSDPA)	4182	836.4(Mid)	QPSK	23.82	-0.07	0.317	1.6	Pass
	4233	846.6(High)	QPSK	23.78	_	_	-	-

11.10Keypad Down with 1.5cm Gap

Test Engineer : Eric Huang, John Tsai and Jason Wang

12. References

- FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21, 2003
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date: 2007/10/13

System Check_Head_835MHz

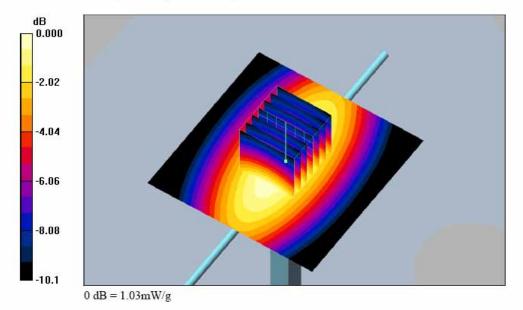
DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 835 MHz; σ = 0.898 mho/m; ε_r = 40.4; ρ = 1000 kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.05 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 35.7 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 1.42 W/kg SAR(1 g) = 0.954 mW/g; SAR(10 g) = 0.630 mW/g Maximum value of SAR (measured) = 1.03 mW/g

System Check Head 1900MH

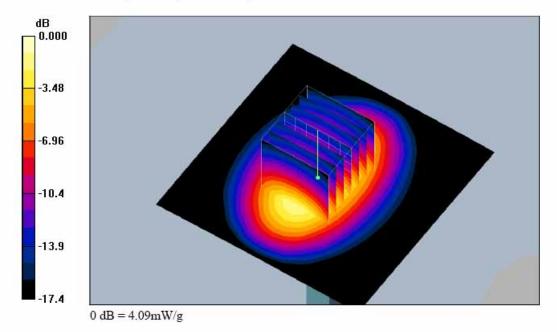
DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 39.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.14 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.5 V/m; Power Drift = -0.035 dB Peak SAR (extrapolated) = 6.26 W/kg SAR(1 g) = 3.61 mW/g; SAR(10 g) = 1.9 mW/g Maximum value of SAR (measured) = 4.09 mW/g

System Check_Body_835MHz

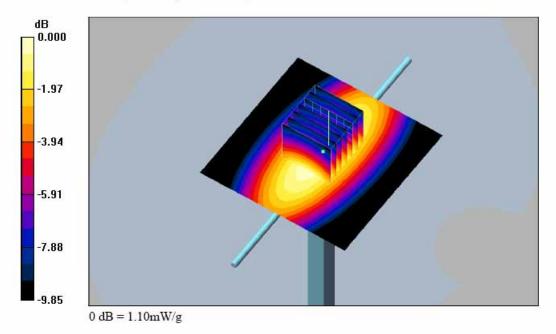
DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.968$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.10 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 35.1 V/m; Power Drift = 0.033 dB Peak SAR (extrapolated) = 1.46 W/kg SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.679 mW/g Maximum value of SAR (measured) = 1.10 mW/g

System Check Body 1900MHz

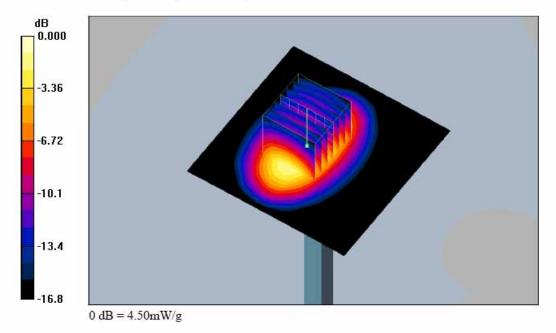
DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.63 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.4 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 6.64 W/kg SAR(1 g) = 3.94 mW/g; SAR(10 g) = 2.1 mW/g Maximum value of SAR (measured) = 4.50 mW/g

System Check_Body_835MHz

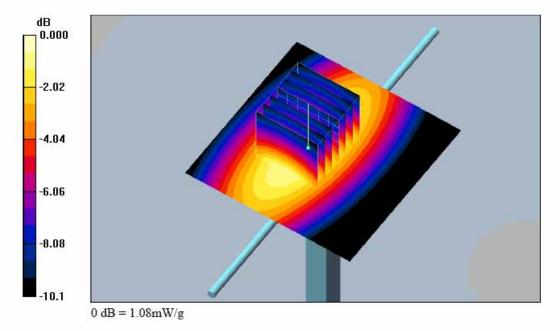
DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 54.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.976 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.4 V/m; Power Drift = -0.023 dB Peak SAR (extrapolated) = 1.42 W/kg SAR(1 g) = 0.995 mW/g; SAR(10 g) = 0.658 mW/g Maximum value of SAR (measured) = 1.08 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date: 2007/10/13

Right Cheek_GSM850 Ch189_Open Mode

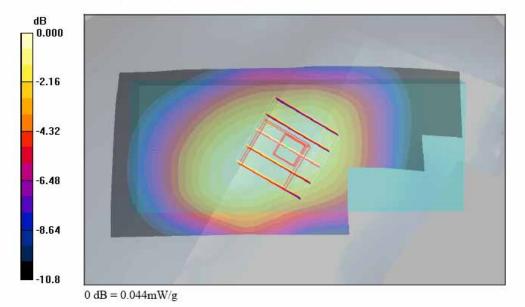
DUT: 792103

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\varepsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.045 mW/g

