

FCC CFR47 PART 22H & 24E CERTIFICATION TEST REPORT

FOR

SMARTPHONE

MODEL NUMBER: EXCA100

FCC ID: NM8EXCA

REPORT NUMBER: 06I10345-1, REVISION B

ISSUE DATE: JULY 19, 2006

Prepared for

HIGH TECH COMPUTER CORP. 23 HSIN HUA ROAD TAOYUAN 330, TAIWAN R.O.C

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	6/22/06	Initial Issue	Thu C.
В	7/19/06	Update section 6.1 to add explanation on two EUT models	Thu C.

TABLE OF CONTENTS

1. A	ITESTATION OF TEST RESULTS	4
2. TI	EST METHODOLOGY	5
3. Cl	ROSS REFERENCE TO OTHER REPORTS ON THIS PRODUCT	5
4. FA	ACILITIES AND ACCREDITATION	5
5. C	ALIBRATION AND UNCERTAINTY	5
5.1.	MEASURING INSTRUMENT CALIBRATION	5
5.2.	MEASUREMENT UNCERTAINTY	5
6. E0	QUIPMENT UNDER TEST	6
6.1.	DESCRIPTION OF EUT	6
6.2.	MAXIMUM OUTPUT POWER	6
6.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
6.4.	SOFTWARE AND FIRMWARE	7
6.5.	WORST-CASE CONFIGURATION AND MODE	7
6.6.	DESCRIPTION OF TEST SETUP	8
7. TI	EST AND MEASUREMENT EQUIPMENT	10
8. LI	IMITS AND RESULTS	11
8.1.	OCCUPIED BANDWIDTH	11
8.2.	RF POWER OUTPUT	25
<i>8.3</i> .	FREQUENCY STABILITY	47
8.4.	SPURIOUS EMISSION AT ANTENNA TERMINAL	49
8.5.	FIELD STRENGTH OF SPURIOUS RADIATION	83
o SI	THE PHOTOS	90

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: HIGH TECH COMPUTER, CORP.

23, HSIN HUA ROAD

TAOYUAN 330, TAIWAN R.O.C.

EUT DESCRIPTION: SMARTPHONE

MODEL TESTED: EXCA100 (without Jog Bar)

SERIAL NUMBER: 01753

DATE TESTED: JUNE 07-10, 20065

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 22 H and 24 E NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVI

COMPLIANCE CERTIFICATION SERVICES

CHIN PANG
EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

Chin Pany

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA/EIA 603A (2001), ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15 and FCC CFR 47 Part 22 and Part 24.

3. CROSS REFERENCE TO OTHER REPORTS ON THIS PRODUCT

Other FCC report applicable to this product includes CCS 05U3452-2.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

6. EQUIPMENT UNDER TEST

6.1. DESCRIPTION OF EUT

The EUT is a SMARTPHONE with all auxiliary equipment as described below.

Auxiliary Equipment	Brand	Model No.
Li-Ion Rechargeable Battery	Celxpert	EXCA160
AC adaptor	Delta Electronic	ADP-5FH B
Earphone	NewTech	HTC-296

EUT has two models, one is with Jog Bar and the other without. The model EUT without Jog Bar was tested as a representative of the two model versions of EUT.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power, ERP, and EIRP as follows:

824 to 849 MHz Authorized Band

Frequency	Modulation	Conducted	Conducted	ERP	ERP
Range		Output Power	Output Power	Output Power	Output Power
(MHz)		(dBm)	(mW)	(dBm)	(mW)
824.2 - 848.8	GSM	32.80	1905.46	28.70	741.31
824.2 - 848.8	GPRS	32.71	1866.38	28.20	660.69
824.2 - 848.8	EGPRS	28.73	746.45	23.50	223.87

1850 - 1910 MHz Authorized Band

Frequ	iency	Modulation	Conducted	Conducted	EIRP	EIRP
Rar	ıge		Output Power	Output Power	Output Power	Output Power
(MI	Hz)		(dBm)	(mW)	(dBm)	(mW)
1850.2 -	1909.8	GSM	30.38	1091.44	31.60	1445.44
1850.2 -	1909.8	GPRS	30.09	1020.94	31.50	1412.54
1850.2 -	1909.8	EGPRS	29.67	926.83	29.50	891.25

DESCRIPTION OF AVAILABLE ANTENNAS 6.3.

The radio utilizes a monopole antenna with a maximum gain of -1.9dBi for GSM850 and 1.68dBi for GSM1900 bands.

SOFTWARE AND FIRMWARE 6.4.

The EUT is linked with CMU200 tester support equipment during testing.

6.5. **WORST-CASE CONFIGURATION AND MODE**

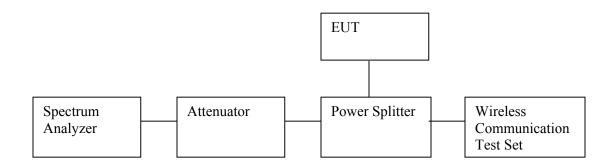
The worst-case channel is determined as the channel with the highest output power. The highest measured conducted output powers were 824.2 MHz @ GSM850 and 1809.8 MHz @ GSM1900 modulation.

Preliminary test was done on both EUT with headphone and EUT with AC/DC adaptor at three orthogonal positions, and EUT with AC/DC adaptor on X-position was determined as the worst-case mode.

6.6. DESCRIPTION OF TEST SETUP

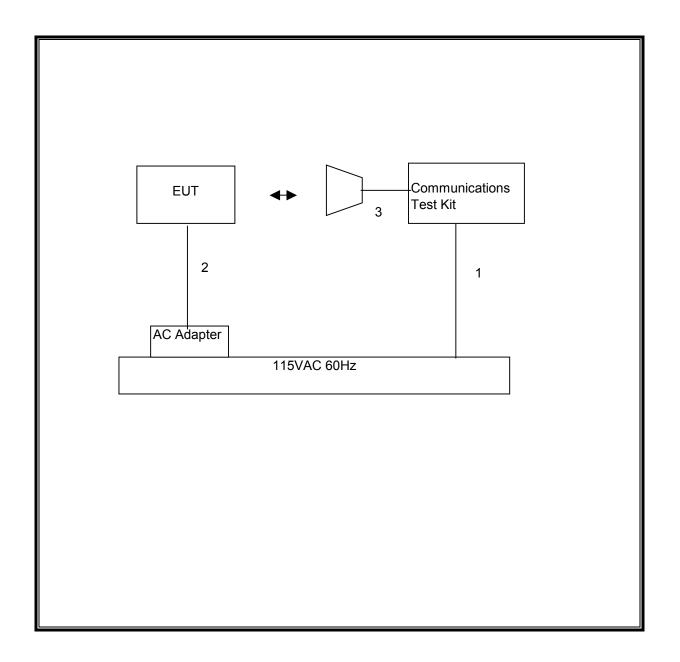
SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number FCC ID						
AC Adapter	Delta Electronic	ADO-5FH B	5RW0619325915	DoC		
Wireless Test Set	R & S	CMU200	1100.0008.02	3/21/07		


I/O CABLES

	I/O CABLE LIST					
Cable	Port	# of	Connector	Cable	Cable	Remarks
No.		Identical	Type	Type	Length	
		Ports				
1	DC	1	DC	Unshielded	2m	No
2	DC or Headphone	1	Din	Un-shielded	2m	NA

TEST SETUP


The EUT is installed as a stand-alone with AC/DC adapter or headphone device during the tests. The Wireless Communication test set exercised the EUT.

RF CONDUCTED TEST SETUP DIAGRAM

Page 8 of 97

RF RADIATED TEST SETUP DIAGRAM

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Signal Generator, 10 MHz ~ 20 GHz	НР	83732B	US34490599	7/7/05		
Communication Tester	R & S	CMU 200	838114/032	3/21/07		
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	9/3/06		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY45300064	12/19/06		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	9001-3245	4/22/07		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00369	8/17/06		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	4/22/07		
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	29800	6/10/06		
Tuned Dipole Antenna 400~1000 MHz	ETS	3121C DB4	1629	5/7/07		
2.7GHz HPF	MicroTronic	HPM13194	1	CNR		
1.5GHz HPF	MicroTronic	HPM13193	2	CNR		

8. LIMITS AND RESULTS

8.1. **OCCUPIED BANDWIDTH**

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to \sim 1% to 3% of the \sim 26 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal –26 dB bandwidth function is utilized.

RESULTS

No non-compliance noted:

GSM850 Modulation

Channel	Frequency (MHz)	Bandwidth (KHz)
Low	824.2	310.61
Middle	836.4	303.74
High	848.8	322.30

GPRS850 Modulation

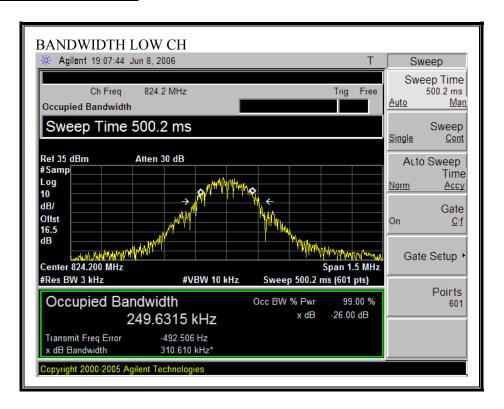
Channel	Frequency	Bandwidth
	(MHz)	(KHz)
Low	824.2	294.73
Middle	836.4	306.02
High	848.8	312.80

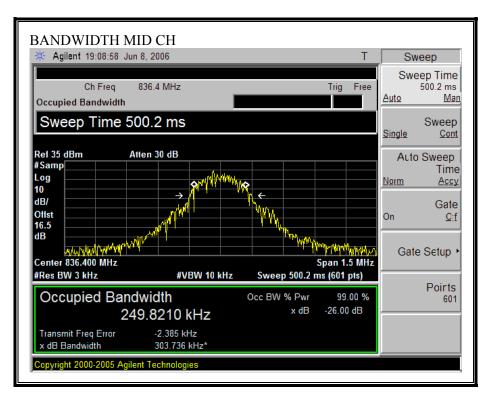
EGPRS850 Modulation

Channel	Frequency	Bandwidth
	(MHz)	(KHz)
Low	824.2	316.50
Middle	836.4	299.72
High	848.8	306.70

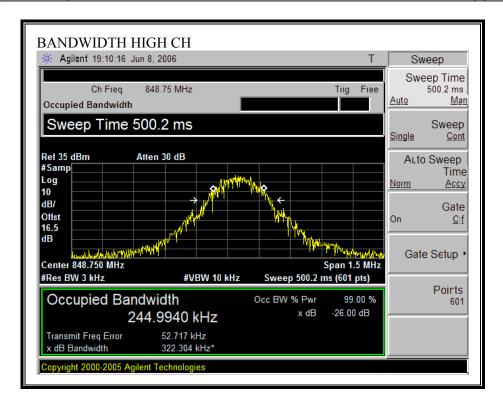
GSM1900 Modulation

Channel	Frequency (MHz)	Bandwidth (KHz)
Low	1850.2	313.51
Middle	1880.0	316.77
High	1909.8	304.00

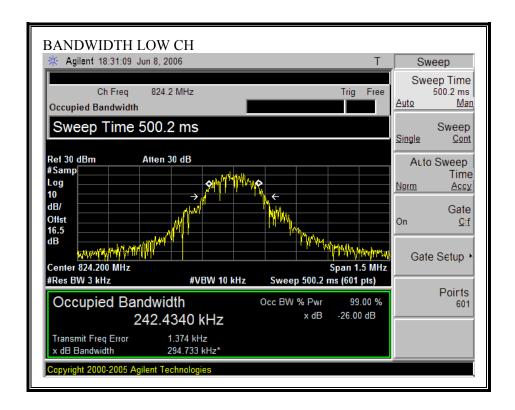

GPRS1900Modulation

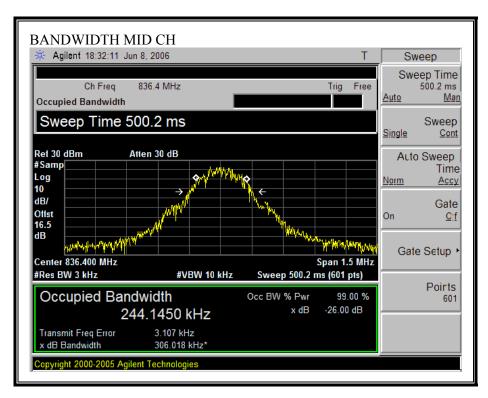

Channel	Frequency	Bandwidth
	(MHz)	(KHz)
Low	1850.2	300.11
Middle	1880.0	311.45
High	1909.8	305.31

