

FCC CFR47 PART 15 SUBPART C **CERTIFICATION TEST REPORT**

FOR

PDA PHONE

MODEL NUMBERS: KAIS100, KAIS110, KAIS120

FCC ID: NM8KS

REPORT NUMBER: 07U10984-6

ISSUE DATE: JUNE 27, 2007

Prepared for HIGH TECH COMPUTER CORP. 23 HSIN HUA RD. **TAOYUAN 330, TAIWAN**

Prepared by **COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET** FREMONT, CA 94538, USA **TEL: (510) 771-1000** FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	06/27/07	Initial Issue	T. Chan

Page 2 of 88

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CAI	LIBRATION AND UNCERTAINTY	5
	4.1.	MEASURING INSTRUMENT CALIBRATION	5
	4.2.	MEASUREMENT UNCERTAINTY	5
5.	EQI	JIPMENT UNDER TEST	6
	5.1.	DESCRIPTION OF EUT	6
	5.2.	MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCES	6
	5.3.	MAXIMUM OUTPUT POWER	7
	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.5.	SOFTWARE AND FIRMWARE	7
	5.6.	WORST-CASE CONFIGURATION AND MODE	7
	5.7.	DESCRIPTION OF TEST SETUP	
6.	TES	T AND MEASUREMENT EQUIPMENT	
	6.1.	BLUETOOTH ANTENNA PORT CHANNEL TESTS	
	6.1.		
	6.1.2		
	6.1.3		
	6.1.4 6.1.4		
		RADIATED EMISSIONS	
	6.2.		
	6.2.2 6.2.3		
	6.3.	POWERLINE CONDUCTED EMISSIONS	
7.	SET	^Т ИР РНОТОЅ	74

Page 3 of 88

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	HIGH TECH COMPUTER CORP. 23 HSIN HUA ROAD TAOYUAN 330, TAIWAN				
EUT DESCRIPTION:	PDA PHONE				
MODELS:	KAIS100, KAIS110, KAIS120				
MODEL:	KAIS120				
SERIAL NUMBER:	TY709G000545				
DATE TESTED:	APRIL 13-16, 2007				
APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
FCC PART 15 SUBP	ART C NO NON-COMPLIANCE NOTED				

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

Chin Pang

CHIN PANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 88

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Radiated Emission Above 2000 MHz	+/- 4.3 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a PDA Bluetooth Phone and is manufactured by High Tech Computer.

ACCESSORIES

Subassembly Description	Manufacturer	Part Number	Model Number
AC ADAPTER FOR EUT	Delta Electronic	79H00051-01M	ADP-5FH B
3.7V Li-ion Battery	Dynapack	35H00088-00M	KAIS160
Earphone	Merry Electronics Co., LTG	NA	EMC220
USB Cable	NA	NA	NA
PDA	HTC	TY709G000591	KAIS100
PDA	HTC	TY709G000606	KAIS110
PDA	HTC	TY709G000545	KAIS120

5.2. MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCES

The EUT was chosen as a representative model of the model series. The following table shows the model differences.

Model Name	Model Differences
KAIS100	With 3.0 Megapixel Color CMOS Camera
KAIS110	No Camera
KAIS120	With two cameras, Main Camera: 3.0 Megapixel Color CMOS Camera. Second Camera : Color CMOS CIF camera

*: Model tested: KAIS120

Page 6 of 88

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

2400 to 2483.5 MHz Authorized Band

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402-2480	Bluetooth	2.04	1.60

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a fixed internal PIFA antenna with a maximum peak gain of 1.5dBi.

5.5. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was mapi_firmware_1150.

The EUT driver software installed in the host support equipment during testing was Kaiser_RS_V214_1025_USB.

The test utility software used during testing was radioscope.exe

5.6. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2402 MHz.

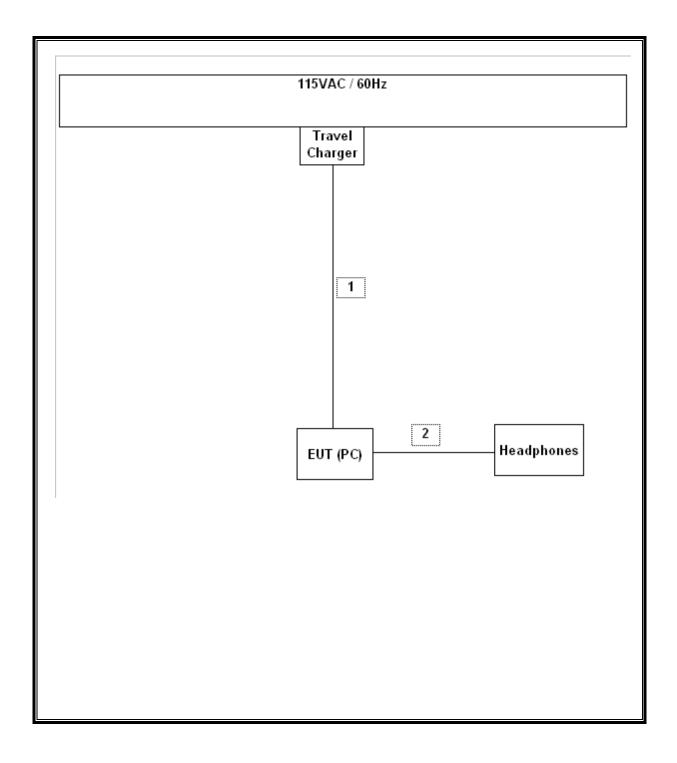
The EUT is a portable device, therefore X, Y, & Z positions with and without AC adapter, PDA open and closed position and mobile configuration have been investigated. The worst case is to evaluate at EUT open and at Y position with battery operated.

The EUT models-KAIS100, KAIS110 and KAIS120 have been investigated during baseline scan and found no different in these models. Since KAIS120 has more option than the other models, therefore, it's used for the test.

Page 7 of 88

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT


PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number						
Laptop	Toshiba	Satellite	9167937PU	DoC		
AC Adapter	Toshiba	PA3083U-1ACA	0109a0043422g	DoC		

I/O CABLES

	I/O CABLE LIST							
Cable	Cable Port # of Connector		Cable	Cable	Remarks			
No.		Identical	Туре	Туре	Length			
		Ports						
1	AC	1	US 115V	Un-shielded	2m	NA		
2	DC	1	DC	Un-shielded	2m	NA		

Page 8 of 88

SETUP DIAGRAM FOR TESTS

Page 9 of 88

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42510266	10/18/2007		
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/2/2007		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	12/2/2007		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00369	8/17/2007		
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	9/3/2007		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	4/22/2008		
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/2007		
EMI Test Receiver	R&S	ESHS 20	827129/006	6/3/2007		
Preamplifier, 1300 MHz	Agilent / HP	8447D	1937A02062	1/23/2008		
SA RF Section, 1.5 GHz	Agilent / HP	85680B	2814A04227	1/7/2008		
SA Display Section 2	Agilent / HP	85662A	2816A16696	4/7/2008		
Quasi-Peak Adaptor	Agilent / HP	85650A	3145A01654	1/21/2008		
4.0 High Pass Filter	Micro Tronics	HPM13351	3	N/A		

Page 10 of 88

6.1. BLUETOOTH ANTENNA PORT CHANNEL TESTS

6.1.1. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels: 1 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247 (a) (1)

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a peak power meter.

RESULTS

No non-compliance noted:

Page 11 of 88

RESULTS

The maximum antenna gain is 1.5 dBi for other than fixed, point-to-point operations, therefore the limit is maintain the same.

No non-compliance noted:

GFSK Modulation

Channel	annel Frequency Peak Power		Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	2.04	30	-27.96
Middle	2441	1.79	30	-28.21
High	2480	0.94	30	-29.06

8DPSK Modulation

Channel	annel Frequency Peak Power		Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	1.17	20.97	-19.80
Middle	2441	0.94	20.97	-20.03
High	2480	0.01	20.97	-20.96

Page 12 of 88

6.1.2. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 1 dB was entered as an offset in the power meter to allow for direct reading of power.