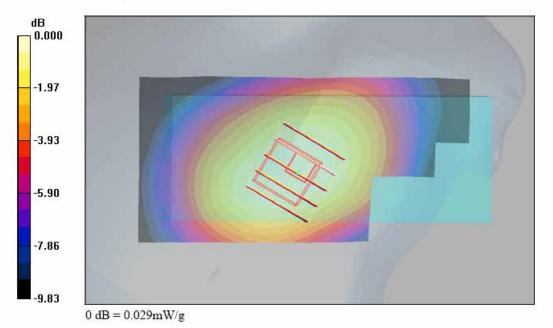
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.57 V/m; Power Drift = -0.085 dB Peak SAR (extrapolated) = 0.053 W/kg SAR(1 g) = 0.042 mW/g; SAR(10 g) = 0.031 mW/g Maximum value of SAR (measured) = 0.044 mW/g

Date: 2007/10/13

Right Tilted_GSM850 Ch189_Open Mode

DUT: 792103

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.9 °C; Liquid Temperature : 21.3 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.029 mW/g

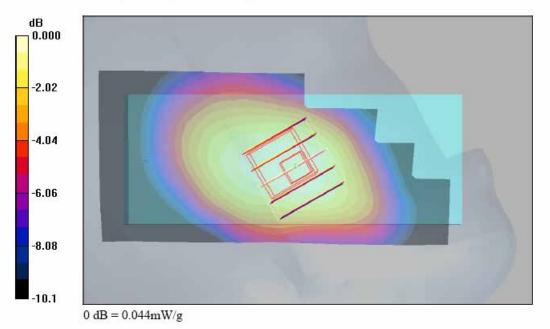
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.47 V/m; Power Drift = 0.026 dB Peak SAR (extrapolated) = 0.034 W/kg SAR(1 g) = 0.027 mW/g; SAR(10 g) = 0.021 mW/g Maximum value of SAR (measured) = 0.029 mW/g

Date: 2007/10/13

Left Cheek_GSM850 Ch189_Open Mode

DUT: 792103

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.1 °C; Liquid Temperature : 21.3 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.045 mW/g

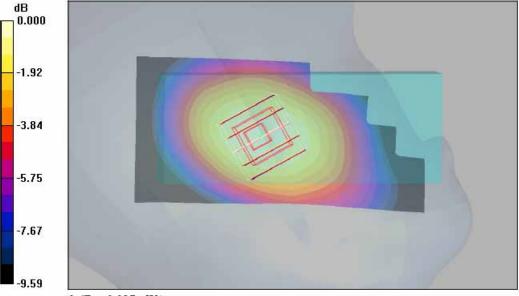
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.87 V/m; Power Drift = 0.060 dB Peak SAR (extrapolated) = 0.055 W/kg SAR(1 g) = 0.042 mW/g; SAR(10 g) = 0.031 mW/g Maximum value of SAR (measured) = 0.044 mW/g

Date: 2007/10/13

Left Tilted_GSM850 Ch189_Open Mode

DUT: 792103

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.1 °C; Liquid Temperature : 21.3 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.027 mW/g

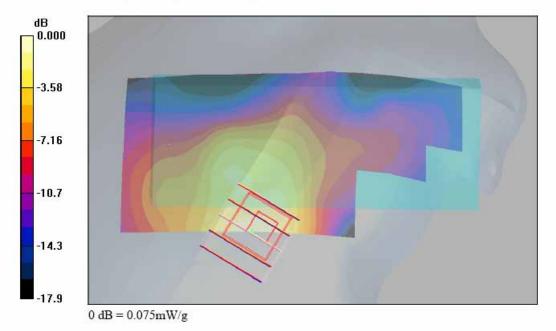
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.37 V/m; Power Drift = -0.087 dB Peak SAR (extrapolated) = 0.031 W/kg SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.019 mW/g Maximum value of SAR (measured) = 0.027 mW/g

 $0 \, dB = 0.027 \, mW/g$

Right Cheek_PCS Ch661_Open Mode

DUT: 792103

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

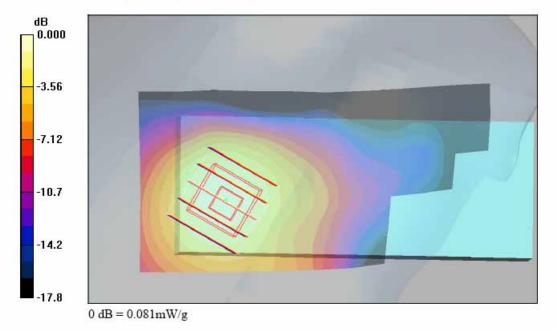
Ch661/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.075 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.33 V/m; Power Drift = 0.003 dB Peak SAR (extrapolated) = 0.128 W/kg SAR(1 g) = 0.069 mW/g; SAR(10 g) = 0.036 mW/g Maximum value of SAR (measured) = 0.075 mW/g

