

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC OET BULLETIN 65 SUPPLEMENT C

FOR

SMARTPHONE

MODEL: EXCA100

FCC ID: NM8EXCA

REPORT NUMBER: 06I10345-3C

ISSUE DATE: JULY 12, 2006

Prepared for

HIGH TECH COMPUTER CORP. 23 HSIN HUA RD., TAOYUAN 330, TAIWAN

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885

Revision History

Rev.	Issued date	Revisions	Revised By
	June 22, 2006	Initial issue	HS
В	June 27, 2006	Correction of model number	ND
С	July 12, 2006	Adding the results for EUT with Jog Bar along with liquid and performance check results	ND

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

DATES OF TEST: June 13, 14, 15, 16, and July 10, 2006								
APPLICANT:	High Tech Computer Corp.							
ADDRESS:	23 Hsin Hua Rd., Taoyuan 330, Taiwan							
FCC ID:	NM8EXCA							
MODEL:	EXCA100 (without jog bar) & EXCA100 (with jog bar)							
DEVICE CATEGORY:	Portable Device							
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure							

Smartphone EXCA100 (without jog bar) and EXCA100 (with jog bar) is a quad band phone which includes WLAN and Bluetooth.

This device can operate in 900 and 1800MHz bands which are not used in US. This report is applicable only to 850MHz, 1900MHz, and 2.4 GHz band.

Test Sample is a:	Production unit		
Rule Parts	Frequency Range [MHz]	The Highest SAR Values [1g_mW/g]	The Highest Multi-band SAR Values [1g_mW/g]
FCC 22H	824.2-848.8	Head: 0.952 Body: 1.470	Head: 1.09 Body: 1.49
FCC 24E	1850.2-1909.8	Head: 1.34 Body: 1.030	Head: 1.26 Body: 0.952
15C	2412-2462	Body: 0.066	Body: 1.49

Testing has been carried out in accordance with:

47CFR §2.1093 - Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01) - Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

RSS-102 - Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528_2003 - IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin-Fr Shih

Hsin Fu Shih Senior Engineer Compliance Certification Services

Tested By:

Winey Dorouch

Ninous Davoudi EMC Engineer Compliance Certification Services

TABLE OF CONTENTS

1	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	6
2	FACILITIES AND ACCREDITATION	6
3	SYSTEM DESCRIPTION	7
4	3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS	8
4	TEST POSITIONS FOR DEVICES OPERATING NEXT TO A PERSON'S EAR	9
	4.1 CHEEK/TOUCH POSITION	
	4.2 EAR/TILT POSITION	11
Б	4.3 TEST POSITIONS FOR BODY-WORN AND OTHER SIMILAR CONFIGURATIONS	
5		13
6	5.1 SIMULATING LIQUID PARAMETER CHECK RESULT	
Ū	6.1 SYSTEM PERFORMANCE CHECK RESULTS	27
7	SAR MEASURMENT PROCEDURE	
	7.1 DASY4 SAR MEASURMENT PROCEDURE	
	7.2 DASY4 MULTIBAND SAR MEASURMENT PROCEDURE	
8	PROCEDURE USED TO ESTABLISH TEST SIGNAL	
9	SAR MEASURMENT RESULTS	
	9.1 GSM850-WITHOUT JOG BAR	
	9.1.1 LEFT HAND SIDE	
	9.1.2 RIGHT HAND SIDE 9.1.3 BODY POSITION WITH HOLSTER WITH BELT CLIP	
	9.2 GSM1900-WITHOUT JOG BAR	
	9.2.1 LEFT HAND SIDE	
	9.2.2 RIGHT HAND SIDE 9.2.3 BODY POSITION WITH HOLSTER HTC-296	
	9.3 GSM850MHZ-WITH IOG BAR	
	9.3.1 RIGHT HAND SIDE	
	9.3.2 BODY POSITION WITH HOLSTER	42
	9.4 GSM1900MHZ-WITH JOG BAR	
	9.4.1 LEFT HAND SIDE	
	9.5 WLAN 9.5.1 BODY POSITION WITH HOLSTER HTC-296	
	9.6 BLUETOOTH	
	9.6.1 BODY POSITION WITH HOLSTER	46
	9.7 MULTIBAND SAR EVALUATION RESULTS	
	9.7.1 WORST CASE CONFIGURATIONS	
	9.7.3 LEFT HAND SIDE-TILT POSITION (WORST CASE CONFIGURATION)	
	9.7.4 BODY POSITION WITH HOLSTER (WORST CASE CONFIGURATION)	49
10	MEASURMENT UNCERTAINTY	
	10.1 MEASURMENT UNCERTAINTY FOR 300 MHZ – 3000 MHZ	
CO	MPLIANCE CERTIFICATION SERVICES Page	e: 4 of 57

11	EQUIPMENT LIST AND CALIBRATION	.51
12	PHOTOS	.52
13	ATTACHMENTS	.57

1 EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Smartphone EXCA100 (without jog bar) and EXCA100 (with jog bar) is a quad band phone which includes WLAN and Bluetooth.

This device can operate in 900 and 1800MHz bands which are not used in US. This report is applicable only to 850MHz, 1900MHz, and 2.4 GHz band.

Mobile Phone capabilities:	Class B
GPRS Multi-slot Class:	Class 10 (2up, 3 down) for both GPRS and EGPRS
Normal Operation:	Hold to ear or Worn on Body
Duty Cycle:	GSM: 12.5%
	GPRS & EGPRS: 25%
	WiFi & BT: 100%
Body worn Accessory:	NewTech Holster with belt clip, model HTC-296
Antenna(s):	GSM: HTC Shorting Monopole, model D00031388
	WLAN: HTC Shorting Monopole, model 36H00417-00M
	Bluetooth: HTC PIFA, model D00031818
Power supply:	Standard battery by Celxpert Energy Co., Ltd., model EXCA160, 960 mAh

2 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

3 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Ingredients			Frequency (MHz)									
(% by weight)	4	50	835		915		1900		2450				
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body			
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2			
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04			
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0			
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0			
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0			
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0			
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7			
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5			
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78			

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

4 TEST POSITIONS FOR DEVICES OPERATING NEXT TO A PERSON'S EAR

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper 1/4 of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

4.1 CHEEK/TOUCH POSITION

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

- i. When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- ii. (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

4.2 EAR/TILT POSITION

With the handset aligned in the "Cheek/Touch Position":

- i. If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- ii. (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point isby 15°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

4.3 TEST POSITIONS FOR BODY-WORN AND OTHER SIMILAR CONFIGURATIONS

Without the belt-clips or holsters

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

5 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Bo	dy
raiget i requency (Miriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	<mark>41.5</mark>	<mark>0.90</mark>	<mark>55.2</mark>	<mark>0.97</mark>
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	<mark>40.0</mark>	<mark>1.40</mark>	<mark>53.3</mark>	<mark>1.52</mark>
2450	<mark>39.2</mark>	<mark>1.80</mark>	<mark>52.7</mark>	<mark>1.95</mark>
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

5.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameters Check Result @ Head 835 MHz