EGPRS1900 Modulation

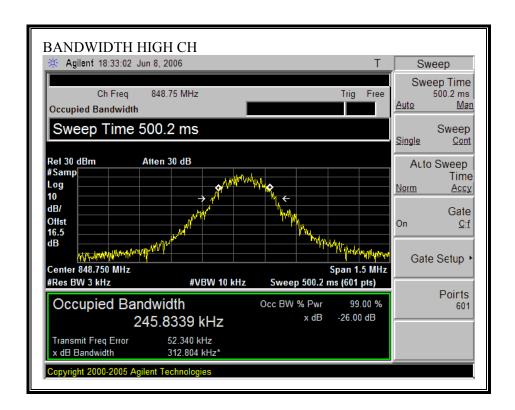

Channel	Frequency	Bandwidth
	(MHz)	(KHz)
Low	1850.2	290.98
Middle	1880.0	301.13
High	1909.8	295.09

GSM850 26 dB BANDWIDTH

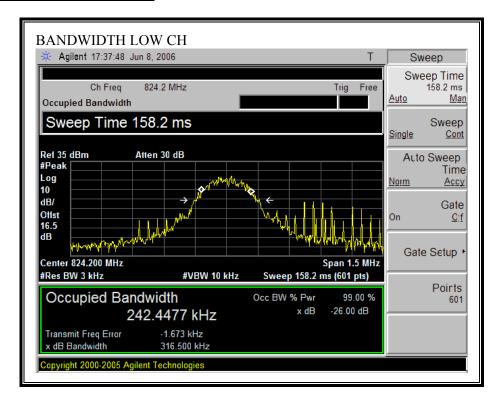


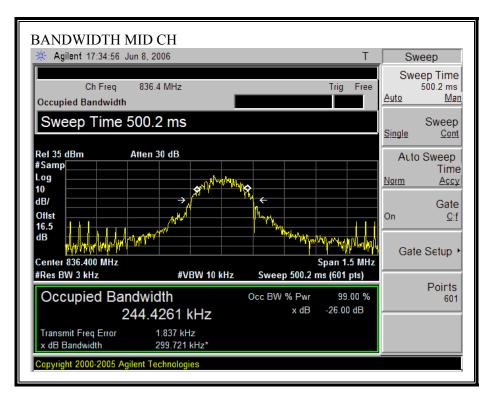


Page 13 of 97

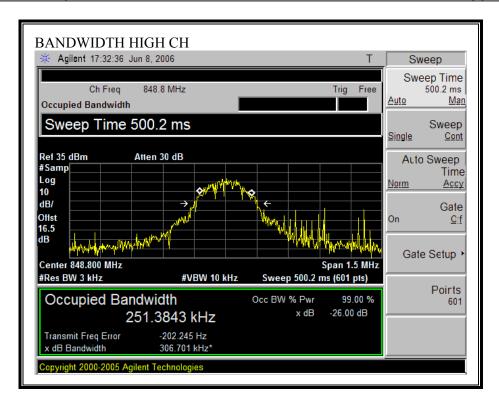


GPRS850 26 dB BANDWIDTH

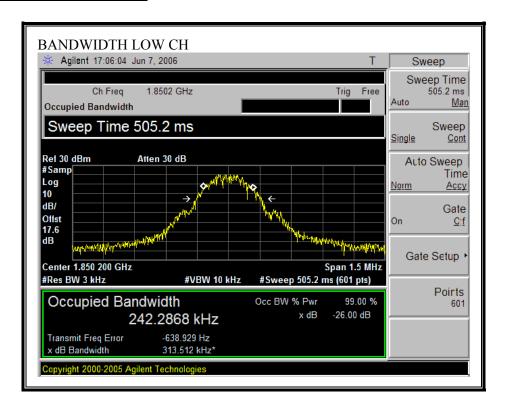


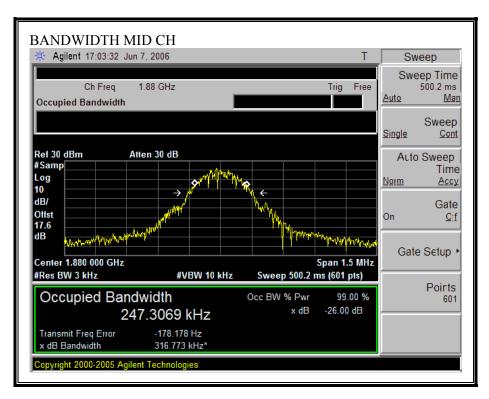


Page 15 of 97

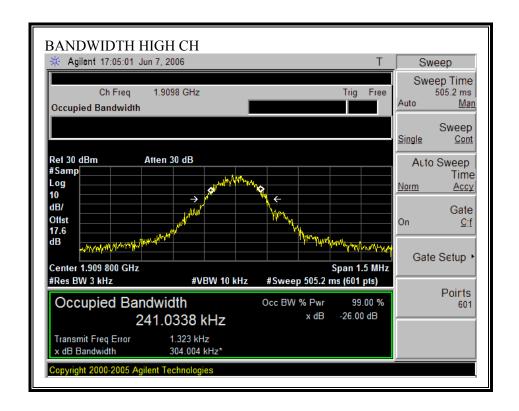


EGPRS850 26 dB BANDWIDTH

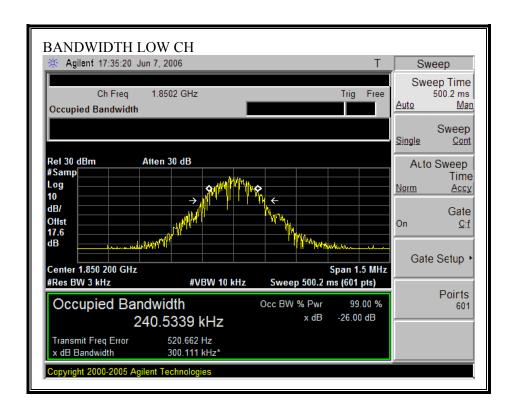


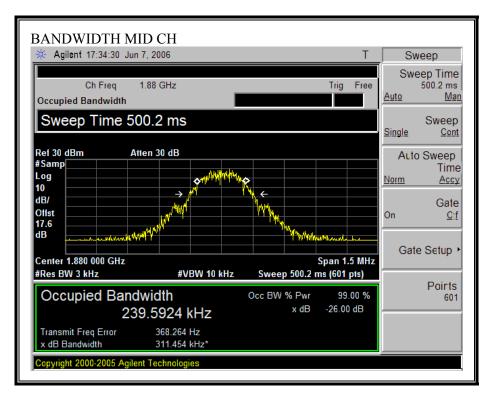


Page 17 of 97

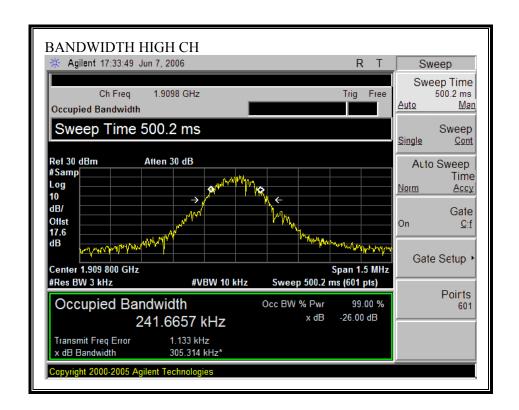


GSM1900 26 dB BANDWIDTH

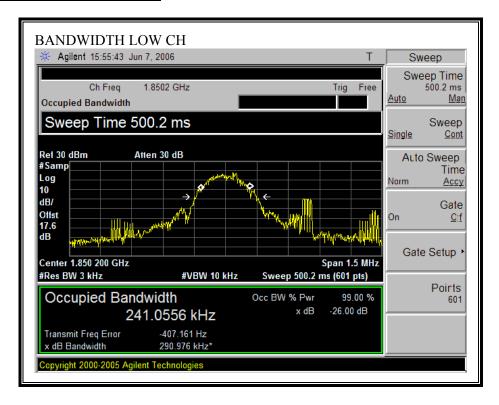


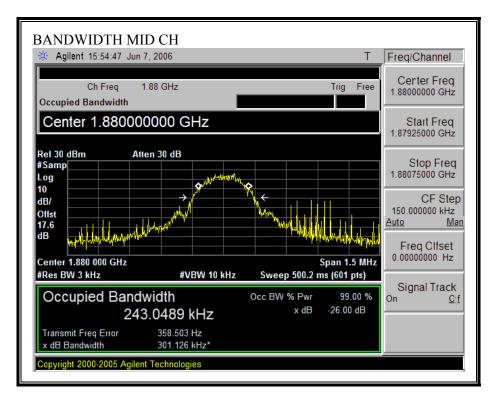


Page 19 of 97

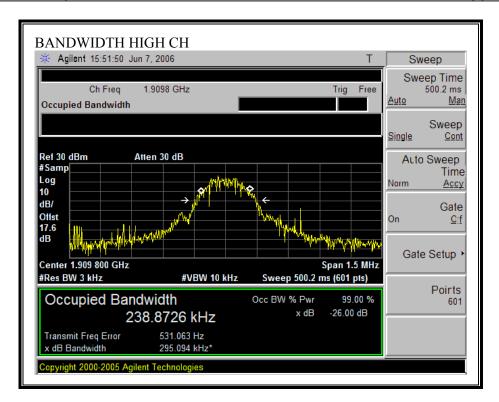


GPRS 1900 26 dB BANDWIDTH





Page 21 of 97



EGPRS1900 26 dB BANDWIDTH

Page 23 of 97

8.2. RF POWER OUTPUT

LIMIT

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(b) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

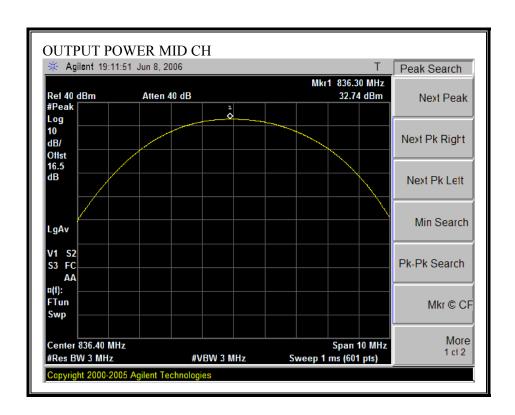
TEST PROCEDURE

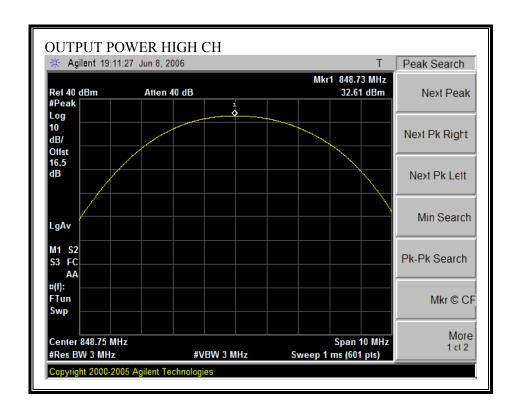
ANSI / TIA / EIA 603 Clause 2.2.17

RESULTS

No non-compliance noted.

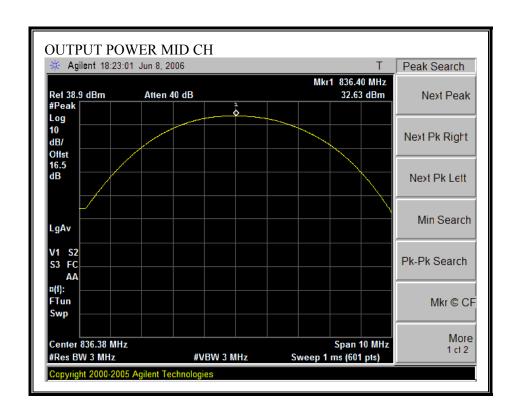

824 to 849 MHz Authorized Band

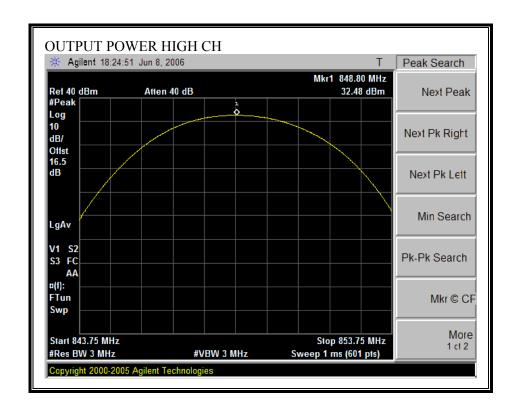

Frequency	Modulation	Conducted Peak	Radiated
		Output Power	ERP
(MHz)		(dBm)	(dBm)
824.2	GSM	32.80	28.20
836.4	GSM	32.74	28.70
848.8	GSM	32.61	27.00
824.2	GPRS	32.71	27.20
836.4	GPRS	32.63	28.20
848.8	GPRS	32.48	26.40
824.2	EGPRS	27.95	22.50
836.4	EGPRS	28.39	23.50
848.8	EGPRS	28.73	23.00

