

Antenna Engineering Specification

Project Name :	HERA110	Date:	12/20/2006
Project Manager:	Vanessa Liu	Rev.:	0.1

Countersign :	

Chuan-Ku Liu

PROPRIETARY NOTE

THIS DOCUMENT CONTAINS INFORMATION CONFIDENTIAL AND PROPRIETARY TO HIGH TECH COMPUTER CORP. AND SHALL NOT BE REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT WAS OBTAINED WITHOUT THE EXPRESSED WRITTEN CONSENT OF HIGH TECH COMPUTER CORP. $HTC\ CONFIDENTIAL$

Revision History

Revision	Revision History	Date	Author(s)
0.1	First Release	12/20/2006	Chuan-Ku Liu

PROPRIETARY NOTE

Engineering Spec.

CONTENTS

Embedded GSM Quad-Band Antenna Engineering Specification	P.4
Embedded BT Antenna Engineering Specification	P.9
Embedded WiFi Antenna Engineering Specification	P 11

PROPRIETARY NOTE

THIS DOCUMENT CONTAINS INFORMATION CONFIDENTIAL AND PROPRIETARY TO HIGH TECH COMPUTER CORP. AND SHALL NOT BE REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT WAS OBTAINED WITHOUT THE EXPRESSED WRITTEN CONSENT OF HIGH TECH COMPUTER CORP. $HTC\ CONFIDENTIAL$

Engineering Spec.

Embedded Quad-Band Antenna

1. Overview

The following is the specification of the embedded Quad-band antenna for PHONE applications. Quad-band includes GSM850, GSM900, DCS1800 and PCS1900.

1.1.1 Denotations

dBi: Decibel relative isotropic antenna VSWR: Voltage Standing Wave Ratio

Tx: Transmit frequency Rx: Receive frequency

GSM: Global Service for Mobile communication

DCS: Digital Communication System

PCS: Personal Communication System

SAR: Specific Absorption Rate

Peak Gain: The peak value of the antenna gain

Average Gain: The average value of the antenna gain

EIRP: Effective Isotropic Radiation Power

TRP: Total Radiation Power

EIS: Effective Isotropic Sensitivity

TIS: Total Isotropic Sensitivity

dBm: Decibel of m-Watt

1.1.2 Frequency Allocation

GSM850: 824MHz~894MHz GSM900: 880MHz~960MHz DCS1800: 1710MHz~1880MHz PCS1900: 1850MHz~1990MHz

PROPRIETARY NOTE

Page 4 of 12 IS-DCC-GEN-009-1.2

Engineering Spec.

2. Measurement Parameters

2.1 Passive Parameters

2.1.1 VSWR

VSWR indicates the matching characteristics of the antenna. VSWR can be measured by a network analyzer.

2.1.2 Antenna Gain and Pattern

Antenna gain and far-field pattern can be determined by two measurement skills, depending on the own equipments. One is the far-field measurement; the other is the 3-D measurement system. Sometimes, the gain value is also needed to be measured under specified user conditions.

2.2 Active Parameters

2.2.1 Radiation Power

Antenna radiation power means the real radiated ability of an active system. Two most popular index values to specify the ability of radiation power is EIRP and TRP. EIRP means the peak radiation power, and TRP is the total radiation power. In some user conditions, the TRP value is also specified.

2.2.2 Receiving Sensitivity

Antenna radiation power means the real receiving ability of an active system. Two most popular index values to specify the ability of receiving ability is EIS and TIS. EIS means the peak receiving sensitivity, and TIS is the total receiving sensitivity. In some user conditions, the TIS value is also specified.

2.2.3 SAR (Specified Absorption Rate)

In order to protect the health of human, WHO has specified the SAR value (Specified Absorption Rate of human) to ensure the RF device has less damage to human health. The SAR value limitation is 1.6mW/g.

PROPRIETARY NOTE

THIS DOCUMENT CONTAINS INFORMATION CONFIDENTIAL AND PROPRIETARY TO HIGH TECH COMPUTER CORP. AND SHALL NOT BE REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT WAS OBTAINED WITHOUT THE EXPRESSED WRITTEN CONSENT OF HIGH TECH COMPUTER CORP. $HTC\ CONFIDENTIAL$

Page 5 of 12 IS-DCC-GEN-009-1.2

Engineering Spec.

3. Specification Requirements

3.1 Passive Specifications

3.1.1 VSWR (For Europe 900/1800 System)

	GSM850	GSM900	DCS1800	PCS1900
Free space	4:1	4:1	3:1	3:1

VSWR (For US 850/1900 System only)

	GSM850	GSM900	DCS1800	PCS1900
Free space	4:1	4:1	3:1	3:1

Notably: The VSWR value will be degraded due to mechanical and space constrains.