<u>GFSK</u>

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	1.91
Middle	2441	1.70
High	2480	0.79

8DPSK

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	1.00
Middle	2441	0.79
High	2480	-0.21

6.1.3. CONDUCTED SPURIOUS EMISSIONS

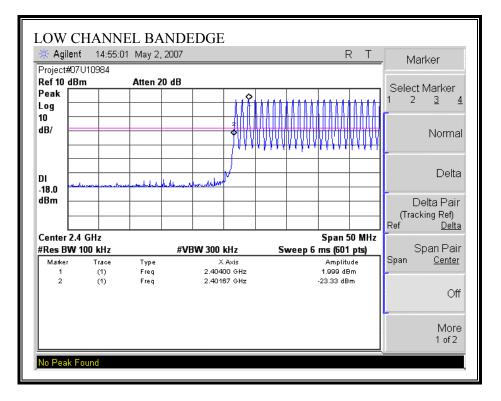
LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

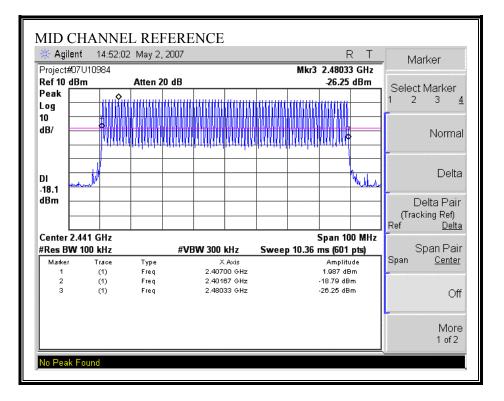
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

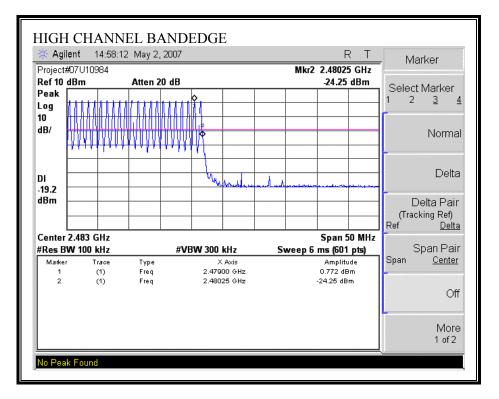

RESULTS

No non-compliance noted:

Page 14 of 88

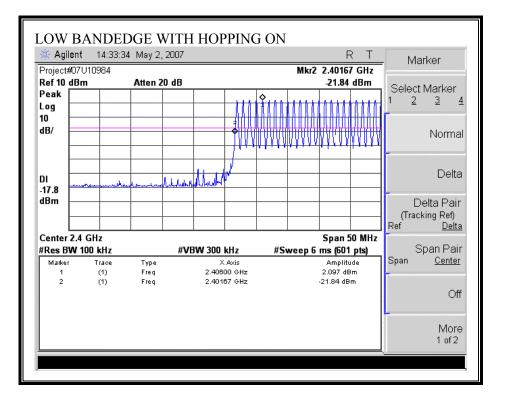

<u>GFSK</u>

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

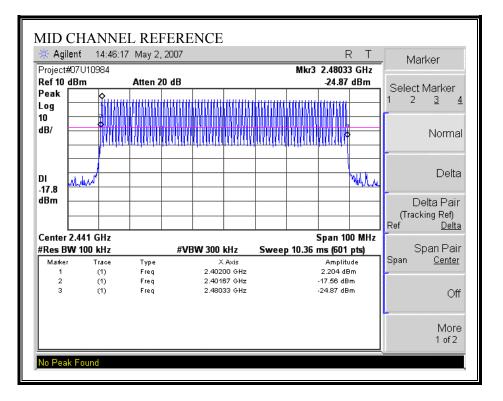

Page 15 of 88

SPURIOUS EMISSIONS, MID CHANNEL

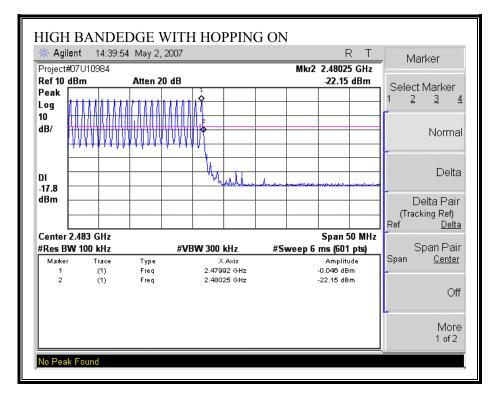
Page 16 of 88


HIGH BANDEDGE WITH HOPPING ON

Page 17 of 88


8DPSK

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON


Page 18 of 88

SPURIOUS EMISSIONS, MID CHANNEL

Page 19 of 88

HIGH BANDEDGE WITH HOPPING ON

Page 20 of 88

6.1.4. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

\$15.247 (f) The digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

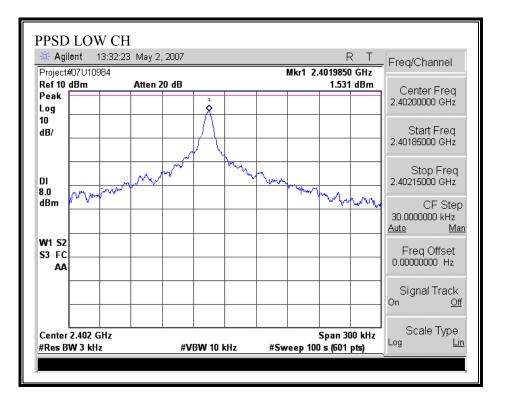
The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

RESULTS

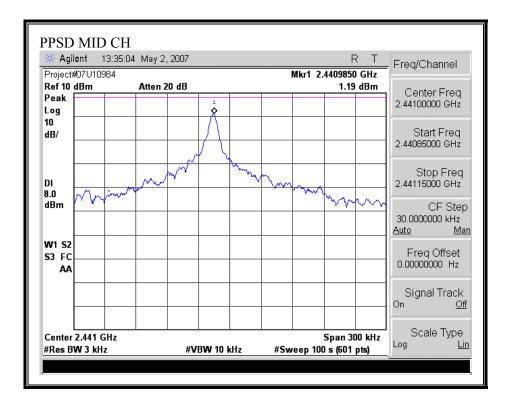
No non-compliance noted:

GFSK

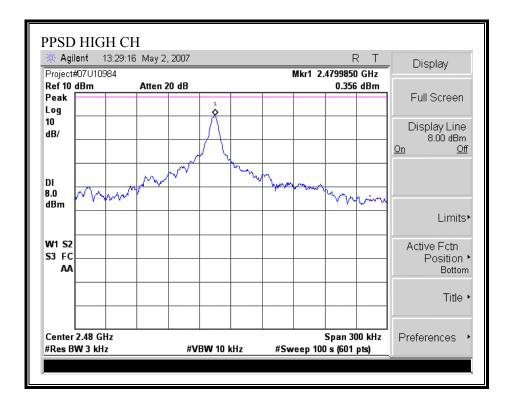
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2402	1.53	8	-6.47
Middle	2441	1.19	8	-6.81
High	2480	0.36	8	-7.64


8DPSK

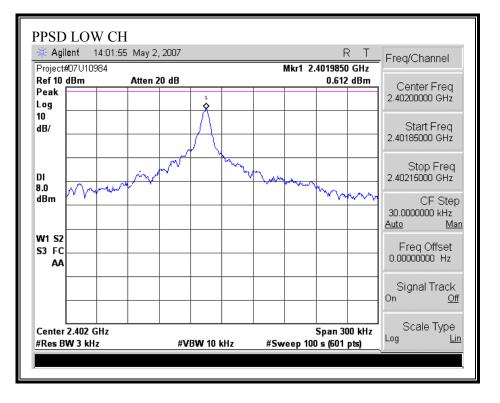
Channel	Frequency	PPSD	Limit	Margin	
	(MHz)	(dBm)	(dBm)	(dB)	
Low	2402	0.61	8	-7.39	
Middle	2441	0.22	8	-7.78	
High	2480	-0.71	8	-8.71	