Room Ambient Temperature = 23°C; Relative humidity = 40%

S	imulating Li	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)							
835	22	15	e'	40.5219	Relative Permittivity (c _r):	40.5219	41.5	-2.36	± 5
			e"	18.7061	Conductivity (σ):	0.86894	0.90	-3.45	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 d	deg	. C; Liqu	id temperature: 23.0 d	deg C			
June 13,	2006 08:	57 AM							
Frequence	су	e'			e"				
8000000	00.	40	.95	510	18.8040				
8050000	00.	40	.87	'97	18.8103				
8100000	00.	40	.80)43	18.7963				
8150000	00.	40	.73	333	18.7549				
8200000	00.	40	.70)76	18.7602				
8250000	00.	40	.61	88	18.7245				
8300000	00.	40	.57	'97	18.7127				
<mark>8350000</mark>	00.	40	.52	219	18.7061				
8400000	00.	40	.44	30	18.6952				
8450000	00.	40	.38	888	18.6571				
8500000	00.	40	.34	07	18.6384				
8550000	00.	40	.27	'98	18.6440				
8600000	00.	40	.20	92	18.6117				
8650000	00.	40	.16	611	18.5837				
8700000	00.	40	.10	03	18.5798				
8750000	00.	40	.03	311	18.5786				
8800000	00.	39	.98	881	18.5601				
8850000	00.	39	.92	261	18.5771				
8900000	00.	39	.85	598	18.5756				
8950000	00.	39	.81	92	18.5571				
9000000	00.	39	.75	59	18.5256				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e''=2πj	fε₀e"							
where f	= target j	f * 10 ⁶							
EO	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Head 835 MHz

Room Ambient Temperature = 23°C; Relative humidity = 40%

S	imulating Li	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			T arameters	Measureu		Deviation (70)	
835	22	15	e'	40.49	Relative Permittivity (ε_r):	40.4900	41.5	-2.43	± 5
000	22	10	e"	18.7044	Conductivity (o):	0.86886	0.90	-3.46	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 d	deg	J. C; Liqu	id temperature: 22.0 d	deg C			
June 15,	2006 11:	20 AM	-	•		•			
Frequence	су	e'			e"				
8000000	00.	40	.92	233	18.8222				
8050000	00.	40	.85	522	18.8284				
8100000	00.	40	.80)23	18.8290				
8150000	00.	40).74	176	18.7884				
8200000	00.	40	.68	342	18.7718				
8250000	00.	40	.64	106	18.7661				
8300000	00.	40	.56	681	18.7473				
8350000	00.	40	.49	900	18.7044				
8400000	00.	40).43	342	18.7392				
8450000	00.	40	.38	371	18.6886				
8500000	00.	40	.29	939	18.6925				
8550000	00.	40	.26	687	18.6778				
8600000	00.	40).18	387	18.6480				
8650000	00.	40).14	160	18.6386				
8700000	00.	40	0.06	655	18.5997				
8750000	00.	40	0.01	151	18.5931				
8800000	00.	39	.95	563	18.5891				
8850000	00.	39	9.89	945	18.6061				
8900000	00.	39	.84	401	18.6110				
8950000	00.	39	.80	009	18.5623				
9000000	00.	39).75	560	18.5600				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f	f = target	$f * 10^{6}$							
E0	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Head 835 MHz

Room Ambient Temperature = 23°C; Relative humidity = 50%

S	imulating Li	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)		-					
835	22	15	e'	40.0328	Relative Permittivity (ε_r):	40.0328	41.5	-3.54	± 5
000		10	e"	18.4423	Conductivity (o):	0.85668	0.90	-4.81	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 d	dec	J. C; Liqu	id temperature: 22.0 d	deg C			
July 10, 2	2006 01:3	33 PM		•	•	•			
Frequence	су	e'			e"				
8000000	00.	40	.46	61	18.5639				
8050000	00.	40).40)20	18.5491				
8100000	00.	40).35	562	18.5192				
8150000	00.	40).3 ⁻	125	18.4944				
8200000	00.	40).25	561	18.4786				
8250000	00.	40).17	780	18.4373				
8300000	00.	40	.08	858	18.4371				
<mark>8350000</mark>	00.	40	<mark>.03</mark>	328	18.4423				
8400000	00.	39	.99	922	18.4131				
8450000	00.	39	9.94	102	18.3770				
8500000	00.	39	9.84	189	18.3829				
8550000	00.	39	.80)39	18.3661				
8600000	00.	39).77	717	18.3562				
8650000	00.	39	0.67	75	18.3029				
8700000	00.	39).6 ⁻	121	18.3129				
8750000	00.	39).55	528	18.3413				
8800000	00.	39).5´	186	18.3127				
8850000	00.	39).44	181	18.2947				
8900000	00.	39	0.37	773	18.3067				
8950000	00.	39	0.37	725	18.2706				
9000000	00.	39).29	988	18.2838				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f	f = target	$f * 10^{6}$							
EØ	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Head 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 45%

Simulating Liquid				Parameters	Measured	Target	Deviation (%)	Limit (%)	
f (MHz)	Temp. (°C)	Depth (cm)			Falameters	Ivieasureu		Deviation (76)	
1900	22	15	e'	39.6866	Relative Permittivity (ε_r):	39.6866	40.0	-0.78	± 5
1000	22	10	e"	13.4191	Conductivity (o):	1.41839	1.40	1.31	± 5
Liquid Cł	neck								
Ambient	temperat	ure: 23.0 d	deg	J. C; Liqu	id temperature: 22.0 d	deg C			
June 14,	2006 08:	:58 AM							
Frequence	су	e'			e"				
1710000	000.	40	.50	010	12.9362				
1720000	000.	40	.44	171	12.9595				
1730000	000.	40	.40)21	12.9901				
1740000	000.	40	.35	513	13.0087				
1750000	000.	40	.31	121	13.0390				
1760000	000.	40	.25	594	13.0652				
1770000	000.	40	.21	105	13.1107				
1780000	000.	40	.16	654	13.1295				
1790000	000.	40	.12	249	13.1639				
1800000	000.	40	.07	792	13.1924				
1810000	000.	40	.02	245	13.1992				
1820000	000.	39	.99	973	13.2287				
1830000	000.	39	.94	132	13.2325				
1840000	000.	39	.89	955	13.2689				
1850000	000.	39	.86	677	13.2868				
1860000	000.	39	.83	327	13.3154				
1870000	000.	39	.78	325	13.3416				
1880000	000.	39	.74	167	13.3648				
1890000	000.	39	.70	062	13.3882				
1900000	000.	39	.68	366	13.4191				
1910000	000.	39	.63	395	13.4469				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e''=2πj	fε₀e"							
where f	f = target j	$f * 10^{6}$							
EØ	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Head 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 45%

S	imulating Li	quid			Deremeters	Maggurad	Target	Doviation $(9/)$	$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{n} \right)$
f (MHz)	Temp. (°C)	Depth (cm)			Parameters	weasured		Deviation (%)	LIIIII (70)
1900	22	15	e'	40.1971	Relative Permittivity (ε_r):	40.1971	40.0	0.49	± 5
1300	22	15	e"	13.4687	Conductivity (σ):	1.42363	1.40	1.69	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 d	deg	J. C; Liqu	id temperature: 22.0 d	deg C			
June 15,	2006 08:	:48 AM							
Frequence	су	e'			e"				
1710000	000.	40	.99	917	12.9721				
1720000	000.	40	.94	142	13.0080				
1730000	000.	40	.91	143	13.0396				
1740000	000.	40	.83	355	13.0602				
1750000	000.	40	.79	927	13.0966				
1760000	000.	40	.74	117	13.1070				
1770000	000.	40	.68	389	13.1528				
1780000	000.	40	.65	542	13.1752				
1790000	000.	40	.61	29	13.2048				
1800000	000.	40	.57	707	13.2258				
1810000	000.	40	.53	301	13.2276				
1820000	000.	40	.48	382	13.2548				
1830000	000.	40	.45	516	13.2787				
1840000	000.	40	.39	939	13.3009				
1850000	000.	40	.36	687	13.3149				
1860000	000.	40	.32	243	13.3442				
1870000	000.	40	.29	940	13.3796				
1880000	000.	40	.26	62	13.4073				
1890000	000.	40	.21	197	13.4322				
1900000	000.	40	.19	971	13.4687				
1910000	000.	40	.14	178	13.4718				
The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f	f = target j	$f * 10^{6}$							
E ₀	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Head 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 50%

