

FCC CFR47 PART 22 SUBPART H AND PART 24 SUBPART E CERTIFICATION TEST REPORT

FOR

PDA PHONE

MODEL NUMBER: KAIS100, KAIS110, KAIS120

FCC ID: NM8KS

REPORT NUMBER: 07U10984-2

ISSUE DATE: MAY 15, 2007

Prepared for

HIGH TECH COMPUTER CORP. 23 HSIN HUA ROAD TAOYUAN 330, TAIWAN R.O.C

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA

TEL: (510) 771-1000 FAX: (510) 661-0888

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 **EUT: PDA PHONE** FCC ID: NM8KS

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	05/15/07	Initial Issue	T. Chan

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	4
2. TI	EST METHODOLOGY	5
3. FA	ACILITIES AND ACCREDITATION	5
4. C	ALIBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	MEASUREMENT UNCERTAINTY	5
5. E0	QUIPMENT UNDER TEST	6
5.1.	DESCRIPTION OF EUT	6
5.2.	MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCES	7
<i>5.3</i> .	MAXIMUM OUTPUT POWER	7
5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.5.	SOFTWARE AND FIRMWARE	8
5.6.	WORST-CASE CONFIGURATION AND MODE	9
5.7.	DESCRIPTION OF TEST SETUP	10
6. TI	EST AND MEASUREMENT EQUIPMENT	12
7. LI	IMITS AND RESULTS	13
7.1.	OCCUPIED BANDWIDTH	13
7.2.	RF POWER OUTPUT	40
7.3.	SPURIOUS EMISSION AT ANTENNA TERMINAL	75
7.4.	FIELD STRENGTH OF SPURIOUS RADIATION	117
7.5.	MAXIMUM PERMISSIBLE EXPOSURE	126
7.6.	FREQUENCY STABILITY	129
0 01	COLUMN DATA COLUMN COLU	122

REPORT NO: 07U10984-2
EUT: PDA PHONE
DATE: MAY 15, 2007
FCC ID: NM8KS

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: HIGH TECH COMPUTER, CORP.

23, HSIN HUA ROAD

TAOYUAN 330, TAIWAN R.O.C.

EUT DESCRIPTION: PDA PHONE

MODEL TESTED: KAIS120

MODELS: KAIS100, KAIS110, KAIS120

SERIAL NUMBER: TY709G000545

DATE TESTED: APRIL 12-17, and MAY 15, 2007

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 22 SUBPART H NO NON-COMPLIANCE NOTED

FCC PART 24 SUBPART E NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By: Tested By:

THU CHAN
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVICE

COMPLIANCE CERTIFICATION SERVICES

CHIN PANG EMC ENGINEER

Chin Pany

COMPLIANCE CERTIFICATION SERVICES

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 FCC ID: NM8KS **EUT: PDA PHONE**

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA/EIA 603C (2004), ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15 and FCC CFR 47 Part 22H and 24E.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Radiated Emission, Above 2000 MHz	+/- 4.3 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 EUT: PDA PHONE FCC ID: NM8KS

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 850/900/1800/1900/2100 MHz multi-band PDA Phone and manufactured by High Tech Computer Corp.

The PDA supports GSM, GPRS, EGPRS and WCDMA, WCDMA+HSPDA. Device capabilities are documented in the theory of operation

Only the 850/1900 MHz frequency bands were investigated under this project, and the test result documented in this report only applies to EUT operating in the 850/1900 MHz frequency bands. This device contains 900 MHz /1800 MHz/2100 MHz functions but these frequency bands are not operational in the U.S. territories.

The EUT has the following accessories:

ACCESSORIES

Subassembly Description	Manufacturer	Part Number	Model Number
AC ADAPTER FOR EUT	Delta Electronic	79H00051-01M	ADP-5FH B
3.7V Li-ion Battery	Dynapack	35H00088-00M	KAIS160
Earphone	Merry Electronics Co., LTG	NA	EMC220
USB Cable	NA	NA	NA
PDA	НТС	TY709G000591	KAIS100
PDA	НТС	TY709G000606	KAIS110
PDA	НТС	TY709G000545	KAIS120

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 EUT: PDA PHONE FCC ID: NM8KS

5.2. MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCES

The EUT was chosen as a representative model of the series. The following table shows the model differences.

Model Name	Model Differences
KAIS100	No Camera
KAIS110	With Camera
KAIS120	With two cameras, Main Camera: 3.0 megapixel color CMOS camera. Second Camera: Color CMOS CIF camera

^{*:} Model tested: KAIS120

5.3. MAXIMUM OUTPUT POWER

The transmitter has maximum ERP and EIRP output powers as follows:

Part 22 (824 - 849MHz) & Part 24 (1850 - 1910MHz) Authorized Band:

Frequency Range	Modulation	ERP	ERP
		Peak Power	Peak Power
(MHz)		(dBm)	(mW)
824.2 - 848.75	GPRS	30.50	1122.02
824.2 - 848.75	EGPRS	24.30	269.15
826.5 - 846.6	WCDMA	23.70	234.42
826.5 - 846.6	WCDMA+HSDPA	24.60	288.40

Frequency Range	Modulation	EIRP	EIRP
		Peak Power	Peak Power
(MHz)		(dBm)	(mW)
1850.25 - 1909.8	GPRS	30.80	1202.26
1850.25 - 1909.8	EGPRS	26.60	457.09
1852.4 - 1907.6	WCDMA	26.20	416.87
1852.4 - 1907.6	WCDMA+HSDPA	26.70	467.74

NOTE: RBW=VBW=8MHz

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 EUT: PDA PHONE FCC ID: NM8KS

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a fixed internal antenna with the peak gain of -1.5dBi for Cellular band and 1.0dBi for PCS bands.

5.5. SOFTWARE AND FIRMWARE

The following setting is used to establish the link for testing.

GSM850/1900 GPRS & EGPRS Mode

Service selection Test Mode A – Auto Slot Config: off

Main Service Packet Data Network Support GSM+GPRS

Slot Config 33 dBm for GSM850 and 30 dBm for GSM1900 (for GSM/GPRS modes)

27 dBm for GSM850 and 26 dBm for GSM1900 (for EGPRS mode)

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license

Application Rev, License
WCDMA Mobile Test A.09.06

WCDMA

Call Setup > Shift & Preset

Cell Parameters: PS Domain Information > Present

ATT (IMSI Attach) Flag State > Set

Security Parameter - System Operations > None

Channel Type:

RMC: 12.2k, 64k, 144k, or 384k

AMC: 12.2 UL / 64/ DL AM RMC, 12.2 UL / 144/ DL AM RMC, or

12.2 UL / 384/ DL AM RMC,

Paging Service: RB Test Mode Channel (UARFCN) Parms:

PCS band Cell band

DL Channel: 9662 / 9800 / 9938 / 4357 / 4407 / 4458 UL Channel: 9262 / 9400 / 9538 / 4132 / 4182 / 4233

DL DTCH Data: All Ones
RLC Reestablish: Off
Call Limit State: Off
Call Drop Timer: Off
SRB Config.: 13.6k DCCH
UE Target Power: 25 dBm
UL CL Power Ctrl Parameters
UL CL Power Ctrl Mode: All Up Bits

Page 8 of 143

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 **EUT: PDA PHONE** FCC ID: NM8KS

WCDMA + HSDPA

Uplink Parameter:

UPLINK DPCH Bc / Bd Control: Manual

Manual Uplink DPCH Bc: 9 Manual Uplink DPCH Bd: 15 Channel Type: 12.2k + HSDPA

HSDPA Parameters:

HSDPA RB Test Mode Setup

HS-DSCH Configuration Type: FRC

FRC Type: H-Set 3 CN Domain: CS Domain

Uplink 64k DTCH for HSDPA Loopback State: On

HS-DSCH Data Pattern: All Ones RLC Header on HS-DSCH: Present

HSDPA Uplink Parameters

DelatACK: 5 DeltaNACK: 5 DeltaCQI: 2

5.6. **WORST-CASE CONFIGURATION AND MODE**

Based on previous experiment, GPRS 1 slot has the worst case between GSM & GPRS modulations, and the worst case on HSPDA mode for WCDMA modulation.

The EUT is a portable device, therefore X,Y, & Z positions with and without AC adapter, PDA open and closed position and mobile configuration have been investigated. The worst case is to evaluated at Y position with battery operated

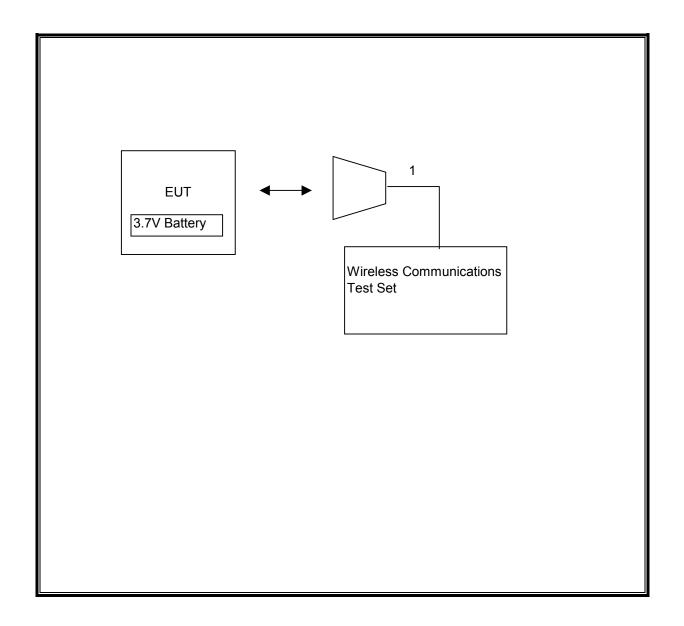
The EUT models-KAIS100, KAIS110 and KAIS120 have been investigated during baseline scan and found no different in these models. Since KAIS120 has more option than the other models, therefore, it's used for the test.

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 **EUT: PDA PHONE** FCC ID: NM8KS

5.7. **DESCRIPTION OF TEST SETUP**

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description Manufacturer Model Serial Number FCC ID				
Communications Test Set	Agilent	E5515C	10092	DoC


I/O CABLES

I/O CABLE LIST						
Cable No.	Cable Port # of Connector Cable Cable Remarks					
1	RF In/Out	1	Horn	Un-shielded	3m	NA

TEST SETUP

The EUT is standalone unit. The Wireless Communication test set exercised the EUT.

SETUP DIAGRAM FOR TESTS

Page 11 of 143

REPORT NO: 07U10984-2
EUT: PDA PHONE
DATE: MAY 15, 2007
FCC ID: NM8KS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	Cal Due	
Antenna, Horn 1 ~ 18 GHz	ETS	3117	29301	04/22/08	
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	04/22/08	
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00561	10/03/07	
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42510266	10/18/07	
Wireless Communications Test Set	Agilent	E5515C	10092	10/19/07	
2.7GHz HPF	MicroTronic	HPM13194	2	CNR	
1.5GHz HPF	MicroTronic	HPM13195	1	CNR	
Signal Generator 2 -40 GHz	R & S	SMP04	DE 34210	06/02/07	
Signal Generator 1024 MHz	R & S	SMY01	DE 12311	05/11/08	
Dipole	EMCO	3121C-DB2	22435	06/25/07	

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 EUT: PDA PHONE FCC ID: NM8KS

7. LIMITS AND RESULTS

7.1. OCCUPIED BANDWIDTH

Worst c

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the -26 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal -26 dB bandwidth function is utilized.

RESULTS

No non-compliance noted:

GSM, GPRS

CELL GPRS Modulation

Channel	Frequency	99% BW	26dB BW
	(MHz)	(KHz)	(KHz)
Low	824.20	238.364	312.498
Middle	836.52	249.243	301.404
High	848.80	246.205	300.047

1900MHz PCS Modulation

Channel	Frequency	99% BW	26dB BW
	(MHz)	(KHz)	(KHz)
Low	1850.25	249.529	311.896
Middle	1880.00	245.424	314.549
High	1909.75	240.107	299.499

This report shall not be reproduced except in full, without the written approval of CCS.