Right Tilted_PCS Ch661_Open Mode

DUT: 792103

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.079 mW/g

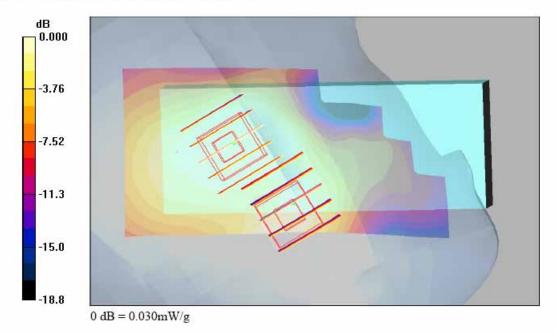
Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.90 V/m; Power Drift = 0.126 dB Peak SAR (extrapolated) = 0.115 W/kg SAR(1 g) = 0.076 mW/g; SAR(10 g) = 0.046 mW/g Maximum value of SAR (measured) = 0.081 mW/g

Left Cheek_PCS Ch661_Open Mode

DUT: 792103

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.045 mW/g

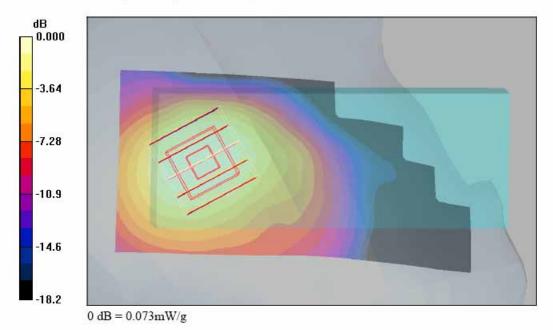
Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.07 V/m; Power Drift = 0.167 dB Peak SAR (extrapolated) = 0.053 W/kg SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.025 mW/g Maximum value of SAR (measured) = 0.041 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.07 V/m; Power Drift = 0.167 dBPeak SAR (extrapolated) = 0.047 W/kgSAR(1 g) = 0.028 mW/g; SAR(10 g) = 0.015 mW/gMaximum value of SAR (measured) = 0.030 mW/g

Left Tilted_PCS Ch661_Open Mode

DUT: 792103

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.2 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.076 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.11 V/m; Power Drift = 0.027 dB Peak SAR (extrapolated) = 0.097 W/kg SAR(1 g) = 0.067 mW/g; SAR(10 g) = 0.041 mW/g Maximum value of SAR (measured) = 0.073 mW/g

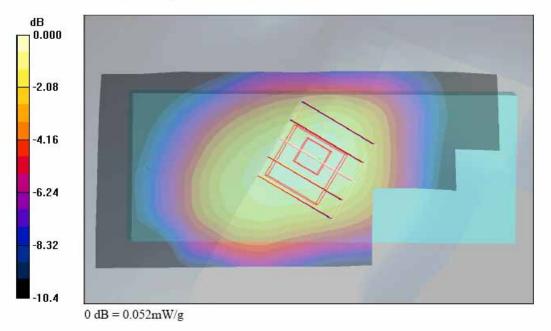
Date: 2007/10/13

Right Cheek_WCDMA Ch4182_Open Mode

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.9 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.051 mW/g

 $\begin{array}{l} \textbf{Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm \\ Reference Value = 3.40 V/m; Power Drift = -0.150 dB \\ Peak SAR (extrapolated) = 0.064 W/kg \\ \textbf{SAR(1 g) = 0.050 mW/g; SAR(10 g) = 0.036 mW/g} \\ Maximum value of SAR (measured) = 0.052 mW/g \\ \end{array}$

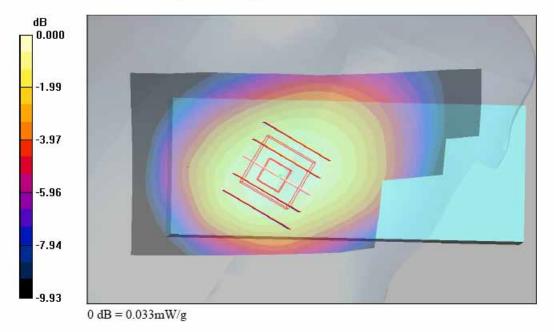
Date: 2007/10/13

Right Tilted_WCDMA Ch4182_Open Mode

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.8 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.033 mW/g

 $\begin{array}{l} \textbf{Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm \\ Reference Value = 3.88 V/m; Power Drift = 0.178 dB \\ Peak SAR (extrapolated) = 0.038 W/kg \\ \textbf{SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.023 mW/g} \\ Maximum value of SAR (measured) = 0.033 mW/g \\ \end{array}$

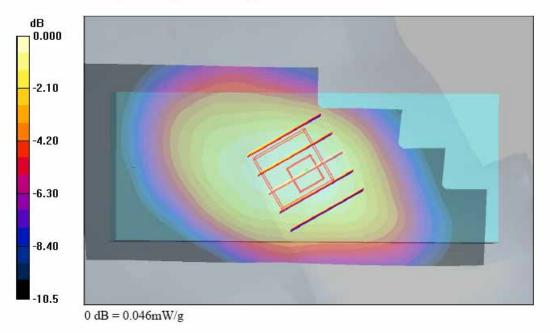
Date: 2007/10/13

Left Cheek_WCDMA Ch4182_Open Mode

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.047 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.95 V/m; Power Drift = 0.143 dB Peak SAR (extrapolated) = 0.057 W/kg SAR(1 g) = 0.043 mW/g; SAR(10 g) = 0.032 mW/g Maximum value of SAR (measured) = 0.046 mW/g