3.1.2 Gain and Patterns (Total Field)

(1) Free Space (For Europe 900/1800 System)

<u> </u>	<u>- </u>			
	GSM850	GSM900	DCS1800	PCS1900
Peak gain	>0dBi	>0dBi	>1dBi	>1dBi
Average gain	>-4dBi	>-4dBi	>-3dBi	>-3dBi

Free Space (For US 850/1900 System only)

	GSM850	GSM900	DCS1800	PCS1900
Peak gain	>0dBi	>0dBi	>1dBi	>1dBi
Average gain	>-4dBi	>-4dBi	>-3dBi	>-3dBi

(2) Phantom Mode (For Europe 900/1800 System)

• •	•	•		
	GSM850	GSM900	DCS1800	PCS1900
Average gain	>-11.0dBi	>-9.0dBi	>-5.0dBi	>-7.5dBi

Phantom Mode (For US 850/1900 System only)

	GSM850	GSM900	DCS1800	PCS1900
Average gain	>-8.0dBi	>-10.5dBi	> -7.5dBi	> -5.0dBi

Notably: The target values (peak and average gains) will be degraded due to mechanical and space constrains.

PROPRIETARY NOTE

THIS DOCUMENT CONTAINS INFORMATION CONFIDENTIAL AND PROPRIETARY TO HIGH TECH COMPUTER CORP. AND SHALL NOT BE REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT WAS OBTAINED WITHOUT THE EXPRESSED WRITTEN CONSENT OF HIGH TECH COMPUTER CORP. $HTC\ CONFIDENTIAL$

Page 6 of 12 IS-DCC-GEN-009-1.2

Engineering Spec.

3.2 Active Specifications

3.2.1 Radiation Power

(1) Free Space (For Europe 900/1800 System)

	-			
	GSM850	GSM900	DCS1800	PCS1900
EIRP	>26.0dBm	>30.5dBm	>28.0dBm	>26.0dBm
TRP	>25.5dBm	>28.0dBm	>27.0dBm	>25.0dBm

Free Space (For US 850/1900 System only)

	GSM850	GSM900	DCS1800	PCS1900
EIRP	>30.0dBm	>28.0dBm	>25.0dBm	>29.0dBm
TRP	>28.0dBm	>26.0dBm	>24.5dBm	>27.0dBm

(2) Phantom Mode (For Europe 900/1800 System)

	•			
	GSM850	GSM900	DCS1800	PCS1900
TRP	>20.0dBm	>21.0dBm	>24.0dBm	>22.0dBm

Phantom Mode (For US 850/1900 System only)

	•	, ,		
	GSM850	GSM900	DCS1800	PCS1900
TRP	>22.0dBm	>20.0dBm	>22.0dBm	>24.5dBm

Notably: The radiation power values will be degraded due to mechanical and space constrains.

3.2.2 Receiving Sensitivity

(1) Free Space (For Europe 900/1800 System)e

	GSM850	GSM900	DCS1800	PCS1900
EIS	<-104.0dBm	<-104.0dBm	<-104.0dBm	<-102.0dBm
TIS	<-100.0dBm	<-102.0dBm	<-101.5dBm	<-99.0dBm

Free Space (For US 850/1900 System only)

	GSM850	GSM900	DCS1800	PCS1900
EIS	<-104.0dBm	<-100.0dBm	<-104.0dBm	<-104.0dBm
TIS	<-103.0dBm	<-100.0dBm	<-101.5dBm	<-103.0dBm

PROPRIETARY NOTE

THIS DOCUMENT CONTAINS INFORMATION CONFIDENTIAL AND PROPRIETARY TO HIGH TECH COMPUTER CORP. AND SHALL NOT BE REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT WAS OBTAINED WITHOUT THE EXPRESSED WRITTEN CONSENT OF HIGH TECH COMPUTER CORP. $HTC\ CONFIDENTIAL$

Page 7 of 12 IS-DCC-GEN-009-1.2

Engineering Spec.

(2) Phantom Mode (For Europe 900/1800 System)

	GSM850	GSM900	DCS1800	PCS1900
TIS	<-96.0dBm	<-98.0dBm	<-100.0dBm	<-97.5dBm

Phantom Mode (For US 850/1900 System only)

	•	•		
	GSM850	GSM900	DCS1800	PCS1900
TIS	<-99.0dBm	<-96.0dBm	<-100.0dBm	<-101.5dBm

Notably: The receiving sensitivity values will be degraded due to mechanical and space constrains.

4. Antenna Materials

The	antenna	can not	have the	materials of	nlumhum i	(Ph)	, halogen and	mercury	(Ho	ı١
1110	antenna	Call HUL	nave inc	materiais or	piuiiibuiii i	$(\Gamma \cup I)$, Haibyeli aliu	IIIGICUIY	(III)	IJ.