REPORT NO: 07U10984-2
EUT: PDA PHONE
DATE: MAY 15, 2007
FCC ID: NM8KS

GSM, EGPRS

CELL GPRS Modulation

Channel	Frequency	99% BW	26dB BW
	(MHz)	(KHz)	(KHz)
Low	824.20	245.331	303.420
Middle	836.52	245.489	310.000
High	848.80	247.299	315.266

1900MHz PCS Modulation

Channel	Frequency	99% BW	26dB BW
	(MHz)	(KHz)	(KHz)
Low	1850.25	244.845	312.796
Middle	1880.00	245.276	317.905
High	1909.75	249.084	306.605

WCDMA

WCDMA 850

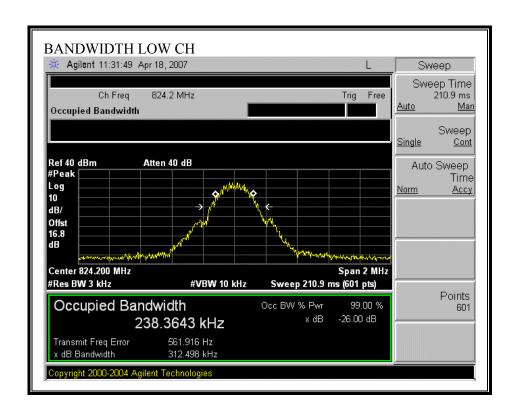
Channel	Frequency (MHz)	99% BW (MHz)	26dB BW (MHz)
Low	826.40	4.238	4.596
Middle	836.40	4.157	4.562
High	846.60	4.193	4.569

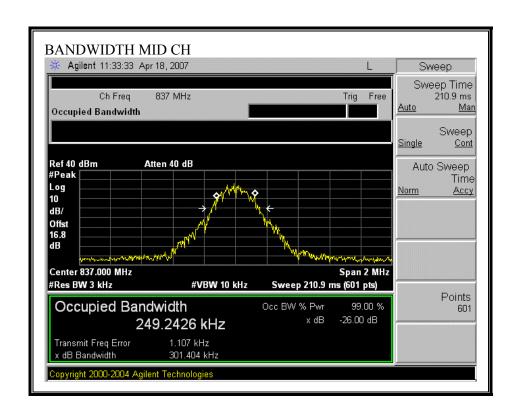
WCDMA 1900

Channel	Frequency	99% BW	26dB BW
	(MHz)	(MHz)	(MHz)
Low	1852.40	4.238	4.576
Middle	1880.00	4.159	4.568
High	1907.60	4.106	4.584

REPORT NO: 07U10984-2
EUT: PDA PHONE
DATE: MAY 15, 2007
FCC ID: NM8KS

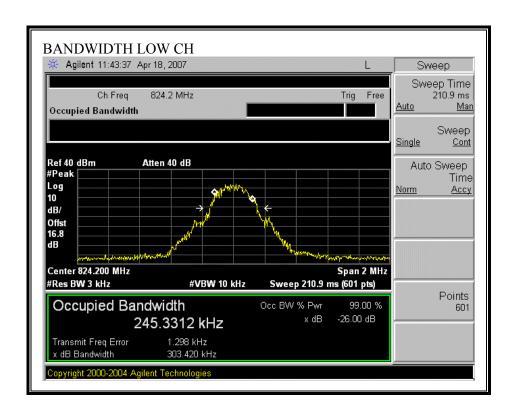
WCDMA+HSDPA

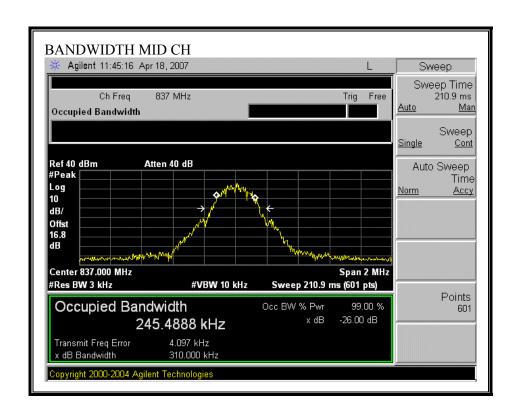

WCDMA 850

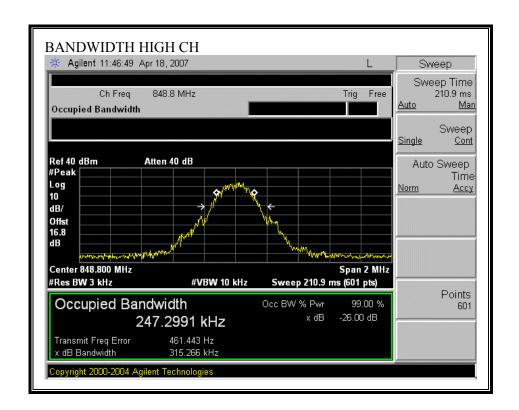

Channel	Frequency	99% BW	26dB BW
	(MHz)	(MHz)	(MHz)
Low	826.40	4.183	4.569
Middle	836.40	4.198	4.589
High	846.60	4.103	4.570

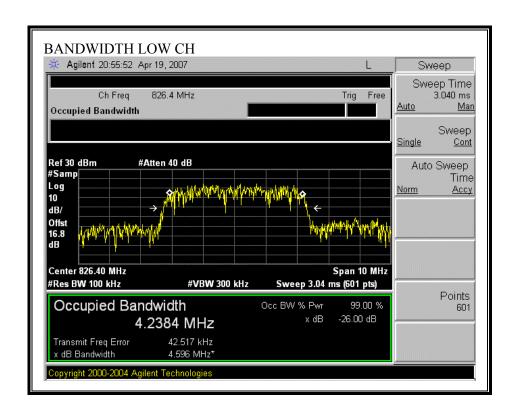
WCDMA 1900

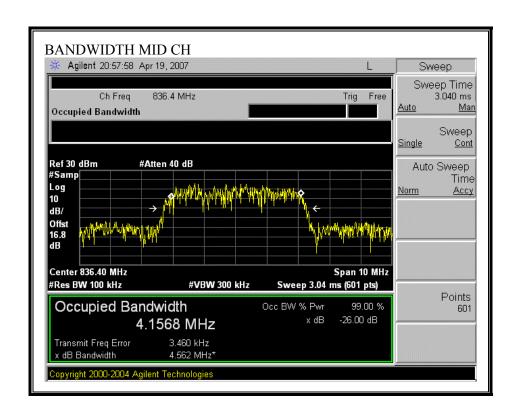
Channel	Frequency (MHz)	99% BW (MHz)	26dB BW (MHz)
Low	1852.40	4.149	4.595
Middle	1880.00	4.189	4.568
High	1907.60	4.167	4.566


GSM850, GPRS



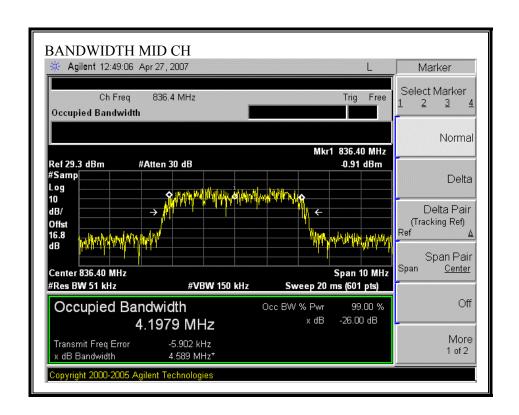


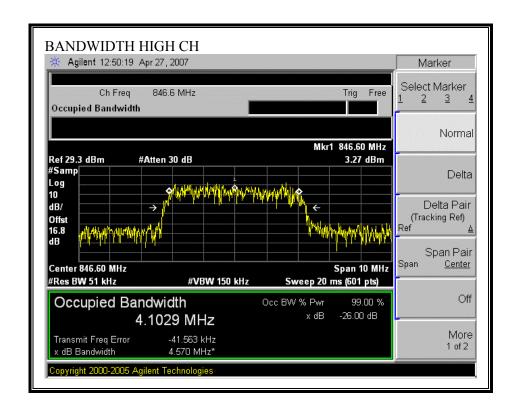

GSM850, EGPRS



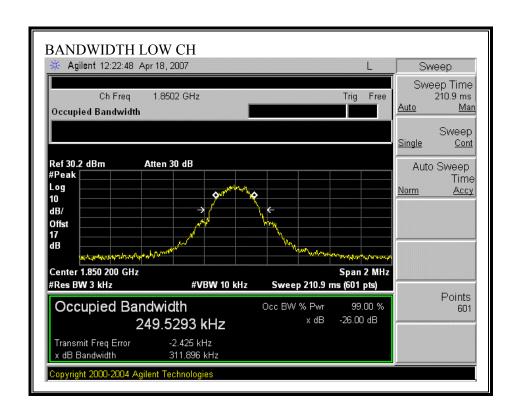


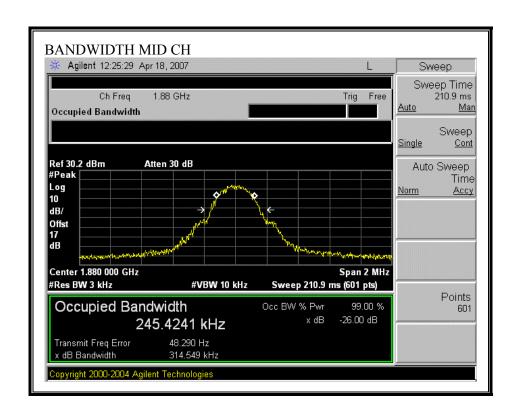
WCDMA 850

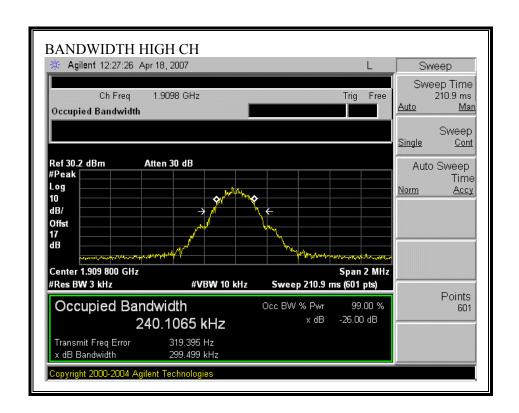




WCDMA+HSDPA 850

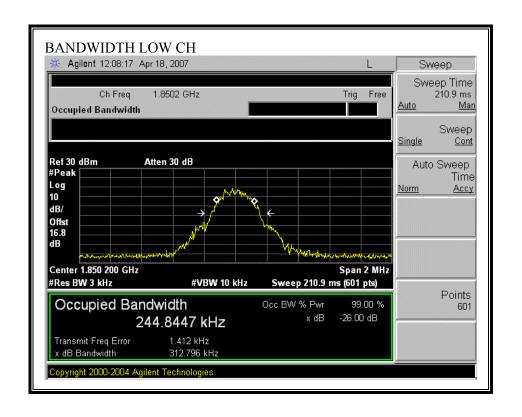


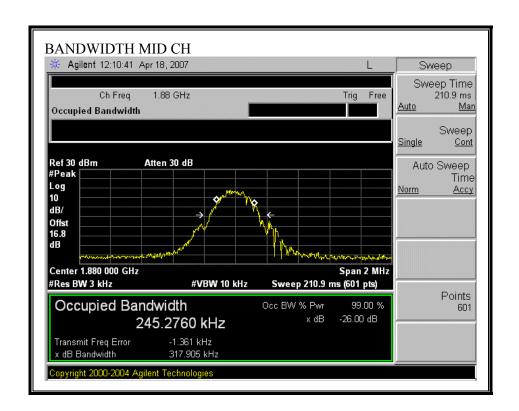


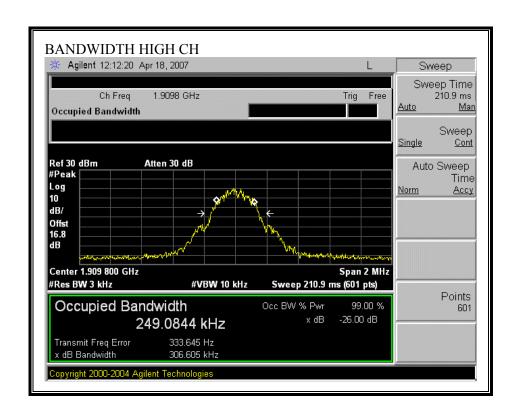


GSM1900, GPRS

1900MHz PCS 26 dB BANDWIDTH

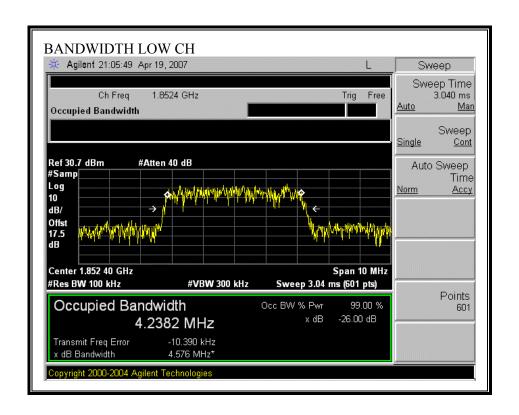


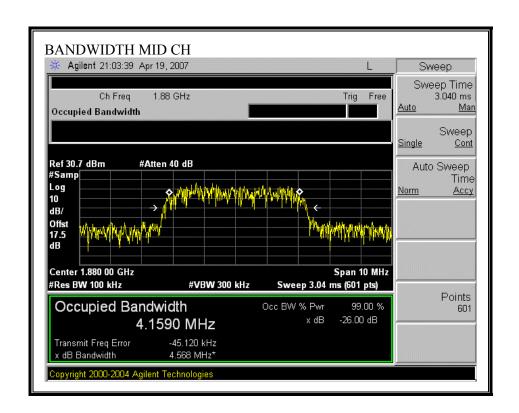


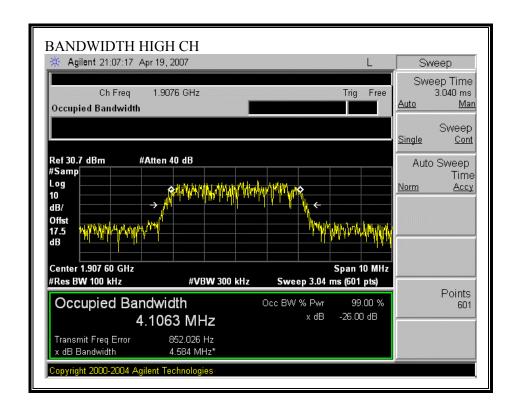


GSM1900, EGPRS

1900MHz PCS 26 dB BANDWIDTH

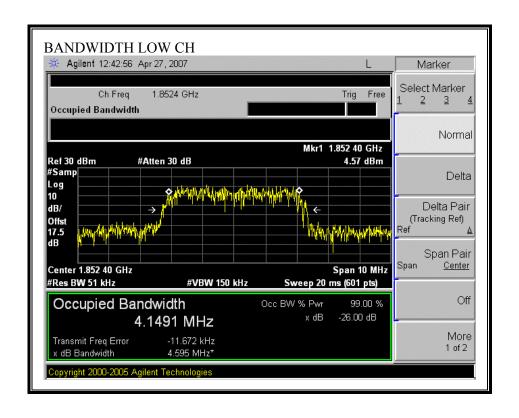


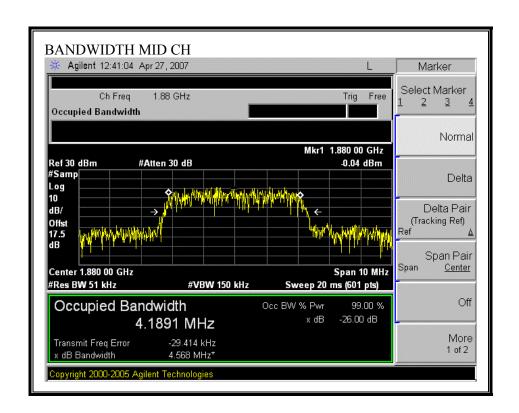


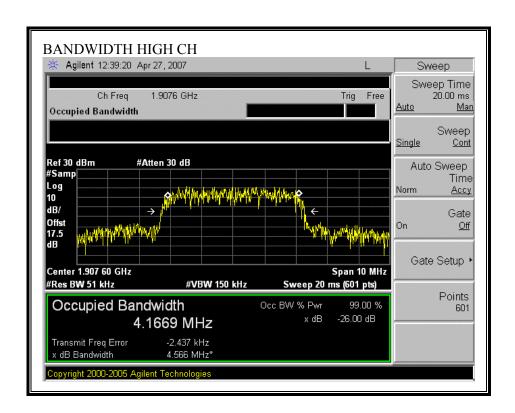


WCDMA1900

1900MHz PCS 26 dB BANDWIDTH







WCDMA+HSDPA 1900

1900MHz PCS 26 dB BANDWIDTH

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 EUT: PDA PHONE FCC ID: NM8KS

7.2. RF POWER OUTPUT

LIMIT

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. 24.232(b) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.17

RESULTS

No non-compliance noted.