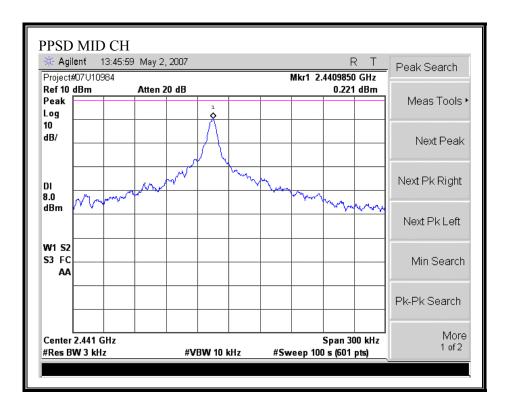

Page 21 of 88

<u>GFSK</u>

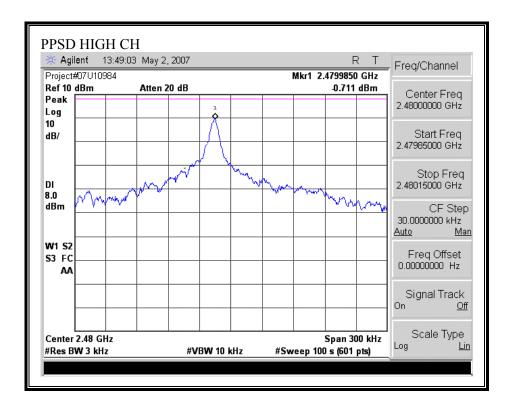

PEAK POWER SPECTRAL DENSITY

Page 22 of 88


Page 23 of 88


Page 24 of 88

8DPSK


PEAK POWER SPECTRAL DENSITY

Page 25 of 88

Page 26 of 88

Page 27 of 88

6.1.5. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

\$15.247 (g) The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

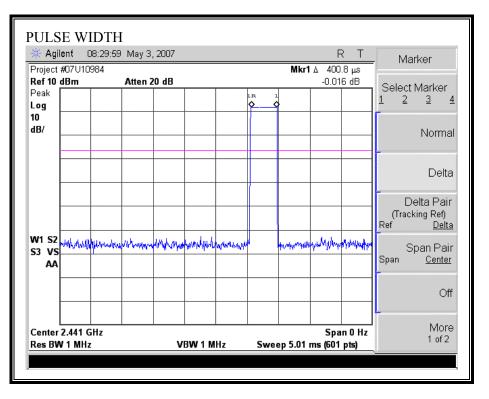
The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

No non-compliance noted:

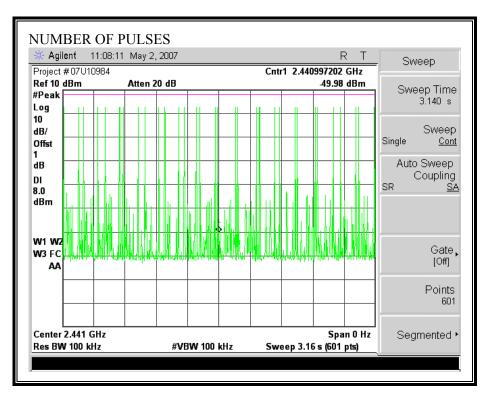
Time of Occupancy = 10 * xx pulses * yy msec = zz msec

GFSK Mode

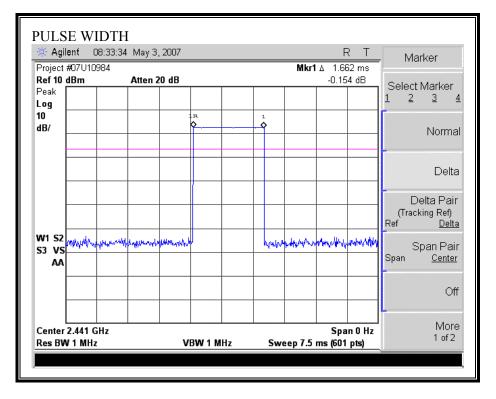

DH Packet	Pulse Width	Number of Pulses in 3.16 seconds	Average Time of Occupancy	Limit	Margin
	(msec)		(sec)	(sec)	(sec)
1	0.401	32	0.128	0.4	0.272
3	1.662	14	0.233	0.4	0.167
5	2.883	10	0.288	0.4	0.112

8DPSK Mode

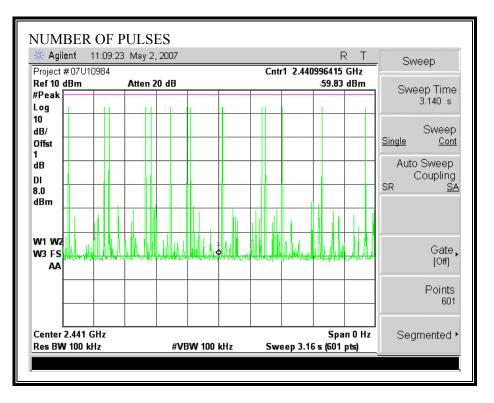
DH Packet	Pulse Width	Number of Pulses in 3.16 seconds	Average Time of Occupancy	Limit	Margin
	(msec)		(sec)	(sec)	(sec)
1	0.404	32	0.129	0.4	0.271
3	1.650	16	0.264	0.4	0.136
5	2.925	11	0.322	0.4	0.078


GFSK Mode

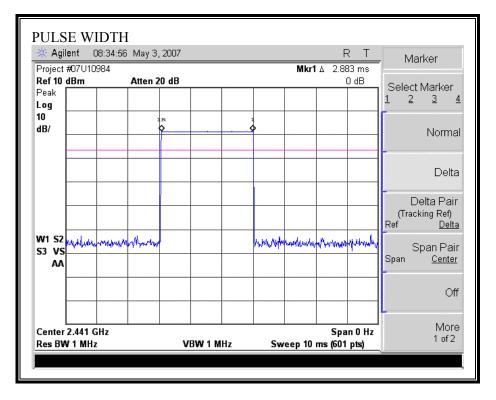
DH1 PULSE WIDTH


Page 29 of 88

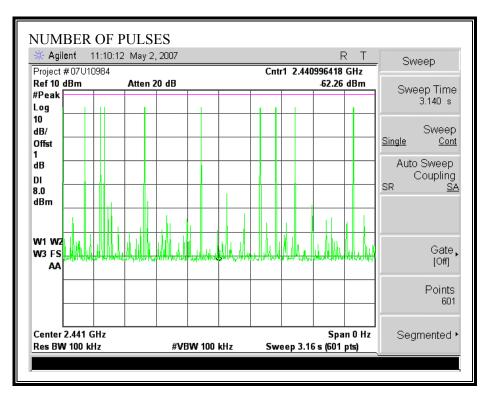
NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD


Page 30 of 88

DH3 PULSE WIDTH

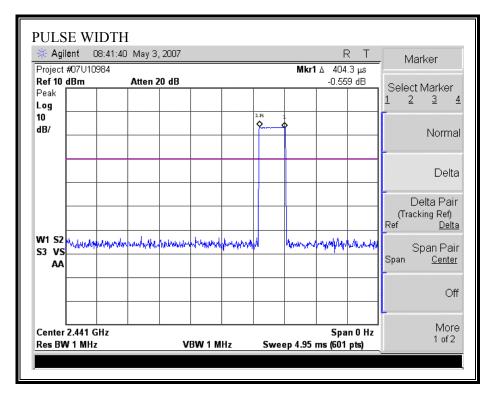

Page 31 of 88

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

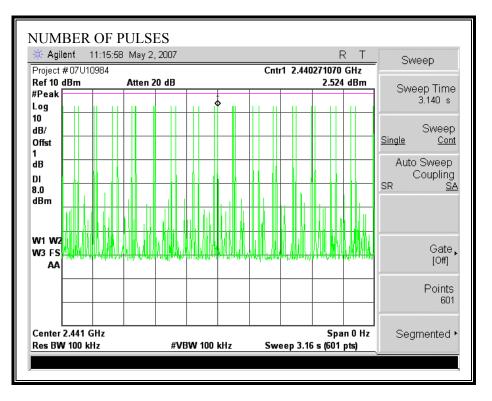

Page 32 of 88

DH5 PULSE WIDTH

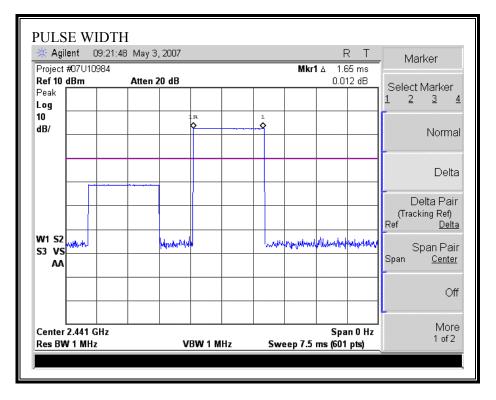
Page 33 of 88


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

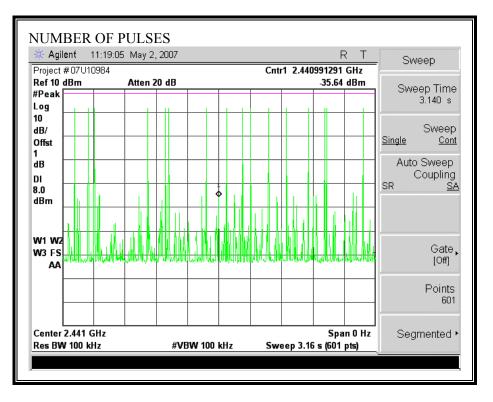
Page 34 of 88


8DPSK Mode

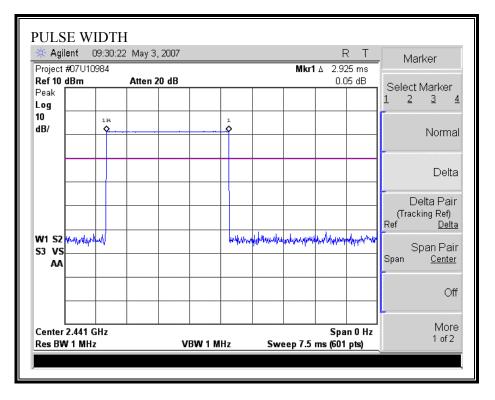
DH1 PULSE WIDTH


Page 35 of 88

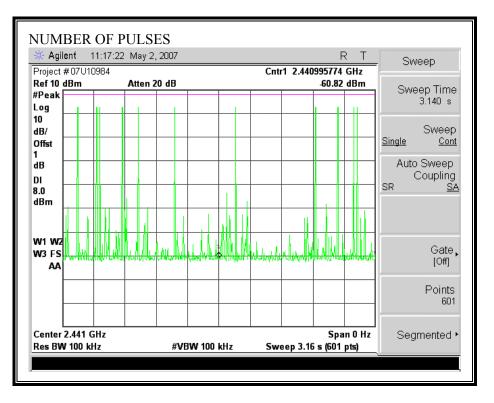
NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD


Page 36 of 88

DH3 PULSE WIDTH


Page 37 of 88

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD


Page 38 of 88

DH5 PULSE WIDTH

Page 39 of 88

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 40 of 88

6.2. RADIATED EMISSIONS

6.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 41 of 88

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88 88 - 216	100 ** 150 **	3 3 2
216 - 960 Above 960	200 ** 500	3 3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

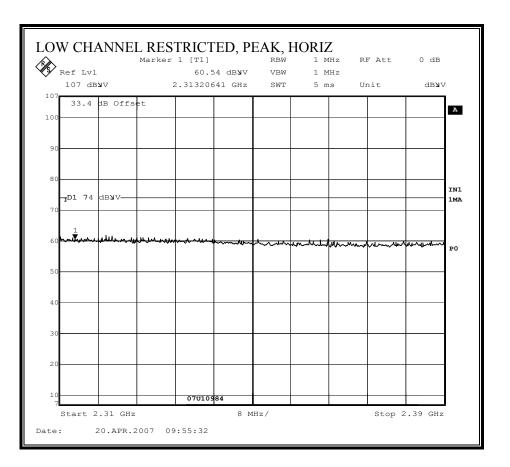
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

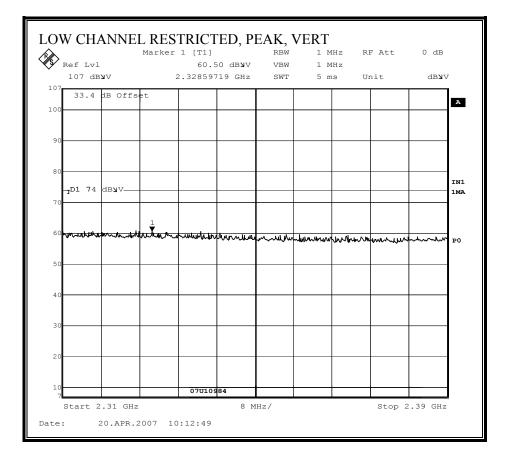

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 42 of 88

6.2.2. BLUETOOTH TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ

GFSK Mode

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

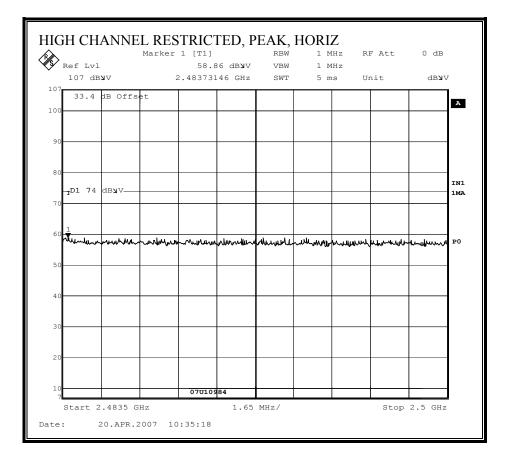


Page 43 of 88

Marl Ref Lvl	ker 1 [T1]		1 MHz 10 Hz	RF Att	0 dB
	47.24 dB¥V 2.31016032 GHz			Unit	db y v
107 dB3V	2.31016032 GHz	SWT	20 s	UNIE	ab ı v
33.4 dB Offset					
)					
)					
					:
1MAX					1
-D1 54 dBNV					
DI 34 GD30					
·					
	07U10984				

Page 44 of 88

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

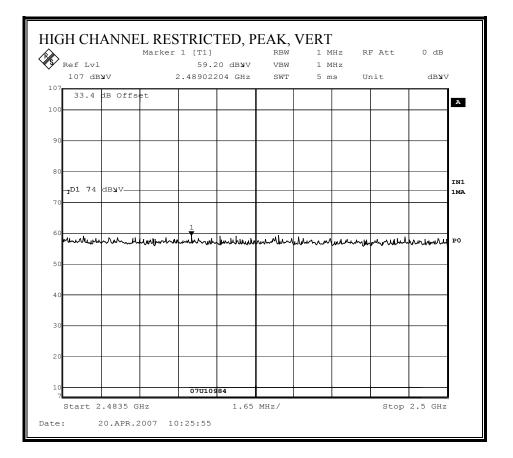


Page 45 of 88

Mar Ref Lvl	ker 1 [T1]	1 MHz	RF Att	0 dB
	47.22 dB¥V 2.31032064 GHz	10 Hz 20 s	Unit	db y v
33.4 dB Offset				
)		 		
1MAX				
-D1 54 dB¥V		 		
1				
)				
)				
1	07010984			

Page 46 of 88

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 47 of 88

	ker 1 [T1]	I(DW		RF Att	0 dB
Ref Lvl	48.67 dB u V		10 Hz		
107 dB¥V	2.48350000 GHz	SWT	4.2 s	Unit	db y v
33.4 dB Offset					
1MAX					
-D1 54 dB¥V					
	07010984				
Start 2.4835 GHz	1.65		1	1	2.5 GHz