S	imulating Li	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)	
f (MHz)	Temp. (°C)	Depth (cm)			Falameters	Ivieasureu		Deviation (76)	LIIIII (70)	
1900	22	15	e'	39.3431	Relative Permittivity (ε_r):	39.3431	40.0	-1.64	± 5	
1000	22	10	e"	13.2021	Conductivity (o):	1.39545	1.40	-0.32	± 5	
Liquid Ch	neck									
Ambient	temperat	ure: 23.0 d	deg	J. C; Liqu	id temperature: 22.0 d	deg C				
July 10, 2	2006 09:2	24 AM	-	-	-	-				
Frequence	су	e'			e"					
1710000	000.	40	.10)97	12.6977					
1720000	000.	40	.06	670	12.7293					
1730000	000.	40	.02	257	12.7662					
1740000	000.	39	.98	372	12.8107					
1750000	000.	39	.93	371	12.8435					
1760000	000.	39	.88	346	12.8595					
1770000	000.	39	.86	601	12.8741					
1780000	000.	39	.81	136	12.8807					
1790000	000.	39	.76	690	12.9137					
1800000	000.	39	.73	308	12.9398					
1810000	000.	39	.68	307	12.9642					
1820000	000.	39	.64	162	12.9972					
1830000	000.	39	.59	949	13.0496					
1840000	000.	39	.54	180	13.0874					
1850000	000.	39	.49	941	13.1116					
1860000	000.	39	.47	711	13,1257					
1870000	000.	39	.44	114	13,1321					
1880000	000.	39	.41	154	13.1570					
1890000	000.	39	.38	331	13.1890					
1900000	000.	39	.34	131	13.2021					
1910000	000.	39	.27	782	13.2255					
The cond	The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{\theta}$	e''=2πj	fɛ₀e"								
where f	f = target j	$f * 10^{6}$								
E	$\epsilon_0 = 8.854 * 10^{-12}$									

Simulating Liquid Dielectric Parameter Check Result @ Head 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 50%

S	imulating Lie	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)	1		
f (MHz)	Temp. (°C)	Depth (cm)			T arameters	Measured		Deviation (70)	Linne (70)			
2450	22	15	e'	40.0443	Relative Permittivity (ε_r):	40.0443	39.2	2.15	± 5			
2100		10	e"	13.5957	Conductivity (σ):	1.85305	1.80	2.95	± 5			
Liquid Check												
Ambient temperature: 23.0 deg. C; Liquid temperature: 22.0 deg C												
June 16,	June 16, 2006 09:32 AM											
Frequence	су	e'			e"							
2400000	000.	40	.24	03	13.4613							
2410000	000.	40	.19	962	13.4684							
2420000	000.	40	.16	631	13.5034							
2430000	000.	40	.12	216	13.5146							
2440000	000.	40	.07	'25	13.5585							
<mark>2450000</mark>	000.	40	.04	43	13.5957							
2460000	000.	40	.00)49	13.6288							
2470000	000.	39	.97	'05	13.6664							
2480000	000.	39	.93	301	13.7152							
2490000	000.	39	.90	000	13.7553							
2500000	000.	39	.88	303	13.7835							
The cond	luctivity (σ) can be	giv	en as:								
$\sigma = \omega \varepsilon_{\theta}$	$\sigma = \omega \varepsilon_0 \mathbf{e}'' = 2 \pi f \varepsilon_0 \mathbf{e}''$											
where $f = target f * 10^6$												
EO	= 8.854 *	* 10 ⁻¹²										

Simulating Liquid Dielectric Parameters Check Result @ Muscle 835 MHz

Room Ambient Temperature = 23°C; Relative humidity = 45%

S	imulating Li	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			T didifictors	Measured		Deviation (70)	
835	22	15	e'	53.7899	Relative Permittivity (ε_r):	53.7899	55.2	-2.55	± 5
000	22	10	e"	20.9595	Conductivity (o):	0.97361	0.97	0.37	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 d	deg	J. C; Liqu	id temperature: 22.0 d	deg C			
June 15,	2006 12:	21 PM		•	•	U U			
Frequence	cy	e'			e"				
8000000	00.	54	.11	116	21.0460				
8050000	00.	54	.07	705	21.0476				
8100000	00.	54	.02	201	21.0357				
8150000	00.	53	8.97	771	21.0100				
8200000	00.	53	8.96	65	20.9786				
8250000	00.	53	8.88	311	20.9687				
8300000	00.	53	3.79	992	20.9800				
<mark>8350000</mark>	00.	53	8.78	399	20.9595				
8400000	00.	53	3.71	126	20.9310				
8450000	00.	53	8.67	750	20.8884				
8500000	00.	53	8.61	105	20.8887				
8550000	00.	53	8.55	533	20.8757				
8600000	00.	53	3.49	959	20.8307				
8650000	00.	53	8.46	654	20.7975				
8700000	00.	53	38.38	318	20.7632				
8750000	00.	53	3.34	115	20.7557				
8800000	00.	53	3.32	205	20.7409				
8850000	00.	53	3.25	542	20.7435				
8900000	00.	53	3.22	201	20.7444				
8950000	00.	53	8.18	374	20.6924				
9000000	00.	53	3.14	141	20.6918				
The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f	f = target j	$f * 10^{6}$							
EO	= 8.854 ;	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 835 MHz

Room Ambient Temperature = 23°C; Relative humidity = 50%

S	imulating Li	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			T arameters	Measureu		Deviation (70)	
835	22	15	e'	53.5382	Relative Permittivity (ε_r):	53.5382	55.2	-3.01	± 5
000		10	e"	20.6001	Conductivity (o):	0.95692	0.97	-1.35	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 d	deg	J. C; Liqu	id temperature: 22.0 d	deg C			
July 10, 2	2006 02:5	58 PM	-	-		-			
Frequence	су	e'			e"				
8000000	00.	53	8.87	702	20.7785				
8050000	00.	53	8.81	128	20.7654				
8100000	00.	53	8.77	761	20.7283				
8150000	00.	53	3.75	552	20.6859				
8200000	00.	53	3.72	255	20.6637				
8250000	00.	53	8.62	267	20.6165				
8300000	00.	53	8.54	134	20.6086				
<mark>8350000</mark>	00.	53	<mark>.53</mark>	382	20.6001				
8400000	00.	53	8.48	371	20.5537				
8450000	00.	53	3.42	282	20.5432				
8500000	00.	53	3.36	635	20.5134				
8550000	00.	53	3.29	973	20.5061				
8600000	00.	53	8.28	330	20.4905				
8650000	00.	53	3.2´	143	20.4418				
8700000	00.	53	3.14	190	20.4563				
8750000	00.	53	3.10)58	20.4414				
8800000	00.	53	8.09	924	20.4469				
8850000	00.	53	8.03	346	20.4166				
8900000	00.	52	2.98	347	20.4046				
8950000	00.	52	2.99	904	20.3714				
9000000	00.	52	2.93	349	20.3671				
The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f	f = target j	$f * 10^{6}$							
EO	= 8.854 ;	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 45%