NOTE: RBW=1MHz and VBW=3MHz for GSM Modulation, and RBW=VBW=5MHz for WCDMA modulation.

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 **EUT: PDA PHONE** FCC ID: NM8KS

850 MHz GPRS Mode

Channel	Frequency	Conducted	Conducted	ERP	ERP
		Peak Power	Peak Power	Peak Power	Peak Power
	(MHz)	(dBm)	(mW)	(dBm)	(mW)
Low	824.2	33.60	2290.87	29.80	954.99
Middle	837	33.78	2387.81	29.40	870.96
High	848.8	33.76	2376.84	30.50	1122.02

850 MHz EGPRS Mode

Channel	Frequency	Conducted	Conducted	ERP	ERP
		Peak Power	Peak Power	Peak Power	Peak Power
	(MHz)	(dBm)	(mW)	(dBm)	(mW)
Low	824.2	27.60	575.44	23.70	234.42
Middle	837	27.61	576.77	24.10	257.04
High	848.8	27.51	563.64	24.30	269.15

850 MHz WCDMA Modulation

Channel	Frequency	Conducted	Conducted	ERP	ERP	
		Peak Power	Peak Power	Peak Power	Peak Power	
	(MHz)	(dBm)	(mW)	(dBm)	(mW)	
Low	826.4	27.17	521.19	23.70	234.42	
Middle	836.4	27.14	517.61	23.60	229.09	
High	846.6	26.72	469.89	23.60	229.09	

850 MHz WCDMA+HSPDA Modulation

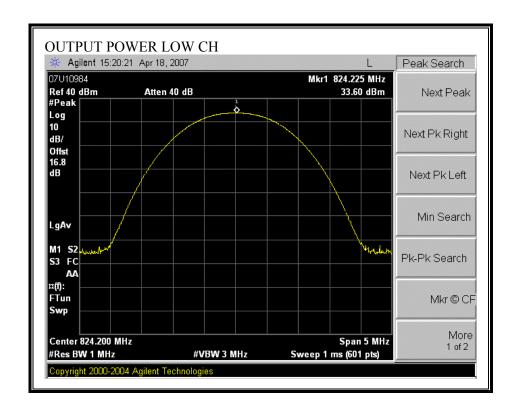
Channel	Frequency	Conducted	Conducted	ERP	ERP
		Peak Power	Peak Power	Peak Power	Peak Power
	(MHz)	(dBm)	(mW)	(dBm)	(mW)
Low	826.4	26.78	476.43	23.90	245.47
Middle	836.4	26.39	435.51	24.20	263.03
High	848.6	26.59	456.04	24.60	288.40

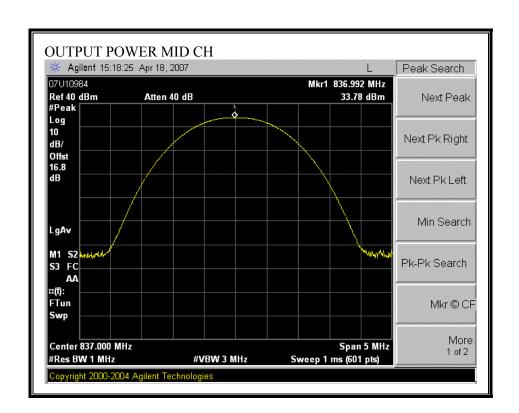
1900 MHz GPRS Mode

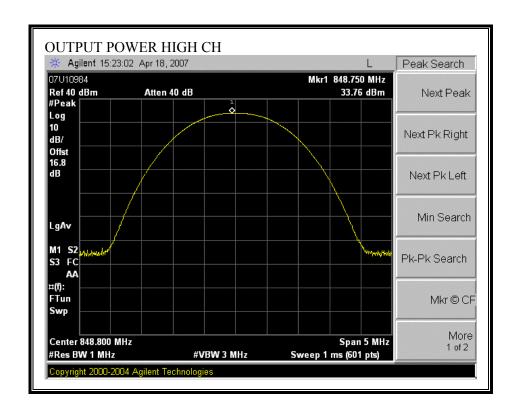
Channel	Frequency	Conducted	Conducted	EIRP	EIRP	
		Peak Power	Peak Power	Peak Power	Peak Power	
	(MHz)	(dBm)	(mW)	(dBm)	(mW)	
Low	1850.2	29.96	990.83	29.50	891.25	
Middle	1880.00	30.28	1066.60	29.90	977.24	
High	1909.8	30.51	1124.60	30.80	1202.26	

1900 MHz EGPRS Mode

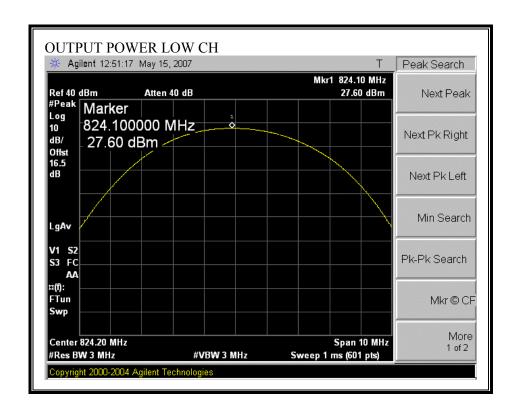
Channel	Frequency	Conducted	Conducted EIRP		EIRP
		Peak Power	Peak Power	Peak Power	Peak Power
	(MHz)	(dBm)	(mW)	(dBm)	(mW)
Low	1850.2	25.89	388.15	26.30	426.58
Middle	1880.00	26.39	435.51	26.40	436.52
High	1909.8	26.85	484.17	26.60	457.09

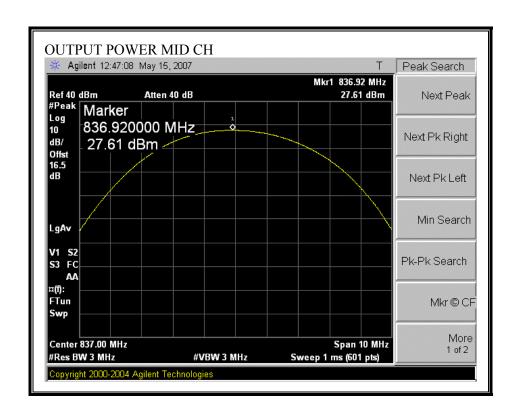

1900 MHz WCDMA Modulation

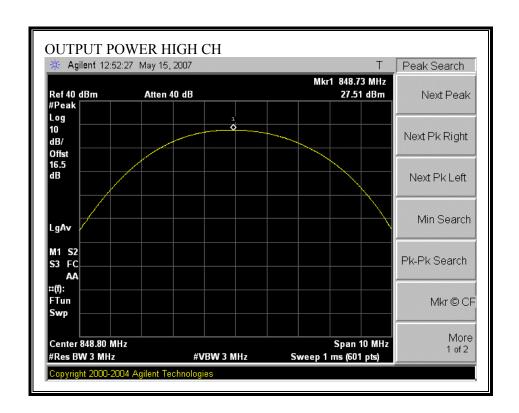

Channel	Frequency	Conducted	Conducted	EIRP	EIRP
		Peak Power	Peak Power	Peak Power	Peak Power
	(MHz)	(dBm)	(mW)	(dBm)	(mW)
Low	1852.4	26.89	488.65	25.60	363.08
Middle	1880.00	26.78	476.43	25.30	338.84
High	1907.6	27.40	549.54	26.20	416.87

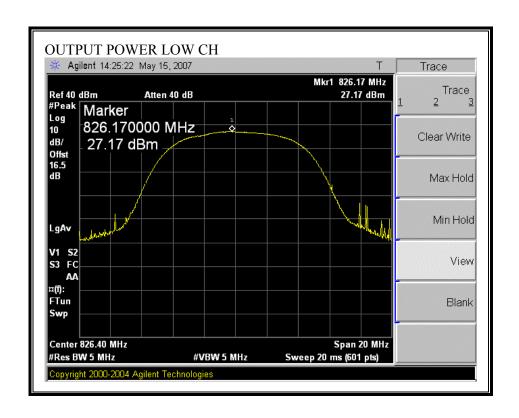

1900 MHz WCDMA+HSPDA Modulation

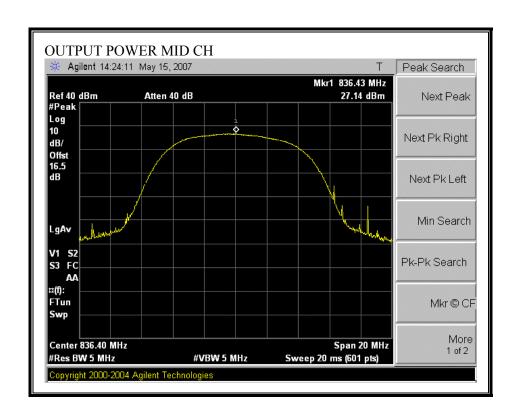
Channel	Frequency	Conducted	Conducted	EIRP	EIRP
		Peak Power	Peak Power	Peak Power	Peak Power
	(MHz)	(dBm)	(mW)	(dBm)	(mW)
Low	1852.40	26.92	492.04	26.40	436.52
Middle	1880.00	27.06	508.16	25.90	389.05
High	1907.60	27.11	514.04	26.70	467.74