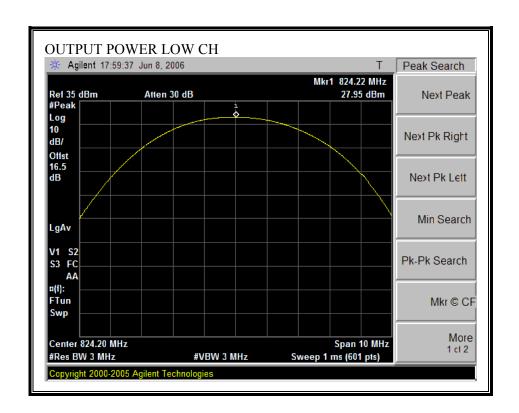

GSM1900, 1850 - 1910 MHz Authorized Band

Frequency	Modulation	Conducted Peak	Radiated
(MHz)		Output Power (dBm)	EIRP (dBm)
1850.2	GSM	30.20	30.70
1880	GSM	30.24	31.60
1909.8	GSM	30.38	31.50
1850.2	GPRS	29.97	30.50
1880	GPRS	29.98	31.20
1909.8	GPRS	30.09	31.50
1850.2	EGPRS	29.67	29.20
1880	EGPRS	29.31	29.50
1909.8	EGPRS	28.95	29.20

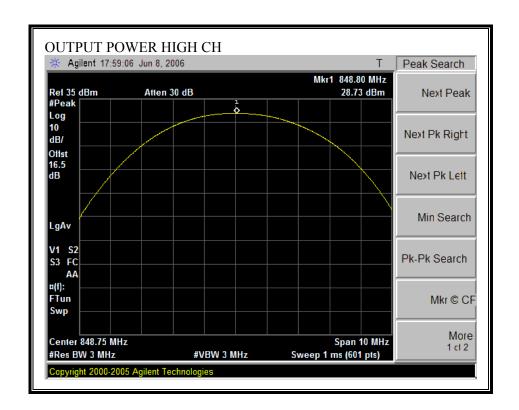
GSM850 (RF CONDUCTED OUTPUT POWER)

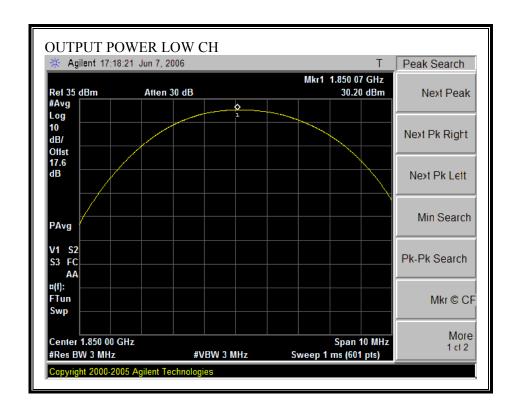


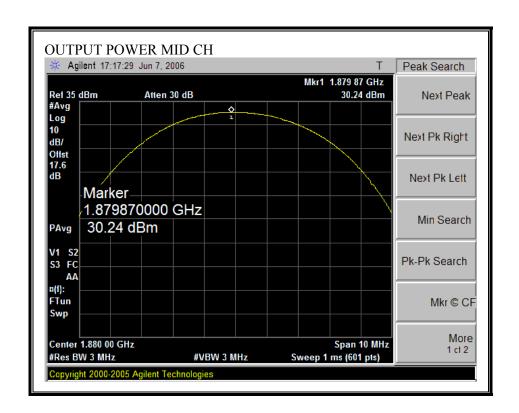


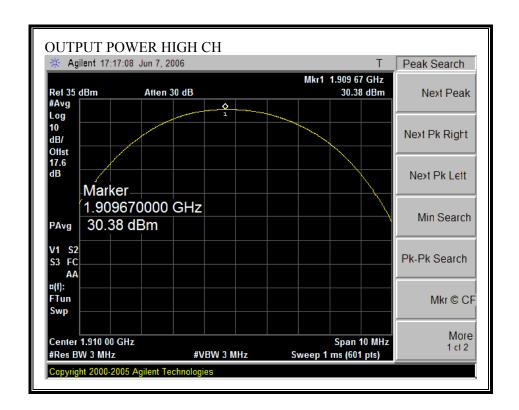

GPRS850 (RF CONDUCTED OUTPUT POWER)

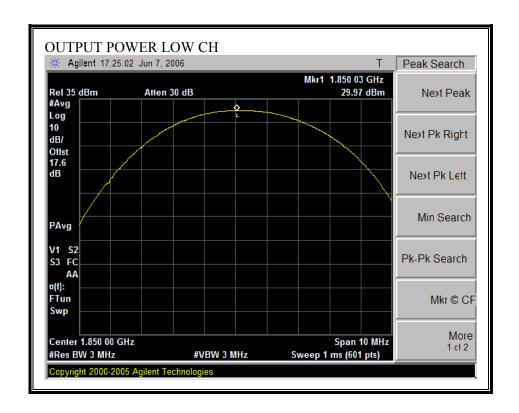


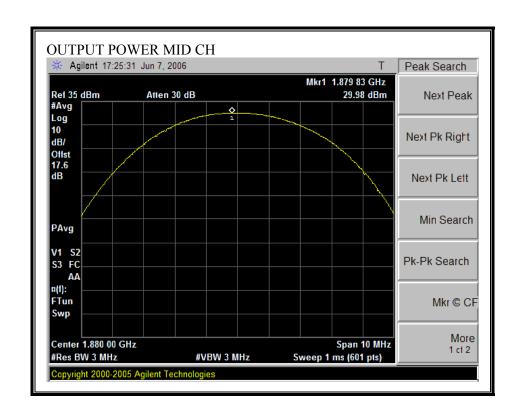


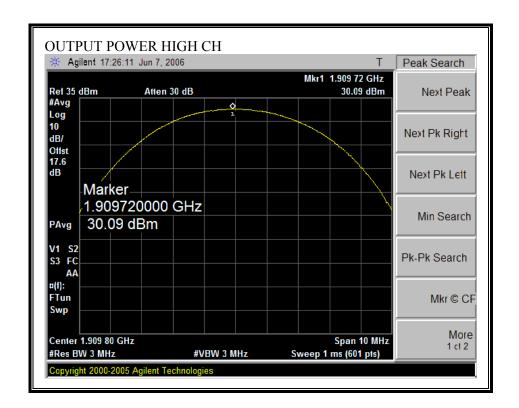

EGPRS850 (RF CONDUCTED OUTPUT POWER)

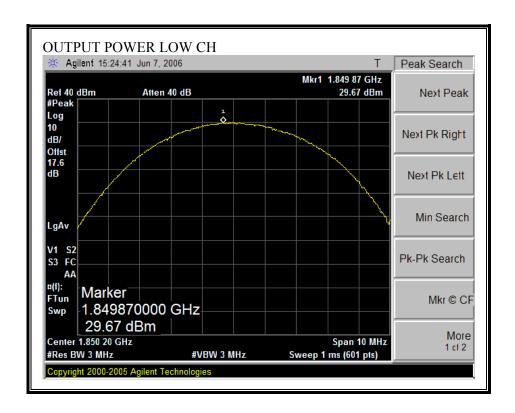


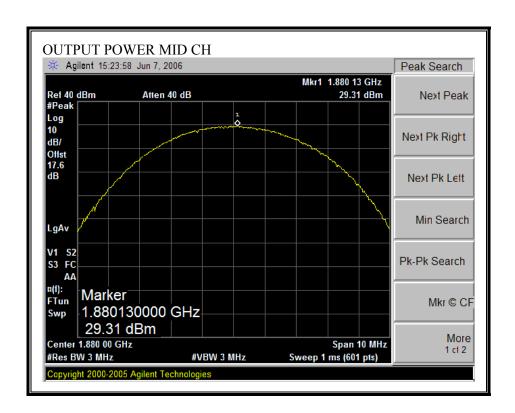


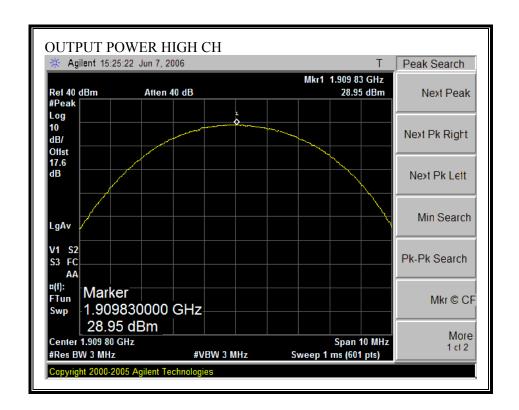

GSM1900 (RF CONDUCTED OUTPUT POWER)






GPRS1900 CONDUCTED OUTPUT POWER)





EGPRS1900 (RF CONDUCTED OUTPUT POWER)

GSM850 Output Power (ERP)

f	SA reading		SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch									
824.20	102.9	V	26.9	0.6	0.0	26.3	38.5	-12.1	
824.20	107.0	H	28.8	0.6	0.0	28.2	38.5	-10.2	
Mid Ch									
836.40	103.4	V	28.0	0.7	0.0	27.3	38.5	-11.1	
836.40	107.5	H	29.4	0.7	0.0	28.7	38.5	-9.8	
High Ch									
848.80	100.7	V	25.3	0.7	0.0	24.6	38.5	-13.8	
848.80	105.8	H	27.7	0.7	0.0	27.0	38.5	-11.4	

GPRS850 Output Power (ERP)

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
X Pos									
Low Ch									
824.20	102.2	V	26.2	0.6	0.0	25.6	38.5	-12.9	
824.20	106.0	H	27.8	0.6	0.0	27.2	38.5	-11.2	
Mid Ch									
836.40	103.1	V	27.7	0.7	0.0	27.0	38.5	-11.4	
836.50	107.0	H	28.9	0.7	0.0	28.2	38.5	-10.2	
High Ch									
848.80	100.4	V	25.0	0.7	0.0	24.3	38.5	-14.1	
848.80	105.2	H	27.1	0.7	0.0	26.4	38.5	-12.0	

EGPRS850 Output Power (ERP)

t MHz	SA reading (dBuV/m)	Ant. Pol. (H/V)	SG reading (dBm)	CL (dB)	Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)	Notes
		,						. ,	
Low Ch								•	
824.20	95.8	V	19.8	0.6	0.0	19.2	38.5	-19.2	
824.20	101.3	H	23.1	0.6	0.0	22.5	38.5	-15.9	
Mid Ch									
836.40	96.1	V	20.7	0.7	0.0	20.0	38.5	-18.4	
836.40	102.3	H	24.2	0.7	0.0	23.5	38.5	-14.9	
High Ch									
848.80	96.6	V	21.2	0.7	0.0	20.5	38.5	-17.9	
848.80	101.8	H	23.7	0.7	0.0	23.0	38.5	-15.4	
							^	•	

GSM1900 Output Power (EIRP)

f GHz	SA reading (dBuV/m)	Ant. Pol. SG readin	SG reading	G reading CL	Gain	EIRP	Limit	Margin	Notes
		(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.850	100.5	Н	23.3	0.9	8.3	30.7	33.0	-2.3	
1.850	95.6	V	18.2	0.9	8.3	25.6	33.0	-7.4	
Mid Ch								•	
1.880	101.0	H	24.1	0.9	8.3	31.6	33.0	-1.5	
1.880	96.0	V	18.3	0.9	8.3	25.8	33.0	-7.3	
High Ch									
1.910	100.6	H	24.0	0.9	8.4	31.5	33.0	-1.5	
1.910	93.5	V	16.5	0.9	8.4	24.0	33.0	-9.0	

GPRS1900 Output Power (EIRP)

f	SA reading	Ant. Pol.	SG reading	\mathbf{CL}	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.850	100.3	H	23.1	0.9	8.3	30.5	33.0	-2.5	
1.850	95.4	V	18.0	0.9	8.3	25.4	33.0	-7.6	
Mid Ch									
1.880	100.6	H	23.7	0.9	8.3	31.2	33.0	-1.9	
1.880	94.0	V	16.3	0.9	8.3	23.8	33.0	-9.3	
High Ch									
1.910	100.6	H	24.0	0.9	8.4	31.5	33.0	-1.5	
1.910	93.7	V	16.7	0.9	8.4	24.2	33.0	-8.8	

EGPRS1900 Output Power (EIRP)

	SA reading	Ant. Pol.	SG reading	\mathbf{CL}	Gain	EIRP	Limit	Margin	Notes
	(dBuV/m)) (H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch									
1.850	99.0	H	21.8	0.9	8.3	29.2	33.0	-3.8	
1.850	93.4	V	16.0	0.9	8.3	23.4	33.0	-9.6	
Mid Ch									
1.880	98.9	H	22.0	0.9	8.3	29.5	33.0	-3.5	
1.880	91.3	V	13.6	0.9	8.3	21.1	33.0	-12.0	
High Ch									
1.910	98.3	H	21.7	0.9	8.4	29.2	33.0	-3.8	
1.910	90.4	V	13.4	0.9	8.4	20.9	33.0	-12.1	

Page 46 of 97

8.3. FREQUENCY STABILITY

LIMIT

§22.355 Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C–1 of this section.

