

Specific Absorption Rate (SAR) Test Report

for

High Tech Computer Corp.

on the

PDA Phone

Report No.	: FA832620A
Model Name	: DIAM110
FCC ID	: NM8DM
Date of Testing	: May 20, 2008 ~ Jun. 06, 2008
Date of Report	: Jun. 27, 2008
Date of Review	: Jun. 27, 2008

- The test results refer exclusively to the presented test model / sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 02

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

1.		nent of Compliance	
2.	Admiı	nistration Data	2
	2.1	Testing Laboratory	
	2.2	Detail of Applicant	2
	2.3	Detail of Manufacturer	2
	2.4	Application Details	2
3.	Gener	al Information	3
	3.1	Description of Device Under Test (DUT)	3
	3.2	Basic Combination of Device under Test	3
	3.3	Applied Standards	
	3.4	Device Category and SAR Limits	4
	3.5	Test Conditions	4
		3.5.1 Ambient Condition	
		3.5.2 Test Configuration	
4.	Speci	fic Absorption Rate (SAR)	
ч.	4.1	Introduction	
	4.2	SAR Definition	
5		Measurement Setup	
5.	5.1	DASY4 E-Field Probe System	
	5.1	5.1.1 ET3DV6 E-Field Probe Specification	1
		5.1.2 ET3DV6 E-Field Probe Calibration	1
	5.2		
	5.2 5.3	DATA Acquisition Electronics (DAE)	
	5.3 5.4	Robot	
	5.4 5.5	Measurement Server SAM Twin Phantom	
		Device Holder for SAM Twin Phantom	
	5.6 5.7		
	5.7	Data Storage and Evaluation	
		5.7.1 Data Storage	
	F 0	5.7.2 Data Evaluation	
	5.8	Test Equipment List	
6.		e Simulating Liquids	
7.		tainty Assessment	
8.		Measurement Evaluation	
	8.1	Purpose of System Performance check	
	8.2	System Setup	
	8.3	Validation Results	
9.	Descr	iption for DUT Testing Position	21
10.	Measu	urement Procedures	23
	10.1	Spatial Peak SAR Evaluation	23
	10.2	Scan Procedures	
	10.3	SAR Averaged Methods	
11.	SAR 1	Test Results	
		Conducted Power	
	11.2	Pretest for Head SAR	
	11.3	Test Records for Head SAR Test	
	11.4	Pretest for Body SAR	
	11.5	Test Records for Body SAR Test	
12	-	ences	
		A - System Performance Check Data	20
		B - SAR Measurement Data	
Арр	pendix	C - Calibration Data	

Appendix D - WCDMA Test Mode

Appendix E - Product Photos

Appendix F - Test Setup Photos

1. <u>Statement of Compliance</u>

The Specific Absorption Rate (SAR) maximum results found during testing for the **High Tech Computer Corp. PDA Phone DIAM110** are as follows (with expanded uncertainty 21.9%):

Band	GSM	1850	GSM1	GSM1900 WCDMA Band V		WCDMA Band II		
Position SAR	1g SAR (W/kg)	10g SAR (W/kg)	1g SAR (W/kg)	10g SAR (W/kg)	1g SAR (W/kg)	10g SAR (W/kg)	1g SAR (W/kg)	10g SAR (W/kg)
Head	0.628	0.455	0.784	0.452	0.471	0.344	1.38	0.815
Body	1.32	0.95	0.992	0.542	0.384	0.275	0.801	0.451

Only stand-alone SAR of GSM/GPRS/EDGE/WCDMA/HSDPA/HSUPA and WLAN were evaluated respectively, and no simultaneous transmission SAR was required, because the closest antenna separation distance between the WWAN and WLAN simultaneous transmitting antennas is 7.50 cm, and the sum of the 1-g SAR on head: 1.574 W/kg and on body: 1.401 W/kg were less than the limit; Exemption from the simultaneous WWAN and Bluetooth SAR evaluation was based on the a separation distance 7.5cm (> 5cm) and Bluetooth power < 2 Pref.

They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in IEEE C95.3-2002, IEEE P1528-2003, and OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

eey Wu

Roy Wu Manager

2. Administration Data

2.1 <u>Testing Laboratory</u>

Company Name :	Sporton International Inc.
Department :	Antenna Design/SAR
Address :	No.52, Hwa-Ya 1 st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,
	TaoYuan Hsien, Taiwan, R.O.C.
Telephone Number :	886-3-327-3456
Fax Number :	886-3-328-4978

2.2 Detail of Applicant

Company Name :	High Tech Computer Corp.
Address :	23 Xinghua Rd., Taoyuan 330, Taiwan

2.3 Detail of Manufacturer

Company Name :	High Tech Computer Corp.			
Address :	23 Xinghua Rd., Taoyuan 330, Taiwan			

2.4 Application Details

Date of reception of application:	Mar. 26, 2008
Start of test :	May 20, 2008
End of test :	Jun. 06, 2008

3. General Information

3.1 <u>Description of Device Under Test (DUT)</u>

	Product Feature & Specification			
DUT Type :	PDA Phone			
Model Name :	DIAM110			
FCC ID :	NM8DM			
Tx Frequency :	GSM850 : 824 MHz ~ 849 MHz GSM1900 : 1850 MHz ~ 1910 MHz WCDMA Band V : 824 MHz ~ 849 MHz WCDMA Band II : 1850 MHz ~ 1910 MHz			
Rx Frequency :	GSM850 : 869 MHz ~ 894 MHz GSM1900 : 1930 MHz ~ 1990 MHz WCDMA Band V : 869 MHz ~ 894 MHz WCDMA Band II : 1930 MHz ~ 1990 MHz			
Channel Spacing :	200 KHz			
GPRS / EGPRS Multislot class :	12			
Maximum Output Power to Antenna :	GSM850 : 33.26 dBm GSM1900 : 29.71 dBm WCDMA Band V : 24.25 dBm WCDMA Band II : 23.27 dBm			
Antenna Type :	Fixed Internal			
Type of Modulation :	GSM / GPRS : GMSK EDGE : 8PSK WCDMA / HSDPA / HSUPA : QPSK			
DUT Stage :	Identical Prototype			

3.2 Basic Combination of Device under Test

Sample A	PDA Phone with LCD Panel 1 + Photo Camera 1 + Video Camera 1
Sample B	PDA Phone with LCD Panel 2 + Photo Camera 2 + Video Camera 2
Sample C	PDA Phone with LCD Panel 1 + Photo Camera 1
Sample D	PDA Phone with LCD Panel 2 + Photo Camera 2

3.3 Applied Standards

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528-2003, and OET Bulletin 65 Supplement C (Edition 01-01) Preliminary Guidance for Reviewing Applications for Certification of 3G Device. May 2006. SAR Measurement Procedures for 3G Devices. June 2006. KDB 648474 D01 v01r03

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 <u>Test Conditions</u>

Item	HSL_850		MSL_850	MSL_850	
Date	May 23, 200	8 N	1ay 21, 2008	Jun. 06, 2008	
Ambient Temperature (°C)	20-24°C				
Tissue simulating liquid temperature (°C)	21.7°C 21.6°C 21.5°C			21.5°C	
Humidity (%)	<60%				
Item	HSL 1900 HSL 1900 MSL 1900 MSL 1900				
Date	May 22, 2008	May 23, 2	008 May 20,	2008 Jun. 06, 2008	
Ambient Temperature (°C)	20-24°C				
Tissue simulating liquid temperature (°C)	21.2°C	21.7°C	21.9°	C 21.6°C	
Humidity (%)	<60%				

3.5.1 Ambient Condition

3.5.2 Test Configuration

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

Measurements were performed on the lowest, middle, and highest channel for each testing position. Measurements were performed only on the middle channel if the SAR is below 3 dB of limit.