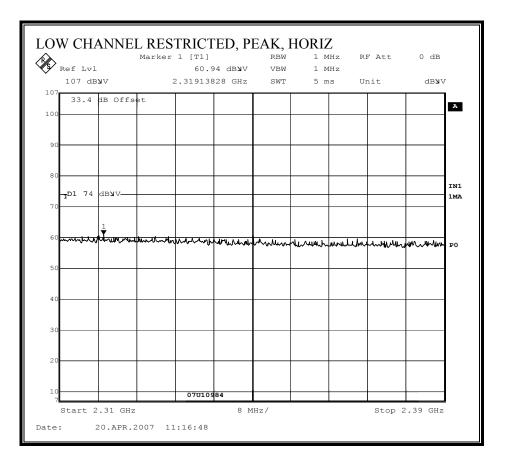
Page 48 of 88

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 49 of 88

Ref Lvl	ker 1 [T1] 46.85 dBNV	10011	1 MHz 10 Hz	RF Att	U dB
	46.85 dB y 2.48350000 GHz			Unit	dBNV
	2.40550000 GHZ	501	4.2 5	OHIC	
33.4 dB Offset					
1VIEW					
-D1 54 dB¥V					
k					
				^	
	07010984				

Page 50 of 88

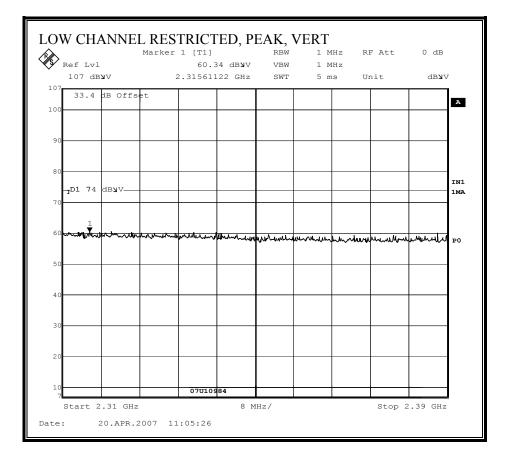

HARMONICS AND SPURIOUS EMISSIONS

Croce cable Reject Print Reject Print Gordon 203134001 C Gordon 203134001 C C Annu C F C Annu C F C C Annu C F C C Annu C C F C C C C C Annu C	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Complia			Measurem Services, Fr		5m A-(Chambe	r								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GFSK issuit ment: 1-18GHz Pre-amplifer 1-26GHz Pre-amplifer 26-40GHz Horn > 18GHz Limit 6717 @3m T34 HP 8449B T Pre-amplifer 26-40GHz Horn > 18GHz Limit cr Cable T T Limit Cr Cable T Pre-amplifer 26-40GHz Horn > 18GHz Limit colspan="6">South colspan="6">Cable Peak Measurements Cable T Peak Measurements South colspan="6">Cable Peak Measurements Cable Peak Mag Peak Measurements Measurements Peak Measurements Reject Filter Peak Measurements Measurements Measurements Measurements Measurements Measurements Measurements Measur	roject #	#: 07U1		ıputer Corp.												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	onfigur	ation: (GFSK	L												
T33 KN: 6717 @3m T34 HP 8449B FCC 15.205 FCC 15.205 I Frequency Cables 2 foot cable 12 foot cable HPF Reject Filter Peak Measuremet RBW=VBW=1MH M Price Cable I I foot cable I I foot cable I I foot cable I I Peak Measuremet RBW=VBW=1MH M PF Reject Filter Peak Measuremet RBW=VBW=1MHz; VBW= f Dist Read Avg. AF CL Amp D Corr Flt Peak Avg Pi Lim Avg Mar Note: GHz (m) Bu Bu BU O 804 3.0 41.4 29.0 33.6 6.0 O 6 O O O O O O O O <td>6717 @3m FCC 15.205 FCC 15.205 oot cable 12 foot cable Oot cable HPF Reject Filter Peak Measurements RBW=VBW=1MHz Oot cable Oot cable Sord cable Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">FCC 15.205 Oot cable HPF Reject Filter Peak Measurements RBW=VBW=1MHz Oot cable Ode of colspan="4">Ode of colspan="4"Ode of colspan="4">Ode of colspan="4"Ode of colspan</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	6717 @3m FCC 15.205 FCC 15.205 oot cable 12 foot cable Oot cable HPF Reject Filter Peak Measurements RBW=VBW=1MHz Oot cable Oot cable Sord cable Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">FCC 15.205 Oot cable HPF Reject Filter Peak Measurements RBW=VBW=1MHz Oot cable Ode of colspan="4">Ode of colspan="4"Ode of colspan="4">Ode of colspan="4"Ode of colspan			_					_								
2 foot cable 3 foot cable 12 foot cable HPF Reject Filter Peak Measurement RBW=VBW=1MH 4 5 5 5 6 6 7	Oot cable 3 foot cable 12 foot cable HPF Reject Filter Peak Measurements RBW=VBW=1MHz v v v v v v v v v v v v v Reject Filter Reject Filter Rewey Mar Rewey Mar Rewey Mar Rewey Mar Rewey Mar Rewey Mar Reweights visit Read Pk Read Avg. dBuV dB CL Amp dB D Corr Blt dB Peak dB Avg Mar dBuV/m dB dV/m Reject Filter Pk Mar dB Avg Mar (V/H) 30 41.4 29.0 33.3 6.9 -34.8 0.0 0.0 46.6 32.3 74 54 -27.3 -19.7 H 30 41.3 27.0 33.3 6.9 -34.8 0.0 0.0 46.6 32.3 74 54 -27.4 -21.7 V 30 41.4 28.0 33.4 6.9 -34.8 0.0 0.0 46.6 32.3 74 54 -27.4 -21.7 V V 30						1-260		Pre-am	plifer	26-40GH	•	H	orn > 1	BGHZ	•	F.C.C. 45-205
RBW=VBW=IMHZ RBW=VBW=IMHZ f Dist Read Pk Read Avg. AF CL Amp D Corr Flt Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar Mote- RBW=IMHZ GHZ (m) dBuV dBuV dBuV dB dB dB dB dB dB dB Mar Avg Lim Pk Mar Avg Mar Note- dBV mvCH - <	RBW=V BW=1MHz Average Measurements Nist Read Pk Read Avg. AF CL Amp D Corr Flt Peak Avg Im Avg Lin Pk Mar Avg Mar Notes m) dBuV dBm dB dB dB dB dB dB dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dB dB (V/H) 30 41.4 29.0 33.3 6.9 .34.8 0.0 0.0 46.6 32.3 74 54 .27.3 .19.7 H 30 41.3 27.0 33.4 6.9 .34.8 0.0 0.0 46.9 33.5 74 54 .27.4 .21.7 V 30 41.4 28.0 33.4 6.9 .34.8 0.0 0.0 46.9 33.5 74 54 .27.1 .20.5 H 30 41.4 28.0 33.4 6.9 .34.8 0.0 0.0 47.8 32.8 74 54 .27.1 .20				3	foot c	able		121	foot c	able		HPF	F	Reiect Filte		
GHz (m) dBuV dB/m dB dB dB dB dB dB dB dB dW/m dBuV/m dBuV/m dBuV/m dB dB (V/H) wv CH -	m) dBuV dBuV dBm dB dC/H dB dB dB dC/H dC/H dB dB dB dC/H dC/H dB dB dB dC/H dC/H dC/H dB dB dC/H				-			•	Gordon	20313	4001				-	Avera	ige Measurements
ow CH </td <td>30 41.4 29.0 33.3 6.9 -34.8 0.0 0.0 46.7 34.3 74 54 -27.3 -19.7 H 30 41.3 27.0 33.3 6.9 -34.8 0.0 0.0 46.6 32.3 74 54 -27.3 -19.7 H 30 41.3 27.0 33.3 6.9 -34.8 0.0 0.0 46.6 32.3 74 54 -27.4 -21.7 V 30 41.4 28.0 33.4 6.9 -34.8 0.0 0.0 46.9 33.5 74 54 -27.1 -20.5 H 30 42.3 27.3 33.4 6.9 -34.8 0.0 0.0 47.8 32.8 74 54 -26.2 -21.2 V 30 45.1 27.8 33.4 7.0 -34.8 0.0 0.0 50.7 33.4 74 54 -23.3 -20.6 H</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	30 41.4 29.0 33.3 6.9 -34.8 0.0 0.0 46.7 34.3 74 54 -27.3 -19.7 H 30 41.3 27.0 33.3 6.9 -34.8 0.0 0.0 46.6 32.3 74 54 -27.3 -19.7 H 30 41.3 27.0 33.3 6.9 -34.8 0.0 0.0 46.6 32.3 74 54 -27.4 -21.7 V 30 41.4 28.0 33.4 6.9 -34.8 0.0 0.0 46.9 33.5 74 54 -27.1 -20.5 H 30 42.3 27.3 33.4 6.9 -34.8 0.0 0.0 47.8 32.8 74 54 -26.2 -21.2 V 30 45.1 27.8 33.4 7.0 -34.8 0.0 0.0 50.7 33.4 74 54 -23.3 -20.6 H							-									
Kid CH Kid CH<	3.0 41.4 28.0 33.4 69 .34.8 0.0 0.0 46.9 33.5 74 54 .27.1 .20.5 H 3.0 42.3 27.3 33.4 69 .34.8 0.0 0.0 47.8 32.8 74 54 .27.1 .20.5 H 3.0 42.3 27.3 33.4 69 .34.8 0.0 0.0 47.8 32.8 74 54 .26.2 .21.2 V 3.0 45.1 27.8 33.4 7.0 .34.8 0.0 0.0 50.7 33.4 74 54 .23.3 .20.6 H	.804	3.0														H
882 3.0 42.3 27.3 33.4 6.9 -34.8 0.0 0.0 47.8 32.8 7.4 54 -26.2 -21.2 V igh CH <t< td=""><td>3.0 42.3 27.3 33.4 69 -34.8 0.0 0.0 47.8 32.8 74 54 -26.2 -21.2 V 3.0 45.1 27.8 33.4 7.0 -34.8 0.0 0.0 50.7 33.4 74 54 -26.2 -21.2 V 3.0 45.1 27.8 33.4 7.0 -34.8 0.0 0.0 50.7 33.4 74 54 -23.3 -20.6 H</td><td>lid CH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	3.0 42.3 27.3 33.4 69 -34.8 0.0 0.0 47.8 32.8 74 54 -26.2 -21.2 V 3.0 45.1 27.8 33.4 7.0 -34.8 0.0 0.0 50.7 33.4 74 54 -26.2 -21.2 V 3.0 45.1 27.8 33.4 7.0 -34.8 0.0 0.0 50.7 33.4 74 54 -23.3 -20.6 H	lid CH															
960 3.0 45.1 27.8 33.4 7.0 -34.8 0.0 0.0 50.7 33.4 7.4 54 -23.3 -20.6 H		.882															
		High CH 960 960															