S	Simulating Lie	quid			Parameters	Moasurod	Target	Doviation (%)	$\lim_{n \to \infty} \frac{1}{2} \left(\frac{1}{2} \right)$	
f (MHz)	Temp. (°C)	Depth (cm)			Parameters	Ivieasureu		Deviation (%)	LIIIII (70)	
1000	22	15	e'	51.6567	Relative Permittivity (ε_r):	51.6567	53.3	-3.08	± 5	
1300	22	15	e"	13.8115	Conductivity (σ):	1.45987	1.52	-3.96	± 5	
Liquid Cl	neck									
Ambient	temperat	ure: 23.0 d	deg	J. C; Liqu	id temperature: 22.0 (deg C				
June 15,	2006 09:	:14 AM	-	•	·	-				
Frequence	су	e'			e"					
1710000	000.	52	.35	580	13.1571					
1720000	000.	52	.31	44	13.1742					
1730000	000.	52	.27	748	13.2205					
1740000	000.	52	22	202	13.2325					
1750000	000.	52	.18	399	13.3110					
1760000	000.	52	.12	217	13.3492					
1770000	000.	52		684	13.4112					
1780000	000.	52	.03	306	13.4463					
1790000	000.	51	.99	994	13.4655					
1800000	000.	51	.97	78	13.4980					
1810000	000.	51	.95	522	13.4984					
1820000	000.	51	.91	159	13.5009					
1830000	000.	51	.88	375	13.5148					
1840000	000.	51	.87	721	13,5459					
1850000	000.	51	.82	255	13.6042					
1860000	000.	51	.75	564	13.6506					
1870000	000.	51	.70)11	13.6818					
1880000	000.	51	.68	343	13.7184					
1890000	000.	51	.65	540	13.7496					
1900000	000.	51	.65	567	13.8115					
1910000	000.	51	.63	332	13.8262					
The cond	The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{\theta}$	e''=2πj	fε₀e"								
where f	f = target j	$f * 10^{6}$								
E (= 8.854 *	* 10 ⁻¹²								

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 50%

S	imulating Li	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)	
f (MHz)	Temp. (°C)	Depth (cm)			T arameters	Weasured		Deviation (70)		
1900	22	15	e'	52.5266	Relative Permittivity (ε_r):	52.5266	53.3	-1.45	± 5	
1000	22	10	e"	13.8506	Conductivity (σ):	1.46400	1.52	-3.68	± 5	
Liquid Cł	neck									
Ambient	temperat	ure: 23.0 d	deg	J. C; Liqu	id temperature: 22.0 d	deg C				
July 10, 2	2006 09:4	46 AM								
Frequence	су	e'			e"					
1710000	000.	53	.16	626	13.1763					
1720000	000.	53	.12	255	13.2158					
1730000	000.	53	30.8	362	13.2501					
1740000	000.	53	.06	600	13.3061					
1750000	000.	53	.01	188	13.3458					
1760000	000.	52	.98	382	13.3696					
1770000	000.	52	.95	564	13.3981					
1780000	000.	52	.91	148	13.4170					
1790000	000.	52	.89	920	13.4597					
1800000	000.	52		141	13.4918					
1810000	000.	52	.80)93	13.5199					
1820000	000.	52	.76	61	13.5774					
1830000	000.	52	.72	232	13.6203					
1840000	000.	52	.68	399	13.6553					
1850000	000.	52	64	188	13.7116					
1860000	000.	52	.63	318	13,7360					
1870000	000.	52	59	923	13.7412					
1880000	000.	52	58	305	13,7791					
1890000	000.	52	55	555	13.8004					
1900000	000.	52	52	266	13.8506					
1910000	000.	52	.47	753	13.8821					
The cond	The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{\theta}$	e''=2πj	fε₀e"								
where f	f = target j	$f * 10^{6}$								
E	= 8.854 *	* 10 ⁻¹²								

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 50%

f (MHz)	Simulating Liquid f (MHz) Temp. (°C) Depth (cm				Parameters	Measured	Target	Deviation (%)	Limit (%)		
2450	22	15	e'	52.3195	Relative Permittivity (ε_r):	52.3195	52.7	-0.72	± 5		
2430	22	15	e"	15.0061	Conductivity (σ):	2.04528	1.95	4.89	± 5		
Liquid Check											
Ambient temperature: 23.0 deg. C; Liquid temperature: 22.0 deg C											
June 16,	2006 09:	20 AM									
Frequence	су	e'			e"						
2400000	000.	52	.50	39	14.8198						
2410000	000.	52	.45	57	14.8440						
242000000. 52				804	14.8971						
2430000	000.	52	.39	10	14.9078						
2440000	000.	52	.35	684	14.9794						
<mark>2450000</mark>	000.	52	.31	95	15.0061						
2460000	000.	52	.27	'97	15.0695						
2470000	000.	52	.24	-29	15.0952						
2480000	000.	52	.21	03	15.1585						
2490000	000.	52	.17	'93	15.2129						
2500000	000.	52	.15	684	15.2472						
The cond	ductivity (σ) can be	giv	en as:							
$\sigma = \omega \varepsilon_{\theta} \mathbf{e}' = 2 \pi f \varepsilon_{\theta} \mathbf{e}''$											
where f	where $f = target f * 10^6$										
E (0 = 8.854 *	* 10 ⁻¹²									

6 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm).
 For 5 GHz band Special 8x8x8 fine cube was chosen for cube integration(dx=dy=4.3mm; dz=3mm)
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.0mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for body-tissue

IEEE Standard 1528-2003 Recommended Reference Value.

Frequency (MHz)	Distance (mm)	1g SAR [W/kg]	10g SAR [W/kg]
300	15	3.0	2.0
450	15	4.9	3.3
835	15	<mark>9.5</mark>	<mark>6.2</mark>
900	15	10.8	6.9
1450	10	29.0	16.0
1800	10	38.1	19.8
1900	10	<mark>39.7</mark>	<mark>20.5</mark>
2000	10	41.1	21.1
2450	10	<mark>52.4</mark>	<mark>24.0</mark>
3000	10	63.8	25.7

Note: All SAR values normalized to 1 W forward power.