For SAR testing, EUT is in GSM or GPRS/EDGE or WCDMA/HSDPA/HSUPA link mode. In GSM link mode, its crest factor is 8.3. In GPRS/EDGE link mode, its crest factor is 2, because EUT is GPRS/EDGE class 12 device. In WCDMA/HSDPA/HSUPA link mode, its crest factor is 1.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. ρ). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \, \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

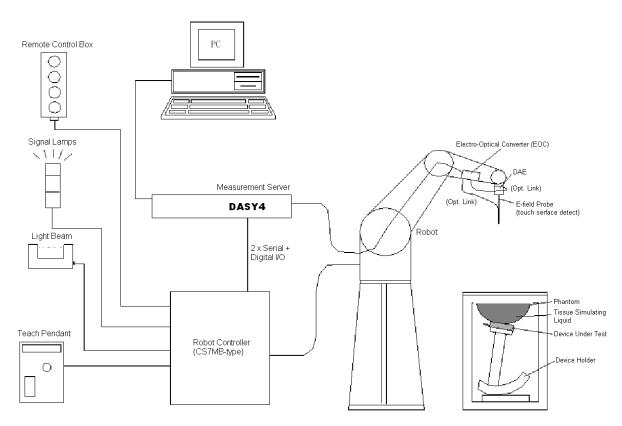


Fig. 5.1 DASY4 System

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- ➢ A device holder
- Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY4 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<et3dv6></et3dv6>	1 0
Construction	Symmetrical design with triangular core
	Built-in optical fiber for surface detection
	system
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic
	solvents)
Frequency	10 MHz to 3 GHz
Directivity	\pm 0.2 dB in brain tissue (rotation around probe
·	axis)
	± 0.4 dB in brain tissue (rotation perpendicular
	to probe axis)
Dynamic Range	5 μ W/g to 100mW/g; Linearity: ±0.2dB
Surface Detection	± 0.2 mm repeatability in air and clear liquids
	on reflecting surface
Dimensions	Overall length: 330mm
	Tip length: 16mm
	Body diameter: 12mm
	Tip diameter: 6.8mm
	Distance from probe tip to dipole centers:
	2.7mm
Application	General dosimetry up to 3GHz
	Compliance tests for mobile phones and
	Wireless LAN
	Fast automatic scanning in arbitrary phantoms
	5 51

5.1.1 ET3DV6 E-Field Probe Specification

		0
		1
	1	

Fig. 5.2 Probe Setup on Robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below: **ET3DV6 sn1787**

Sensitivity	X axis : 1.6	63 μV	Y ax	is : 1.66 μV	Z axis : 2.08 µV
Diode compression point	X axis : 92	2 mV	Y av	xis : 96 mV	Z axis : 91 mV
Conversion factor	Frequency (MHz)	X a	xis	Y axis	Z axis
(Head / Body)	800~1000	6.58 /	6.10	6.58 / 6.10	6.58 / 6.10
	1710~1910	5.16	4.68	5.16 / 4.68	5.16 / 4.68
Boundary effect	Frequency (MHz)	Alp	oha	Depth	
(Head / Body)	800~1000	0.32 /	0.36	2.42 / 2.52	
	1710~1910	0.50	0.61	2.61 / 2.56	

NOTE: The probe parameters have been calibrated by the SPEAG.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 <u>Robot</u>

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY4 system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

5.4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 <u>SAM Twin Phantom</u>

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- ➢ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

*Water-sugar based liquid

*Glycol based liquids

Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY4 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY4 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-less media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _{<i>i</i>} , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp <i>i</i>
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as :

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated :

E-field probes : $E_i = \sqrt{\frac{V_i}{Norm_iConvF}}$ H-field probes : $H_i = \sqrt{V_i} \frac{a_{i0+}a_{i1}f + a_{i2}f^2}{f}$ with V_i = compensated signal of channel i (i = x, y, z) $Norm_i$ = sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.8 <u>Test Equipment List</u>

Manufacture	Name of Equipment	Type/Model	Serial Number	Calib	ration
Manufacture	Name of Equipment	i ype/wiodei	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1787	Aug. 28, 2007	Aug. 28, 2008
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 17, 2008	Mar. 17, 2010
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 28, 2008	Mar. 28, 2010
SPEAG	Data Acquisition Electronics	DAE4	778	Sep. 17, 2007	Sep. 17, 2008
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1303	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1383	NCR	NCR
SPEAG	Phantom	QD 0VA 001 BB	1029	NCR	NCR
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR
SPEAG	Software	DASY4 V4.7 Build 55	N/A	NCR	NCR
SPEAG	Software	SEMCAD V1.8 Build 176	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
Agilent	ENA Series Network Analyzer	E5071B	MY42403579	Apr. 09, 2008	Apr. 08, 2009
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Dec. 22, 2006	Dec. 22, 2008
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR
Agilent	Power Meter	E4416A	GB41292344	Feb. 21, 2008	Feb. 20, 2009
Agilent	Power Sensor	E9327A	US40441548	Feb. 21, 2008	Feb. 20, 2009

Table 5.1 Test Equipment List

6. <u>Tissue Simulating Liquids</u>

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR)or from the flat phantom to the liquid top surface (body SAR) is 15.2cm.

The following ingredients for tissue simulating liquid are used:

- ▶ Water: deionized water (pure H₂0), resistivity \geq 16M Ω as basis for the liquid
- Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- Salt: pure NaCl to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- DGMBE: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 – to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of head and body tissue simulating liquid for frequency band 850MHz and 1900 MHz.

Ingredient	HSL-850	MSL-850	HSL-1900	MSL-1900
Water	532.98 g	631.68 g	552.42 g	716.56 g
Cellulose	0 g	0 g	0 g	0 g
Salt	18.3 g	11.72 g	3.06 g	4.0 g
Preventol D-7	2.4 g	1.2 g	0 g	0 g
Sugar	766.0 g	600.0 g	0 g	0 g
DGMBE	0 g	0 g	444.52 g	300.67 g
Total amount	1 liter (1.3 kg)	1 liter (1.3 kg)	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric	f = 835 MHz	f=835 MHz	f= 1900 MHz	f= 1900 MHz
Parameters at 22°	rameters at 22° $\varepsilon_r = 41.5 \pm 5\%$,		$\epsilon_{\rm r} = 40.0 \pm 5\%$,	$\epsilon_{\rm r} = 53.3 \pm 5 \%$,
	$\sigma = 0.90 \pm 5\%$ S/m	$\sigma = 0.97 \pm 5\%$ S/m	σ= 1.4±5% S/m	σ= 1.52±5% S/m

Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Band	Position	Frequency (MHz)	Permittivity (_{Er})	Conductivity (o)	Measurement Date		
		824.2	40.9	0.903			
	Head	836.4	40.9	0.914	May 23, 2008		
GSM850		848.8	40.7	0.923			
05141050		824.2	56.3	0.955			
	Body	836.4	56.3	0.967	May 21, 2008		
		848.8	56.1	0.976			
		1850.2	38.8	1.37			
	Head	1880.0	38.7	1.40	May 22, 2008		
GSM1900		1909.8	38.6	1.43			
05111700		1850.2	51.4	1.47			
	Body	1880.0	51.3	1.50	May 20, 2008		
		1909.8	51.2	1.53			
		826.4	40.9	0.905			
	Head	836.4	40.9 40.7	0.914	May 23, 2008		
		846.6					
		826.4	56.3	0.957			
WCDMA Band V	Body	836.4	56.3	0.967	May 21, 2008		
		846.6	56.2	0.975			
		826.4	56.3	0.957			
	Body	836.4	56.3	0.966	Jun. 06, 2008		
		846.6	56.2	0.975			
		1852.4	38.8	1.38			
	Head	1880.0	38.7	1.40	May 22, 2008		
		1907.6	38.6	1.43			
		1850.2	39.1	1.38			
	Head	1880.0	39.1	1.40	May 23, 2008		
WCDMA Band II		1909.8	39.0	1.43			
		1852.4	51.4	1.47			
	Body	1880.0	51.3	1.50	May 20, 2008		
		1907.6	51.2	1.53			
	Body	1880.0	51.7	1.55	Jun. 06, 2008		
		1907.6	51.7	1.58	Í		

Table 6.2 shows the measuring results for head and muscle simulating liquid.