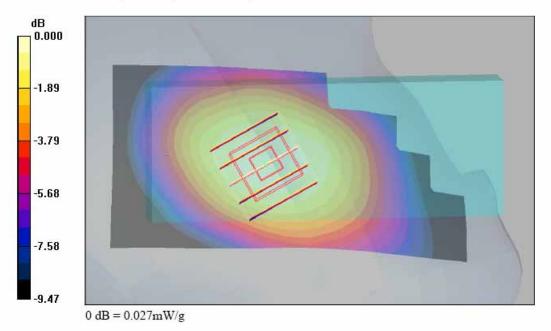
Date: 2007/10/13

Left Tilted_WCDMA Ch4182_Open Mode

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.027 mW/g

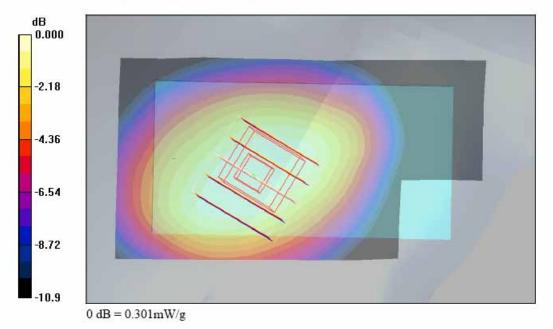
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.42 V/m; Power Drift = 0.175 dB Peak SAR (extrapolated) = 0.030 W/kg SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.019 mW/g Maximum value of SAR (measured) = 0.027 mW/g

Date: 2007/10/13

Right Cheek_GSM850 Ch189_Close Mode

DUT: 792103

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.3 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.310 mW/g

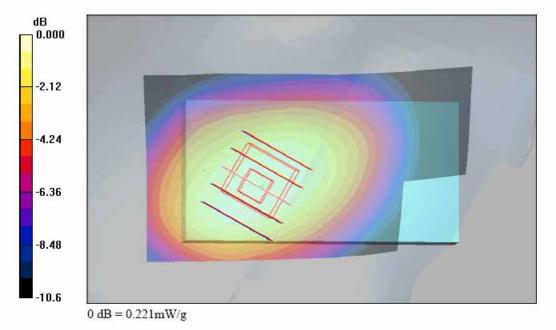
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.1 V/m; Power Drift = -0.146 dB Peak SAR (extrapolated) = 0.377 W/kg SAR(1 g) = 0.283 mW/g; SAR(10 g) = 0.205 mW/g Maximum value of SAR (measured) = 0.301 mW/g

Date: 2007/10/13

Right Tilted_GSM850 Ch189_Close Mode

DUT: 792103

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.9 °C; Liquid Temperature : 21.3 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.224 mW/g

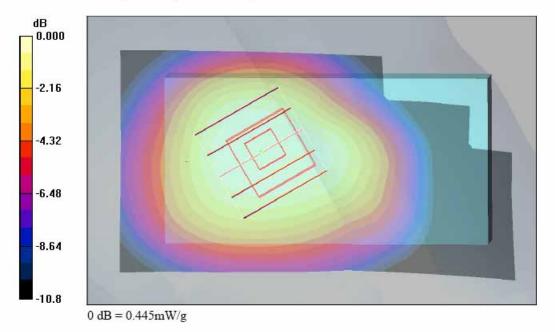
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.7 V/m; Power Drift = 0.172 dB Peak SAR (extrapolated) = 0.278 W/kg SAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.150 mW/g Maximum value of SAR (measured) = 0.221 mW/g

Date: 2007/10/13

Left Cheek_GSM850 Ch251_Close Mode

DUT: 792103

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.913$ mho/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.9 °C; Liquid Temperature : 21.3 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.497 mW/g

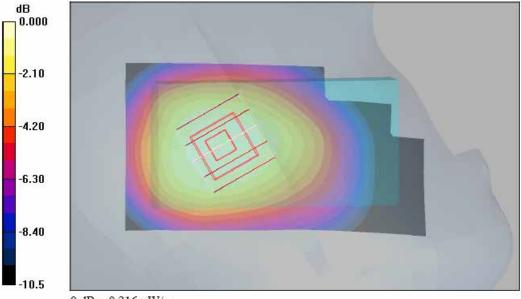
Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.6 V/m; Power Drift = -0.152 dB Peak SAR (extrapolated) = 0.536 W/kg SAR(1 g) = 0.421 mW/g; SAR(10 g) = 0.308 mW/g Maximum value of SAR (measured) = 0.445 mW/g

Date: 2007/10/13

Left Tilted_GSM850 Ch189_Close Mode

DUT: 792103

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.9 °C; Liquid Temperature : 21.3 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.221 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.9 V/m; Power Drift = -0.060 dB Peak SAR (extrapolated) = 0.252 W/kg SAR(1 g) = 0.204 mW/g; SAR(10 g) = 0.149 mW/g Maximum value of SAR (measured) = 0.216 mW/g

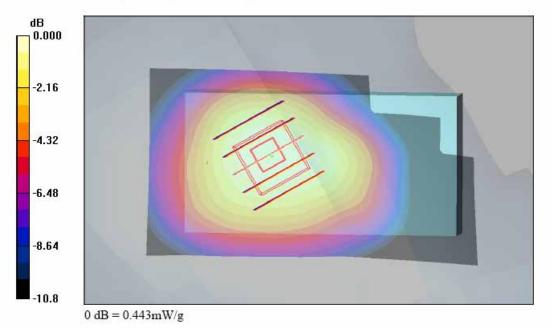
 $0 \, dB = 0.216 \, mW/g$

Date: 2007/10/13

Left Cheek_GSM850 Ch251_Close Mode_BT On

DUT: 792103

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.913$ mho/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.3 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