6.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D835V2 SN:4d002

Date: June 13, 2006

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Ninous Davoudi

Head Simulating Liquid			SAR	(m W/a)	Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (III W/g)		to 1 W	rarget	(%)	(%)
835	22	15	1 g	2.32	9.28	9.5	-2.32	± 10
000	22	22 15		1.52	6.08	6.2	-1.94	± 10

Date: June 15, 2006

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Ninous Davoudi

Head Simulating Liquid			SAR(mW/a)		Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mvv/g)		to 1 W	Target	(%)	(%)
835	22	15	1 g	2.31	9.24	9.5	-2.74	± 10
000	22	15	10g	1.52	6.08	6.2	-1.94	± 10

Date: July 10, 2006

Room Ambient Temperature = 23°C; Relative humidity = 50%

Head Simulating Liquid			SVD	(m M/a)	Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAK	(111 vv /g)	to 1 W	Target	(%)	(%)
925	22	15	1 g	2.28	9.12	9.5	-4.00	± 10
000	22	15	10g	1.50	6	6.2	-3.23	± 10

System Validation Dipole: D1900V2 SN:5d043

Date: June 14, 2006

Room Ambient Temperature = 23°C; Relative humidity = 45%

Measured by: Ninous Davoudi

Head Simulating Liquid		SAR(mW/a)		Normalize	Target	Deviation	L im it	
f(MHz)	Temp.(°C)	Depth (cm)	SAN	(11 00 /g)	to 1 W	Target	(%)	(%)
1000 22	15	1 g	9.52	38.08	39.7	-4.08	± 10	
1300	22	15	10g	4.95	19.8	20.5	-3.41	± 10

Date: June 15, 2006

Room Ambient Temperature = 23°C; Relative humidity = 45%

Measured by: Ninous Davoudi

Hea	d Simulating	g Liquid	SAR (m)		Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	SAN	(111 VV / g)	to 1 W	Target	(%)	(%)
1000	2.2	15	1 g	9.55	38.2	39.7	-3.78	± 10
1900	22	15	10g	4.97	19.88	20.5	-3.02	± 10

Date: July 10, 2006

Room Ambient Temperature = 23°C; Relative humidity = 50%

Hea	d Simulating	g Liquid	SAR(m)/(a)		Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	5AN	(11 00 /g)	to 1 W	Target	(%)	(%)
1000 22 15		15	1 g	9.36	37.44	39.7	-5.69	± 10
1900	22	15	10g	4.87	19.48	20.5	-4.98	± 10

System Validation Dipole: D2450V2 SN: 706

Date: June 16, 2006

Room Ambient Temperature = 23°C; Relative humidity = 50%

Head Simulating Liquid		SAR(m)W(a)		Normalize	Target	Deviation	Lim it	
f(MHz)	Temp.(°C)	Depth (cm)	JAN	(111 VV / g)	to 1 W	Target	(%)	(%)
2450	2.2	15	1 g	12.70	50.8	52.4	-3.05	± 10
2430	22	15	10g	5.82	23.28	24.0	-3.00	± 10

7 SAR MEASURMENT PROCEDURE

A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

For 5 GHz band - The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.0 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 10 mm x 10 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

c) Around this point, a volume of X=Y= 30 and Z=21 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

For 5 GHz band - Around this point, a volume of X=Y=Z=30 mm is assessed by measuring 8 x 8 x 8 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

- (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
- (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
- (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
- (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

7.1 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

For 5 GHz band – Same as above except the Zoom Scan measures 8 x 8 x 8 points.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

7.2 DASY4 MULTIBAND SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Volume Scan Job

Volume Scans are used to assess peak SAR and averaged SAR measurement in largely extended 3deimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location. The steps in horizontal and vertical directions are 15mm.

Step 3: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

Step 5: Multiband Data Extractions

After SAR measurements in each liquid, SEMCAD tool is used to evaluate the combined SAR from different bands.

8 PROCEDURE USED TO ESTABLISH TEST SIGNAL

The following procedures had been used to prepare the EUT for the SAR test. The following setting is used to prepare the EUT in GSM850/1900MHz bands for the SAR test. Agilent 8960 series 10 E5515C, Wireless Communication Test Set is used to control the EUT and measure the output power.

The following setting was used to establish the signal.

System Config:	GSM/GPRS Lap App D	
	E6701D	D.03.32
Call Parms:	BCH 🗲	Cell Band: GSM850/PCS
	ТСН 🗲	Traffic Band: GSM850/PCS
		Traffic Channel: 128/190/251 or 512/661/810
	PDTCH 🗲	Traffic Band: GSM850/PCS
		Traffic Channel: 128/190/251 512/661/810
		Coding Scheme: CS-4
		MultiSlot Config: 2up, 3 down (for GPRS/EGPRS)
Control:	Active Cell ->	GSM/GPRS/EGPRS

GSM850, GSM

Channel	Frequency	Power
	(MHz)	(dBm)
128	824.2	32.61
190	836.6	32.52
251	848.8	32.41

GSM850, GPRS

Channel	Frequency	Power		
	(MHz)	(dBm)		
128	824.2	32.51		
190	836.6	32.40		
251	848.8	32.37		

GSM850, EGPRS

Channel	Frequency	Power
	(MHz)	(dBm)
128	824.2	26.64
190	836.6	26.92
251	848.8	27.17

GSM1900, GSM

Channel	Frequency (MHz)	Power (dBm)
512	1850.2	29.54
661	1880.0	29.51
810	1909.8	29.72

GSM1900, GPRS

Channel	Frequency	Power
	(MHz)	(dBm)
512	1850.2	29.20
661	1880.0	29.23
810	1909.8	29.40

GSM1900, EGPRS

Channel	Frequency (MHz)	Power (dBm)
512	1850.2	26.26
661	1880.0	25.86
810	1909.8	25.53

The client provided a special driver and program, WLANUtility, which enable a user to control the frequency and output power of the module.

The cable assembly insertion loss of 21.55dB (including 20.55 dB attenuator and 1dB cable connectors) was entered as an offset in the power meter to allow for direct reading of power.

802.11b mode

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	13.50
Middle	2437	12.55
High	2462	11.30

802.11g mode

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	12.25
Middle	2437	11.29
High	2462	11.15

The client provided a special driver and program, BTTest, which enable a user to control the frequency and output power of the module.

The cable assembly insertion loss of 21.55dB (including 20.55 dB attenuator and 1dB cable connectors) was entered as an offset in the power meter to allow for direct reading of power.

Bluetooth conducted power

Channel	Frequency	Power		
	(MHz)	(dBm)		
Low	2402	2.70		
Middle	2441	2.00		
High	2480	1.50		

9 SAR MEASURMENT RESULTS

9.1 GSM850-WITHOUT JOG BAR

9.1.1 LEFT HAND SIDE

	Photos are co file	nfidential, plea	se see a sep	erate Photos a file	ire confidential,	please see a seperate					
		Touch Position	on		Tilt (15°) Position						
	GSM850-GSM	mode	-]				
	Test Position	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)					
		128	824.2	0.805	-0.017	0.808	1				
	Touch	190	836.6	0.842	0.000	0.842					
		251	848.8	0.661	0.000	0.661					
	Tilt (15°)	128 190 251	824.2 836.6 848.8	0.649	-0.041	0.655					
Note	Imit (13) 190 0.000 0.049 -0.041 0.000 otes: 1) The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. 2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.										