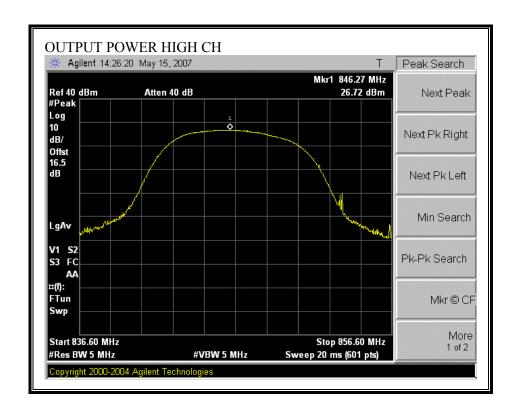

GSM850, GPRS

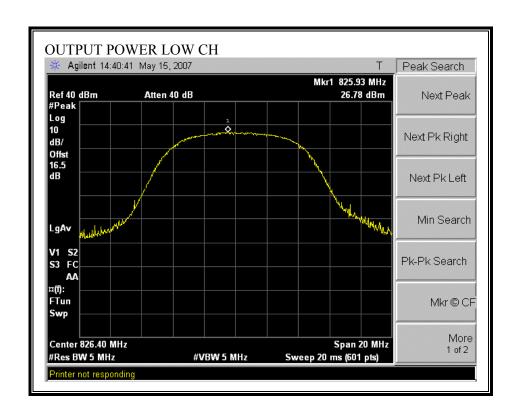


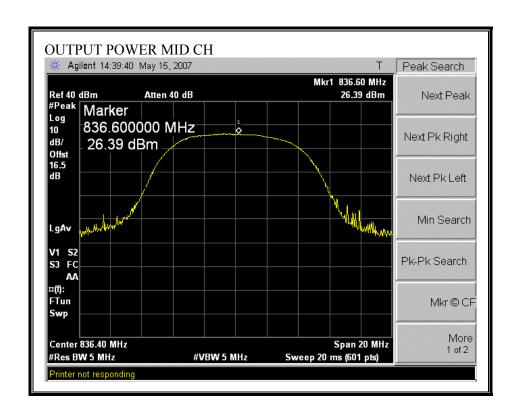


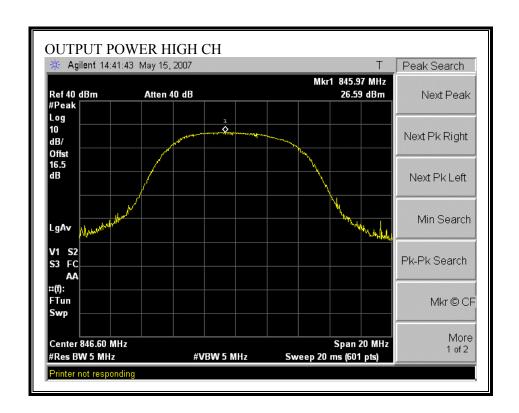

GSM850, EGPRS



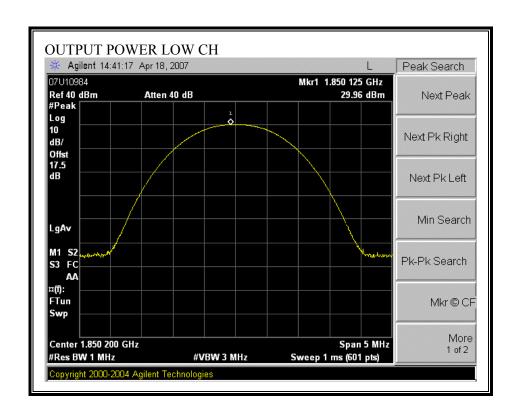


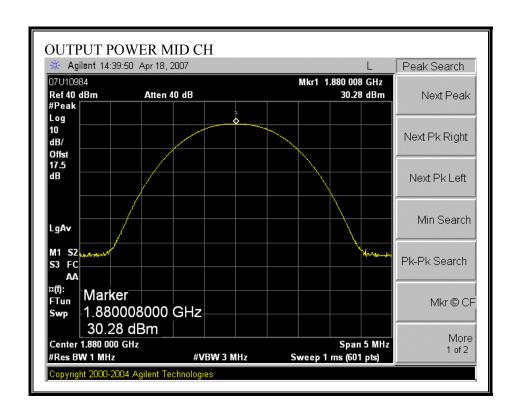

WCDMA 850

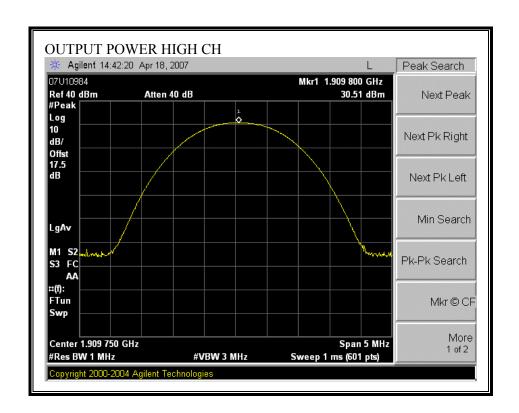




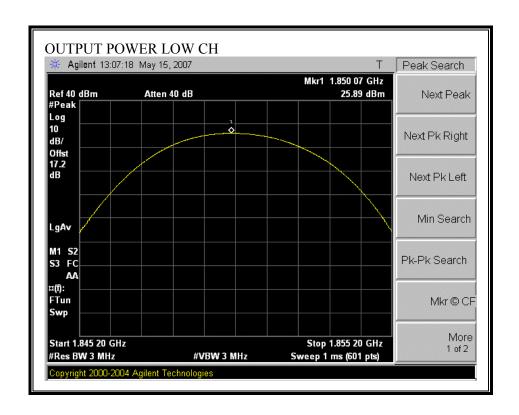
WCDMA + HSDPA 850

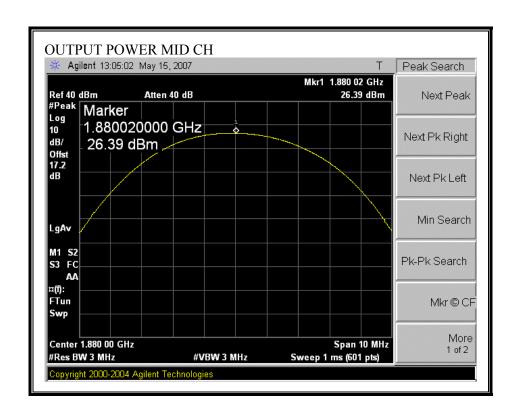


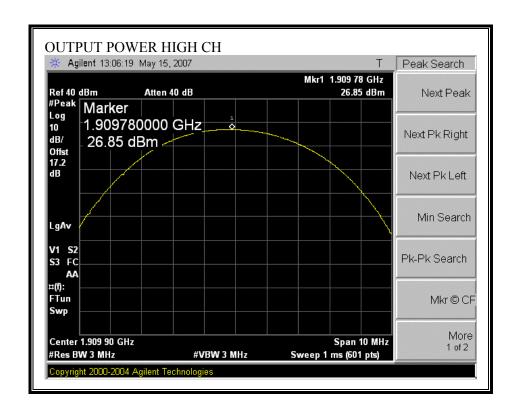




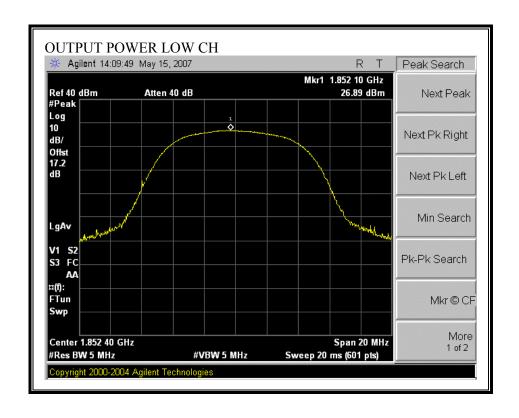
GSM1900, GPRS

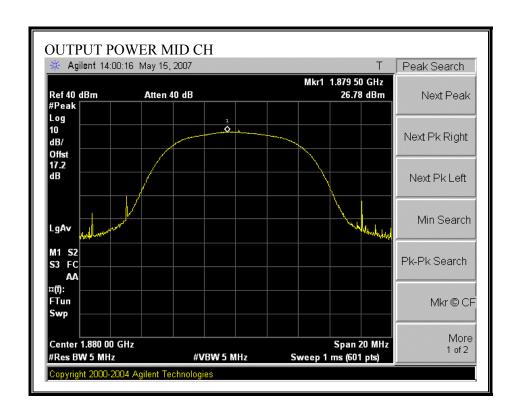

PCS (RF CONDUCTED OUTPUT POWER)

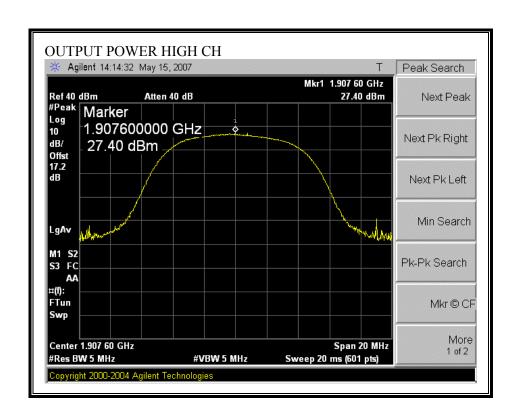



PCS (RF CONDUCTED OUTPUT POWER)

DATE: MAY 15, 2007

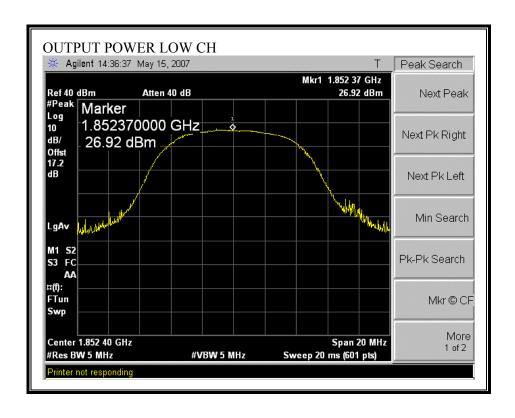

FCC ID: NM8KS

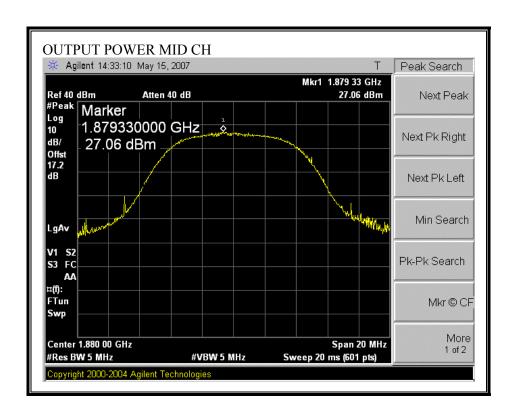


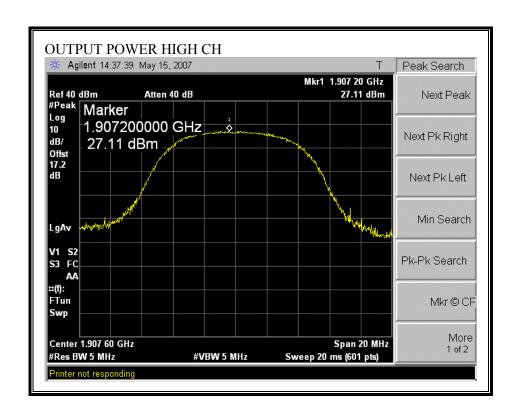


WCDMA 1900

PCS (RF CONDUCTED OUTPUT POWER)







WCDMA+HSDPA 1900

1900MHz PCS (RF CONDUCTED OUTPUT POWER)

GSM850 GPRS Output Power (ERP)

High Frequency Substitution Measurement Compliance Certification Services, Fremont 5m Chamber Site

Company: HTC Project #: 07U10984 Date: 4-14-2007

Test Engineer: Chin Pang Configuration:EUT Only Mode:TX, GSM850, GPRS Worst Case Position Test Equipment:

Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz (d	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch									
824.20	103.9	V	30.3	0.5	0.0	29.8	38.5	-8.6	
824.20	97.6	H	22.3	0.5	0.0	21.8	38.5	-16.6	
Mid Ch									
836.50	103.0	V	30.0	0.6	0.0	29.4	38.5	-9.0	
836.50	97.5	H	22.4	0.6	0.0	21.8	38.5	-16.6	
High Ch									
848.80	104.4	V	31.2	0.7	0.0	30.5	38.5	-7.9	
848.80	96.0	H	20.5	0.7	0.0	19.8	38.5	-18.6	

GSM850 EGPRS Output Power (ERP)

High Frequency Substitution Measurement

Compliance Certification Services, Fremont 5m Chamber Site

Company: HTC Project #: 07U10984 Date: 4-14-2007

Test Engineer: Chin Pang Configuration: EUT Only Mode: TX, GSM850, EGPRS

Test Equipment:

Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch									
824.20	97.8	V	24.2	0.5	0.0	23.7	38.5	-14.7	
824.20	95.3	Н	20.0	0.5	ዉዐ	19.5	38.5	-18.9	
Mid Ch									
836.50	97.7	v	24.7	0.6	0.0	24.1	38.5	-14.3	
836 <i>5</i> 0	95.0	H	19.9	0.0	0.0	19.3	38.5	-19.1	
High Ch			-						
848.80	98.2	v	25.0	0.7	0.0	24.3	38.5	-14.1	
848.80	94.7	H	19.2	0.7	0.0	18.5	38.5	-199	

Cell Band WCDMA Output Power (ERP)

High Frequency Substitution Measurement Compliance Certification Services, Fremont 5m Chamber Site

Company: HTC Project #: 07U10984 Date: 4-14-2007

Test Engineer: Chin Pang Configuration:EUT Only Mode:TX, WCDMA 850

Test Equipment:

Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch									
826.40	97.8	V	24.2	0.5	0.0	23.7	38.5	-14.7	
826.40	93.0	H	17.7	0.5	0.0	17.2	38.5	-21.2	
Mid Ch									
837.00	97.2	V	24.2	0.6	0.0	23.6	38.5	-14.8	
837.00	92.8	H	17.7	0.6	0.0	17.1	38.5	-21.3	
High Ch									
846.60	97.5	V	24.3	0.7	0.0	23.6	38.5	-14.8	
846.60	92.6	H	17.1	0.7	0.0	16.4	38.5	-22.0	

Cell Band WCDMA+HSPDA Output Power (ERP)

High Frequency Substitution Measurement Compliance Certification Services, Fremont 5m Chamber Site

Company: HTC Project #: 07U10984 Date: 4-14-2007

Test Engineer: Chin Pang Configuration:EUT Only Mode:TX, WCDMA+HSDPA 850

Test Equipment:

Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch									
826.40	98.0	V	24.4	0.5	0.0	23.9	38.5	-14.5	
826.40	91.8	H	16.5	0.5	0.0	16.0	38.5	-22.4	
Mid Ch									
837.00	97.8	V	24.8	0.6	0.0	24.2	38.5	-14.2	
837.00	92.0	H	16.9	0.6	0.0	16.3	38.5	-22.1	
High Ch									
846.60	98.5	V	25.3	0.7	0.0	24.6	38.5	-13.8	
846.60	92.4	H	16.9	0.7	0.0	16.2	38.5	-22.2	

GSM1900 Band GPRS Output Power (EIRP)

High Frequency Fundamental Measurement

Compliance Certification Services, Fremont 5m Chamber Site

Company: HTC Project #: 07U10984 Date: 4-14-2007

Test Engineer: Chin Pang Configuration:EUT Only Mode:TX, GSM1900, GPRS

Test Equipment:

Receiving: Horn T73, and 12ft S/N: 197209005 (Setup this one for testing EUT) Substitution: Horn T60 Substitution, 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.850	94.6	V	21.2	0.9	8.3	28.6	33.0	-4.4	
1.850	96.0	H	22.1	0.9	8.3	29.5	33.0	-3.5	
Ni i Cl									
Nid Ch									
1.880	95.2	V	20.9	0.9	8.3	28.3	33.0	-4.7	
1.880	97.3	H	22.5	0.9	8.3	29.9	33.0	-3.1	
High Ch									
1.910	95.0	V	21.7	0.9	8.4	29.2	33.0	-3.8	
1.910	96.1	H	23.3	0.9	8.4	30.8	33.0	-2.3	