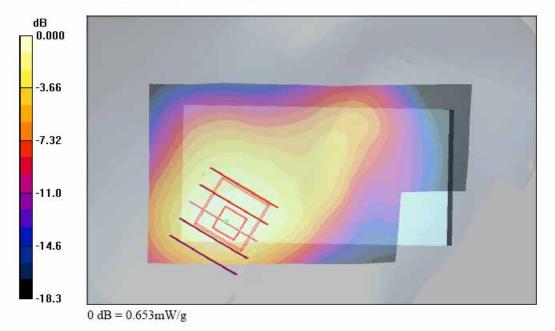
Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.454 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.6 V/m; Power Drift = 0.005 dB Peak SAR (extrapolated) = 0.522 W/kg SAR(1 g) = 0.418 mW/g; SAR(10 g) = 0.304 mW/g Maximum value of SAR (measured) = 0.443 mW/g

Right Cheek_PCS Ch661_Close Mode

DUT: 792103

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

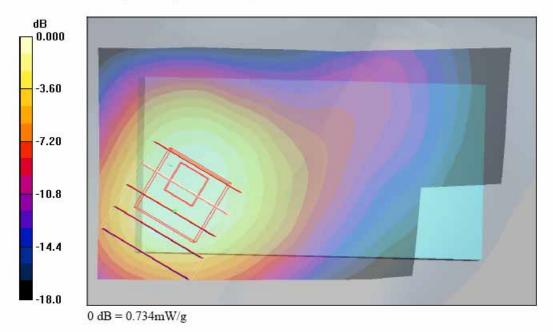
Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.708 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.4 V/m; Power Drift = -0.193 dB Peak SAR (extrapolated) = 1.00 W/kg SAR(1 g) = 0.595 mW/g; SAR(10 g) = 0.344 mW/g Maximum value of SAR (measured) = 0.653 mW/g

Right Tilted_PCS Ch661_Close Mode

DUT: 792103

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.2 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

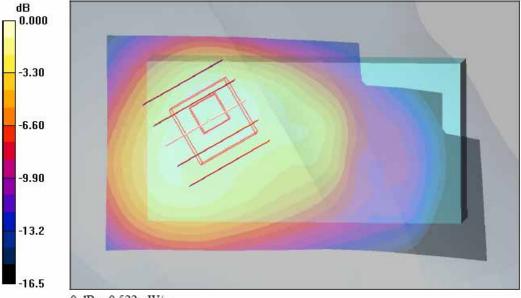
Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.779 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.9 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.679 mW/g; SAR(10 g) = 0.415 mW/g Maximum value of SAR (measured) = 0.734 mW/g

Left Cheek_PCS Ch661_Close Mode

DUT: 792103

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.2 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.519 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.4 V/m; Power Drift = -0.041 dB Peak SAR (extrapolated) = 0.665 W/kg SAR(1 g) = 0.481 mW/g; SAR(10 g) = 0.298 mW/g Maximum value of SAR (measured) = 0.522 mW/g

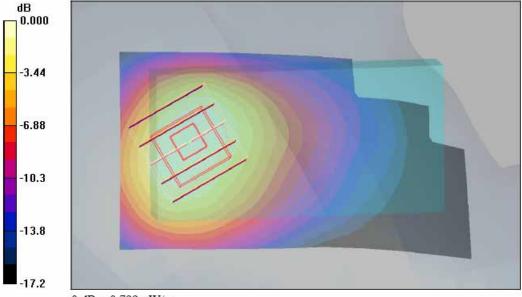
0 dB = 0.522 mW/g

Date: 2007/10/14

Left Tilted_PCS Ch810_Close Mode

DUT: 792103

Communication System: PCS; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium: HSL_1900 Medium parameters used: f = 1910 MHz; σ = 1.42 mho/m; ϵ_r = 39.6; ρ = 1000 kg/m³ Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.833 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.9 V/m; Power Drift = 0.057 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.728 mW/g; SAR(10 g) = 0.435 mW/g Maximum value of SAR (measured) = 0.799 mW/g

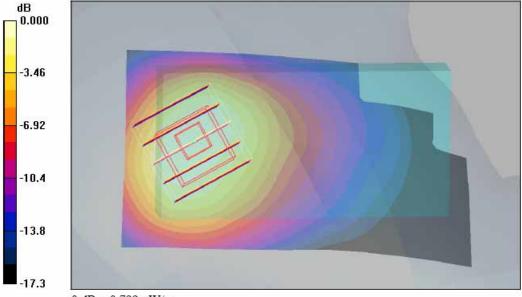
 $^{0 \,} dB = 0.799 \, mW/g$

Date: 2007/10/14

Left Tilted_PCS Ch810_Close Mode_BT On

DUT: 792103

Communication System: PCS; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium: HSL_1900 Medium parameters used: f = 1910 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.827 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.0 V/m; Power Drift = 0.016 dB Peak SAR (extrapolated) = 1.10 W/kg SAR(1 g) = 0.727 mW/g; SAR(10 g) = 0.434 mW/g Maximum value of SAR (measured) = 0.799 mW/g