9.1.2 RIGHT HAND SIDE

	Photos are co file	nfidential, plea	se see a sep	perate	Photos ar file	e confidential,	please see a seperate			
		Touch Position	on			Tilt (15°) F	Position			
	GSM850-GSM	mode		-						
				Measu	ured SAR	Power Drift	Extrapolated ¹⁾ SAR			
	Test Position	Channel	f (MHz)	1g ((mW/g)	(dB)	1g (mW/g)			
		128	824.2	0	.894	0.000	0.894			
	Touch	190	836.6	0	.952	0.000	0.952			
		251	848.8	0	.719	0.000	0.719			
		128	824.2							
	Tilt (15°)	190	836.6	0	.592	0.000	0.592			
		251	848.8							
Not	251 848.8 Iotes: 1) 1) The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. 2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g) than									

9.1.3 BODY POSITION WITH HOLSTER WITH BELT CLIP

	Photos are co file	nfidential, plea	se see a sep	perate	Photos ar file	e confidential,	please see a seperate
		Face up				Face d	own
	GSW050-GPR	Smode					
	T (D)()			Meas	ured SAR	Power Drift	Extrapolated '' SAR
	Test Position	Channel	f (MHZ)	1g	(mvv/g)	(dB)	1g (mVV/g)
	EUT	128	824.2).914	-0.202	0.958
	Face up	190	836.6).8/1	-0.207	0.914
		251	848.8	().606	0.000	0.606
	GSM850-GPR	S mode					1)
				Meas	ured SAR	Power Drift	Extrapolated '' SAR
	Test Position	Channel	f (MHZ)	1g	(mvv/g)	(dB)	1g (mVV/g)
	EUT	128	824.2		1.470	0.000	1.4/0
	Face down	190	836.6		1.300	-0.077	1.323
		251	848.8	().885	0.000	0.885
	GSM850-EGP	RS mode					1)
				Meas	ured SAR	Power Drift	Extrapolated '' SAR
	Test Position	Channel	f (MHz)	1g	(mW/g)	(dB)	1g (mW/g)
	EUT	128	824.2				
	Face down	190	836.6	().414	-0.046	0.418
		251	848.8				
Not	es: 1) The exact m	ethod of extrapola	tion is Measure	d SAR x	10^(-drift/10).	The SAR reported	d at the end of the measurement

process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 2) mW/g), thus testing at low & high channel is optional.

9.2 GSM1900-WITHOUT JOG BAR

9.2.1 LEFT HAND SIDE

	Photos are co file	nfidential, plea	se see a sep	perate Photos an file	re confidential,	please see a seperate				
		Touch Position	on		Tilt (15°) Position					
	GSM1900-GSI	M mode]			
				Measured SAR	Power Drift	Extrapolated ¹⁾ SAR				
	Test Position	Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)				
		512	1850.2	0.634	0.000	0.634				
	Touch	661	1880.0	0.891	0.000	0.891				
		810	1909.8	1.070	0.000	1.070				
		512	1850.2	0.758	-0.051	0.767				
	Tilt (15°)	661	1880.0	1.070	-0.044	1.081				
		810	1909.8	1.340	0.000	1.340				
Not	810 1909.8 1.340 0.000 1.340 Iotes: 1) The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. 2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.									

9.2.2 RIGHT HAND SIDE

	Photos are confidential, please see a seperate file			Photos ar file	e confidential,	please see a seperate		
		Touch Position	on			Tilt (15°) F	Position	
	GSM1900-GS	M mode	-	-]
	Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	Touch	512 661 810	1850.2 1880.0 1909.8	C).740	0.000	0.740	
	Tilt (15°)	512 661 810	1850.2 1880.0 1909.8	((1).643).925 I.160	-0.066 -0.056 -0.112	0.653 0.937 1.190	
Not	es: 1) The exact m process by t measuremen 2) The SAR me mW(a), thus	ethod of extrapola he DASY4 system nt process. easured at the mid testing at low & hi	tion is Measure can be scaled u dle channel for f gh channel is o	d SAR x up by the this confi otional	10^(-drift/10). Power drift to guration is at	The SAR reported determine the SA least 3 dB lower (0	d at the end of the measurem R at the beginning of the .8 mW/g) than SAR limit (1.6	ient

9.2.3 BODY POSITION WITH HOLSTER HTC-296

	file				Photos ar file	e confidential,	please see a seperate
		Face up				Face d	own
	GSM1900-GPI	ts mode					1)
	Test Position	Channel	f (MHz)	Meas	ured SAR (mW/a)	Power Drift (dB)	Extrapolated ¹ SAR
	EUT Face up	512 661 810	1850.2 1880.0 1909.8	().291	-0.020	0.292
	GSM1900-GPI	RS mode					
	Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
	EUT Face down	512 661 810	1850.2 1880.0 1909.8	()).732).821 1.030	-0.138 -0.128 0.000	0.756 0.846 1.030
	GSM1900-EG	PRS mode					
	Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
	EUT Face down	512 661 810	1850.2 1880.0 1909.8	().368	-0.096	0.376
Not	es: 1) The exact m	ethod of extrapola	tion is Measure	d SAR x	10^(-drift/10).	The SAR reported	d at the end of the measuremer

 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

9.3 GSM850MHZ-WITH JOG BAR

Spot check tests are performed on the EUT with Jog Bar based on the worst cases from the EUT model without Jog Bar.

9.3.1 RIGHT HAND SIDE

	Photos are co file	nfidential, plea	se see a sep	perate	Photos are confidential, please see a seperate file						
		Touch Position	on		Tilt (15°) Position						
	GSM850]			
	Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)				
	Touch	128 190 251	824.2 836.6 848.8	().938	0.000	0.938				
	Tilt (15°)	128 190 251	824.2 836.6 848.8								
Note	Intervention 251 848.8 Iotes: 1) The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. 2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.										

9.3.2 BODY POSITION WITH HOLSTER

	Photos are confidential, please see a seperate file				file			
	Body position-Face up					Body position-	Face down	
	GSM850							
	Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	GPRS Face up	128 190 251	824.2 836.6 848.8					
	GSM850							
	Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	GPRS Face down	128 190 251	824.2 836.6 848.8		1.450	-0.101	1.484	
	GSM850							
	Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	EGPRS128824.2Face down190836.6251848.8							
Not	es: 1) The exact m process by th measuremer	ethod of extrapola he DASY4 system ht process.	tion is Measure can be scaled u	d SAR x up by the	10^(-drift/10). Power drift to	The SAR reported o determine the SA	d at the end of the measurement R at the beginning of the	ənt

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

9.4 GSM1900MHZ-WITH JOG BAR

Spot check tests are performed on the EUT with Jog Bar based on the worst cases from the EUT model without Jog Bar.

9.4.1 LEFT HAND SIDE

	Photos are co file	nfidential, plea	se see a sep	perate	Photos ar file	re confidential,	please see a seperate		
	GSM1900	Touch Positio	on			Tilt (15°) F	Position		
	Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)		
	Touch	512 661 810	1850.2 1880.0 1909.8						
	Tilt (15°)	512 661 810	1850.2 1880.0 1909.8	1	.320	0.000	1.320		
Not	810 1909.8 1.320 0.000 1.320 ites: 1) The exact method of extrapolation is Measured SAR x 10 ^A (-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. 2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional. 3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 4) The battery was fully charged in accordance with measurement data with measurement at the SAR measurement.								