PROPRIETARY NOTE

THIS DOCUMENT CONTAINS INFORMATION CONFIDENTIAL AND PROPRIETARY TO HIGH TECH COMPUTER CORP. AND SHALL NOT BE REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT WAS OBTAINED WITHOUT THE EXPRESSED WRITTEN CONSENT OF HIGH TECH COMPUTER CORP. $HTC\ CONFIDENTIAL$

Page 8 of 12 IS-DCC-GEN-009-1.2

Engineering Spec.

Embedded BT Antenna

1. Overview

The following is the specification of the embedded BT antenna for PHONE applications.

ዘ.1.1 Denotations

dBi: Decibel relative isotropic antenna VSWR: **V**oltage **S**tanding **W**ave **R**atio

Peak Gain: The peak value of the antenna gain

Average Gain: The average value of the antenna gain

EIRP: Effective Isotropic Radiation Power

EIS: Effective Isotropic Sensitivity

dBm: Decibel of m-Watt

1.1.2 Frequency Allocation

BT: 2400MHz~2500MHz

PROPRIETARY NOTE

Engineering Spec.

2. Specification Requirements

2.1 Passive Specifications

2.1.1 VSWR

	BT2400
Free space	2:1

Notably: The VSWR value will be degraded due to mechanical and space constrains.

2.1.2 Gain and Patterns (Total Field)

Free Space

	BT2400
Peak gain	>1.0dBi
Average gain	> -4.0dBi

Notably: The target values (peak and average gains) will be degraded due to mechanical and space constrains.

2.2 Active Specifications

2.2.1 Radiation Power

Free Space

	BT2400
EIRP	>1.0dBm

Notably: The radiation power values will be degraded due to mechanical and space constrains.

2.2.2 Receiving Sensitivity

Free Space

•	
	BT
EIS	< -79.0dBm

Notably: The receiving sensitivity values will be degraded due to mechanical and space constrains.

3. Antenna Materials

The antenna can not have the materials of plumbum (Pb), halogen and mercury (Hg).

PROPRIETARY NOTE

THIS DOCUMENT CONTAINS INFORMATION CONFIDENTIAL AND PROPRIETARY TO HIGH TECH COMPUTER CORP. AND SHALL NOT BE REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT WAS OBTAINED WITHOUT THE EXPRESSED WRITTEN CONSENT OF HIGH TECH COMPUTER CORP. $HTC\ CONFIDENTIAL$

Page 10 of 12 IS-DCC-GEN-009-1.2

Engineering Spec.

Embedded WiFi Antenna

4. Overview

The following is the specification of the embedded WiFi antenna for PHONE applications.

1.1.3 Denotations

dBi: Decibel relative isotropic antenna VSWR: **V**oltage **S**tanding **W**ave **R**atio

Peak Gain: The peak value of the antenna gain

Average Gain: The average value of the antenna gain

EIRP: Effective Isotropic Radiation Power

EIS: Effective Isotropic Sensitivity

dBm: Decibel of m-Watt

1.1.4 Frequency Allocation

WiFi: 2400MHz~2500MHz

PROPRIETARY NOTE

Page 11 of 12 IS-DCC-GEN-009-1.2

Engineering Spec.

5. Specification Requirements

2.1 Passive Specifications

2.1.3 **VSWR**

	WiFi2400
Free space	2:1

Notably: The VSWR value will be degraded due to mechanical and space constrains.

2.1.4 Gain and Patterns (Total Field)

Free Space

	WiFi2400
Peak gain	>1.0dBi
Average gain	> -4.0dBi

Notably: The target values (peak and average gains) will be degraded due to mechanical and space constrains.

2.2 Active Specifications

2.2.3 Radiation Power

Free Space

	WiFi2400
EIRP	>14.0dBm

Notably: The radiation power values will be degraded due to mechanical and space constrains.

2.2.4 Receiving Sensitivity

Free Space

•	
	WiFi
EIS	< -80.0dBm

Notably: The receiving sensitivity values will be degraded due to mechanical and space constrains.

6. Antenna Materials

The antenna can not have the materials of plumbum (Pb), halogen and mercury (Hg).

PROPRIETARY NOTE

THIS DOCUMENT CONTAINS INFORMATION CONFIDENTIAL AND PROPRIETARY TO HIGH TECH COMPUTER CORP. AND SHALL NOT BE REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN THAT FOR WHICH IT WAS OBTAINED WITHOUT THE EXPRESSED WRITTEN CONSENT OF HIGH TECH COMPUTER CORP. $HTC\ CONFIDENTIAL$

Page 12 of 12 IS-DCC-GEN-009-1.2