Page 51 of 88

8DPSK Mode

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

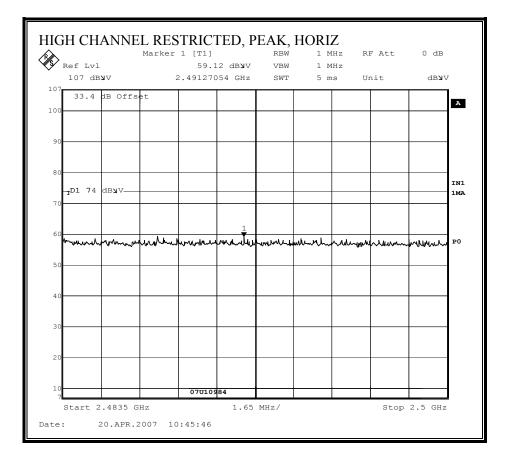


Page 52 of 88

Ref Lvl	47.22 dBNV		1 MHz 10 Hz	RF Att	0 dB
	47.22 dB y V 2.31032064 GHz			Unit	dbyv
7	2.01002001 002	0.11	20 0	01120	
33.4 dB Offset					
0					
)					
					1
					1
)					
)					,
-D1 54 dBWV					
)					
)					
p	07010984				
Start 2.31 GHz	07010984 8 MH				2.39 GHz

Page 53 of 88

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

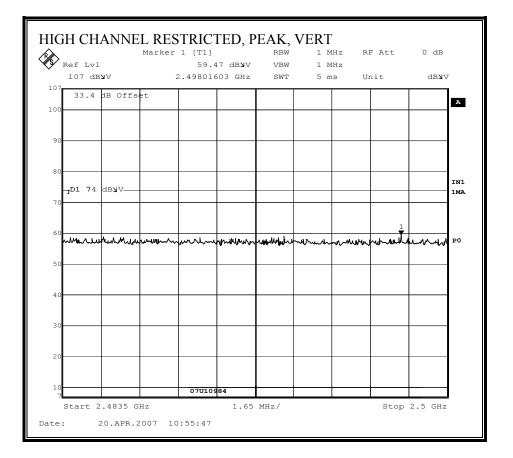


Page 54 of 88

	ker 1 [T1]		RF Att	0 dB
Ref Lvl 107 dB y V	47.24 dB¥V 2.31000000 GHz	10 Hz 20 s	Unit	db y v
33.4 dB Offset				
55.4 db 011300				
-D1 54 dB¥V				
•				
	07010984	 		
Start 2.31 GHz	07010984 8 MH			.39 GHz

Page 55 of 88

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 56 of 88

Ref Lvl	47.91 dBNV	1020	RF Att	U dB
	47.91 dB y V 2.48350000 GHz		Unit	dbnv
	2.10000000 0112		 01110	
33.4 dB Offset				
1VIEW				:
IVIEW				· · · · · ·
-D1 54 dBNV				
	07010984			

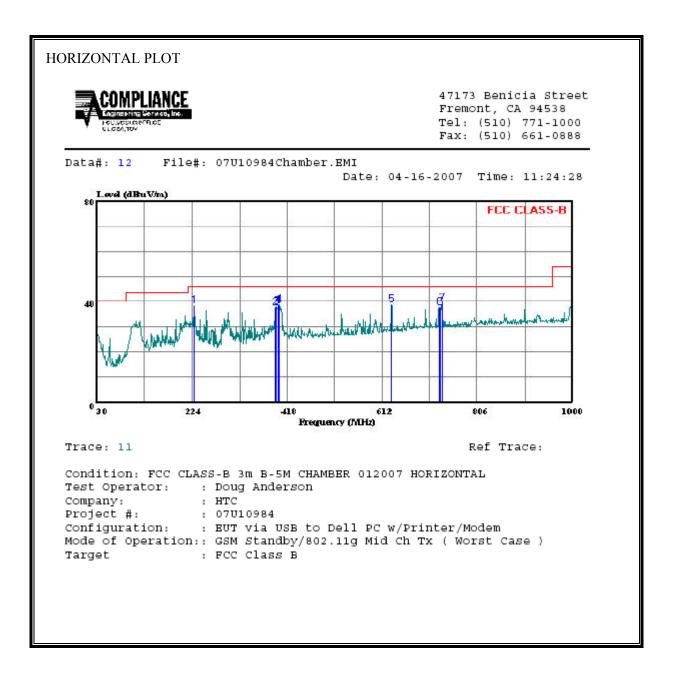
Page 57 of 88

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 58 of 88

Ref Lvl	ker 1 [T1] 46.16 dBNV	10011	1 MHz 10 Hz	RF Att	U dB
	2.48350000 GHz			Unit	dbyv
33.4 dB Offset					
1VIEW					
)					
)					
DI 34 GB30					
k					
)					
)					
	07010984				