For Mobile devices operating in the 824 to 849 MHz band at a power level less than or equal to 3 Watts, the limit specified in Table C-1 is \pm 2.5 ppm.

§24.235 The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 2.3.1 and 2.3.2

RESULTS

No non-compliance noted.

DATE: JULY 19, 2006

FCC ID: NM8EXCA

This report shall not be reproduced except in full, without the written approval of CCS.

GSM 850

Refe	erence Frequency: A	MPS Mid Channel	836.490000MHz @ 2	:5*C						
	Limit: ± 2.5 ppm = 2090.999 Hz									
Power Supply	Environment Frequency Deviation Measureed with Time Ela									
(Vdc)	Temperature (*C)	(MHz)	Delta (ppm)	Limit (ppm)						
3.70	50	836.39941	0.017	± 2.5						
3.70	40	836.39941	0.013	± 2.5						
3.70	30	836.39941	0.019	± 2.5						
3.70	25	836.39942	0	± 2.5						
3.70	20	836.39941	0.017	± 2.5						
3.70	10	836.39940	0.033	± 2.5						
3.70	0	836.39940	0.030	± 2.5						
3.70	-10	836.39940	0.024	± 2.5						
3.70	-20	836.39940	0.025	± 2.5						
3.70	-30	836.39941	0.022	± 2.5						
3.26	25	836.39940	0.024	± 2.5						
4.26	25	836.39940	0.024	± 2.5						

GSM 1900

	Reference Frequenc	y: PCS Mid Chann	nel 1880MHz @ 25*C								
	Limit: to stay within the authorized block										
Power Supply	Environment Frequency Deviation Measureed with Time Elaps										
(Vdc)	Temperature (*C)	(MHz)	Limit (ppm)								
3.70	50	1879.99986	0.011	± 2.5							
3.70	40	1879.99986	0.010	± 2.5							
3.70	30	1879.99986	0.010	± 2.5							
3.70	25	1879.99988	0.000	± 2.5							
3.70	20	1879.99991	-0.017	± 2.5							
3.70	10	1879.99983	0.026	± 2.5							
3.70	0	1879.99985	0.015	± 2.5							
3.70	-10	1879.99986	0.013	± 2.5							
3.70	-20	1879.99986	0.010	± 2.5							
3.70	-30	1879.99986	0.009	± 2.5							
3.145	25	1879.99986	0.011	± 2.5							
4.255	25	1879.99986	0.011	± 2.5							

8.4. SPURIOUS EMISSION AT ANTENNA TERMINAL

LIMIT

§§22.917 (a) §24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

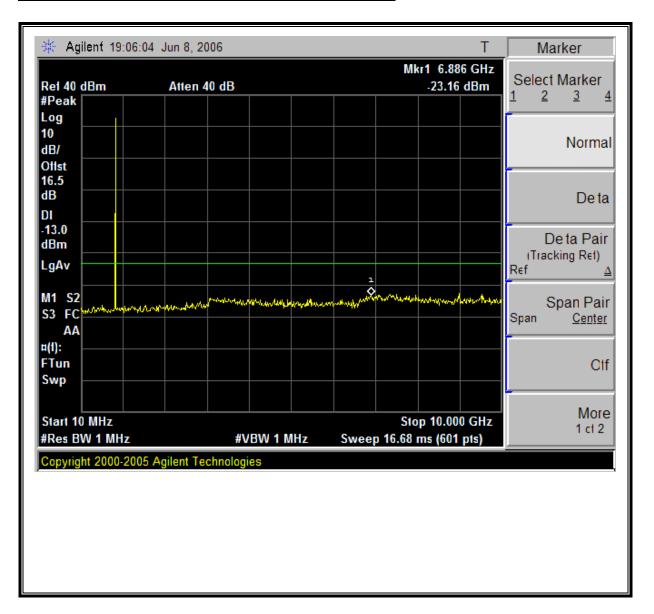
TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 3.2.13, FCC 22.917 (b) & FCC 24.238 (b)

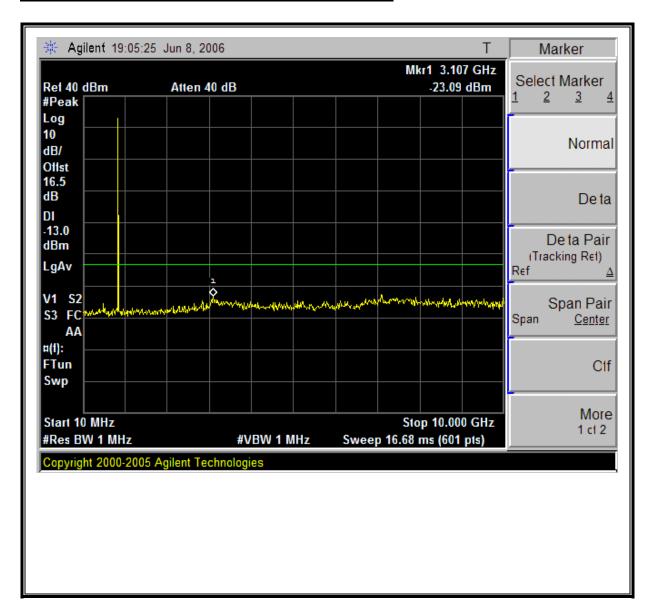
RESULTS

No non-compliance noted.

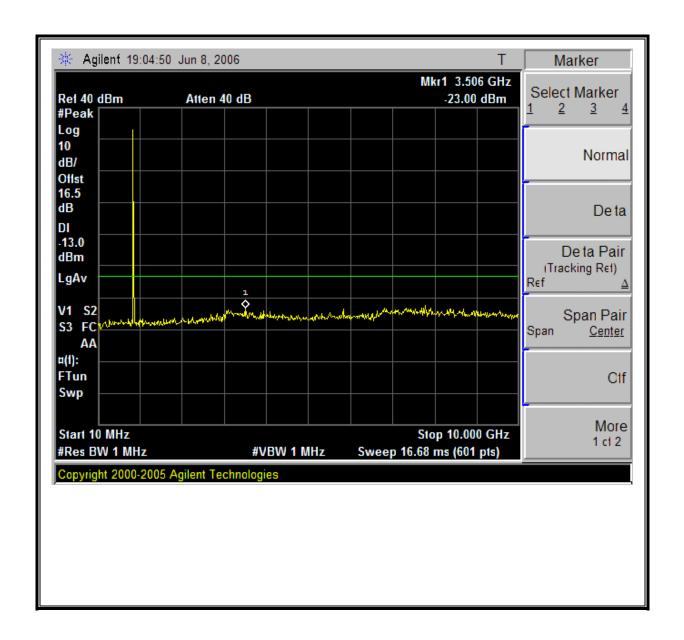
.

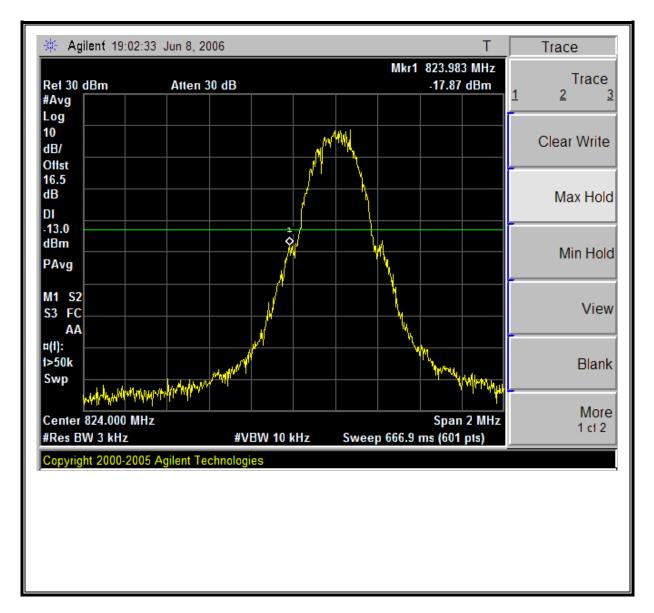

DATE: JULY 19, 2006

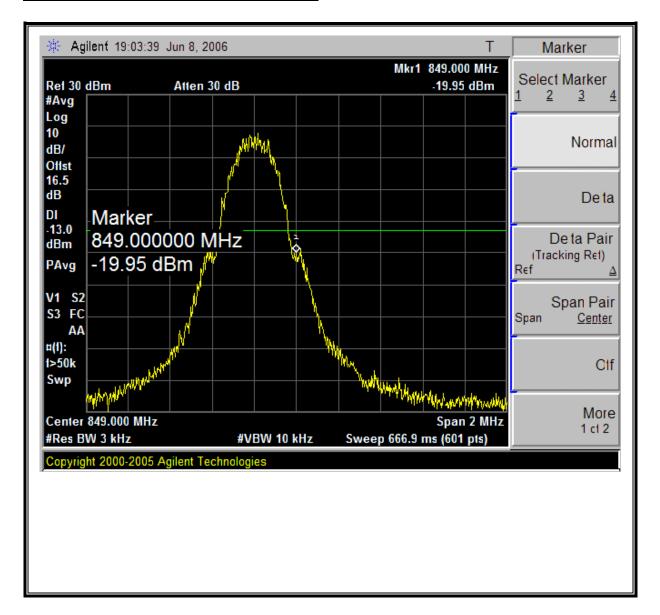
FCC ID: NM8EXCA

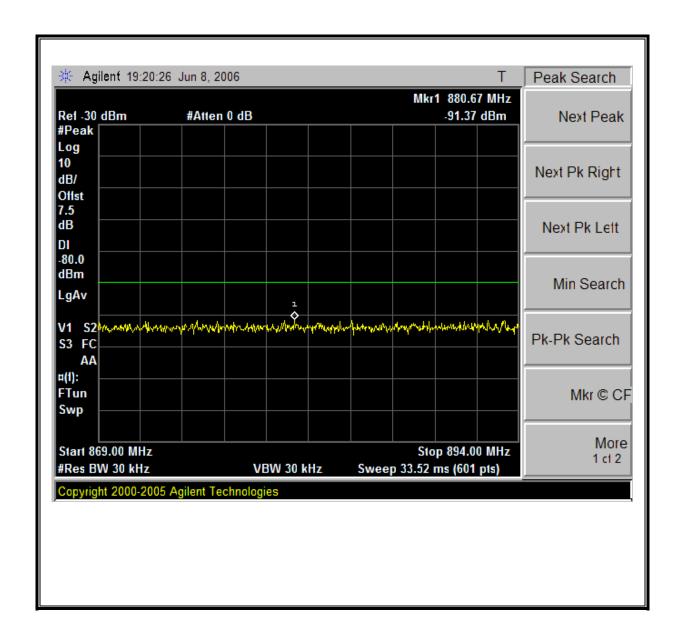

This report shall not be reproduced except in full, without the written approval of CCS.