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 **EUT: PDA PHONE** FCC ID: NM8KS

GSM1900 Band EGPRS Output Power (EIRP)

High Frequency Fundamental Measurement Compliance Certification Services, Fremont 5m Chamber Site

Company: HTC Project #: 07U10984 Date: 4-14-2007

Test Engineer: Chin Pang Configuration:EUT Only Mode:TX, GSM1900, EGPRS

Test Equipment:

Receiving: Horn T73, and 12ft S/N: 197209005 (Setup this one for testing EUT) Substitution: Horn T60 Substitution, 4ft SMA Cable Warehouse S/N: 177081002

f GHz	SA reading (dBuV/m)	Ant. Pol. (H/V)	SG reading (dBm)	CL (dB)	Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Notes
1.850	88.6	V	15.2	0.9	8.3	22.6	33.0	-10.4	
1.850	92.8	H	18.9	0.9	8.3	26.3	33.0	-6.7	
Mid Ch									
1.880	89.3	V	15.0	0.9	8.3	22.4	33.0	-10.6	
1.880	93.8	H	19.0	0.9	8.3	26.4	33.0	-6.6	
High Ch									
1.910	90.2	V	16.9	0.9	8.4	24.4	33.0	-8.6	
1.910	91.9	H	19.1	0.9	8.4	26.6	33.0	-6.5	

PCS Band WCDMA Output Power (EIRP)

High Frequency Fundamental Measurement

Compliance Certification Services, Fremont 5m Chamber Site

Company: HTC Project #: 07U10984 Date: 4-14-2007

Test Engineer: Chin Pang Configuration: EUT Only Mode: TX, WCDMA 1900

Test Equipment:

Receiving: Horn T73, and 12ft S/N: 197209005 (Setup this one for testing EUT) Substitution: Horn T60 Substitution, 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.850	89.5	v	16.1	0.9	8.3	23.5	33.0	-9.5	
1.850	92.1	Н	18.2	0.9	8.3	25.6	33.0	-7.4	
)id Ch									
1.880	89.4	V	15.1	0.9	8.3	22.5	33.0	-10 <i>.</i> 5	
1.880	92.7	Н	17.9	0.9	8.3	25.3	33.0	-7.7	
High Ch									
1.910	8.88	V	15.5	0.9	8.4	23.0	33.0	-10.0	
1.910	91.5	Н	18.7	0.9	8.4	26.2	33.0	-6.9	

Rev. 1.24.7

PCS Band WCDMA + HSPDA Output Power (EIRP)

High Frequency Fundamental Measurement Compliance Certification Services, Fremont 5m Chamber Site

Company: HTC Project #: 07U10984 Date: 4-14-2007

Test Engineer: Chin Pang Configuration: EUT Only

Mode: TX, WCDMA+HSDPA 1900

Test Equipment:

Receiving: Horn T73, and 12ft S/N: 197209005 (Setup this one for testing EUT) Substitution: Horn T60 Substitution, 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.852.4	89.3	V	15.9	0.9	8.3	23.3	33.0	-9.7	
1.852.5	929	Н	19,0	0.9	8.3	26.4	33.0	-6.6	
Mid Ch									
1.880	89.4	v	15.1	0.9	8.3	22.5	33.0	-10.5	
1.880	93.3	H	18.5	0.9	8.3	25.9	33.0	-7.1	
High Ch									
1.908	0.88	V	14.7	0.9	8.4	22.2	33.0	-10.8	
1.908	92.0	Н	19.2	0.9	8.4	26.7	33.0	-6.4	

Rev. 1.24.7

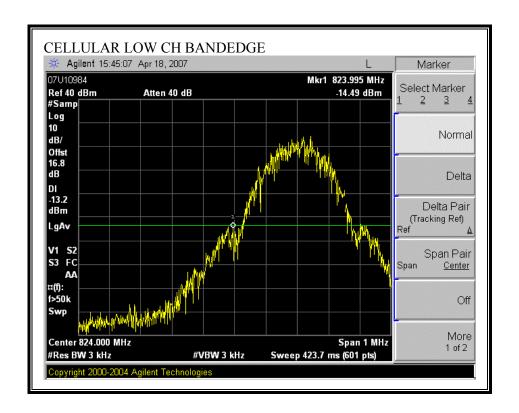
REPORT NO: 07U10984-2 DATE: MAY 15, 2007 **EUT: PDA PHONE** FCC ID: NM8KS

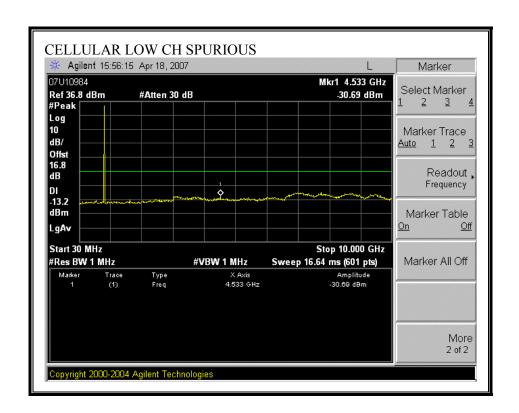
7.3. **SPURIOUS EMISSION AT ANTENNA TERMINAL**

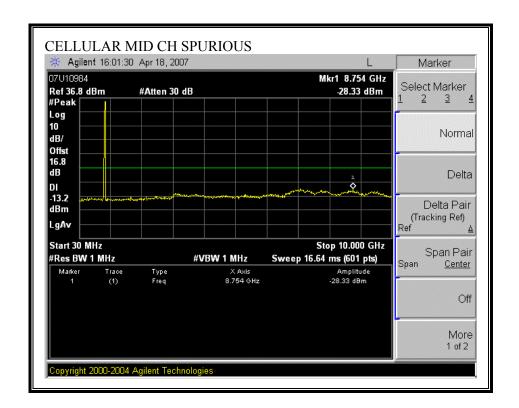
LIMIT

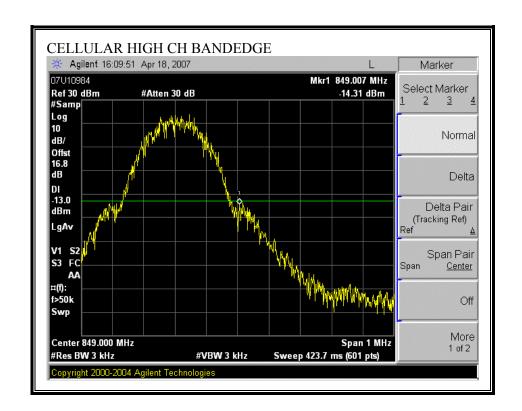
§22.917 (e) and §24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 $+ 10 \log (P) dB$.

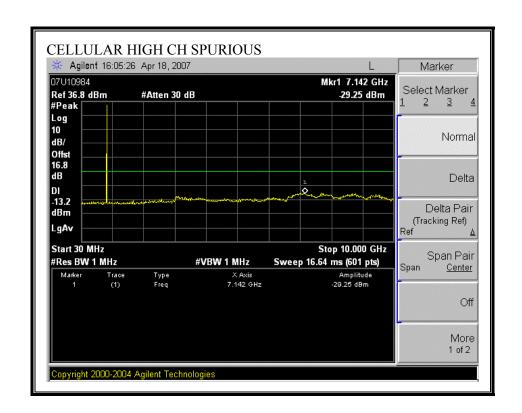
TEST PROCEDURE

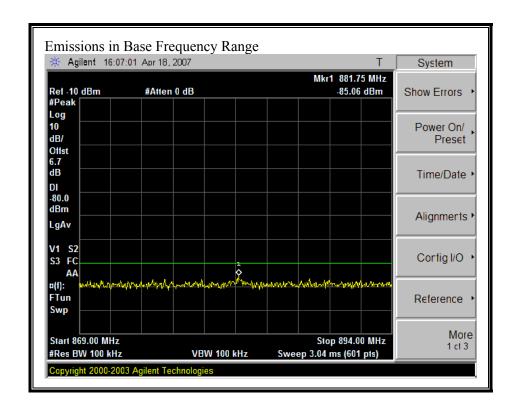

ANSI / TIA / EIA 603C Clause 2.2.12, FCC 22.917 (h), & FCC 24.238 (b)

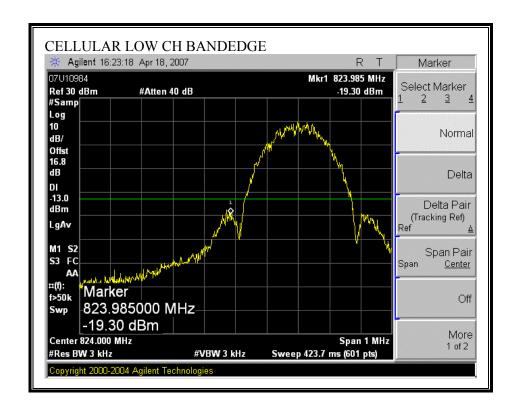

RESULTS

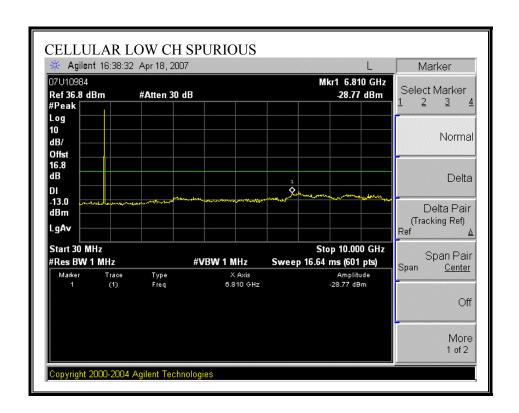

No non-compliance noted.