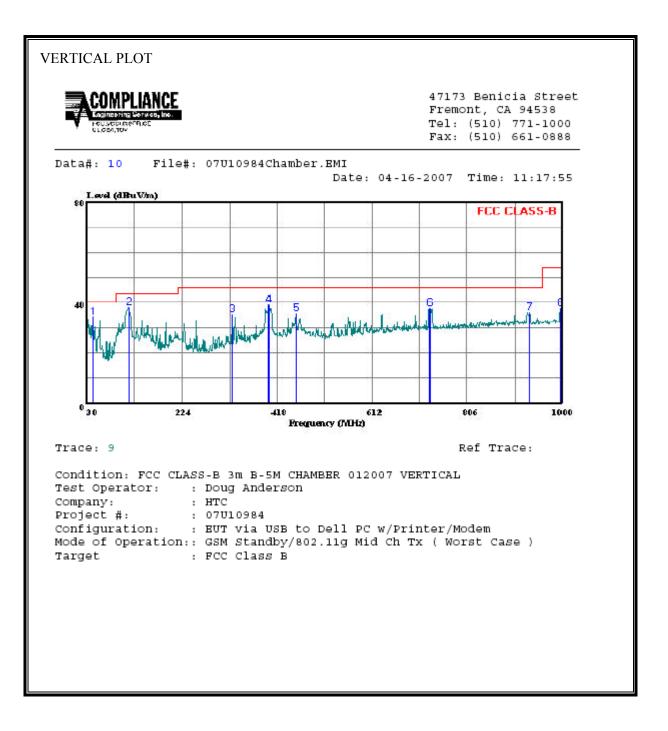
Page 59 of 88


HARMONICS AND SPURIOUS EMISSIONS

w CH	Complia			7 Measurem Services, Fr		5m A-(Chambe	r								
est Equipment: Horn 1-18GHz Pre-amplifer 1-26GHz Pre-amplifer 26-40GHz Horn > 18GHz Limit T73; S/N: 6717 @3m 3 foot cable Il Pre-amplifer 26-40GHz Horn > 18GHz Limit Pre-amplifer 1-26GHz Pre-amplifer 26-40GHz Horn > 18GHz Limit Pre-amplifer 1-26GHz Pre-amplifer 26-40GHz Horn > 18GHz Limit Pre-amplifer 1-26GHz Pre-amplifer 26-40GHz Horn > 18GHz Limit Pre-amplifer 26-40GHz	roject#)ate: 04 `est Eng	⊧: 07U1 -20-07 gineer:	.0984 Tom Chen													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																
HI Frequency Cables In Frequency Cables 2 foot cable 12 foot cable Image: State of the state of			_	Pre-ar	nplifer	1-260	GHz	Pre-am	plifer	26-40GH	z	H	orn > 1	8GHz		Limit
2 foot cable 3 foot cable 12 foot cable HPF Reject Filter Peak Measurements RBW=VBW=1MHz Average Measurements RBW=VBW=1MHz f Dist Read Pk Read Avg. AF CL Amp D Corr Fltr Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar Notes GHz (m) dBuV dBuV dB dB dB dB dB dB dB dB W/m dBuV/m dBuV/m dB W/m WCH			÷	▼ T34 HF	9 8449B		-				•				•	FCC 15.205
Image: Constraint of the				3	foot c	able		121	foot c	able		HPF	F	Reject Filte		
GHz (m) dBuV dBuV dB <				•			•	Gordon	20313	4001			•	R_001	Avera	nge Measurements
w CH <td>f GHz</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	f GHz									1	-					
id CH · <td>ow CH 804 804</td> <td></td> <td>Н</td>	ow CH 804 804															Н
382 3.0 41.3 27.4 33.4 6.9 -34.8 0.0 0.0 46.8 32.9 74 54 -27.2 -21.1 V absolute	lid CH															
260 3.0 42.5 27.6 33.4 7.0 -34.8 0.0 0.0 48.1 33.2 74 54 -25.9 -20.8 H	882 882															
	High CH -960 -960															
			4	£	4						I		4			A

Page 60 of 88

6.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 61 of 88

Page 62 of 88

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 63 of 88

VERTICA	L DATA									
	Freq		Probe Factor				Limit Line	Over	age: l Remark	
	MHz	dBuV	dB	db	dB	dBuV/m	dBuV/m	db		
1 2 3 4 5 6 7 8	MHz 41.640 115.360 325.850 401.510 456.800 729.370 933.070 995.150	47.09 52.30 47.10 49.10 43.90 40.80 36.90	dB 14.89 13.01 14.50 16.01 17.19 20.91 23.06 23.63	0.68 1.12 1.93 2.17 2.34 3.01 3.55	28.42 28.28 28.05 28.06 27.90 26.98 27.44	34.24 38.16 35.49 39.23 35.52 37.74 36.07	40.00 43.50 46.00 46.00 46.00	-5.76 -5.34 -10.51 -6.77 -10.48 -8.26 -9.93	Peak Peak Peak Peak Peak Peak	

Page 64 of 88

6.3. **POWERLINE CONDUCTED EMISSIONS**

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 "			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:

Page 65 of 88

EUT CONNECTED TO PC VIA USB

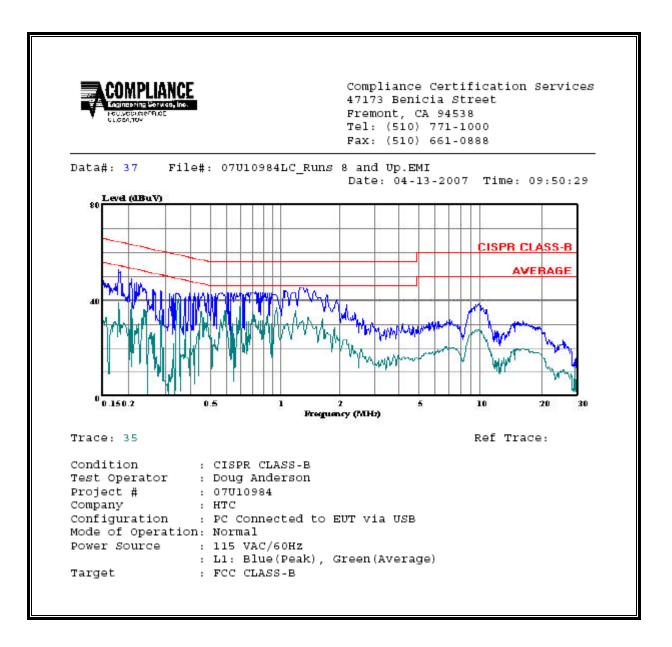
<u>6 WORST EMISSIONS</u>

Freq.	Reading			Closs	Limit		Marg	gin	Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2	
1.14	43.95		29.60	0.00	56.00	46.00	-12.05	-16.40	L1	
1.40	45.44		31.83	0.00	56.00	46.00	-10.56	-14.17	L1	
1.46	44.85		28.79	0.00	56.00	46.00	-11.15	-17.21	L1	
1.03	43.34		34.93	0.00	56.00	46.00	-12.66	-11.07	L2	
1.31	44.67		32.72	0.00	56.00	46.00	-11.33	-13.28	L2	
1.55	43.86		30.21	0.00	56.00	46.00	-12.14	-15.79	L2	