9.4.2 BODY position WITH Holster HTC-296

Photos are confidential, please see a seperate file				Photos ar file	re confidential,	please see a seperate
Body position-Face up					Body position-	Face down
GSM1900						
Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
GPRS Face up	512 661 810	1850.2 1880.0 1909.8			`,	
GSM1900						
Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
GPRS Face down	512 661 810	1850.2 1880.0 1909.8		1.040	0.000	1.040
GSM1900						
Test Position	Channel	f (MHz)	Meas 1g	ured SAR (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
EGPRS Face down	512 661 810	1850.2 1880.0 1909.8				
otes: 1) The exact m process by ti measurement	ethod of extrapola he DASY4 system ht process.	tion is Measured can be scaled u	d SAR x up by the	10^(-drift/10). Power drift to	The SAR reported o determine the SA	d at the end of the measureme R at the beginning of the

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

9.5 WLAN

9.5.1 BODY POSITION WITH Holster HTC-296

	Photos are confidential, please see a seperate file				PI file	hotos are confic e	lential, please see a sep	perate
		Fa	ace up		Face down			
	802.11b (1Mbps)-EUT Face Up							
		.	<i></i>	Measured SA	١R	Power Drift	Extrapolated ¹⁾ SAR	
		Channel	t (MHz)	1g (mVV/g)		(dB)	1g (mVV/g)	
		1	2412	0.065		-0.074	0.066	
		0 11	2437	0.048		-0.153	0.050	
		802 11a (6 Mb	2402 ns)-FUT Fai	0.020		0.000	0.020	
		002.11g (0 Mb	<i>ps)-L</i> 0774	Maggurad SA		Dowor Drift	Extrapolated ¹⁾ SAD	
		Channel	f (MH7)	1 (m) M/a	١R		fa (m) M/a	
		1	2412	ig (iiiv/g)			ig (iiiw/g)	
		6	2437	0.019		-0 109	0.020	
		11	2462	0.010		-0.100	0.020	
		802.11b (1Mb	ps)-EUT Fac	e Dwon				
				Measured SA	١R	Power Drift	Extrapolated ¹⁾ SAR	
		Channel	f (MHz)	1g (mW/g)		(dB)	1g (mW/a)	
		1	2412			(/		
		6	2437	0.024		-0.148	0.025	
		11	2462					
Note	es:							
	1) The exact method of extrapolation is Measured SAR x 10 ⁽⁻ drift/10). The SAR reported at the end of the measurement							

 The exact method of extrapolation is Measured SAR x 10⁽⁻drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

9.6 BLUETOOTH

9.6.1 BODY POSITION WITH HOLSTER

	Photos are confidential, please see a seperate file					notos are confic	lential, please see a se∣	oerate
		Face down				Worst Case (For Reference Only)		
		Bluetooth-Fa	ce Down					
		Channel	f (MHz)	Measured SA 1g (mW/g)	R	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
		0 39 78	2402 2441 2480	0.0001		0.000	0.0001	
		Bluetooth-Wo	orst case (Fo	or Reference C	Dnly	()		
		Channel f (MHz) 1g (mW/g		Measured SA 1g (mW/g)	R	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
		0 39 78	2402 2441 2480	0.0061		-0.025	0.0061	
Not	 Notes: 1) The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. 2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 							

mW/g), thus testing at low & high channel is optional.

9.7 MULTIBAND SAR EVALUATION RESULTS

9.7.1 WORST CASE CONFIUGURATIONS

The following SAR results are from the previous zoom scans in order to determine the worst case:

					Zoom Scan
Wireless Modules	Simulating liquid	Test Position	Ch	f (MHz)	SAR 1g (mW/g)
CSM950	Head	Right hand side-Touch	190	836.6	0.952
GSIVIOSU	Body	Body Position	128	824.2	1.47
CSM1000	Head	Left hand side-Tilt	810	1909.8	1.34
GSIVIT900	Body	Body Position	810	1909.8	1.03
WLAN	Body	Body Position	1	2412	0.066
Bluetooth	Body	Body Position	39	2441	0.0001

The following SAR values are evaluated in the same frequency & position in two different liquids using Dasy4 Multi-Band method in order to use SEMCAD tool to evaluate the combined SAR.

9.7.2 RIGHT HAND SIDE-TOUCH POSITION (WORST CASE CONFIGURATION)

9.7.3 LEFT HAND SIDE-TILT POSITION (WORST CASE CONFIGURATION)

		Photos are confidential, please see a seperate file								
			1 llt (15)	^o) Position						
		Wireless	Test		Volume scan					
		Module	Position	f (MHz)	1g SAR (mW/kg)					
		GSM1900 ²⁾	Left Hand side-Tilt	1909.8	1.230					
		WLAN ²⁾	Left Hand side-Tilt	2412	0.257					
		Combined 1g SAR Value: 1.260								
Notes:										
1)	The ex	The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measured								
	measu	rocess by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the peasurement process								
2)	SAR is	SAR is evaluated in the same frequency & position in two different liquids using Dasy4 Multi-Band method in order								
	use SI	ise SEMCAD tool to evaluate the combined SAR.								

The battery was fully charged in accordance with manufacture's instructions prior to SAR measurements.
 Bluetooth SAR evaluation is skipped on this position because the Bluetooth antenna is outside the phantom.

9.7.4 BODY POSITION WITH HOLSTER (WORST CASE CONFIGURATION)

	Photos are confidential, please see a seperate file									
			Body posit	ion-Face up						
		Wireless	Test		Volume scan					
		Module	Positions	f (MHz)	1g SAR (mW/kg)					
		GSM850 ²⁾	Body Position	824.2	1.460					
		WLAN ²⁾	Body Position	2412	0.070					
			Combined 1g	SAR Value:	1.490					
		Wireless	Test		Volume scan					
		Module	Positions	f (MHz)	1g SAR (mW/kg)					
		GSM1900 ²⁾	Body Position	1909.8	0.943					
		WLAN ²⁾	Body Position	2412	0.070					
			Combined 1g	SAR Value:	0.952					
Notes:										
1)	 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. 									
2)	SAR is evalu	ated in the same fre	quency & position in	two different liqu	uids using Dasy4 Multi-Ban	d method in order to				
3)	USE SEINICAD TOOL TO EVALUATE THE COMDINED SAR.									
4)	 4) The combined SAR does not include the value of the Bluetooth since the SAR is below the system noise floor. 									