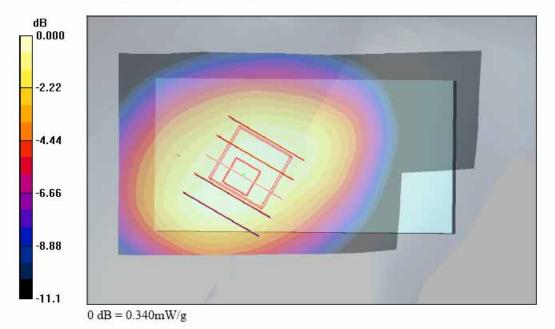
 $^{0 \,} dB = 0.799 \, mW/g$

Date: 2007/10/13

Right Cheek_WCDMA Ch4182_Close Mode

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.3°C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.336 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.5 V/m; Power Drift = 0.084 dB Peak SAR (extrapolated) = 0.450 W/kg SAR(1 g) = 0.321 mW/g; SAR(10 g) = 0.234 mW/g Maximum value of SAR (measured) = 0.340 mW/g

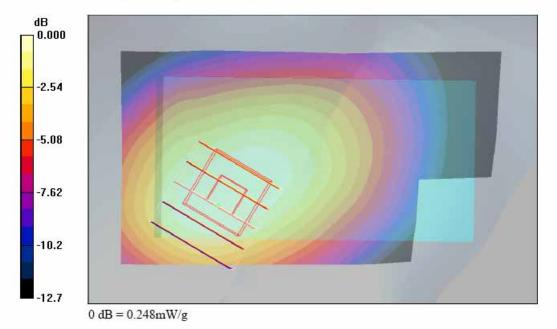
Date: 2007/10/13

Right Tilted_WCDMA Ch4182_Close Mode

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.259 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.5 V/m; Power Drift = -0.196 dB Peak SAR (extrapolated) = 0.333 W/kg SAR(1 g) = 0.233 mW/g; SAR(10 g) = 0.164 mW/g Maximum value of SAR (measured) = 0.248 mW/g

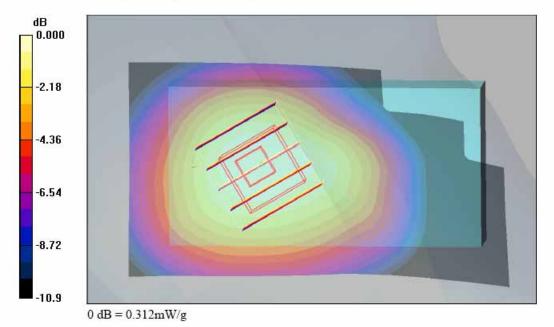
Date: 2007/10/13

Left Cheek_WCDMA Ch4182_Close Mode

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.322 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.2 V/m; Power Drift = -0.124 dB Peak SAR (extrapolated) = 0.369 W/kg SAR(1 g) = 0.297 mW/g; SAR(10 g) = 0.216 mW/g Maximum value of SAR (measured) = 0.312 mW/g

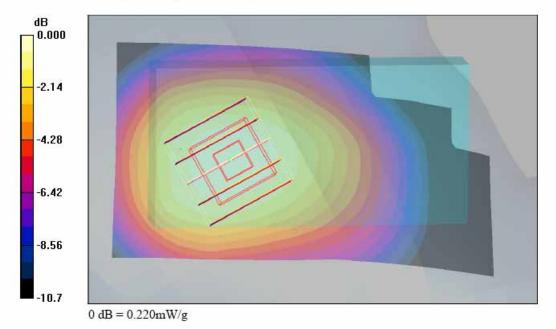
Date: 2007/10/13

Left Tilted_WCDMA Ch4182_Close Mode

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

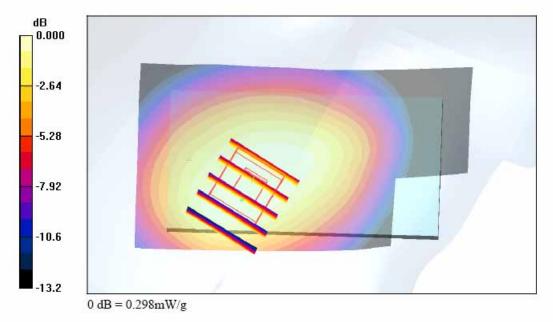
Maximum value of SAR (interpolated) = 0.214 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.4 V/m; Power Drift = -0.046 dB Peak SAR (extrapolated) = 0.257 W/kg SAR(1 g) = 0.207 mW/g; SAR(10 g) = 0.152 mW/g Maximum value of SAR (measured) = 0.220 mW/g

Right Cheek_WCDMA Ch4182_Close Mode_BT On

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.899$ mho/m; $\varepsilon_r = 40.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.3 °C


Date: 2007/10/13

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.309 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.2 V/m; Power Drift = -0.157 dB Peak SAR (extrapolated) = 0.419 W/kg SAR(1 g) = 0.281 mW/g; SAR(10 g) = 0.196 mW/g Maximum value of SAR (measured) = 0.298 mW/g

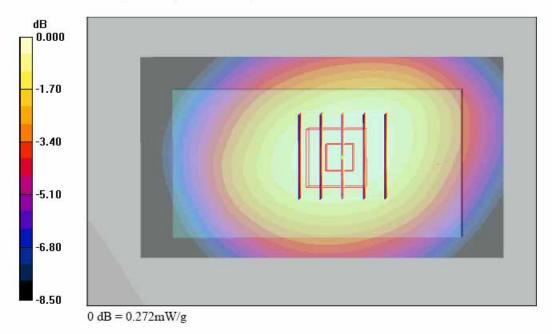
Date: 2007/10/12

Body_GSM850 Ch189_Keypad Up with 1.5cm Gap_GPRS12

DUT: 792103

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:2 Medium: MSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.273 mW/g