Table 6.2 Measuring Results for Simulating Liquid

The measuring data are consistent with $\varepsilon_r = 41.5\pm5\%$ and $\sigma = 0.9\pm5\%$ for head GSM850 and WCDMA Band V, $\varepsilon_r = 55.2\pm5\%$ and $\sigma = 0.97\pm5\%$ for body GSM850 and WCDMA Band V, $\varepsilon_r = 40.0\pm5\%$ and $\sigma = 1.4\pm5\%$ for head GSM1900 and WCDMA Band II, and $\varepsilon_r = 53.3\pm5\%$ and $\sigma = 1.52\pm5\%$ for body GSM1900 and WCDMA Band II.

7. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Distributions Normal		Triangular	U-shape
Multiplying factor ^(a)	$_{1/k}(b)$	1/√3	1/√6	1/√2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) \mathcal{K} is the coverage factor

Table 7.1 Multiplying Factions for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement Equipment						
Probe Calibration	±5.9 %	Normal	1	1	±5.9 %	∞
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	∞
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	±2.7 %	∞
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	∞
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	∞
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	±1.5 %	∞
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Probe Positioner	±0.4 %	Rectangular	$\sqrt{3}$	1	±0.2 %	∞
Probe Positioning	±2.9 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Max. SAR Eval.	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9	145
Device Holder	±3.6 %	Normal	1	1	±3.6	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9	∞
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6	x
Liquid Permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	±1.7	x
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5	x
Combined Standard Uncertainty					±10.9	387
Coverage Factor for 95 %		K=2				
Expanded uncertainty (Coverage factor = 2)					±21.9	

Table 7.2 Uncertainty Budget of DASY4

8. SAR Measurement Evaluation

Each DASY4 system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY4 software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 <u>Purpose of System Performance check</u>

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 <u>System Setup</u>

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

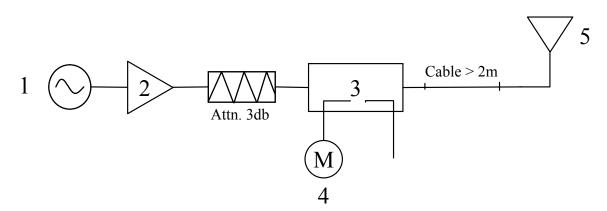


Fig. 8.1 System Setup for System Evaluation

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 835 MHz or 1900 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Band	Position	SAR	Target (W/kg)	Measurement data (W/kg)	Variation	Measurement Date
GSM850	Head	SAR (1g) SAR (10g)	9.16 6.0	8.73 5.69	-4.7 % -5.2 %	May 23, 2008
(835MHz)	Body	SAR (1g) SAR (10g)	9.52 6.37	9.29 6.14	-2.4 % -3.6 %	May 21, 2008
GSM1900	Head	SAR (1g) SAR (10g)	<u>39.5</u> 20.6	38.1 20.0	-3.5 % -2.9 %	May 22, 2008
(1900MHz)	Body	SAR (1g) SAR (10g)	40.1 21.3	40.7	1.5 % 3.3 %	May 20, 2008
	Head	SAR (1g) SAR (10g)	9.24 6.07	8.73 5.69	-4.7 % -5.2 %	May 23, 2008
WCDMA Band V	Body	SAR (1g) SAR (10g)	9.91 6.55	9.29 6.14	-2.4 % -3.6 %	May 21, 2008
(835MHz)	Body	SAR (1g) SAR (10g)	9.91 6.55	9.96 6.57	0.5 % 0.3 %	Jun. 06, 2008
	Head	SAR (1g) SAR (10g)	39.5 20.6	38.1 20.0	-3.5 % -2.9 %	May 22, 2008
WCDMA Dend H	Head	SAR (1g) SAR (10g)	39.5 20.6	38.5 20.2	-2.5 % -1.9 %	May 23, 2008
Band II (1900MHz)	Body	SAR (1g) SAR (10g)	41.1 21.8	43.1 23.2	4.9 % 6.4 %	Jun. 06, 2008
	Body	SAR (1g) SAR (10g)	41.1 21.8	40.7 22.0	1.5 % 3.3 %	May 20, 2008

Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in 6 different positions. They are right cheek, right tilted, left cheek, left tilted, face with 1.5cm Gap and bottom with 1.5cm Gap as illustrated below:

- 1) "Cheek Position"
 - i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.
 - ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).
- 2) "Tilted Position"
 - i) To position the device in the "cheek" position described above.
 - ii) While maintaining the device the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).
- 3) "Body Worn"
 - i) To position the device parallel to the phantom surface.
 - ii) To adjust the phone parallel to the flat phantom.
 - iii) To adjust the distance between the EUT surface and the flat phantom to 1.5 cm.

Remark: Please refer to Appendix E for the test setup photos.

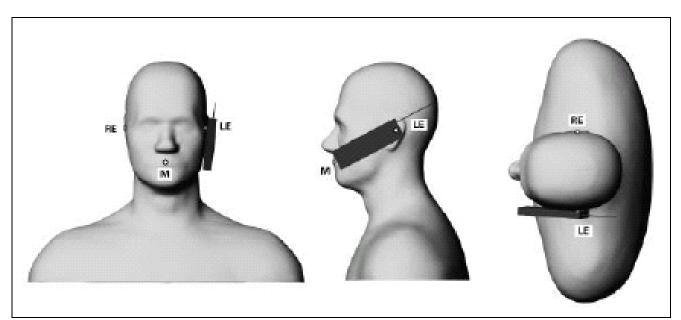


Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

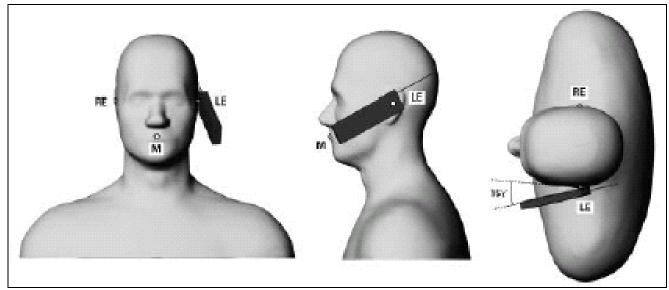


Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

10. Measurement Procedures

The measurement procedures are as follows:

- Linking DUT with base station emulator CMU200 in middle channel
- Setting CMU200 to allow DUT to radiate maximum output power
- Measuring output power through RF cable and power meter
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY4 software
- > Taking data for the middle channel on each testing position
- Finding out the largest SAR result on these testing positions of each band
- Measuring output power and SAR results for the low and high channels in this worst case testing position