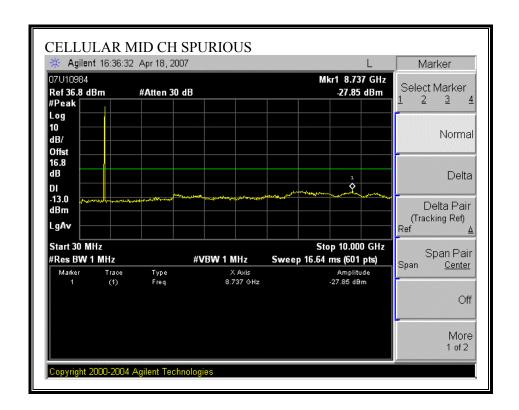

GSM850, GPRS

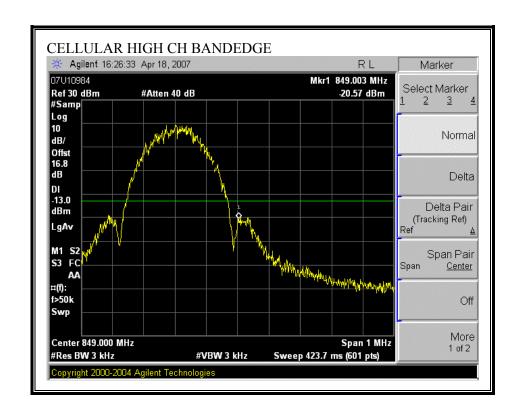

800MHz CELLULAR

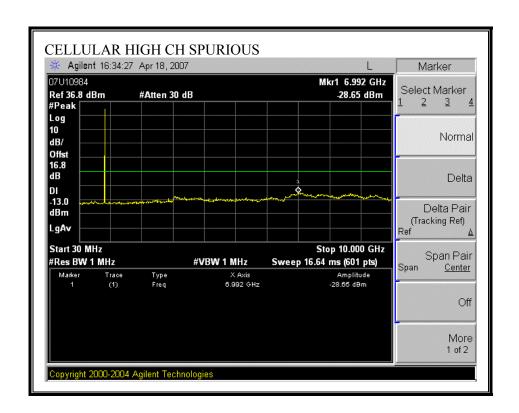


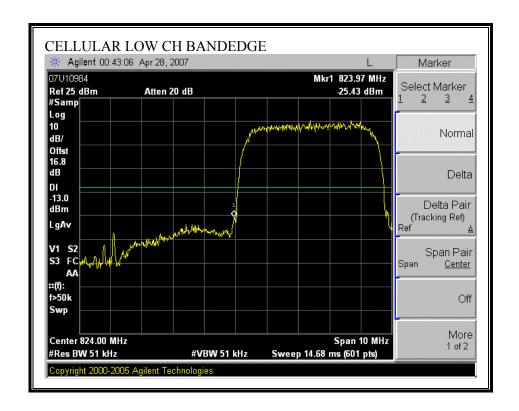


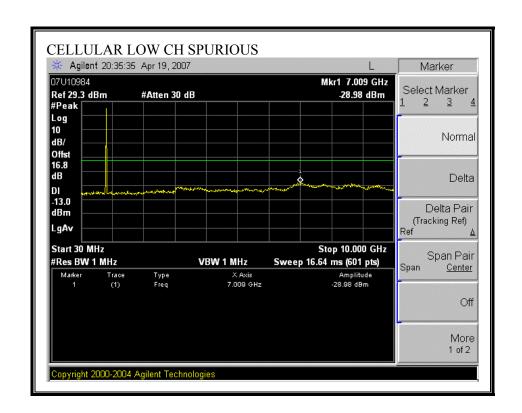


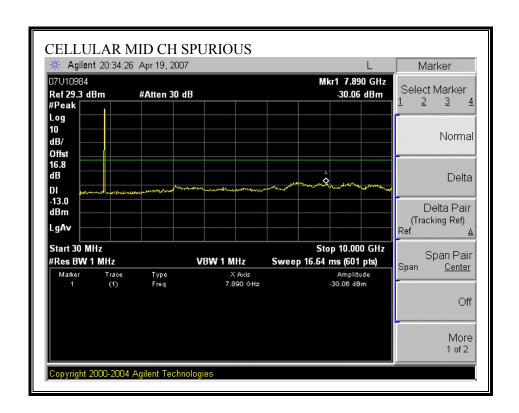

800MHz Cellular Mobile Emissions in Base Frequency Range

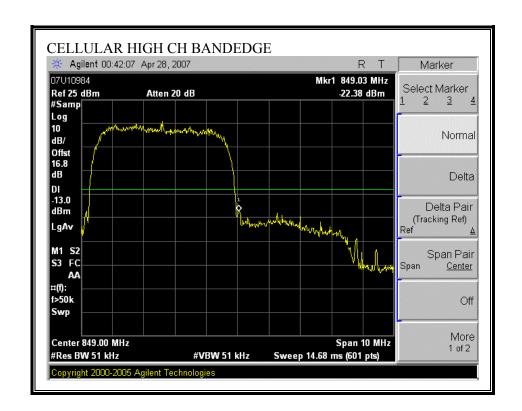


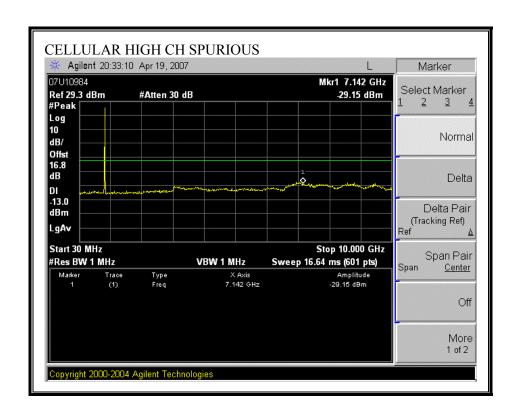

GSM850, EGPRS

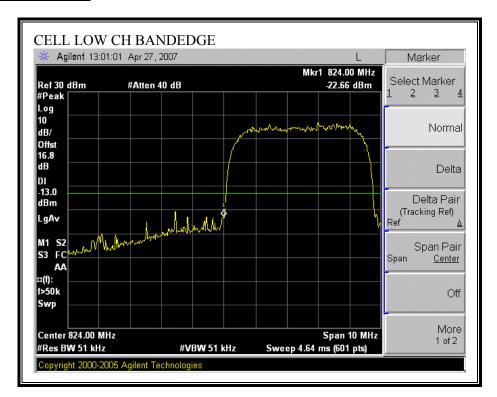


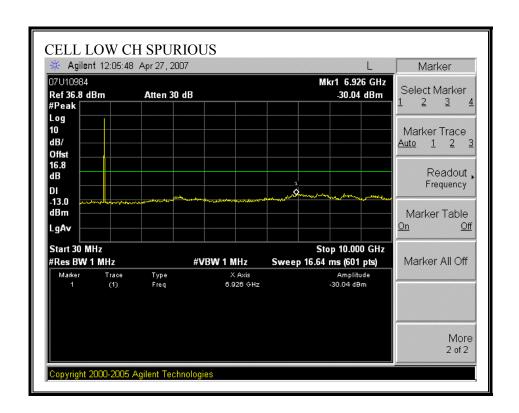


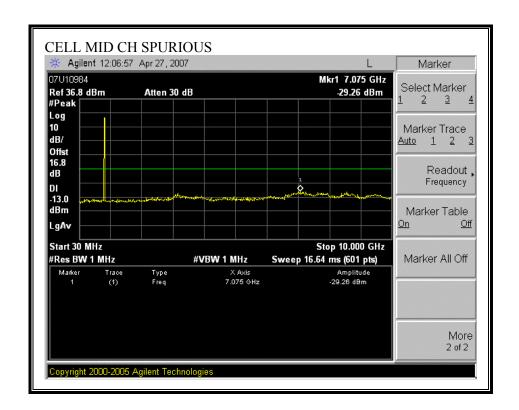


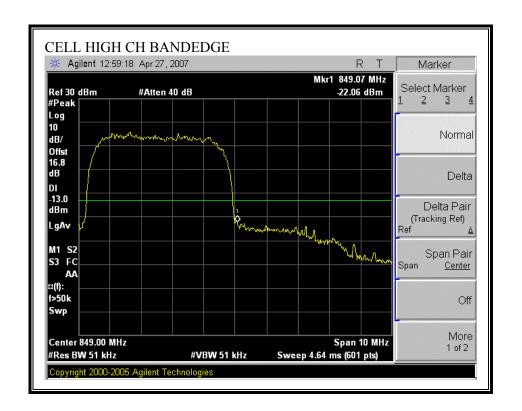


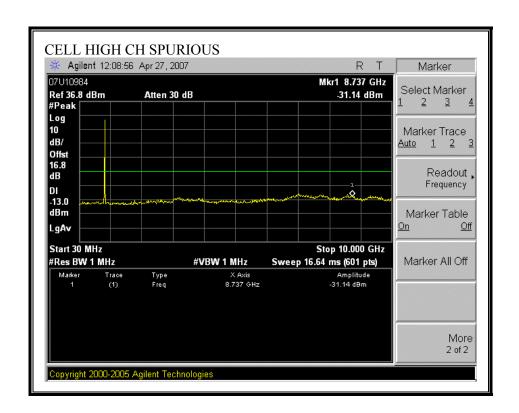

WCDMA 850

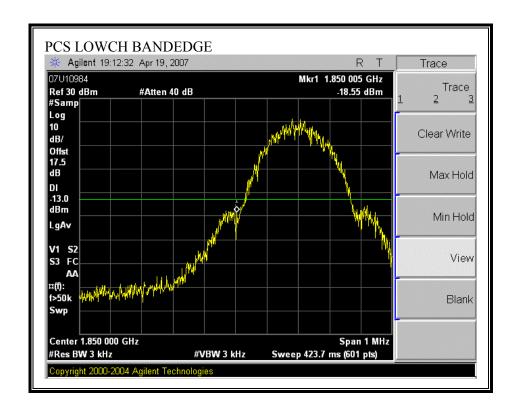


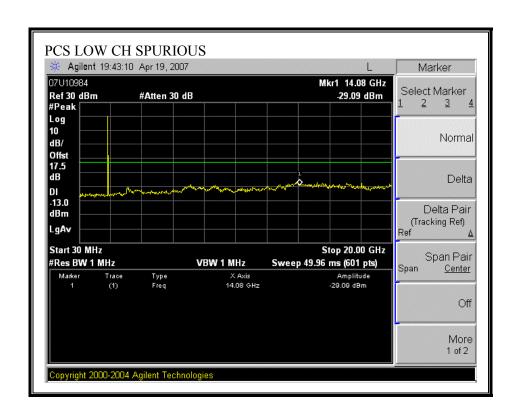


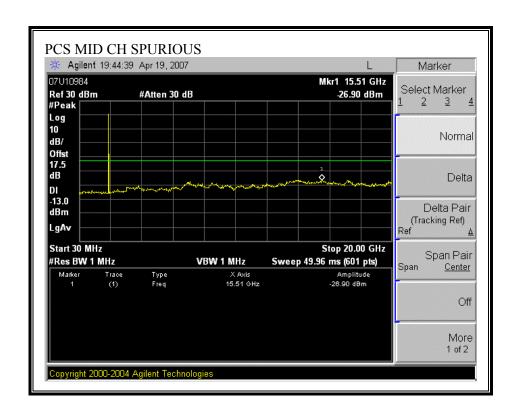


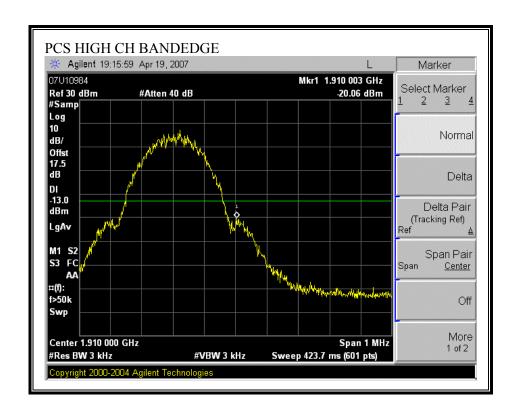


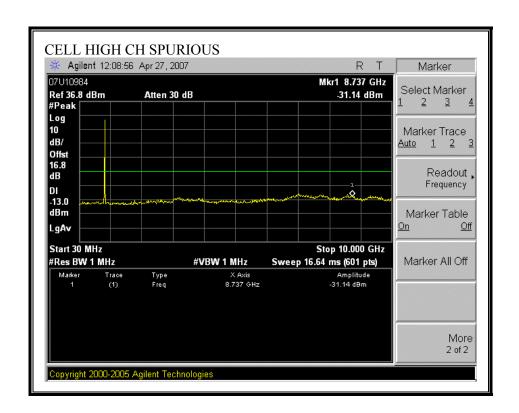

WCDMA+HSDPA 850

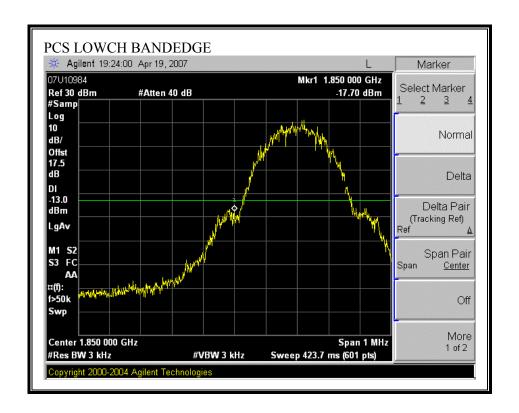


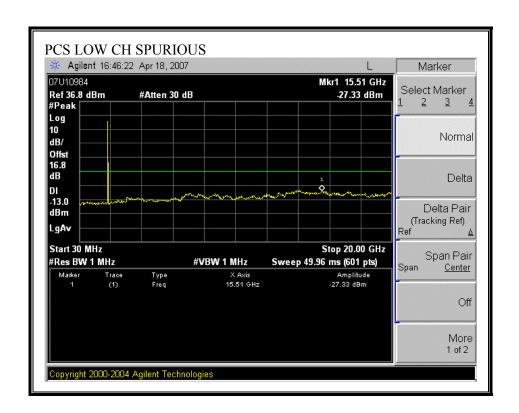


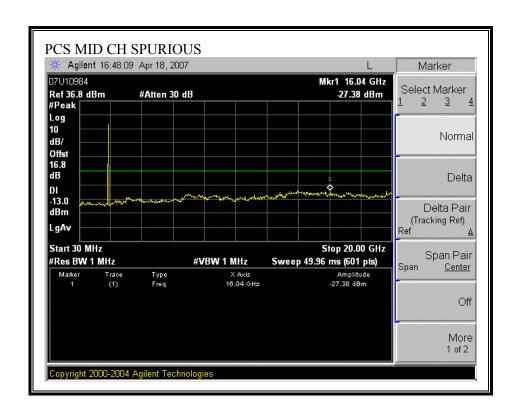


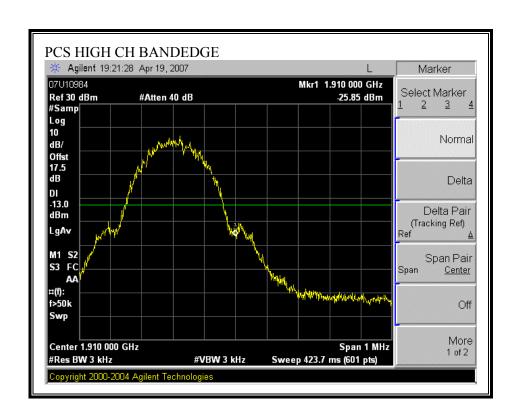


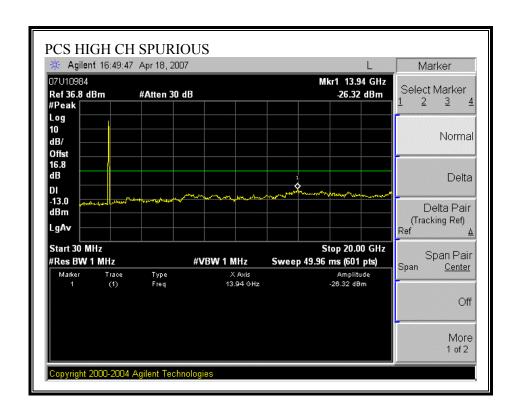

GSM1900, GPRS

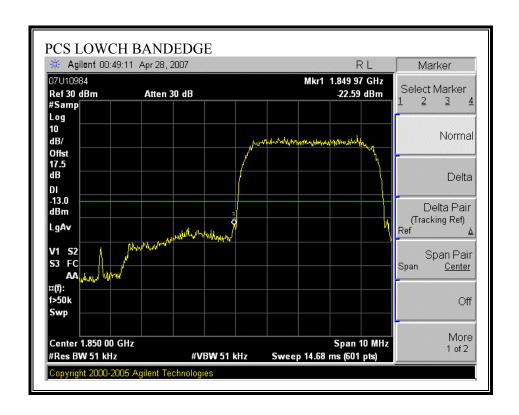


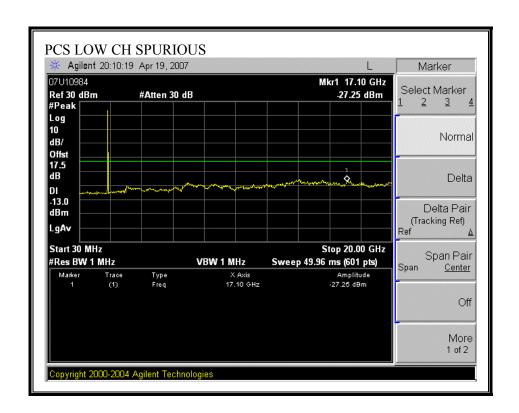


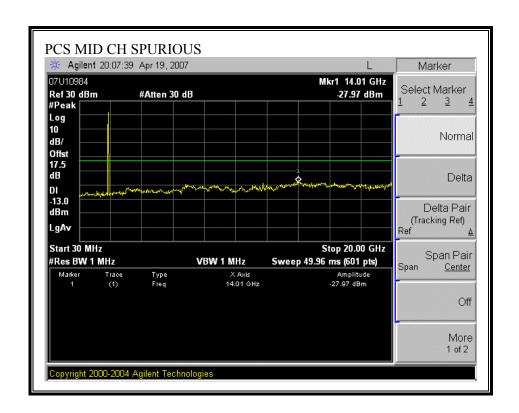


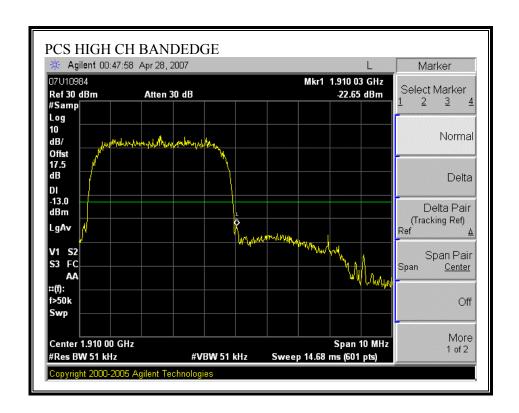


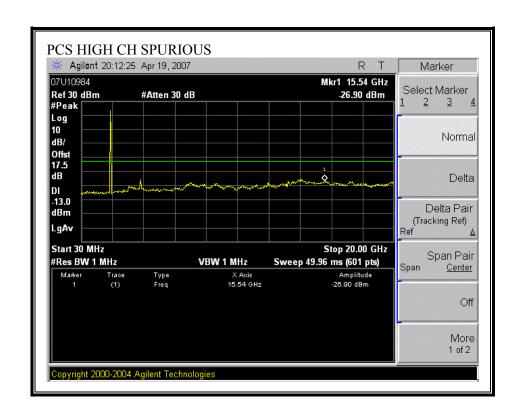

GSM1900, EGPRS

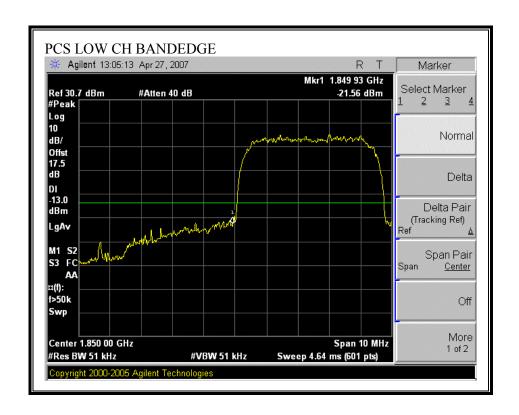


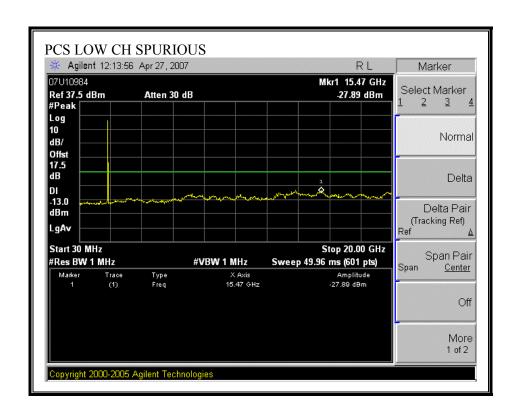


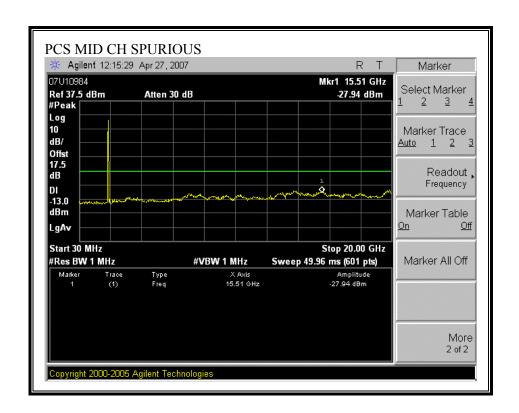


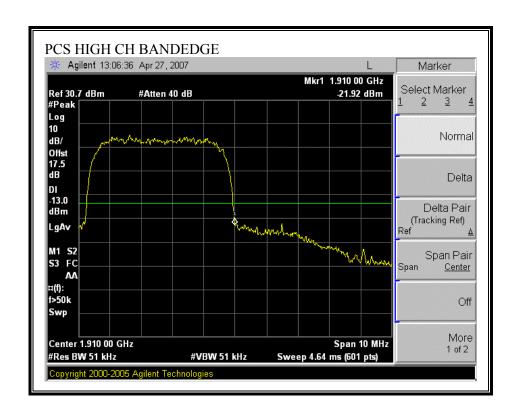


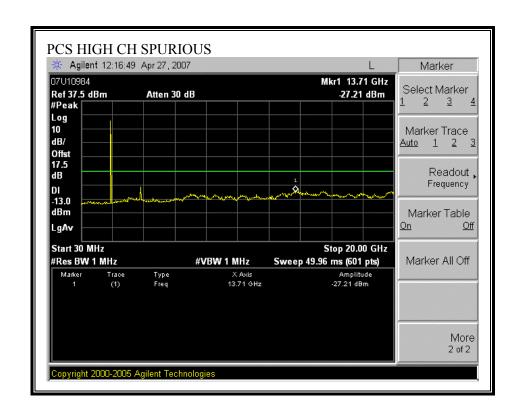

WCDMA 1900










WCDMA+HSDPA1900

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 **EUT: PDA PHONE** FCC ID: NM8KS

FIELD STRENGTH OF SPURIOUS RADIATION 7.4.

LIMIT

§22.917 (e) and §24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 $+ 10 \log (P) dB$.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.12, FCC 22.917 (h), & FCC 24.238 (b)

RESULTS

No non-compliance noted.

Note: No emissions were found within 30-1000MHz of 20dB below the system noise.

CELL GSM850, GPRS Spurious & Harmonic (ERP)

Cellular Harmonic Substitution Measurement Compliance Certification Services, Fremont Immunity Chamber

High Tech Computer Corp Company:

Project #: 07U10984 April 13th 2007 Date: Test Enginee: Anoop Singh Configuration EUT Only TX,GSM850, GPRS Mode:

Test Equipment:

Receiving: Horn T60, Pre-amp T145, CAN \$MA Cables 3 & 12 ft (Setup this one for testing EUT) \$\(\)\(\)\(\) 187207004 & 187308840 Substitution: Horn T59, 6ft SMA Cable Warehouse S/N: 187215001

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Channel (82	824.2MHz								
1.648	57.8	V	-49.2	0.8	7.7	-423	-13.0	-29.3	
2.473	60.0	V	-49.9	1.0	9.4	-41.5	-13.0	-28.5	
1.648	55.5	H	-50.2	1.2	9.7	-41.7	-13.0	-28.7	
2.473	70.1	H	-34.6	13	9.9	-26.0	-13.0	-13.0	
Mid Channel (83	837.0MHz								
1.674	60.0	v	-45.7	8.0	7.7	-38.8	-13.0	-25.8	
2 <i>5</i> 11	56.1	V	-53.8	1.0	9.4	-45.4	-13.0	-32.4	
1.674	56.1	H	-49.6	8.0	7.7	-42.7	-13.0	-29.7	
2.511	65.8	H	-43.3	1.0	9.4	-34.9	-13.0	-21.9	
High Channel (8	848.8MHz								
1.698	59.1	v	-49.8	0.8	7.8	-429	-13.0	-29.9	
2.546	57.O	v	-52.3	1.0	9.4	-43.9	-13.0	-30.9	
1.698	60.9	H	-45.2	1.2	9.7	-36.7	-13.0	-23.7	