WITH PHIHONG AC ADAPTER

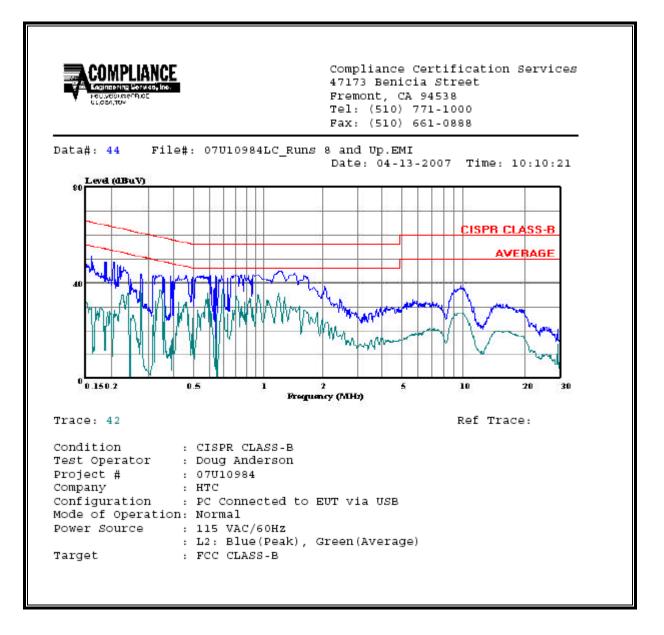
	CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq.	Reading			Closs Limit			Margin		Remark	
(MHz)	PK (dBuV)	(dBuV) QP (dBuV)		(dB)	QP AV		QP (dB)	AV (dB)	L1 / L2	
0.37	50.31		32.34	0.00	58.57	48.57	-8.26	-16.23	L1	
0.54	45.09		25.37	0.00	56.00	46.00	-10.91	-20.63	L1	
1.70	42.82		24.01	0.00	56.00	46.00	-13.18	-21.99	L1	
0.37	50.37		37.74	0.00	58.57	48.57	-8.20	-10.83	L2	
0.54	47.86		27.79	0.00	56.00	46.00	-8.14	-18.21	L2	
1.99	43.92		26.89	0.00	56.00	46.00	-12.08	-19.11	L2	
6 Worst I	Data									

Page 66 of 88


WITH DELTA AC ADAPTER

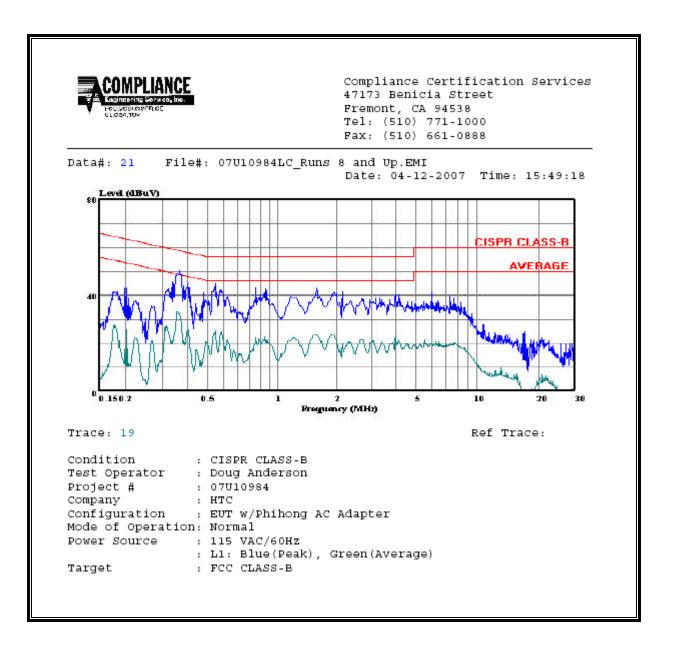
Freq.	Reading			Closs	Limit	0	Margin		Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2	
0.19	42.64		31.77	0.00	64.08	54.08	-21.44	-22.31	L1	
0.88	44.55		15.44	0.00	56.00	46.00	-11.45	-30.56	L1	
0.96	46.26		28.36	0.00	56.00	46.00	-9.74	-17.64	L1	
0.51	41.34		33.93	0.00	56.00	46.00	-14.66	-12.07	L2	
0.82	39.69		32.20	0.00	56.00	46.00	-16.31	-13.80	L2	
2.51	45.45		32.36	0.00	56.00	46.00	-10.55	-13.64	L2	
									l	

Page 67 of 88

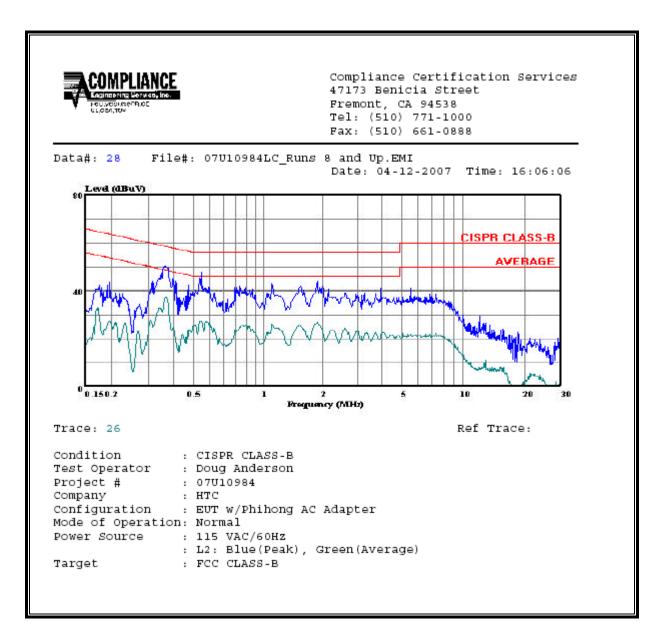

EUT CONNECTED TO PC VIA USB

LINE 1 RESULTS

Page 68 of 88

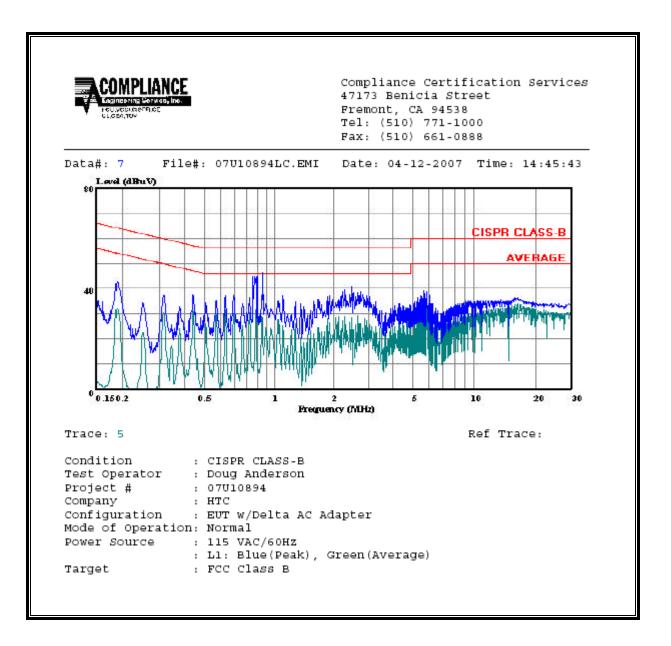

LINE 2 RESULTS

Page 69 of 88

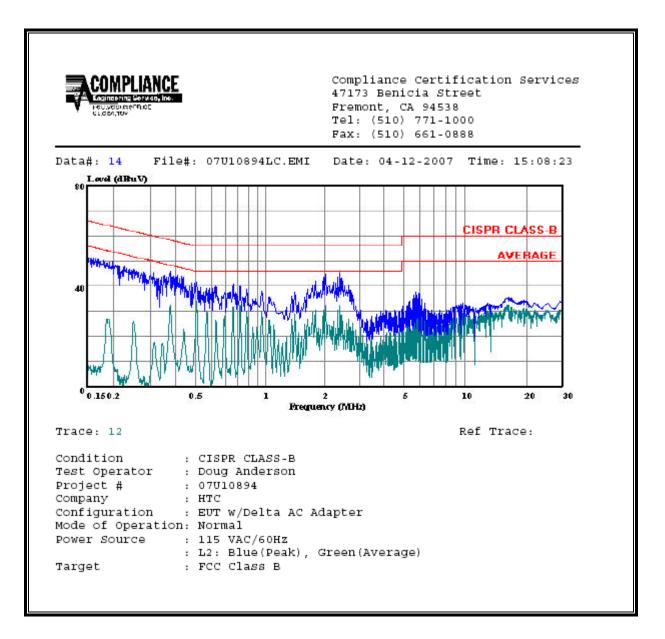

WITH PHIHONG AC ADAPTER

LINE 1 RESULTS

Page 70 of 88


LINE 2 RESULTS

Page 71 of 88


WITH DELTA AC ADAPTER

LINE 1 RESULTS

Page 72 of 88

LINE 2 RESULTS

Page 73 of 88