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- > Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 <u>Scan Procedures</u>

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Conducted Power

Band Mada Channel		GSM 850 (dBm)		GSM 1900 (dBm)			
Mode	128	189	128	189	128	189	
GSM	32.29	33.26	33.06	29.68	29.66	29.71	
GPRS 8	33.02	33.14	32.95	29.58	29.60	29.68	
GPRS 10	32.59	32.58	32.43	29.11	29.08	29.15	
GPRS 12	31.21	31.31	31.11	27.96	27.86	27.80	
EGPRS 8	27.30	27.33	27.28	25.88	25.84	25.94	
EGPRS 10	27.29	27.26	27.22	25.79	25.75	25.82	
EGPRS 12	27.18	27.15	27.00	25.77	25.71	25.90	

Band Mada Channel		WCDMA Band V (dBm)	/	WCDMA Band II (dBm)			
Mode	4132	4182	4233	9262	9400	9538	
12.2K	23.48	23.68	23.50	22.55	22.65	22.46	
64K	23.60	23.73	23.60	22.60	22.54	22.33	
144K	23.61	23.78	23.61	22.57	22.72	22.40	
384K	23.61	23.57	23.63	22.59	22.74	22.43	
12.2K+HSDPA	22.85	22.86	22.88	21.74	21.99	21.85	
12.2K+HSUPA	23.96	24.25	23.86	22.86	23.27	22.95	

11.2 Pretest for Head SAR

Sample	Battery	Position	Band	Chan.	Freq. (MHz)	Modulation Type	Measured 1g SAR (W/kg)	Measured 10g SAR (W/kg)	Power Drift	Limit (W/kg)	Result
А	1	LC	WCDMA Band II	9400	1880.0	QPSK	1.28	0.755	0.138	1.6	Pass
В	2	LC	WCDMA Band II	9400	1880.0	QPSK	1.17	0.695	0.122	1.6	Pass
С	3	LC	WCDMA Band II	9400	1880.0	QPSK	1.09	0.65	0.149	1.6	Pass
D	4	LC	WCDMA Band II	9400	1880.0	QPSK	1.15	0.694	0.169	1.6	Pass
Α	5	LC	WCDMA Band II	9400	1880.0	QPSK	1.38	0.815	0.163	1.6	Pass
В	6	LC	WCDMA Band II	9400	1880.0	QPSK	1.22	0.713	0.128	1.6	Pass

Remark: The worst configuration for head SAR is Sample A with Battery 5.

Sample	Battery	Position	Band	Chan.	Freq. (MHz)	Modulation Type	Measured 1g SAR (W/kg)	Measured 10g SAR (W/kg)	Power Drift	Limit (W/kg)	Result
Α	5	RC	GSM850	189	836.4	GMSK	0.427	0.319	-0.101	1.6	Pass
Α	5	RT	GSM850	189	836.4	GMSK	0.332	0.247	-0.106	1.6	Pass
А	5	LC	GSM850	189	836.4	GMSK	0.518	0.378	-0.09	1.6	Pass
А	5	LT	GSM850	189	836.4	GMSK	0.37	0.277	-0.09	1.6	Pass
Α	5	LC	GSM850	128	824.2	GMSK	0.272	0.2	-0.095	1.6	Pass
Α	5	LC	GSM850	251	848.8	GMSK	0.628	0.455	0.099	1.6	Pass
А	5	RC	GSM1900	661	1880.0	GMSK	0.49	0.326	-0.001	1.6	Pass
А	5	RT	GSM1900	661	1880.0	GMSK	0.248	0.147	0.053	1.6	Pass
А	5	LC	GSM1900	661	1880.0	GMSK	0.728	0.423	0.059	1.6	Pass
А	5	LT	GSM1900	661	1880.0	GMSK	0.285	0.175	-0.054	1.6	Pass
Α	5	LC	GSM1900	512	1850.2	GMSK	0.784	0.452	0.028	1.6	Pass
А	5	LC	GSM1900	810	1909.8	GMSK	0.756	0.429	-0.03	1.6	Pass
А	5	RC	WCDMA Band V	4182	836.4	GMSK	0.301	0.224	-0.024	1.6	Pass
А	5	RT	WCDMA Band V	4182	836.4	GMSK	0.244	0.181	-0.139	1.6	Pass
А	5	LC	WCDMA Band V	4182	836.4	GMSK	0.349	0.256	-0.158	1.6	Pass
А	5	LT	WCDMA Band V	4182	836.4	GMSK	0.263	0.196	-0.003	1.6	Pass
А	5	LC	WCDMA Band V	4132	826.4	GMSK	0.326	0.24	-0.137	1.6	Pass
Α	5	LC	WCDMA Band V	4233	846.6	GMSK	0.471	0.344	0.035	1.6	Pass
А	5	RC	WCDMA Band II	9400	1880.0	QPSK	0.75	0.51	0.137	1.6	Pass
А	5	RT	WCDMA Band II	9400	1880.0	QPSK	0.473	0.278	0.032	1.6	Pass
Α	5	LC	WCDMA Band II	9400	1880.0	QPSK	1.38	0.815	0.163	1.6	Pass
А	5	LT	WCDMA Band II	9400	1880.0	QPSK	0.509	0.313	0.056	1.6	Pass
А	5	LC	WCDMA Band II	9262	1852.4	QPSK	1.19	0.712	0.12	1.6	Pass
А	5	LC	WCDMA Band II	9538	1907.6	QPSK	1.14	0.675	0.15	1.6	Pass

11.3 Test Records for Head SAR Test

Remark:

- 1. RC stands for right cheek.
- 2. RT stands for right tilted.
- 3. LC stands for left cheek.
- 4. LT stands for left tilted.

11.4 Pretest for Body SAR

Sample	Battery	Ear- phone	Position	Band	Chan.	Freq. (MHz)	Modulation Type	Measured 1g SAR (W/kg)	Measured 10g SAR (W/kg)		Limit (W/kg)	Result
Α	1	1	Bottom With 1.5cm Gap	GSM1900 (GPRS12)	661	1880.0	GMSK	0.761	0.434	-0.122	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	GSM1900 (GPRS12)	661	1880.0	GMSK	0.876	0.507	-0.13	1.6	Pass
С	3	3	Bottom With 1.5cm Gap	GSM1900 (GPRS12)	661	1880.0	GMSK	0.819	0.467	-0.128	1.6	Pass
D	4	1	Bottom With 1.5cm Gap	GSM1900 (GPRS12)	661	1880.0	GMSK	0.69	0.401	-0.123	1.6	Pass
Α	5	2	Bottom With 1.5cm Gap	GSM1900 (GPRS12)	661	1880.0	GMSK	0.765	0.446	-0.133	1.6	Pass
В	6	3	Bottom With 1.5cm Gap	GSM1900 (GPRS12)	661	1880.0	GMSK	0.796	0.451	-0.14	1.6	Pass
В	2	2	Face With 1.5cm Gap	GSM1900 (GPRS12)	661	1880.0	GMSK	0.488	0.299	-0.081	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	GSM1900 (EGPRS12)	661	1880.0	8PSK	0.48	0.277	0.02	1.6	Pass

Remark: The worst configuration for body SAR is Sample B with Battery 2 and Earphone 2.