GSM850 MODULATION RESULTS

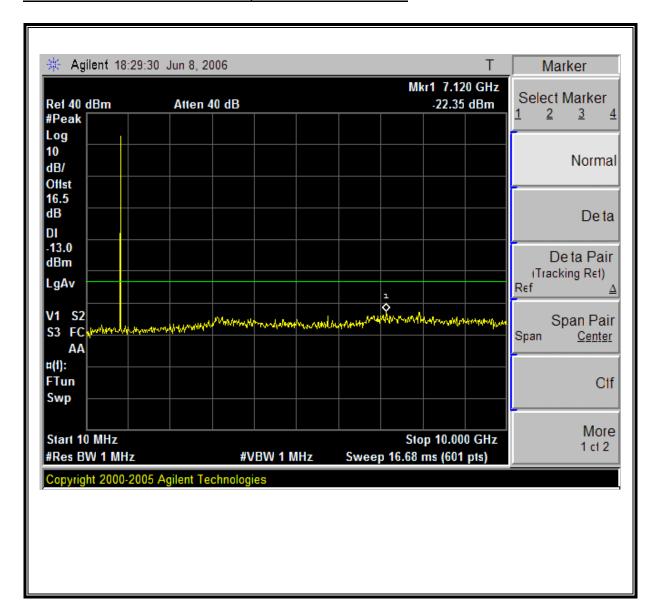

GSM850 Modulation: Low Channel, Out-Of-Band Emissions


GSM850 Modulation: Mid Channel, Out-Of-Band Emissions

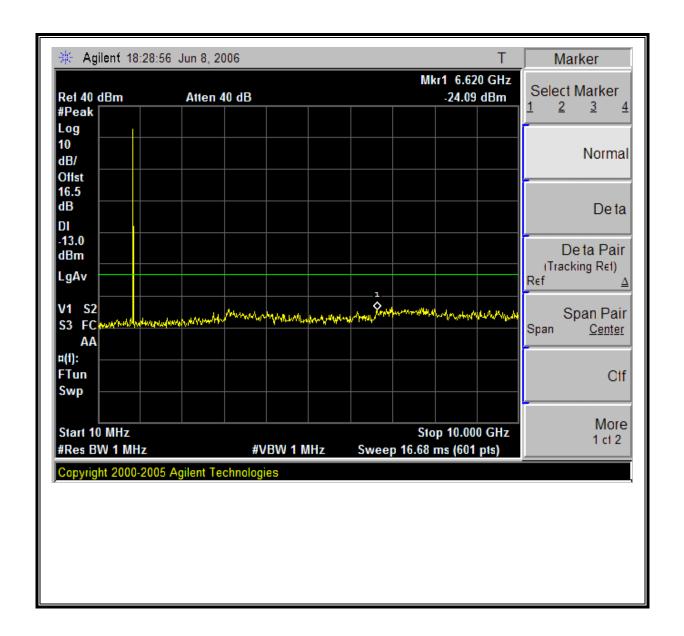

GSM850 Modulation: High Channel, Out-Of-Band Emissions


GSM850 Modulation: Low Channel Band Edge

GSM850 Modulation: High Channel Band Edge

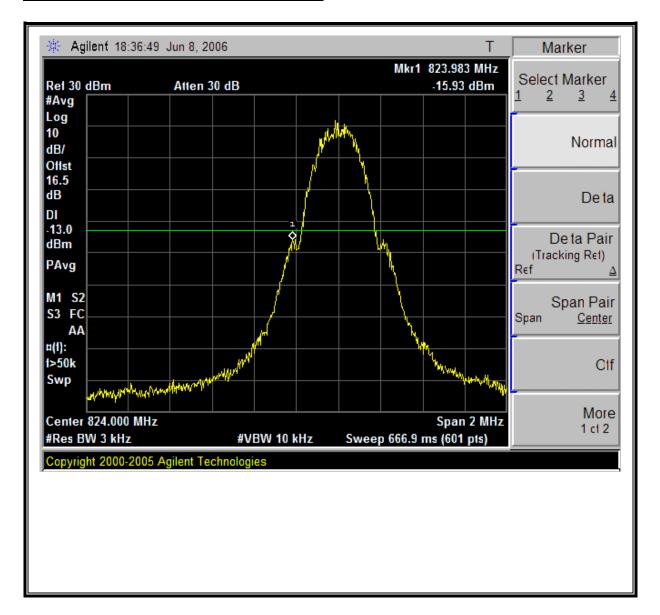


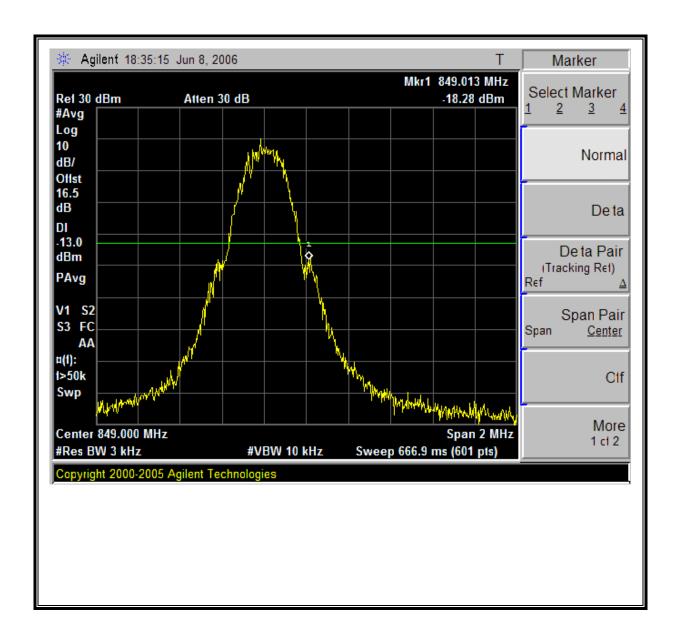
GSM850 Mobile Emissions in Base Frequency Range

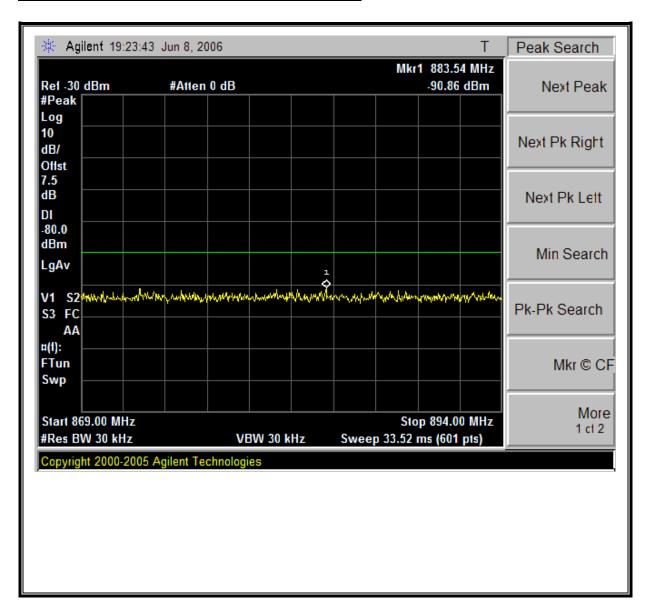


GPRSM850 MODULATION RESULTS

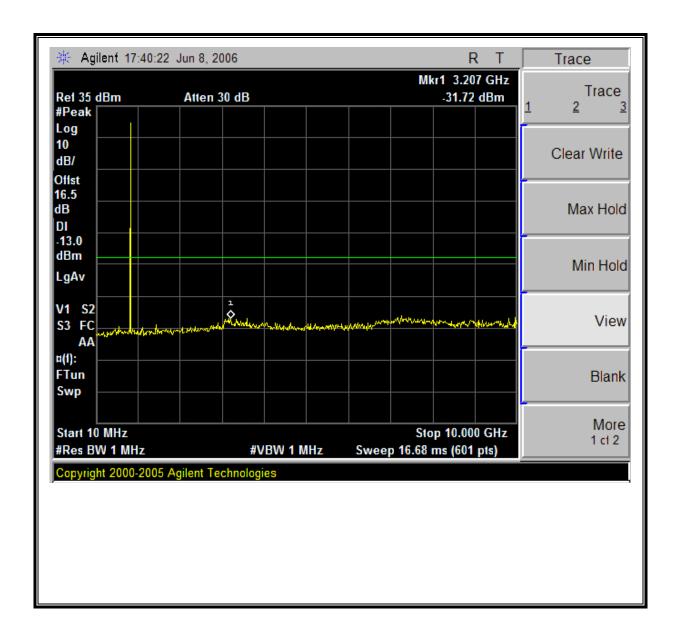

GPRS850 Modulation: Low Channel, Out-Of-Band Emissions


GPRS850 Modulation: Mid Channel, Out-Of-Band Emissions

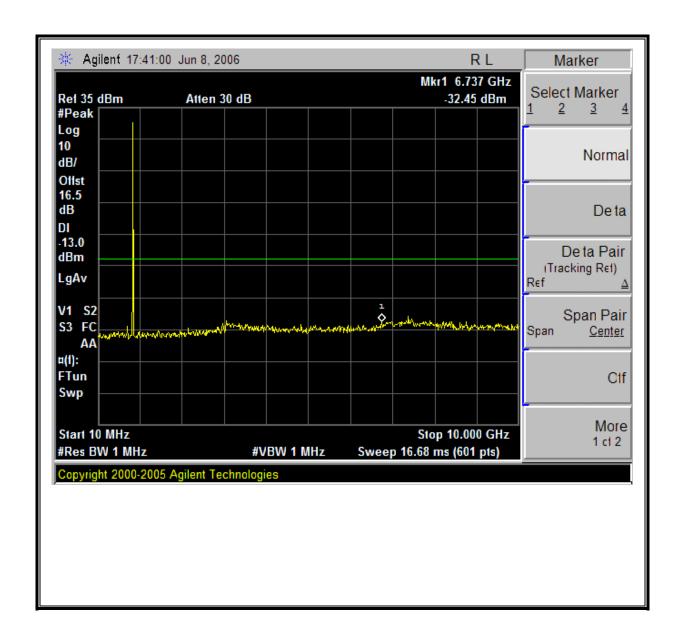

GPRSM850 Modulation: High Channel, Out-Of-Band Emissions


GPRS850 Modulation: Low Channel Band Edge

GPRS850 Modulation: High Channel Band Edge

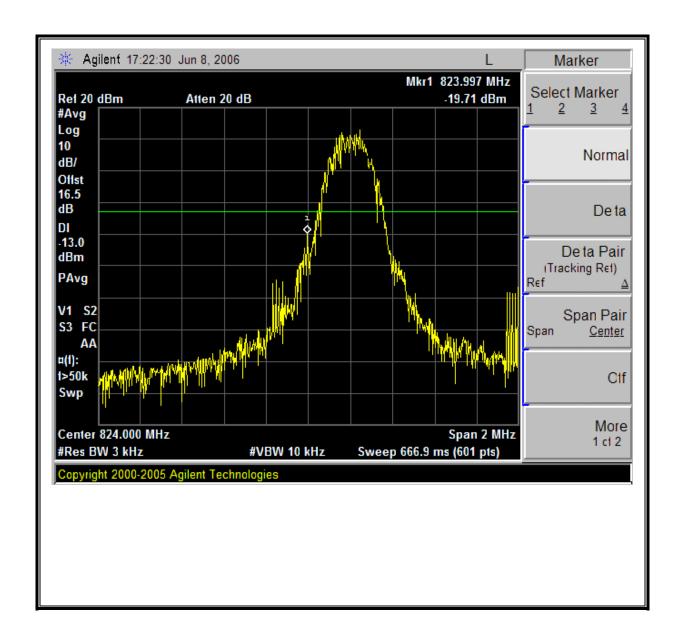


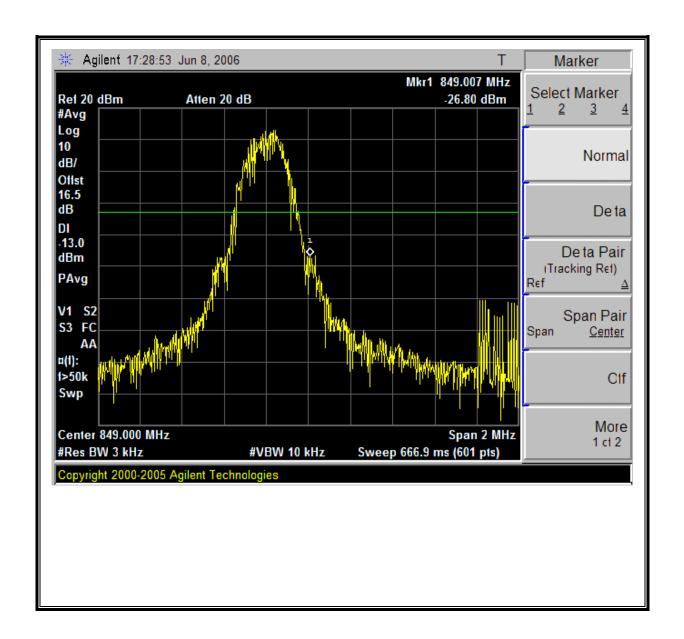
GPRS850 Mobile Emissions in Base Frequency Range

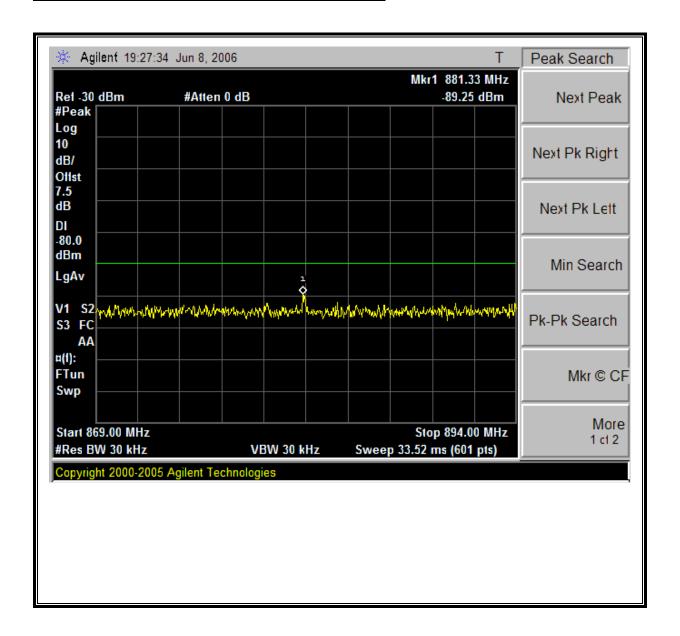


EGPRSM850 MODULATION RESULTS

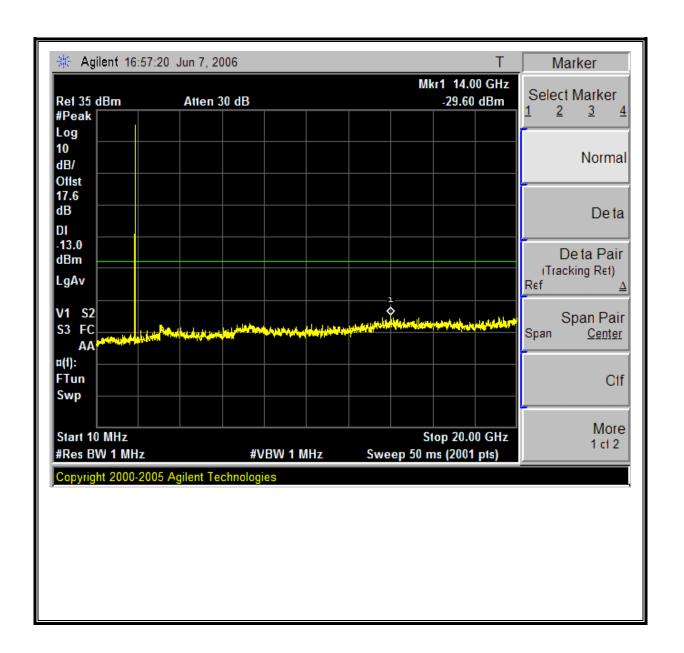
EGPRS850 Modulation: Low Channel Out-Of-Band Emissions