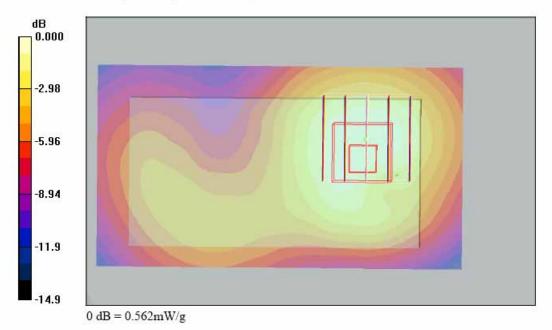
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.1 V/m; Power Drift = -0.118 dB Peak SAR (extrapolated) = 0.306 W/kg SAR(1 g) = 0.256 mW/g; SAR(10 g) = 0.191 mW/g Maximum value of SAR (measured) = 0.272 mW/g

Date: 2007/10/12

Body_PCS Ch661_Keypad Up with 1.5cm Gap_GPRS12

DUT: 792103

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:2 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.5 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.583 mW/g

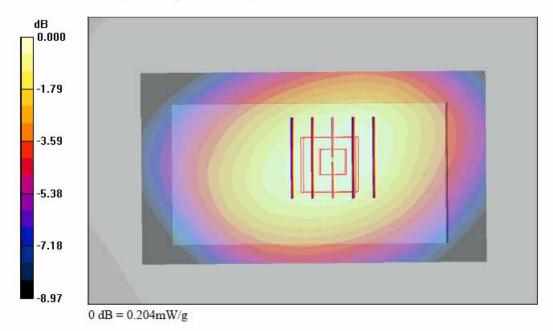
Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.9 V/m; Power Drift = -0.155 dB Peak SAR (extrapolated) = 0.766 W/kg SAR(1 g) = 0.518 mW/g; SAR(10 g) = 0.328 mW/g Maximum value of SAR (measured) = 0.562 mW/g

Body_WCDMA Ch4182_Keypad Up with 1.5cm Gap_RMC12.2K

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

Date: 2007/9/29


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 176

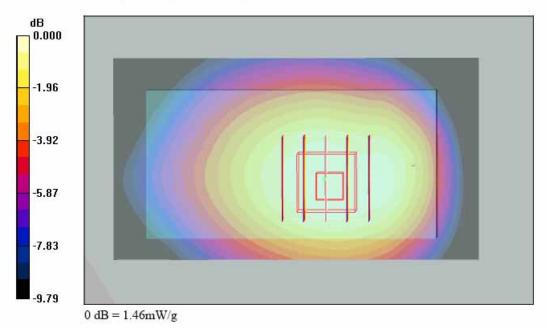
Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.203 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.8 V/m; Power Drift = -0.107 dB Peak SAR (extrapolated) = 0.237 W/kg SAR(1 g) = 0.193 mW/g; SAR(10 g) = 0.143 mW/g Maximum value of SAR (measured) = 0.204 mW/g

Body_GSM850 Ch251_Keypad Down with 1.5cm Gap_GPRS12

DUT: 792103

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:2 Medium: MSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.983$ mho/m; $\epsilon_r = 54.1$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.3 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.52 mW/g

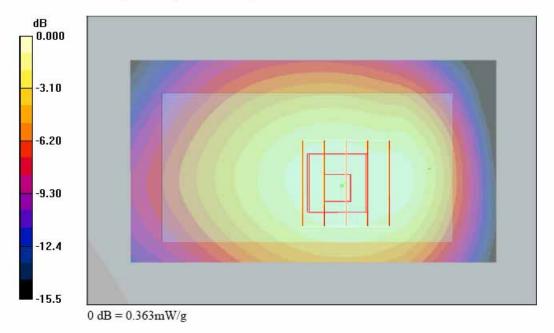
Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 34.9 V/m; Power Drift = -0.199 dB Peak SAR (extrapolated) = 1.77 W/kg SAR(1 g) = 1.39 mW/g; SAR(10 g) = 1 mW/g Maximum value of SAR (measured) = 1.46 mW/g

Body_GSM850 Ch189_Keypad Down with 1.5cm Gap_EDGE12

DUT: 792103

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:2 Medium: MSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.358 mW/g

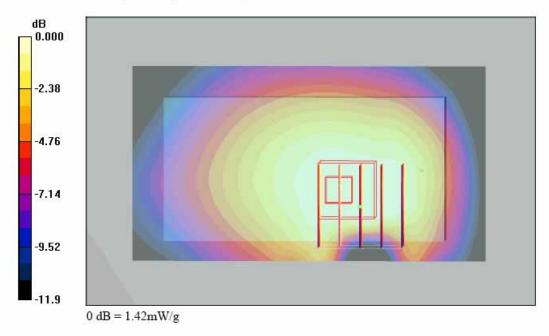
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.9 V/m; Power Drift = -0.150 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.356 mW/g; SAR(10 g) = 0.249 mW/g Maximum value of SAR (measured) = 0.363 mW/g