Sample	Battery	Ear- phone	Position	Band	Chan.	Freq. (MHz)	Modulation Type	Measured 1g SAR (W/kg)	Measured 10g SAR (W/kg)	Power Drift	Limit (W/kg)	Result
В	2	2	Face With 1.5cm Gap	GSM850 (GPRS12)	189	836.4	GMSK	0.386	0.279	-0.127	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	GSM850 (GPRS12)	189	836.4	GMSK	1.16	0.817	-0.131	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	GSM850 (EGPRS12)	189	836.4	8PSK	0.393	0.258	-0.115	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	GSM850 (GPRS12)	128	824.2	GMSK	1.32	0.95	-0.186	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	GSM850 (GPRS12)	251	848.8	GMSK	0.86	0.607	0.017	1.6	Pass
В	2	2	Face With 1.5cm Gap	GSM1900 (GPRS12)	661	1880.0	GMSK	0.488	0.299	-0.081	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	GSM1900 (GPRS12)	661	1880.0	GMSK	0.876	0.507	-0.13	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	GSM1900 (EGPRS12)	661	1880.0	8PSK	0.48	0.277	0.02	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	GSM1900 (GPRS12)	512	1850.2	GMSK	0.992	0.542	-0.103	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	GSM1900 (GPRS12)	810	1909.8	GMSK	0.737	0.422	-0.194	1.6	Pass
В	2	2	Face With 1.5cm Gap	WCDMA Band V (RMK 12.2K)	4182	836.4	QPSK	0.144	0.107	0.023	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	WCDMA Band V (RMK 12.2K)	4182	836.4	QPSK	0.351	0.233	0.14	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	WCDMA Band V (HSDPA+RMC12.2K)	4182	836.4	QPSK	0.295	0.196	0.033	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	WCDMA Band V (RMC12.2K)	4132	826.4	QPSK	0.306	0.221	-0.069	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	WCDMA Band V (RMC12.2K)	4233	846.6	QPSK	0.384	0.275	-0.004	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	WCDMA Band V (HSUPA+RMC12.2K)	4233	846.6	QPSK	0.317	0.225	0.072	1.6	Pass
В	2	2	Face With 1.5cm Gap	WCDMA Band II (RMK 12.2K)	9400	1880.0	QPSK	0.389	0.239	0.124	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	WCDMA Band II (RMK 12.2K)	9400	1880.0	QPSK	0.674	0.381	0.059	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	WCDMA Band II (HSDPA+RMC12.2K)	9400	1880.0	QPSK	0.592	0.335	0.072	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	WCDMA Band II (RMC12.2K)	9262	1852.4	QPSK	0.801	0.451	0.172	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	WCDMA Band II (RMC12.2K)	9538	1907.6	QPSK	0.597	0.339	-0.013	1.6	Pass
В	2	2	Bottom With 1.5cm Gap	WCDMA Band II (HSUPA+RMC12.2K)	9262	1852.4	QPSK	0.55	0.318	0.122	1.6	Pass

11.5 Test Records for Body SAR Test

Remark:

1. The holster, model name: PO S400, which does not contain any metallic components is used as protective cover for DUT and only intended to be used for hand-held, so that it has not been tested.

2. Test Engineer : Gordon Lin, Jason Wang, Eric Huang, and Nick

12.<u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21, 2003
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DASY4 System Handbook

SPORTON LAB. FCC/IC SAR Test Report

1.

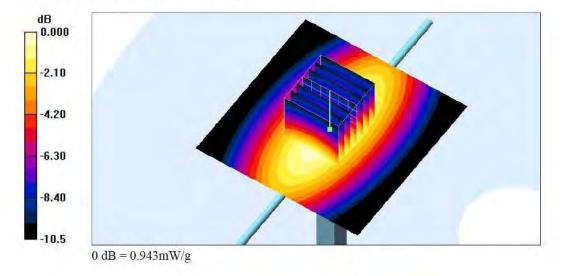
Date: 2008/5/23

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

System Check Head 835MHz

DUT: Dipole 835 MHz


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.913$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.8 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

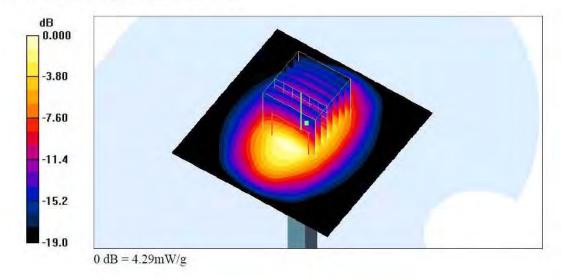
Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.940 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 33.1 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 1.30 W/kg SAR(1 g) = 0.873 mW/g; SAR(10 g) = 0.569 mW/g Maximum value of SAR (measured) = 0.943 mW/g

Date: 2008/5/22

System Check Head 1900MHz

DUT: Dipole 1900 MHz


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 38.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.2 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

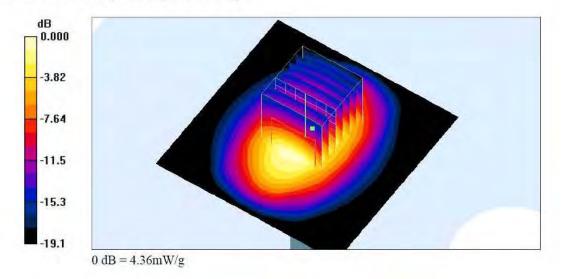
Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.50 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.3 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 6.66 W/kg SAR(1 g) = 3.81 mW/g; SAR(10 g) = 2 mW/g Maximum value of SAR (measured) = 4.29 mW/g

Date: 2008/5/23

System Check Head 1900MHz

DUT: Dipole 1900 MHz


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

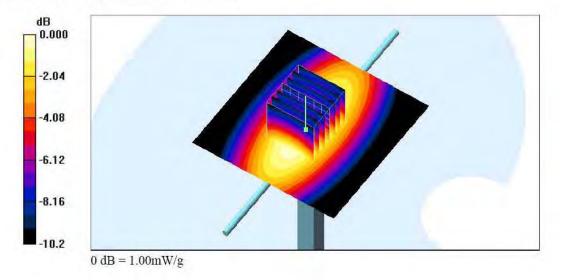
Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.52 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.4 V/m; Power Drift = -0.035 dB Peak SAR (extrapolated) = 6.75 W/kg **SAR(1 g) = 3.85 mW/g; SAR(10 g) = 2.02 mW/g Maximum value of SAR (measured) = 4.36 mW/g**

Date: 2008/5/21

System Check Body 835MHz

DUT: Dipole 835 MHz


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.965$ mho/m; $\varepsilon_r = 56.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.02 mW/g

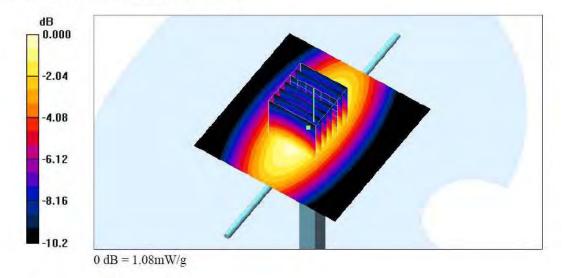
Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 33.8 V/m; Power Drift = -0.113 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.929 mW/g; SAR(10 g) = 0.614 mW/g Maximum value of SAR (measured) = 1.00 mW/g

Date: 2008/6/6

System Check Body 835MHz

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1


Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.965$ mho/m; $\varepsilon_r = 56.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.08 mW/g