EGPRS850 Modulation: Mid Channel Out-Of-Band Emissions

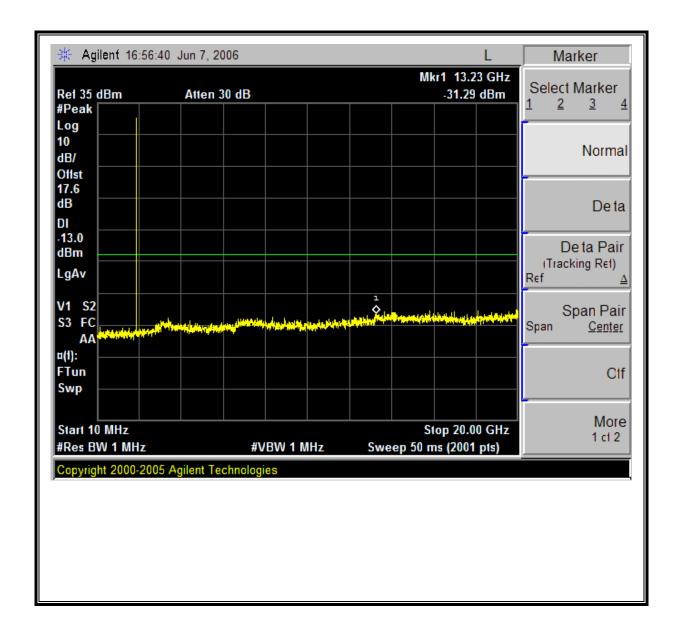

EGPRS850 Modulation: High Channel Out-Of-Band Emissions


EGPRS850 Modulation: Low Channel Band Edge

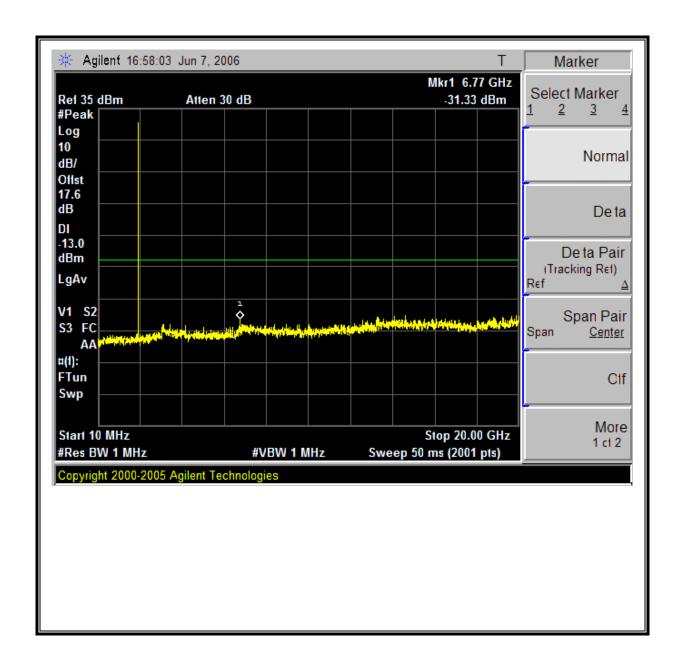
EGPRS850 Modulation: High Channel Band Edge

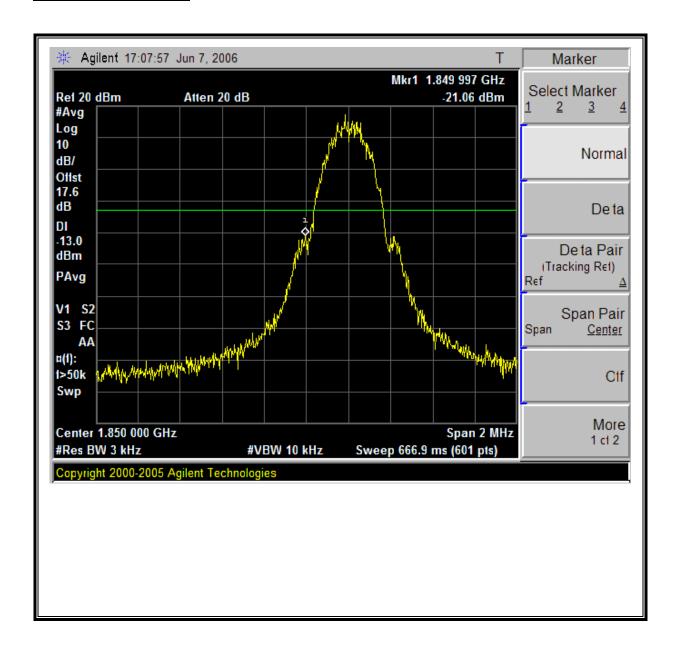


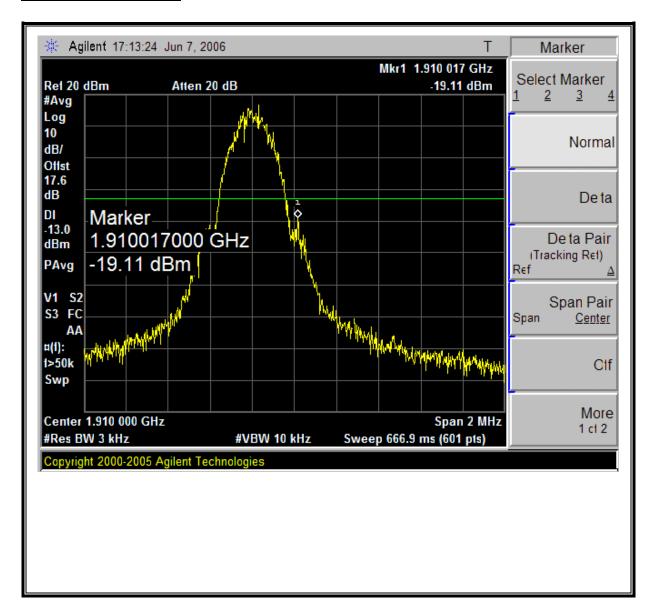
EGPRS850 Mobile Emissions in Base Frequency Range