2.546	60.1	H	-45.2	1.4	10.1	-36.5	-13.0	-23.5	
No other frequenc			.l		<u> </u>	.J	<u></u>	ll	

FCC ID: NM8KS

CELL EGPRS Spurious & Harmonic (ERP)

Cellular Harmonic Substitution Measurement Compliance Certification Services, Fremont Immunity Chamber

Company: High Tech Computer Corp

Project #: 07U10984

Date: April 17th 2007

Test Enginee: Anoop Singh

Configuration EUT Only

Mode: TX, GSM850, EGPRS

Test Equipment:

Receiving: Horn T60, Pre-amp T145, CAN SMA Cables 3 & 12 ft (Setup this one for testing EUT) S/N: 187207004 & 187308840 Substitution: Horn T59, 6ft SMA Cable Warehouse S/N: 187215001

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Channel (82	824.2MHz								
1.648	57.7	V	-49.2	0.8	7.7	-42.4	-13.0	-29.4	
2.473	61.4	V	-48.5	1.0	9.4	-40.1	-13.0	-27.1	
1.648	56.D	H	-49.7	1.2	9.7	-41.2	-13.0	-28.2	
2.473	69.7	Н	-35,0	13	9.9	-26.4	-13.0	-13.4	
Mid Channel (83	837.0MHz								
1.674	56.5	V	-49.2	0.8	7.7	-42.3	-13.0	-29.3	
2 <i>5</i> 11	57.8	V	-52.0	1.0	9.4	-43.6	-13.0	-30.6	
1.674	56.7	H	-49.0	8.0	7.7	-42.1	-13.0	-29.1	
2.511	65.2	Н	-44.0	1.0	9.4	-35.6	-13.0	-22.6	
High Channel (8	848.8MHz								
1.698	56.9	v	-52.0	0.8	7.8	-45.0	-13.0	-32.0	
2.546	57.0	v	-52.3	1.0	9.4	-43.9	-13.0	-30.9	
1.698	61.4	H	-44.6	1.2	9.7	-36.1	-13.0	-23.1	
2.546	61.0	H	-44.3	1.4	10.1	-35.6	-13.0	-22.6	
			ļļ						
			ļ						
No other frequent			<u>l</u>			<u> </u>	<u> </u>		

CELL Band WCDMA Spurious & Harmonic (ERP)

Cellular Harmonic Substitution Measurement Compliance Certification Services, Fremont Immunity Chamber

Company: High Tech Computer Corp

 Project #:
 07U10984

 Date:
 April 17th 2007

 Test Enginee:
 Anoop Singh

 Configuration
 EUT Only

 Mode:
 TX, WCDMA 850

Test Equipment:

Receiving: Horn T60, Pre-amp T145, CAN \$MA Cables 3 & 12 ft (Setup this one for testing EUT) \$\frac{1}{N}: 187207004 & 187308840 \$Substitution: Horn T59, 6ft \$MA Cable Warehouse \$\frac{1}{N}: 187215001

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Channel (82	826.4MHz								
1.653	59.6	v	-47.3	0.8	7.7	-40.4	-13.0	-27.4	
2.479	56.4	v	-53.5	1.0	9.4	-45.1	-13.0	-32.1	
1.653	57.1	H	-48.6	1.2	9.7	-40.1	-13.0	-27.1	
2.479	8.06	H	-439	13	9.9	-35 <i>3</i>	-13.0	-22.3	
Mid Channel (83	836.4MHz								
1.673	56. l	v	-49.6	0.8	7.7	-42.7	-13.0	-29.7	
2.509	55 <i>3</i>	V	-54.5	1.0	9.4	-46.1	-13.0	-33.1	
1.673	56.9	H	-48.9	0.8	7.7	-42.0	-13.0	-29.0	
2.509	60.5	H	-48.7	1.0	9.4	-40.3	-13.0	-27.3	
High Channel (8	846.6MHz								
1.693	57.2	v	-51.7	8.0	7.8	-44.8	-13.0	-31.8	
2.540	55.3	v	-54.0	1.0	9.4	-45.6	-13.0	-32.6	
1.693	59.4	H	-46.6	1.2	9.7	-38.1	-13.0	-25.1	
2.540	58 <i>5</i>	H	-46.8	1.4	10.1	-38.1	-13.0	-25.1	
						<u> </u>			

CELL Band WCDMA+HSPDA Spurious & Harmonic (ERP)

Cellular Harmonic Substitution Measurement Compliance Certification Services, Fremont Immunity Chamber

Company: High Tech Computer Corp

Project #: 07U10984

Date: April 17th 2007

Test Enginee: Anoop Singh
Configuration EUT Only

Mode: TX, WCDMA+HSDPA 850

Test Equipment:

Receiving: Horn T60, Pre-amp T145, CAN \$MA Cables 3 & 12 ft (Setup this one for testing EUT) \$\(\text{S/N}: 187207004 & 187308840 \) Substitution: Horn T59, 6ft \$\(\text{SMA Cable Warehouse } \text{S/N}: 187215001 \)