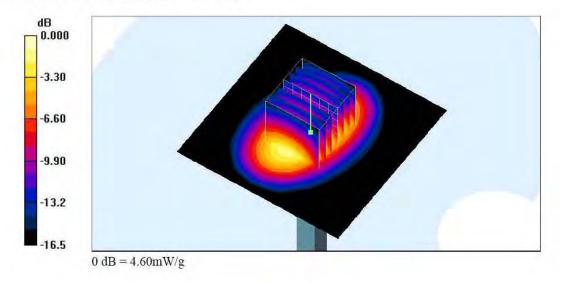
Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 34.5 V/m; Power Drift = -0.008 dB Peak SAR (extrapolated) = 1.43 W/kg SAR(1 g) = 0.996 mW/g; SAR(10 g) = 0.657 mW/g Maximum value of SAR (measured) = 1.08 mW/g

Date: 2008/5/20

System Check_Body_1900MHz

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1900 MHz; σ = 1.52 mho/m; ϵ_r = 51.2; ρ = 1000 kg/m³


Ambient Temperature : 22.9 °C; Liquid Temperature : 21.9 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.69 mW/g

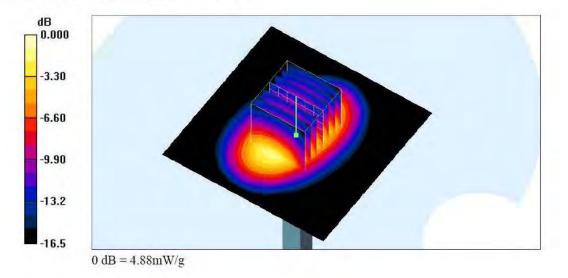
Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.3 V/m; Power Drift = 0.002 dBPeak SAR (extrapolated) = 6.76 W/kg**SAR(1 g) = 4.07 \text{ mW/g}; SAR(10 g) = 2.2 \text{ mW/g}** Maximum value of SAR (measured) = 4.60 mW/g

Date: 2008/6/6

System Check_Body_1900MHz

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1


Medium: MSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 51.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.98 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.6 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 7.17 W/kg **SAR(1 g) = 4.31 mW/g; SAR(10 g) = 2.32 mW/g** Maximum value of SAR (measured) = 4.88 mW/g

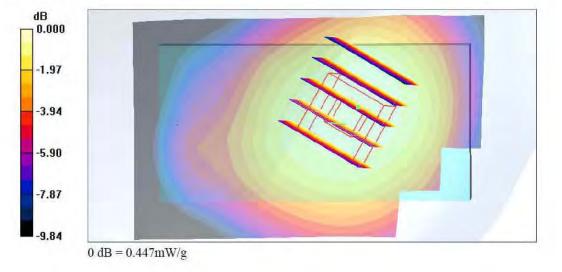
Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/5/23

Right Cheek_GSM850 Ch189_Battery5_Sample A

DUT: 832620

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.7 °C


DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.452 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.1 V/m; Power Drift = -0.101 dB Peak SAR (extrapolated) = 0.537 W/kg SAR(1 g) = 0.427 mW/g; SAR(10 g) = 0.319 mW/g

Maximum value of SAR (measured) = 0.447 mW/g

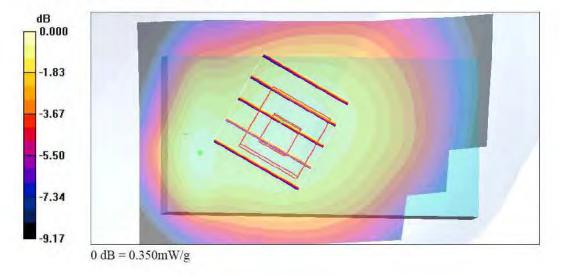
Date: 2008/5/23

Right Tilted_GSM850 Ch189_Battery5_Sample A

DUT: 832620

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914 \text{ mho/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.5 °C; Liquid Temperature : 21.7 °C


DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.348 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.6 V/m; Power Drift = -0.106 dB Peak SAR (extrapolated) = 0.420 W/kg SAR(1 g) = 0.332 mW/g; SAR(10 g) = 0.247 mW/g

Maximum value of SAR (measured) = 0.350 mW/g

Date: 2008/5/23

Left Cheek_GSM850 Ch251_Battery5_Sample A

DUT: 832620

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3

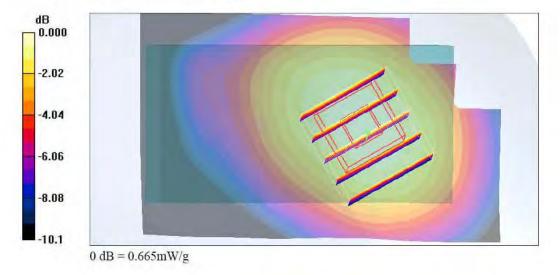
Medium: HSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.923$ mho/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn778; Calibrated: 2007/9/17


- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.641 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.7 V/m; Power Drift = 0.099 dB Peak SAR (extrapolated) = 0.818 W/kg

SAR(1 g) = 0.628 mW/g; SAR(10 g) = 0.455 mW/gMaximum value of SAR (measured) = 0.665 mW/g

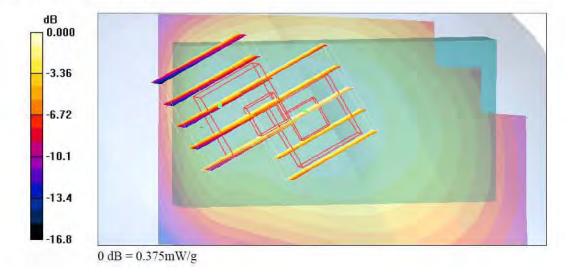
Date: 2008/5/23

Left Tilted_GSM850 Ch189_Battery5_Sample A

DUT: 832620

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914 \text{ mho/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.8 °C: Liquid Temperature : 21.7 °C


DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.388 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.0 V/m; Power Drift = -0.090 dB Peak SAR (extrapolated) = 0.467 W/kg SAR(1 g) = 0.370 mW/g; SAR(10 g) = 0.277 mW/g Maximum value of SAR (measured) = 0.390 mW/g

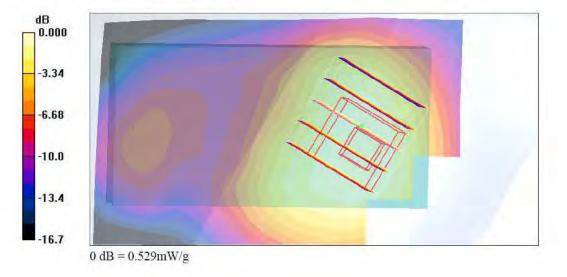
Ch189/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.0 V/m; Power Drift = -0.090 dBPeak SAR (extrapolated) = 0.626 W/kgSAR(1 g) = 0.321 mW/g; SAR(10 g) = 0.214 mW/gSAR (measured) = 0.375 mW/g

Date: 2008/5/22

Right Cheek_GSM1900 Ch661_Battery5_Sample A

DUT: 832620

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3


Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.2 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.543 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.11 V/m; Power Drift = -0.001 dB Peak SAR (extrapolated) = 0.672 W/kgSAR(1 g) = 0.490 mW/g; SAR(10 g) = 0.326 mW/gMaximum value of SAR (measured) = 0.529 mW/g

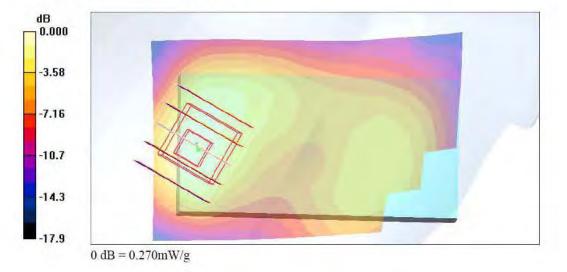
Date: 2008/5/22

Right Tilted_GSM1900 Ch661_Battery5_Sample A

DUT: 832620

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.2 °C; Liquid Temperature : 21.2 °C


DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.290 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.6 V/m; Power Drift = 0.053 dBPeak SAR (extrapolated) = 0.368 W/kgSAR(1 g) = 0.248 mW/g; SAR(10 g) = 0.147 mW/g

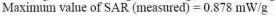
Maximum value of SAR (measured) = 0.270 mW/g

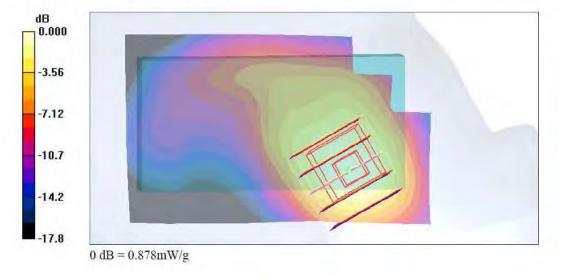
Date: 2008/5/22

Left Cheek_GSM1900 Ch512_Battery5_Sample A

DUT: 832620

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3


Medium: HSL 1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\varepsilon_{e} = 38.8$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.1 °C; Liquid Temperature : 21.2 °C


DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.881 mW/g

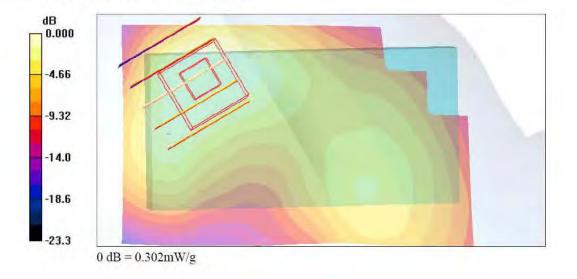
Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.45 V/m; Power Drift = 0.028 dB Peak SAR (extrapolated) = 1.24 W/kg SAR(1 g) = 0.784 mW/g; SAR(10 g) = 0.452 mW/g

Date: 2008/5/22

Left Tilted_GSM1900 Ch661_Battery5_Sample A

DUT: 832620

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3


Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.2 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.368 mW/g

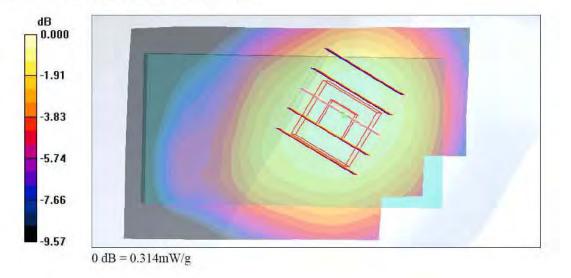
Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.1 V/m; Power Drift = -0.054 dB Peak SAR (extrapolated) = 0.455 W/kg SAR(1 g) = 0.285 mW/g; SAR(10 g) = 0.175 mW/g Maximum value of SAR (measured) = 0.302 mW/g

Date: 2008/5/23

Right Cheek_WCDMA850 Ch4182_Battery5_Sample A

DUT: 832620

Communication System: WCDMA Band 5; Frequency: 836.4 MHz;Duty Cycle: 1:1


Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914 \text{ mho/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.315 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.22 V/m; Power Drift = -0.024 dB Peak SAR (extrapolated) = 0.377 W/kg SAR(1 g) = 0.301 mW/g; SAR(10 g) = 0.224 mW/g Maximum value of SAR (measured) = 0.314 mW/g

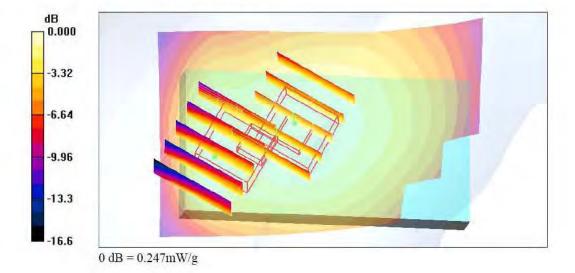
Date: 2008/5/23

Right Tilted_WCDMA850 Ch4182_Battery5_Sample A

DUT: 832620

Communication System: WCDMA Band 5; Frequency: 836.4 MHz;Duty Cycle: 1:1

Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.914 \text{ mho/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.9 °C : Liquid Temperature : 21.7 °C


DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.274 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.9 V/m; Power Drift = -0.139 dB Peak SAR (extrapolated) = 0.310 W/kg SAR(1 g) = 0.244 mW/g; SAR(10 g) = 0.181 mW/g Maximum value of SAR (measured) = 0.256 mW/g

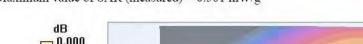
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.9 V/m; Power Drift = -0.139 dB Peak SAR (extrapolated) = 0.446 W/kg SAR(1 g) = 0.212 mW/g; SAR(10 g) = 0.143 mW/g Maximum value of SAR (measured) = 0.247 mW/g

Date: 2008/5/23

Left Cheek_WCDMA850 Ch4233_Battery5_Sample A

DUT: 832620

Communication System: WCDMA Band 5; Frequency: 846.6 MHz;Duty Cycle: 1:1


Medium: HSL_850 Medium parameters used: f = 847 MHz; $\sigma = 0.922$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.8 °C; Liquid Temperature : 21.7 °C


DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4233/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.493 mW/g

Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.02 V/m; Power Drift = 0.035 dB Peak SAR (extrapolated) = 0.619 W/kg SAR(1 g) = 0.471 mW/g; SAR(10 g) = 0.344 mW/g Maximum value of SAR (measured) = 0.501 mW/g

Date: 2008/5/23

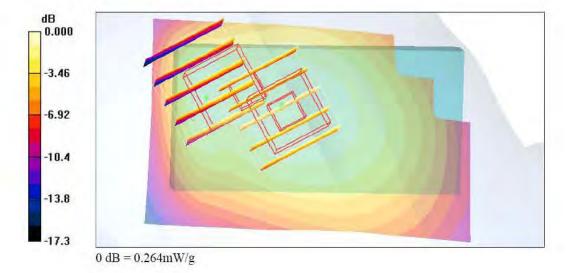
Left Tilted_WCDMA850 Ch4182_Battery5_Sample A

DUT: 832620

Communication System: WCDMA Band 5; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.914 \text{ mho/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.9 °C : Liquid Temperature : 21.7 °C

Ambient Temperature · 22.9 C; Liquid Temperature ·


DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.275 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.6 V/m; Power Drift = -0.003 dB Peak SAR (extrapolated) = 0.330 W/kg SAR(1 g) = 0.263 mW/g; SAR(10 g) = 0.196 mW/g Maximum value of SAR (measured) = 0.277 mW/g

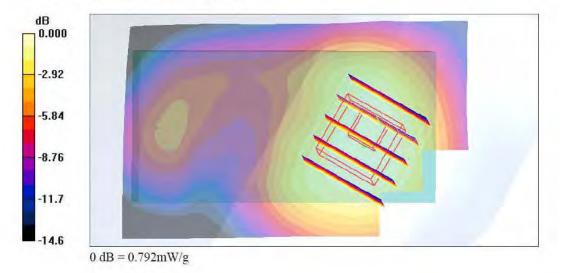
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.6 V/m; Power Drift = -0.003 dB Peak SAR (extrapolated) = 0.465 W/kg SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.146 mW/g Maximum value of SAR (measured) = 0.264 mW/g