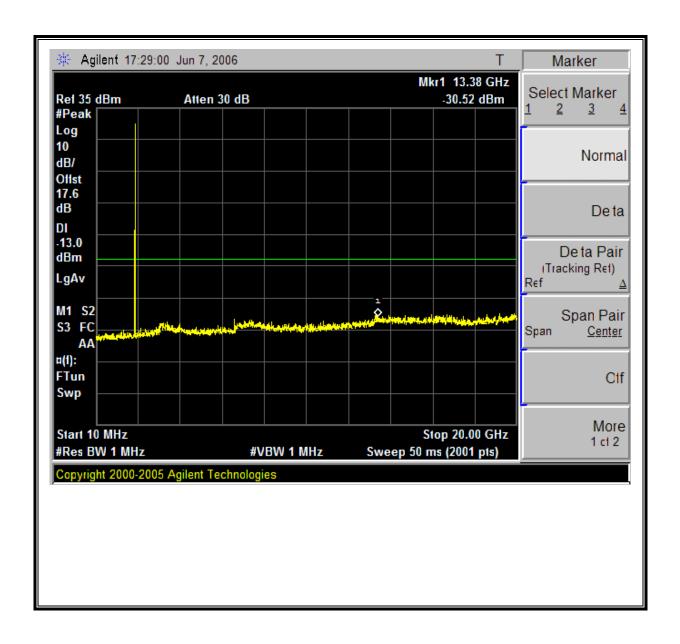
PCS GSM1900 MODULATION RESULTS


Low Channel, Out-Of-Band Emissions

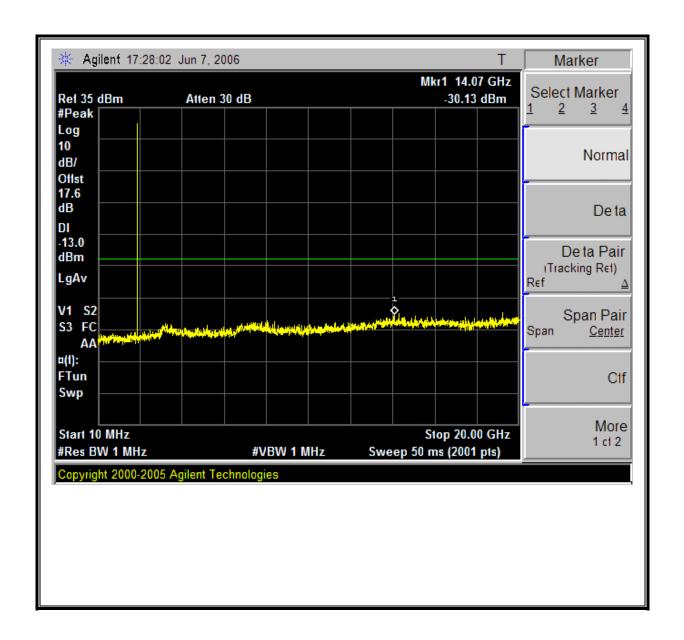

Mid Channel, Out-Of-Band Emissions


High Channel, Out-Of-Band Emissions

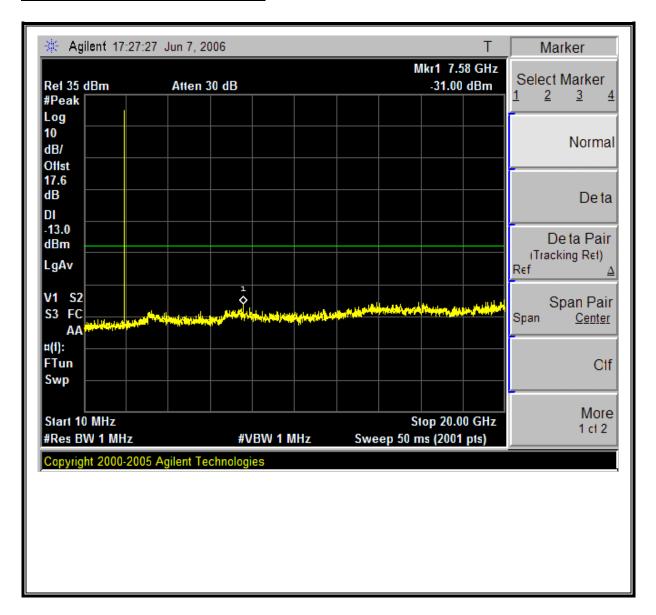
Low Channel Band Edge

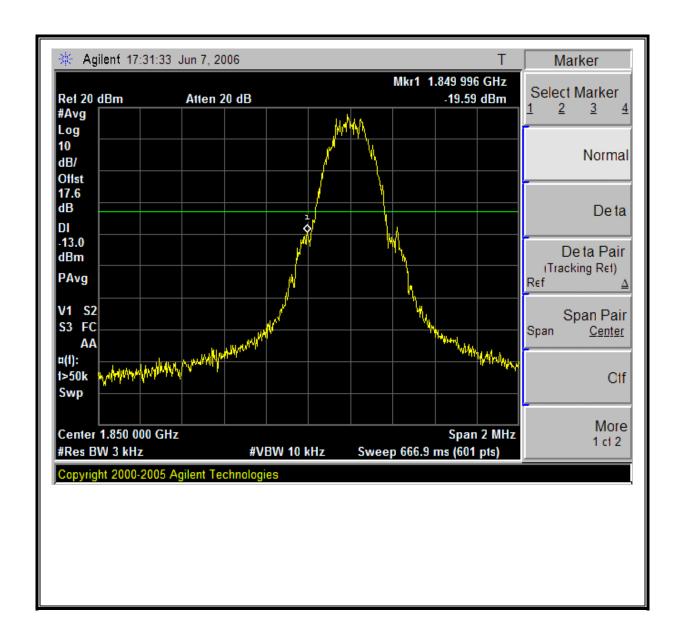


High Channel Band Edge



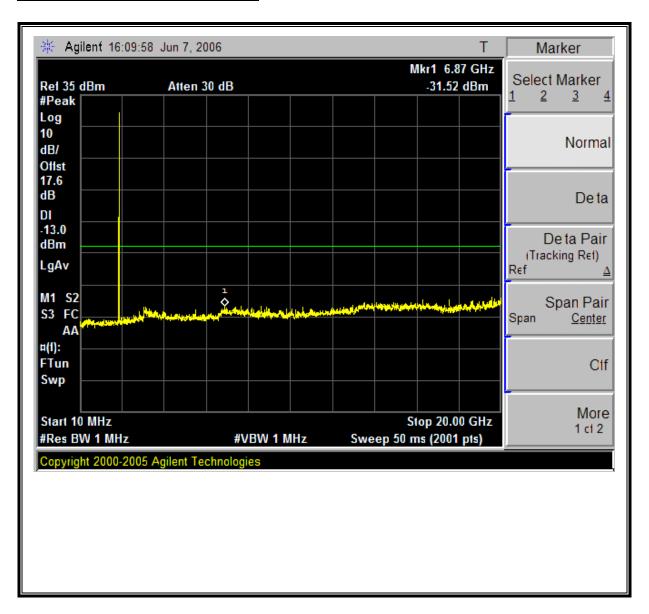
PCS GPRS 1900 MODULATION RESULTS


Low Channel, Out-Of-Band Emissions

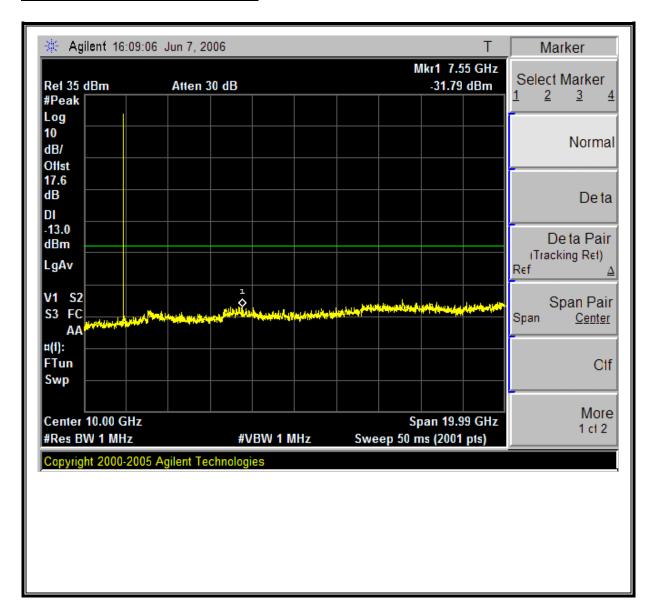

Mid Channel, Out-Of-Band Emissions

High Channel, Out-Of-Band Emissions

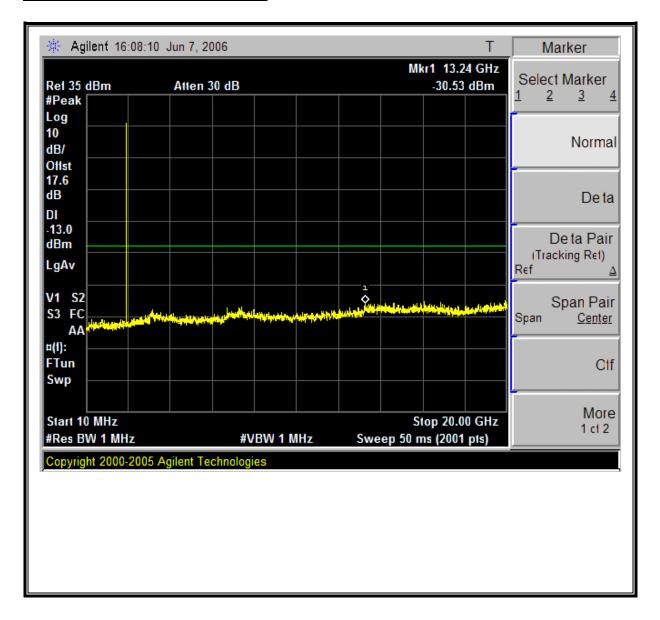
Low Channel Band Edge

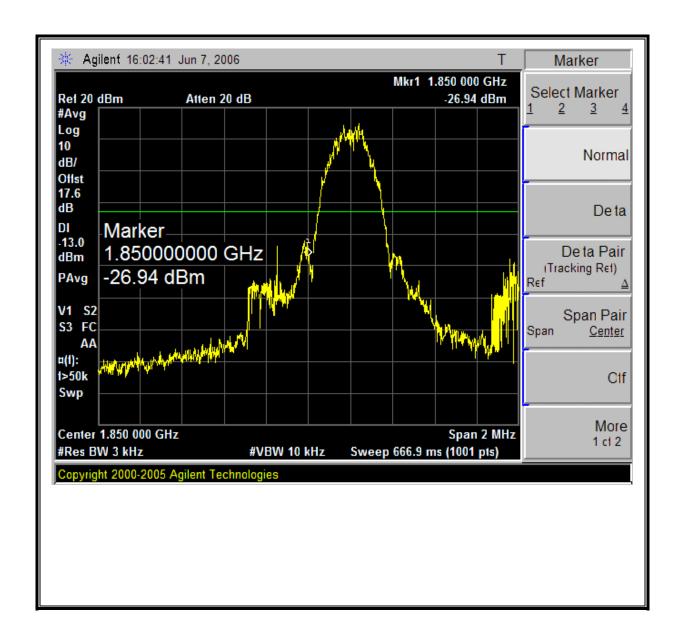


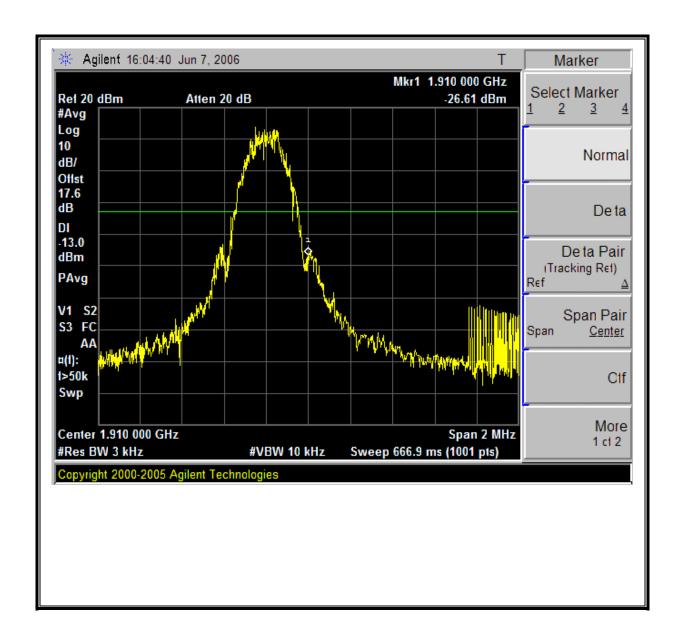
High Channel Band Edge



PCS EGPRS 1900 MODULATION RESULTS


Low Channel, Out-Of-Band Emissions


Mid Channel, Out-Of-Band Emissions


High Channel, Out-Of-Band Emissions

Low Channel Band Edge

High Channel Band Edge

8.5. FIELD STRENGTH OF SPURIOUS RADIATION

<u>LIMIT</u>

§22.917 (a) & §24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 3.2.12, FCC 22.917 (b) & FCC 24.238 (b)

RESULTS

No non-compliance noted.

Note: No spurious emissions were found within 30-1000MHz of 20dB below the system noise.

DATE: JULY 19, 2006

FCC ID: NM8EXCA

This report shall not be reproduced except in full, without the written approval of CCS.

GSM850 Spurious & Harmonic (ERP)

Cellular Harmonic Substitution Measurement

Compliance Certification Services, Morgan Hill Immunity Chamber

Company: High Tech Computer

Project #:06I10345 Date:6/8/2006

Test Engineer: Chin Pang Configuration: EUT only Mode: TX, GSM 850

Test Equipment:

Receiving: Horn T59, Pre-amp T34, Chin SMA Cables 2 & 12 ft Substitution: Horn T60, 6ft SMA Cable Warehouse S/N: 208947 002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Cham	nel								
1.649	56.6	v	-56.7	0.8	4.9	-52.6	-13.0	-39.6	
2.474	54.4	V	-56.0	1.0	7.1	-49.8	-13.0	-36.8	
5.769	47.0	v	-55.6	1.7	9.2	-48.1	-13.0	-35.1	
7.418	43.7	V	-57.2	1.8	9.8	-49.2	-13.0	-36.2	
8.242	44.6	V	-55.2	1.9	9.9	-47.2	-13.0	-34.2	
1.649	62.0	H	-52.3	0.8	4.9	-48.2	-13.0	-35.2	
2.474	53.0	H	-57.7	1.0	7.1	-51 <i>5</i>	-13.0	-38.5	
3.299	45.0	H	-62.4	1.2	7.3	-56.3	-13.0	-43 <i>.</i> 3	
5.769	43.0	H	-58.8	1.7	9.2	-51.2	-13.0	-38.2	
6.594	42.6	H	-58.1	1.8	9.8	-50.1	-13.0	-37.1	
Mid Chan	hel								
1.673	57.5	V	-55.6	8.0	5.0	-51.4	-13.0	-38.4	
2.510	53.6	v	-55.8	1.0	7.1	-49.7	-13.0	-36.7	
5.856	46.D	v	-56.3	1.7	9.4	-48.6	-13.0	-35.6	
1.673	8.06	H	-53.4	0.8	5.0	-49.2	-13.0	-36.2	
2 <i>5</i> 10	54.0	H	-57.0	1.0	7.1	-50.9	-13.0	-37.9	
4.183	46.0	H	-59.5	1.4	7.9	-53.0	-13.0	-40.0	
High Char	inel								
1.697	53.0	v	-59.9	0.8	5.1	-55.6	-13.0	-42.6	
2.545	50.6	v	-58.2	1.0	7.1	-52.0	-13.0	-39.0	
3.393	46.4	v	-60.1	1.2	7.4	-53.9	-13.0	-40.9	
5.093	47.6	v	-55.3	1.5	8.9	-48.0	-13.0	-35.0	
5941	48.7	v	-53.4	1.7	9.5	-45.6	-13.0	-32.6	
1.697	0.00	H	-53.7	0.8	5.1	-49.4	-13.0	-36.4	
2.545	54.2	Н	-57.1	1.0	7.1	-51.0	-13.0	-38.0	
4.242	45.6	H	-59.7	1.4	0.8	-53.1	-13.0	-40.1	
5.941	43.3	H	-58.2	1.7	9.5	-50.4	-13.0	-37.4	

GPRS850 Spurious & Harmonic (ERP)

Cellular Harmonic Substitution Measurement

Compliance Certification Services, Morgan Hill Immunity Chamber

Company: High Tech Computer

Project #:06I10345 Date:6/8/2006

Test Engineer: Chin Pang Configuration: EUT only Mode: TX, GPRS 850 mode

Test Equipment:

Receiving: Horn T59, Pre-amp T34, Chin SMA Cables 2 & 12 ft Substitution: Horn T60, 6ft SMA Cable Warehouse S/N: 208947 002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Chan	mel								
1.649	55.A	V	-57.9	0.8	4.9	-53.8	-13.0	-40.8	
2.474	47.3	v	-63.1	1.0	7.1	-56.9	-13.0	-43.9	
3.297	45.0	v	-57.6	1.7	9.2	-50.1	-13.0	-37.1	
1.649	56.8	H	-57.5	0.8	4.9	-53.4	-13.0	-40.4	
2.474	48.0	H	-62.7	1.0	7.1	-56.5	-13.0	-43.5	
5.769	43.0	H	-58.8	1.7	9.2	-51.2	-13.0	-38.2	
Mid Chan	mel								
1.673	55.0	v	-58.1	0.8	5.0	-53.9	-13.0	-40.9	
2.510	48.6	v	-60.8	1.0	7.1	-54.7	-13.0	-41.7	
5.856	45.0	v	-57.3	1.7	9.4	-49.6	-13.0	-36.6	
1.673	57.8	Н	-56.4	0.8	5.0	-52.2	-13.0	-39.2	
2.510	50.5	Н	-60.5	1.0	7.1	-54.4	-13.0	-41.4	
4.183	43.0	Н	-62.5	1.4	79	-56.0	-13.0	-43.0	
High Chai	nnel								
1.697	55.7	v	-57.2	0.8	5.1	-52.9	-13.0	-39.9	
2.545	50.4	v	-58.4	1.0	7.1	-52.2	-13.0	-39.2	
3.393	45.3	v	-61.2	1.2	7.4	-55.0	-13.0	-42.0	
1.697	57.A	Н	-56.3	0.8	5.1	-52.0	-13.0	-39.0	
2.545	54.2	Н	-57.1	1.0	7.1	-51.0	-13.0	-38.0	
4.242	43.8	H	-61.5	1.4	8.0	-54.9	-13.0	-41.9	