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Channel (82	826.4MHz								
1.653	58.9	V	-48.1	8.0	7.7	-41.2	-13.0	-28.2	
2.479	55.0	V	-54.9	1.0	9.4	-46.5	-13.0	-33.5	
1.653	60.2	H	-45.5	1.2	9.7	-37.0	-13.0	-24.0	
2.479	8.00	H	-439	13	9.9	-35.3	-13.0	-22.3	
Mid Channel (83	836.4MHz								
1.673	57.1	v	-48.6	0.8	7.7	-41.7	-13.0	-28.7	
2 <i>5</i> 09	56.D	V	-53.8	1.0	9.4	-45.4	-13.0	-32.4	
1.673	56.2	H	-49.5	0.8	7.7	-42.6	-13.0	-29.6	
2.509	60.5	H	-48.6	1.0	9.4	-40.2	-13.0	-27.2	
High Channel (8	846.6MHz								
1.693	58.9	v	-50.1	8.0	7.8	-43.1	-13.0	-30.1	
2.540	55.9	v	-53.4	1.0	9.4	-45.0	-13.0	-32.0	
1.693	59.0	H	-47.0	1.2	9.7	-38.5	-13.0	-25.5	
2.540	59.6	H	-45.7	1.4	10.1	-37.0	-13.0	-24.0	
			<u> </u>						

GSM1900 Band GPRS Spurious & Harmonic (EIRP)

PCS Harmonic Substitution Measurement

Compliance Certification Services, Fremont Immunity Chamber

Company: High Tec Computer Corp

 Project #:
 07U10984

 Date:
 April 13th 2007

 Test Engineer:
 Anoop Singh

 Configuration:
 EUT Only

 Mode:
 TX, GSM 1900, GPRS

Test Equipment:

Receiving: Horn T60, Pre-amp T145, SMA Cables 3 & 12 ft (Setup this one for testing EUT) S/N: 187207004 & 187308840

Substitution: Horn T59, 6ft SMA Cable Warehouse S/N: 187215001

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Channel	1850.2MHz								
3.700	51.0	V	-53.6	0.9	9.7	-44.8	-13.0	-31.8	
5 <i>5</i> 51	52.3	V	-50.3	1.3	11.0	-40.6	-13.0	-27.6	
3.700	51.3	H	-49.7	1.4	12.0	-39.1	-13.0	-26.1	
5 <i>5</i> 51	51.8	Н	-45.3	1.9	12.7	-34.6	-13.0	-21.6	
Mid Channel	1880MHz								
3.760	51.3	v	-53 <i>.</i> 5	0.9	9.7	-44.7	-13.0	-31.7	
5.640	50.1	v	-53.1	1.4	11.2	-43.3	-13.0	-30.3	
3.760	51.4	H	-49.7	1.4	12.0	-39.1	-13.0	-26.1	
5.640	49.5	Н	-48.5	1.9	12.7	-37.6	-13.0	-24.6	
High Channel	1909.8MHz								
3.820	51.3	v	-52.7	0.9	9.7	-43.9	-13.0	-30.9	
5.729	52.0	v	-51 <i>.</i> 5	1.4	11.3	-41.6	-13.0	-28.6	
3.820	50.7	Н	-49.8	1.5	12.0	-39.3	-13.0	-26 <i>.</i> 3	
5.729	51.5	Н	-45.9	1.9	12.7	-35.1	-13.0	-22.1	

GSM1900 EGPRS Spurious & Harmonic (EIRP)

PCS Harmonic Substitution Measurement

Compliance Certification Services, Fremont Immunity Chamber

Company: High Tec Computer Corp

 Project #:
 07U10984

 Date:
 April 17th 2007

 Test Engineer:
 Anoop Singh

 Configuration:
 EUT Only

 Mode:
 TX, GSM1900, EGPRS

Test Equipment:

Receiving: Horn T60, Pre-amp T145, SMA Cables 3 & 12 ft (Setup this one for testing EUT) S/N: 187207004 & 187308840 Substitution: Horn T59, 6ft SMA Cable Warehouse S/N: 187215001

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Channel	1850.2MHz								
3.700	54.0	V	-50.6	0.9	9.7	-41.8	-13.0	-28.8	
5 <i>5</i> 51	54.9	V	-47.7	13	11.0	-38.0	-13.0	-25.0	
3.700	55.0	H	-46.0	1.4	12.0	-35.4	-13.0	-22.4	
5 <i>5</i> 51	56.1	H	-41.1	1.9	12.7	-30.3	-13.0	-17.3	
Mid Channel	1880MHz								
3.760	55.4	V	-49.4	0.9	9.7	-40.6	-13.0	-27.6	
5.640	55.7	v	-47.5	1.4	11.2	-37.7	-13.0	-24.7	
3.760	54.8	H	-46.3	1.4	12.0	-35.7	-13.0	-22.7	
5.640	55.9	H	-42.0	1.9	12.7	-31.2	-13.0	-18.2	
High Channel	1909.8MHz		-						
3.820	54.7	v	-49.3	0.9	9.7	-40.5	-13.0	-27.5	
5.729	56.0	v	-47.5	1.4	11.3	-37.6	-13.0	-24.6	
3.820	54.0	H	-46.5	1.5	12.0	-36.0	-13.0	-23.0	
5.729	55.2	Н	-42.2	1.9	12.7	-31.3	-13.0	-18.3	
								ļ	
								<u> </u>	

PCS Band WCDMA Spurious & Harmonic (EIRP)

PCS Harmonic Substitution Measurement

Compliance Certification Services, Fremont Immunity Chamber

Company: High Tec Computer Corp

 Project #:
 07U10984

 Date:
 April 17th 2007

 Test Engineer:
 Anoop Singh

 Configuration:
 EUT Only

 Mode:
 TX, WCDMA1900

Test Equipment:

Receiving: Horn T60, Pre-amp T145, SMA Cables 3 & 12 ft (Setup this one for testing EUT) S/N: 187207004 & 187308840

Substitution: Horn T59, 6ft SMA Cable Warehouse S/N: 187215001

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Channel	1852.4MHz								
3.705	60.1	v	-44.5	0.9	9.7	-35.7	-13.0	-22.7	
5.557	54.7	V	-47.9	1.3	11.0	-38.2	-13.0	-25.2	
3.705	56.7	H	-44.3	1.4	12.0	-33.7	-13.0	-20.7	
5.557	55.5	Н	-41.7	1.9	12.7	-30.9	-13.0	-17.9	
Mid Channel	1880MHz								
3.760	56.6	v	-48.2	0.9	9.7	-39.4	-13.0	-26.4	
5.640	55.8	V	-47.4	1.4	11.2	-37.6	-13.0	-24.6	
3.760	57.4	H	-43.7	1.4	12.0	-33.2	-13.0	-20.2	
5.640	55.3	H	-42.6	1.9	12.7	-31.8	-13.0	-18.8	
High Channel	1907.6MHz								
3.815	61.3	V	-42.7	0.9	9.7	-33.9	-13.0	-20.9	
5.723	55.5	v	-48.0	1.4	11.3	-38.1	-13.0	-25.1	
3.815	56.6	H	-43.9	1.5	12.0	-33.4	-13.0	-20.4	
5.723	59.6	H	-37.8	1.9	12.7	-26.9	-13.0	-13.9	
						<u> </u>			

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 **EUT: PDA PHONE** FCC ID: NM8KS

PCS Band WCDMA+HSPDA Spurious & Harmonic (EIRP)

Compliance Certification Services, Fremont Immunity Chamber

High Tec Computer Corp

Project #: 07U10984 Date: April 17th 2007 Test Engineer: Anoop Singh Configuration: EUT Only

TX, WCDMA+HSDPA 1900 Mode:

Test Equipment:

Receiving: Horn T60, Pre-amp T145, SMA Cables 3 & 12 ft (Setup this one for testing EUT) S/N: 187207004 & 187308840

Substitution: Horn T59, 6ft SMA Cable Warehouse S/N: 187215001

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Channel	1852.4MHz								
3.705	60.9	V	-43.8	0.9	9.7	-35.0	-13.0	-22.0	
5 <i>5</i> 57	56.8	V	-45.8	1.3	11.0	-36.1	-13.0	-23.1	
3.705	56.8	H	-44.2	1.4	12.0	-33.6	-13.0	-20.6	
5 <i>5</i> 57	56.1	H	-41.1	1.9	12.7	-30.3	-13.0	-17.3	
Mid Channel	1880MHz								
3.760	58.2	v	-46.6	0.9	9.7	-37.8	-13.0	-24.8	
5.640	59.3	V	-43.9	1.4	11.2	-34.1	-13.0	-21.1	
3.760	58.4	H	-42.7	1.4	12.0	-32.1	-13.0	-19.1	
5.640	57.4	Н	-40.5	1.9	12.7	-29.7	-13.0	-16.7	
High Channel	1907.6MHz								
3.815	62.1	v	-42.0	0.9	9.7	-33.1	-13.0	-20.1	
5.723	56.2	v	-47.3	1.4	11.3	-37 <i>A</i>	-13.0	-24.4	
3.815	61.6	H	-38.9	1.5	12.0	-28.4	-13.0	-15.4	
5.723	55.3	H	-42.1	1.9	12.7	-31.2	-13.0	-18.2	
			†						

7.5. **MAXIMUM PERMISSIBLE EXPOSURE**

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	/Controlled Exposu	res	
0.3–3.0	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6
30–300 300–1500	61.4	0.163	1.0 f/300	6
1500–100,000	for General Populati	on/Uncontrolled Exp	5 DOSILITA	6
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500 1500–100,000			f/1500 1.0	30 30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposured or the potential for exposure or can part exercise control over their exposure.

exposure or can not exercise control over their exposure.

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)/d}$$

and

$$S = E ^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d (cm) = 100 * d (m)$$

yields

$$d = 100 * \sqrt{(30 * (P / 1000) * G) / (3770 * S)}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

$$P (mW) = 10 ^ (P (dBm) / 10)$$
 and

$$G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$$

yields

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

Equation (1)

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

DATE: MAY 15, 2007

FCC ID: NM8KS

LIMITS

From §1.1310 Table 1 (B), $S = 1.0 \text{ mW/cm}^2$

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Mode	MPE	Output	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
800MHz Celllar	20.0	33.78	-1.50	0.336
1900 MHz PCS	20.0	30.51	1.00	0.281

REPORT NO: 07U10984-2 DATE: MAY 15, 2007 **EUT: PDA PHONE** FCC ID: NM8KS

FREQUENCY STABILITY 7.6.

LIMIT

§22.355 Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

For Mobile devices operating in the 824 to 849 MHz band at a power level less than or equal to 3 Watts, the limit specified in Table C-1 is +/- 2.5 ppm.

§24.235 The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.3.1 and 2.3.2

RESULTS

No non-compliance noted.

85MHz CELLULAR – MID CHANNEL

Refere	ence Frequency: GPI	RS Cell Mid Chann	el 837.000000MHz @) 25*C
	L	imit: ± 2.5 ppm =	2092.165	Hz
Power Supply	Environment	Frequency Dev	iation Measureed wi	th Time Elapse
(Vdc)	Temperature (*C)	(MHz)	Delta (ppm)	Limit (ppm)
3.70	50	836.86610	0.035	± 2.5
3.70	40	836.86611	0.030	± 2.5
3.70	30	836.86612	0.014	± 2.5
3.70	25	836.86613	0	± 2.5
3.70	20	836.86617	-0.041	± 2.5
3.70	10	836.86617	-0.047	± 2.5
3.70	0	836.86616	-0.036	± 2.5
3.70	-10	836.86617	-0.039	± 2.5
3.70	-20	836.86617	-0.044	± 2.5
3.70	-30	836.86617	-0.049	± 2.5
3.145	25	836.86611	0.025	± 2.5
4.255	25	836.86611	0.029	± 2.5

Reference Frequency: WCDMA Cell Mid Channel 836.490000MHz @ 25*C						
	Li	imit: ± 2.5 ppm =	2085.479	Hz		
Power Supply	Environment	Frequency Deviation Measureed with Time Elapse				
(Vdc)	Temperature (*C)	(MHz)	Delta (ppm)	Limit (ppm)		
3.70	50	834.19227	-0.724	± 2.5		
3.70	40	834.19203	-0.436	± 2.5		
3.70	30	834.19186	-0.233	± 2.5		
3.70	25	834.19167	0	± 2.5		
3.70	20	834.19179	-0.149	± 2.5		
3.70	10	834.19196	-0.352	± 2.5		
3.70	0	834.19212	-0.544	± 2.5		
3.70	-10	834.19229	-0.748	± 2.5		
3.70	-20	834.19249	-0.988	± 2.5		
3.70	-30	834.19275	-1.299	± 2.5		
3.145	25	834.19291	-1.491	± 2.5		
4.255	25	834.19301	-1.611	± 2.5		

1900MHz PCS – MID CHANNEL

Reference Frequency: PCS Mid Channel 1880.000030MHz @ 20*C Limit: within the authorized block or +- 2.5 ppm = 4698.273 Hz							
Power Supply	Environment	Frequency Deviation Measureed with Time Elapse					
(Vdc)	Temperature (*C)	(MHz)	Delta (ppm)	Limit (ppm)			
3.70	50	1879.309303	-0.120	± 2.5			
3.70	40	1879.308929	0.079	± 2.5			
3.70	30	1879.309022	0.029	± 2.5			
3.70	25	1879.309077	0	± 2.5			
3.70	10	1879.309913	-0.445	± 2.5			
3.70	0	1879.309036	0.022	± 2.5			
3.70	-10	1879.309152	-0.040	± 2.5			
3.70	-20	1879.309199	-0.065	± 2.5			
3.70	-30	1879.309214	-0.073	± 2.5			

Reference Frequency: PCS Mid Channel 1880.000030MHz @ 20*C							
Limit: within the authorized block or +- 2.5 ppm = 4698.273 Hz							
Power Supply	Environment	Frequency Deviation Measureed with Time Elapse					
(Vdc)	Temperature (*C)	(MHz)	Delta (ppm)	Limit (ppm)			
3.70	20	1879.309077	0	± 2.5			
3.145	20	1879.309123	-0.024	± 2.5			
4.255	20	1879.309737	-0.351	± 2.5			