Date: 2007/10/12

Body_GSM850 Ch251_Keypad Down with 1.5cm Gap_GPRS12_BT On

DUT: 792103

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:2 Medium: MSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.983$ mho/m; $\epsilon_r = 54.1$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.72 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.9 V/m; Power Drift = -0.154 dB Peak SAR (extrapolated) = 1.74 W/kg SAR(1 g) = 1.35 mW/g; SAR(10 g) = 0.965 mW/g Maximum value of SAR (measured) = 1.42 mW/g

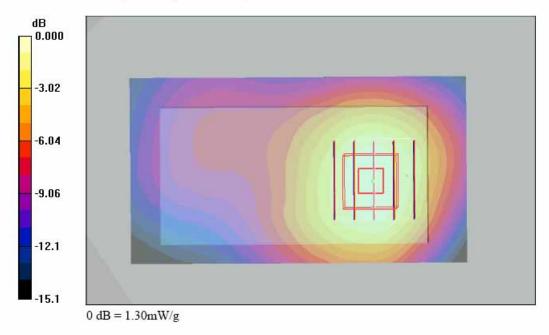
ab Date: 2007/10/12

Body_PCS Ch512_Keypad Down with 1.5cm Gap_GPRS12

DUT: 792103

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:2 Medium: MSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.1 °C; Liquid Temperature : 21.5 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.29 mW/g

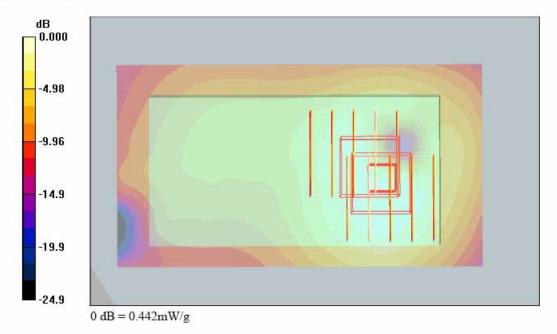
Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.3 V/m; Power Drift = -0.096 dB Peak SAR (extrapolated) = 1.87 W/kg SAR(1 g) = 1.2 mW/g; SAR(10 g) = 0.736 mW/g Maximum value of SAR (measured) = 1.30 mW/g

Body_PCS Ch661_Keypad Down with 1.5cm Gap_EDGE12

DUT: 792103

Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:2 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.5 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.493 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.3 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 0.661 W/kg SAR(1 g) = 0.413 mW/g; SAR(10 g) = 0.254 mW/g Maximum value of SAR (measured) = 0.434 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.3 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 0.659 W/kg SAR(1 g) = 0.412 mW/g; SAR(10 g) = 0.242 mW/g Maximum value of SAR (measured) = 0.442 mW/g

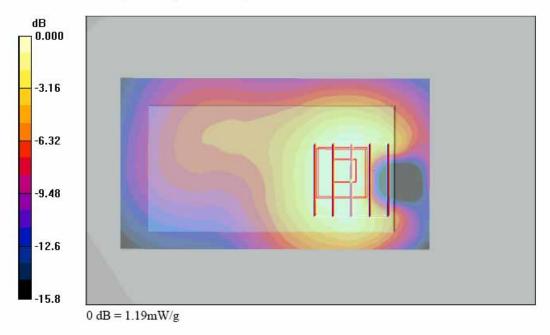
Date: 2007/10/12

Body_PCS Ch512_Keypad Down with 1.5cm Gap_GPRS12_BT On

DUT: 792103

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:2 Medium: MSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 21.5 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.61 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.6 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 1.79 W/kg SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.695 mW/g Maximum value of SAR (measured) = 1.19 mW/g

Date : 2007/9/29

Body_WCDMA Ch4182_Keypad Down with 1.5cm Gap_RMC 12.2K

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.430 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.1 V/m; Power Drift = -0.141 dB Peak SAR (extrapolated) = 0.509 W/kg SAR(1 g) = 0.402 mW/g; SAR(10 g) = 0.292 mW/g Maximum value of SAR (measured) = 0.427 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.1 V/m; Power Drift = -0.141 dB Peak SAR (extrapolated) = 0.505 W/kg SAR(1 g) = 0.371 mW/g; SAR(10 g) = 0.261 mW/g Maximum value of SAR (measured) = 0.412 mW/g

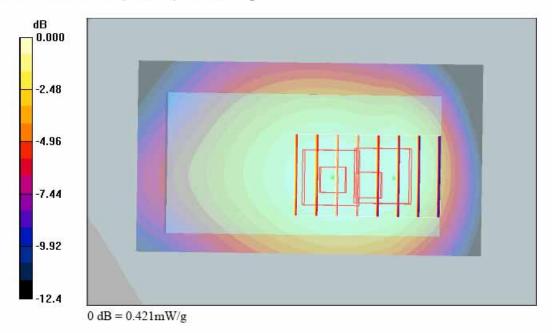
Date : 2007/9/29

Body_WCDMA Ch4182_Keypad Down with 1.5cm Gap_RMC 64K

DUT: 792103

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.441 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.4 V/m; Power Drift = 0.027 dB Peak SAR (extrapolated) = 0.531 W/kg SAR(1 g) = 0.420 mW/g; SAR(10 g) = 0.305 mW/g Maximum value of SAR (measured) = 0.446 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.4 V/m; Power Drift = 0.027 dB Peak SAR (extrapolated) = 0.516 W/kg SAR(1 g) = 0.381 mW/g; SAR(10 g) = 0.265 mW/g Maximum value of SAR (measured) = 0.421 mW/g