EGPRS850 Spurious & Harmonic (ERP)

Cellular Harmonic Substitution Measurement

Compliance Certification Services, Morgan Hill Immunity Chamber

Company: High Tech Computer

Project #:06I10345 Date:6/8/2006

Test Engineer: Chin Pang Configuration: EUT only Mode: TX, EGPR\$ 850 mode

Test Equipment:

Receiving: Horn T59, Pre-amp T34, Chin SMA Cables 2 & 12 ft Substitution: Horn T60, 6ft SMA Cable Warehouse S/N: 208947 002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Chan	mel								
1.649	52.0	V	-61.3	0.8	4.9	-57.2	-13.0	-44.2	
2.474	48.5	v	-61.9	1.0	7.1	-55.7	-13.0	-42.7	
3.297	44.2	v	-58.4	1.7	9.2	-50.9	-13.0	-37.9	
1.649	54.3	H	-60.0	0.8	4.9	-55.9	-13.0	-429	
2.474	56.2	Н	-54.5	1.0	7.1	-48.3	-13.0	-35.3	
5.769	44.8	H	-57.0	1.7	9.2	-49.4	-13.0	-36.4	
Mid Chan	nel								
1.673	51.3	v	-61.8	0.8	5.0	-57.6	-13.0	-44.6	
2.510	47.2	v	-62.2	1.0	7.1	-56.1	-13.0	-43.1	
5.856	43.0	v	-59.3	1.7	9.4	-51.6	-13.0	-38.6	
1.673	54.0	Н	-60.2	0.8	5.0	-56.0	-13.0	-43.0	
2.510	56.7	Н	-54.3	1.0	7.1	-48.2	-13.0	-35.2	
4.183	45.0	H	-60.5	1.4	7.9	-54.0	-13.0	-41.0	
High Cha	nnel								
1.697	51.7	v	-61.2	0.8	5.1	-56.9	-13.0	-439	
2.545	48.3	v	-60.5	1.0	7.1	-54.3	-13.0	-41.3	
3.393	44.3	v	-62.2	1.2	7.4	-56.0	-13.0	-43.0	
1.697	53.8	Н	-59.9	0.8	5.1	-55.6	-13.0	-42.6	
2.545	56.5	Н	-54.8	1.0	7.1	-48.7	-13.0	-35.7	
4.242	43.0	Н	-62.3	1.4	0.8	-55.7	-13.0	-42.7	

GSM1900 Spurious & Harmonic (EIRP)

PCS Harmonic Substitution Measurement

Compliance Certification Services, Morgan Hill Immunity Chamber

Company: High Tech Computer

Project #:06I10345

Date:6/8/2006

Test Engineer: Chin Pang Configuration: EUT only Mode: TX, GSM 1900 Mode

Test Equipment:

Receiving: Horn T59, Pre-amp T34, and Chin SMA Cables 2 & 12 ft Substitution: Horn T60, and 6ft SMA Cable Warehouse S/N: 208947 002

f	SA reading	Ant. Pol.	SG reading	$^{\mathrm{CL}}$	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Chan	nel								
3.703	66.3	v	-38.7	1.2	9.7	-30.3	-13.0	-17.3	
5.554	55.5	v	-47.0	1.6	11.0	-37.6	-13.0	-24.6	
7.405	46.8	v	-52.8	1.9	12.0	-42.7	-13.0	-29.7	
9.256	48.6	v	-49.2	2.1	12.7	-38.6	-13.0	-25.6	
11.108	47.5	V	-49.2	2.3	13.8	-37.7	-13.0	-24.7	
3.703	69.3	H	-37.2	1.2	9.7	-28.8	-13.0	-15.8	
5.554	56.D	H	-46.D	1.6	11.0	-36.6	-13.0	-23.6	
7.405	48.5	H	-50.2	1.9	12.0	-40.1	-13.0	-27.1	
9.256	50.0	H	-46.7	2.1	12.7	-36.0	-13.0	-23.0	
11.108	51.4	H	-44.7	2.3	13.8	-33.2	-13.0	-20.2	
Mid Chan	i nel								
3.760	67.8	v	-36.7	1.3	9.7	-28.3	-13.0	-15.3	
5.640	56.5	v	-46.3	1.7	11.2	-36.8	-13.0	-23.8	
9.400	48.0	v	-48.5	2.1	12.7	-37.9	-13.0	-24.9	
11.280	54.8	v	-41.0	2.3	139	-29.5	-13.0	-16.5	
3.760	70.4	H	-35.7	1.3	9.7	-27.2	-13.0	-14.2	
5.640	53.0	H	-48.9	1.7	11.2	-39.4	-13.0	-26.4	
9.400	47.0	H	-48.8	2.1	12.7	-38.1	-13.0	-25.1	
11.280	46.6	H	-49.0	23	13.9	-37.5	-13.0	-24.5	
High Cha	nel								
3.818	67.2	v	-37.0	1.3	9.7	-28.6	-13.0	-15.6	
5.726	55.7	v	-46.8	1.7	113	-37.2	-13.0	-24.2	
7.635	48.4	v	-51.6	1.9	12.0	-41.4	-13.0	-28.4	
9.544	47.6	v	-48.0	2.1	12.7	-37.4	-13.0	-24.4	
11.453	55.7	v	-39.5	2.4	14.0	-27.9	-13.0	-14.9	
3.818	69.0	H	-36.4	1.3	9.7	-27.9	-13.0	-14.9	
5.726	52 <i>5</i>	H	-49.7	1.7	113	-40.1	-13.0	-27.1	
7.635	47.8	H	-51.1	1.9	12.0	-41.0	-13.0	-28.0	
9.544	51.0	H	-44.6	2.1	12.7	-34.0	-13.0	-21.0	
11.453	56.0	H	-39.2	2.4	14.0	-27.6	-13.0	-14.6	

Page 87 of 97

GPRS1900 Spurious & Harmonic (EIRP)

PCS Harmonic Substitution Measurement

Compliance Certification Services, Morgan Hill Immunity Chamber

Company: High Tech Computer

Project #:06I10345 Date:6/8/2006

Test Engineer: Chin Pang Configuration: EUT only Mode: TX, GPRS 1900 mode

Test Equipment:

Receiving: Horn T59, Pre-amp T34, and Chin SMA Cables 2 & 12 ft Substitution: Horn T60, and 6ft SMA Cable Warehouse S/N: 208947 002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
low Chan	nel								
3.703	65.6	v	-39.4	1.2	9.7	-31.0	-13.0	-18.0	
5.554	58.2	V	-44.3	1.6	11.0	-34.9	-13.0	-21.9	
7.405	46.2	V	-53.4	1.9	12.0	-433	-13.0	-30.3	
9.256	52.0	v	-45.8	2.1	12.7	-35.2	-13.0	-22.2	
11.108	50.2	v	-46.5	2.3	13.8	-35.0	-13.0	-22.0	
3.703	69.5	H	-37.0	1.2	9.7	-28.6	-13.0	-15.6	
5.554	53.A	H	-48.6	1.6	11.0	-39.2	-13.0	-26.2	
7.405	46.8	H	-51.9	1.9	12.0	-41.8	-13.0	-28.8	
9.256	51.6	H	-45.1	2.1	12.7	-34.4	-13.0	-21.4	
11.108	54.5	H	-41.6	2.3	13.8	-30.1	-13.0	-17.1	
Mid Cham	i nel								
3.760	65.0	v	-39.5	1.3	9.7	-31.1	-13.0	-18.1	
5.640	59.0	v	-43.8	1.7	11.2	-34.3	-13.0	-21.3	
7 <i>5</i> 20	47.0	v	-49.5	2.1	12.7	-38.9	-13.0	-25.9	
9.400	48.6	v	-47.9	2.1	12.7	-37.3	-13.0	-24.3	
11.280	54.8	v	-41.0	2.3	139	-29.5	-13.0	-16.5	
3.760	69.0	H	-37.1	13	9.7	-28.6	-13.0	-15.6	
5.640	50.0	H	-51.9	1.7	11.2	-42.4	-13.0	-29.4	
7.520	48.5	Н	-47.3	2.1	12.7	-36.6	-13.0	-23.6	
9.400	50.6	Н	-45.2	2.1	12.7	-34.5	-13.0	-21.5	
11.280	56.0	H	-39.6	2.3	139	-28.1	-130	-15.1	
High Chai	1								
ні <u>д</u> и Снаі 3.818	inei 66.7	v	-37.5	1.3	9.7	-29.1	-13.0	-16.1	
5.726	56.6	V	-459	1.7	11.3	-36.3	-13.0	-10.1	
7.635	50.4	v	-49.6	1.9	12.0	-39.4	-13.0	-26.4	
9.544	49.3	v	-46.3	2.1	12.7	-35.7	-13.0	-20.7	
11.453	53.5	v	-41.7	2.4	14.0	-30.1	-13.0	-17.1	
3.818	68.2	H	-37.2	13	9.7	-28.7	-13.0	-15.7	
5.726	55.0	Н	-47.2	1.7	11.3	-37.6	-13.0	-24.6	
7.635	49.3	Н	-49.6	1.9	12.0	-39.5	-13.0	-26.5	
9.544	48.7	H	-46.9	2.1	12.7	-36.3	-13.0	-23.3	
11.453	55.5	Н	-39.7	2.4	14.0	-28.1	-13.0	-15.1	

EGPRS1900 Spurious & Harmonic (EIRP)

PCS Harmonic Substitution Measurement

Compliance Certification Services, Morgan Hill Immunity Chamber

Company: High Tech Computer

Project #:06I10345 Date:6/8/2006

Test Engineer: Chin Pang Configuration: EUT only Mode: TX, EGPRS 1900 mode

Test Equipment:

Receiving: Horn T59, Pre-amp T34, and Chin SMA Cables 2 & 12 ft Substitution: Horn T60, and 6ft SMA Cable Warehouse S/N: 208947 002

f	SA reading	Ant. Pol.	SG reading	$^{\mathrm{CL}}$	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Chan	nel	1 -							
3.700	54.8	v	-50.2	1.2	9.7	-41.8	-13.0	-28.8	
5 <i>.</i> 554	52.0	v	-50.5	1.6	11.0	-41.1	-13.0	-28.1	
7.405	46.2	v	-53.4	1.9	12.0	-43.3	-13.0	-30.3	
9.256	47.0	v	-50.8	2.1	12.7	-40.2	-13.0	-27.2	
11.108	48.3	v	-48.4	2.3	13.8	-36.9	-13.0	-23.9	
3.703	57.0	H	-49.5	1.2	9.7	-41.1	-13.0	-28.1	
5.554	49.0	H	-53.0	1.6	11.0	-43.6	-13.0	-30.6	
7.405	46.8	H	-51.9	19	12.0	-41.8	-13.0	-28.8	
9.251	45.3	H	-51.4	2.1	12.7	-40.7	-13.0	-27.7	
11.108	51.6	H	-44.5	2.3	13.8	-33.0	-13.0	-20.0	
Mid Chan	i nel								
3.760	58.0	v	-46.5	13	9.7	-38.1	-13.0	-25.1	
5.640	49.4	v	-53.4	1.7	11.2	-43.9	-13.0	-30.9	
7.520	50.0	v	-46.5	2.1	12.7	-35.9	-13.0	-22.9	
9.400	48.7	v	-47.8	2.1	12.7	-37.2	-13.0	-24.2	
11.280	48.7	v	-47.1	2.3	13.9	-35.6	-13.0	-22.6	
3.760	0.03	Н	-46.1	1.3	9.7	-37.6	-13.0	-24.6	
5.640	51.0	H	-50.9	1.7	11.2	-41.4	-13.0	-28.4	
9.400	44.1	H	-51.7	2.1	12.7	-41.0	-13.0	-28.0	
11.280	52.0	H	-43.6	23	139	-32.1	-13.0	-19.1	
High Cha	i nnel								
3.818	57.A	v	-46.8	1.3	9.7	-38.4	-13.0	-25.4	
5.726	48.3	v	-54.2	1.7	113	-44.6	-13.0	-31.6	
7.639	47.4	v	-52.6	1.9	12.0	-42.4	-13.0	-29.4	
9.544	46.5	v	-49.1	2.1	12.7	-38.5	-13.0	-25.5	
11.453	48.D	v	-47.2	2.4	14.0	-35.6	-13.0	-22.6	
3.818	59.0	H	-46.4	13	9.7	-37.9	-13.0	-24.9	
5.726	52.0	H	-50.2	1.7	11.3	-40.6	-13.0	-27.6	
7.639	52.1	H	-46.8	19	12.0	-36.7	-13.0	-23.7	
9.544	46.6	H	-49.0	2.1	12.7	-38.4	-13.0	-25.4	
11.453	51.8	H	-43.4	2.4	14.0	-31.8	-13.0	-18.8	