10 MEASURMENT UNCERTAINTY

10.1 MEASURMENT UNCERTAINTY FOR 300 MHz - 3000 MHz

Tol (+%)	Probe	Div.	$Ci(4\pi)$	C: (10m)	Std. Unc.(±%)			
TOI. (±%)	Dist.		CI (Ig)	CI (flug)	Ui (1g)	Ui(10g)		
4.80	Ν	1	1	1	4.80	4.80		
4.70	R	1.732	0.707	0.707	1.92	1.92		
9.60	R	1.732	0.707	0.707	3.92	3.92		
1.00	R	1.732	1	1	0.58	0.58		
4.70	R	1.732	1	1	2.71	2.71		
1.00	R	1.732	1	1	0.58	0.58		
1.00	Ν	1	1	1	1.00	1.00		
0.80	R	1.732	1	1	0.46	0.46		
2.60	R	1.732	1	1	1.50	1.50		
1.59	R	1.732	1	1	0.92	0.92		
0.00	R	1.732	1	1	0.00	0.00		
0.40	R	1.732	1	1	0.23	0.23		
2.90	R	1.732	1	1	1.67	1.67		
3.90	R	1.732	1	1	2.25	2.25		
1.10	Ν	1	1	1	1.10	1.10		
3.60	Ν	1	1	1	3.60	3.60		
5.00	R	1.732	1	1	2.89	2.89		
4.00	R	1.732	1	1	2.31	2.31		
5.00	R	1.732	0.64	0.43	1.85	1.24		
8.60	Ν	1	0.64	0.43	5.50	3.70		
5.00	R	1.732	0.6	0.49	1.73	1.41		
3.30	Ν	1	0.6	0.49	1.98	1.62		
		RSS			11.44	10.49		
		K=2			22.87	20.98		
1. Tol tolerance in influence quaitity								
2. N - Nomal								
3. R - Rectangular								
	Tol. (±%) 4.80 4.70 9.60 1.00 4.70 1.00 0.80 2.60 1.59 0.00 0.40 2.90 3.90 1.10 3.60 5.00 4.00 5.00 8.60 5.00 3.30	Probe Dist. 1 4.80 4.70 8<60	Probe Dist. Div. Image: Probe Dist. Div. 4.80 N 1 4.70 R 1.732 9.60 R 1.732 9.60 R 1.732 1.00 R 1.732 0.00 R 1.732 0.40 R 1.732 0.40 R 1.732 0.40 R 1.732 3.90 R 1.732 3.90 R 1.732 3.90 R 1.732 4.00 R 1.732 4.00 R 1.732 5.00 R 1.732 3.30 N 1 </td <td>Tol. (±%)Probe Dist.Div.Ci (1g)III4.80N114.70R1.7320.7079.60R1.7320.7079.60R1.73214.70R1.73214.70R1.73211.00R1.73211.00R1.73211.00R1.73211.00R1.73210.80R1.73212.60R1.73211.59R1.73210.00R1.73210.00R1.73210.40R1.73211.59R1.73213.90R1.73213.90R1.73211.10N113.60N113.60R1.73214.00R1.73215.00R1.7320.648.60N10.645.00R1.7320.648.60N10.645.00R1.7321</td> <td>Tol. (±%)Probe Dist.Div.Ci (19)Ci (109)111114.80N1114.70R1.7320.7070.7079.60R1.7320.7070.7071.00R1.732114.70R1.732111.00R1.732111.00R1.732111.00R1.732111.00R1.732111.00R1.732111.00R1.732112.60R1.732111.59R1.732110.00R1.732111.59R1.732111.59R1.732111.00R1.732111.00R1.732111.00R1.732111.00R1.732111.10N1113.90R1.732111.10N1113.90R1.732111.10N1113.60N10.640.435.00R1.7320.640.493.30N10.60.493.30N<!--</td--><td>Probe Div. Ci (1g) Ci (10g) Std. Ur 4.80 N 1 1 4.80 4.70 R 1.732 0.707 0.707 1.92 9.60 R 1.732 0.707 0.707 3.92 1.00 R 1.732 0.707 0.707 3.92 1.00 R 1.732 1 1 0.58 4.70 R 1.732 1 1 0.58 1.00 R 1.732 1 1 0.58 1.00 R 1.732 1 1 0.58 1.00 R 1.732 1 1 0.05 1.00 R 1.732 1 1 0.92 0.00 R 1.732 1 1 0.92 0.00 R 1.732 1 1 0.23 2.90 R 1.732 1 1 1.67 3.90</td></td>	Tol. (±%)Probe Dist.Div.Ci (1g)III4.80N114.70R1.7320.7079.60R1.7320.7079.60R1.73214.70R1.73214.70R1.73211.00R1.73211.00R1.73211.00R1.73211.00R1.73210.80R1.73212.60R1.73211.59R1.73210.00R1.73210.00R1.73210.40R1.73211.59R1.73213.90R1.73213.90R1.73211.10N113.60N113.60R1.73214.00R1.73215.00R1.7320.648.60N10.645.00R1.7320.648.60N10.645.00R1.7321	Tol. (±%)Probe Dist.Div.Ci (19)Ci (109)111114.80N1114.70R1.7320.7070.7079.60R1.7320.7070.7071.00R1.732114.70R1.732111.00R1.732111.00R1.732111.00R1.732111.00R1.732111.00R1.732111.00R1.732112.60R1.732111.59R1.732110.00R1.732111.59R1.732111.59R1.732111.00R1.732111.00R1.732111.00R1.732111.00R1.732111.10N1113.90R1.732111.10N1113.90R1.732111.10N1113.60N10.640.435.00R1.7320.640.493.30N10.60.493.30N </td <td>Probe Div. Ci (1g) Ci (10g) Std. Ur 4.80 N 1 1 4.80 4.70 R 1.732 0.707 0.707 1.92 9.60 R 1.732 0.707 0.707 3.92 1.00 R 1.732 0.707 0.707 3.92 1.00 R 1.732 1 1 0.58 4.70 R 1.732 1 1 0.58 1.00 R 1.732 1 1 0.58 1.00 R 1.732 1 1 0.58 1.00 R 1.732 1 1 0.05 1.00 R 1.732 1 1 0.92 0.00 R 1.732 1 1 0.92 0.00 R 1.732 1 1 0.23 2.90 R 1.732 1 1 1.67 3.90</td>	Probe Div. Ci (1g) Ci (10g) Std. Ur 4.80 N 1 1 4.80 4.70 R 1.732 0.707 0.707 1.92 9.60 R 1.732 0.707 0.707 3.92 1.00 R 1.732 0.707 0.707 3.92 1.00 R 1.732 1 1 0.58 4.70 R 1.732 1 1 0.58 1.00 R 1.732 1 1 0.58 1.00 R 1.732 1 1 0.58 1.00 R 1.732 1 1 0.05 1.00 R 1.732 1 1 0.92 0.00 R 1.732 1 1 0.92 0.00 R 1.732 1 1 0.23 2.90 R 1.732 1 1 1.67 3.90		

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

11 EQUIPMENT LIST AND CALIBRATION

Name of Equipment	Manufacturer	Type/Model	Serial Number	Cal. Due date
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535	N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041	N/A
Probe Alignment Unit	SPEAG	LB (V2)	261	N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	US39173569	2/9/07
Electronic Probe kit	Hewlett Packard	85070C	N/A	N/A
E-Field Probe	SPEAG	EX3DV4	3552	5/30/07
Thermometer	ERTCO	639-1S	1718	1/11/07
SAM Phantom (SAM1)	SPEAG	TP-1185	QD000P40CA	N/A
SAM Phantom (SAM2)	SPEAG	TP-1015	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	558	1/20/07
System Validation Dipole	SPEAG	D835V2	4d002	1/23/08
System Validation Dipole	SPEAG	D1900V2	5d043	1/29/08
System Validation Dipole	SPEAG	D2450V2	706	4/27/08
Signal Generator	R&S	SMP 04	DE34210	6/8/06
Power Meter	Giga-tronics	8651A	8651404	12/27/06
Power Sensor	Giga-tronics	80701A	1834588	12/27/07
Amplifier	Mini-Circuits	ZVE-8G	0360	N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A
Radio Communication Tester	Rohde & Schwarz	CMU 200	838114/032	3/21/07
Simulating Liquid	CCS	H835	N/A	Within 24 hrs of first test
Simulating Liquid	CCS	H1900	N/A	Within 24 hrs of first test
Simulating Liquid	CCS	H2450	N/A	Within 24 hrs of first test
Simulating Liquid	CCS	M835	N/A	Within 24 hrs of first test
Simulating Liquid	CCS	M1900	N/A	Within 24 hrs of first test
Simulating Liquid	CCS	M2450	N/A	Within 24 hrs of first test

12 PHOTOS

Smart Phone-without Jog Bar

Smart Phone-with Jog Bar

Holster

Face down

Photos are confidential, please see a seperate file

Face up

Battery and Wireless Modules' Location

13 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	14
2-1	SAR Test Plots-GSM850	19
2-2	SAR Test Plots-GSM1900	19
2-3	SAR Test Plots-WLAN and Bluetooth	9
2-4	SAR Test Plots-Multi-Band	8
3	Certificate of E-Field Probe - EXDV4SN3552	10
4	Certificate of System Validation Dipole - D835V2 SN:4d002	9
5	Certificate of System Validation Dipole - D1900V2 SN:5d043	9
6	Certificate of System Validation Dipole - D2450 SN:706	9

End of Report