Date: 2008/5/22

Right Cheek_WCDMA1900 Ch9400_Battery5_Sample A

DUT: 832620

Communication System: WCDMA Band 2; Frequency: 1880 MHz;Duty Cycle: 1:1


Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.2 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch9400/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.806 mW/g

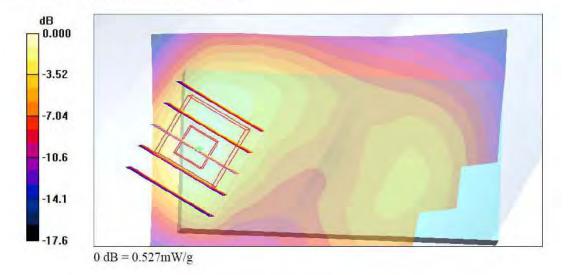
Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.6 V/m; Power Drift = 0.137 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.750 mW/g; SAR(10 g) = 0.510 mW/g Maximum value of SAR (measured) = 0.792 mW/g

Date: 2008/5/22

Right Tilted_WCDMA1900 Ch9400_Battery5_Sample A

DUT: 832620

Communication System: WCDMA Band 2; Frequency: 1880 MHz;Duty Cycle: 1:1


Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.2 °C: Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch9400/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.537 mW/g

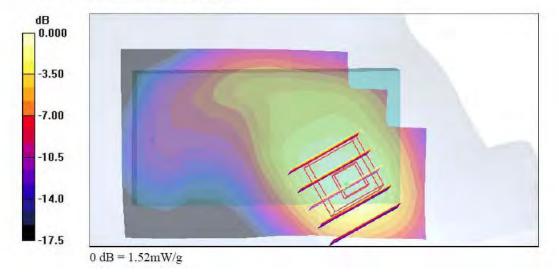
Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.4 V/m; Power Drift = 0.032 dB Peak SAR (extrapolated) = 0.702 W/kg SAR(1 g) = 0.473 mW/g; SAR(10 g) = 0.278 mW/g Maximum value of SAR (measured) = 0.527 mW/g

Date: 2008/5/22

Left Cheek_WCDMA1900 Ch9400_Battery5_Sample A

DUT: 832620

Communication System: WCDMA Band 2; Frequency: 1880 MHz;Duty Cycle: 1:1


Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.3 °C: Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch9400/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.50 mW/g

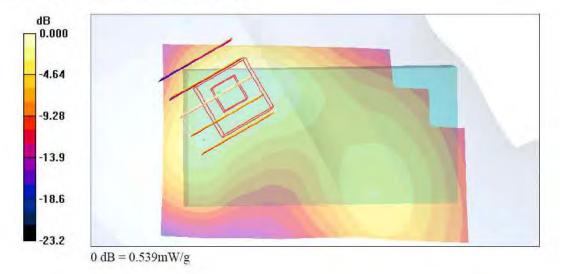
Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.6 V/m; Power Drift = 0.163 dB Peak SAR (extrapolated) = 2.17 W/kg SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.815 mW/g Maximum value of SAR (measured) = 1.52 mW/g

Date: 2008/5/22

Left Tilted_WCDMA1900 Ch9400_Battery5_Sample A

DUT: 832620

Communication System: WCDMA Band 2; Frequency: 1880 MHz;Duty Cycle: 1:1


Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.2 °C: Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch9400/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.647 mW/g

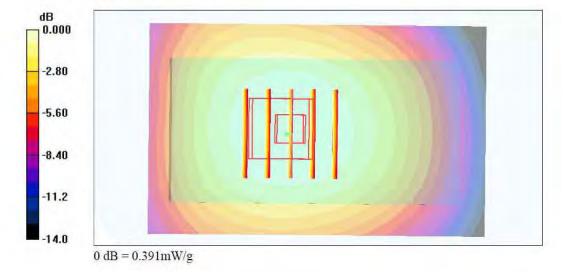
Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.6 V/m; Power Drift = 0.056 dB Peak SAR (extrapolated) = 0.798 W/kg SAR(1 g) = 0.509 mW/g; SAR(10 g) = 0.313 mW/g Maximum value of SAR (measured) = 0.539 mW/g

Date: 2008/5/21

Body_GSM850 Ch189_Face With 1.5cm Gap_GPRS12_Earphone2_Battery2_Sample B

DUT: 832620

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2


Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.967 \text{ mho/m}$; $\varepsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.402 mW/g

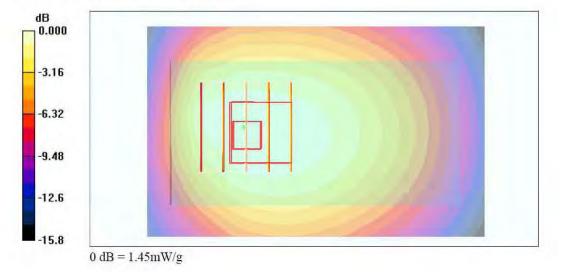
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.84 V/m; Power Drift = -0.127 dB Peak SAR (extrapolated) = 0.492 W/kg SAR(1 g) = 0.386 mW/g; SAR(10 g) = 0.279 mW/g Maximum value of SAR (measured) = 0.391 mW/g

Date: 2008/5/21

Body_GSM850 Ch128_Bottom With 1.5cm Gap_GPRS12_Earphone2_Battery2_Sample B

DUT: 832620

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:2


Medium: MSL_850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.955 \text{ mho/m}$; $\varepsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch128/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.45 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.2 V/m; Power Drift = -0.186 dB Peak SAR (extrapolated) = 2.65 W/kg SAR(1 g) = 1.32 mW/g; SAR(10 g) = 0.950 mW/g Maximum value of SAR (measured) = 1.37 mW/g

Date: 2008/5/20

Body_GSM1900 Ch661_Face With 1.5cm Gap_GPRS12_Earphone2_Battery2_Sample B

DUT: 832620

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 51.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.9 °C: Liquid Temperature : 21.9 °C

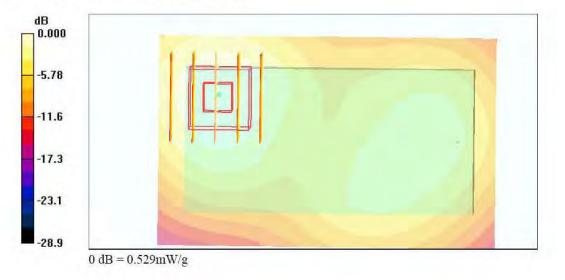
DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn778; Calibrated: 2007/9/17

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383


- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.549 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.8 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 0.769 W/kg SAR(1 g) = 0.488 mW/g; SAR(10 g) = 0.299 mW/g

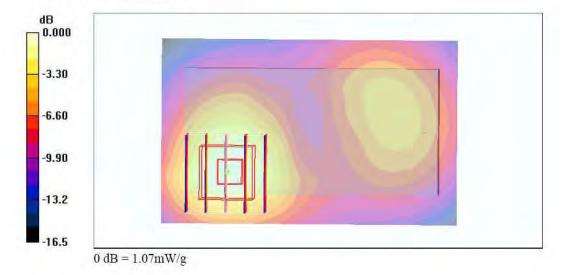
Maximum value of SAR (measured) = 0.529 mW/g

Date: 2008/5/20

Body_GSM1900 Ch512_Bottom With 1.5cm Gap_GPRS12_Earphone2_Battery2_Sample B

DUT: 832620

Communication System: PCS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:2


Medium: MSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.8 °C; Liquid Temperature : 21.9 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.11 mW/g

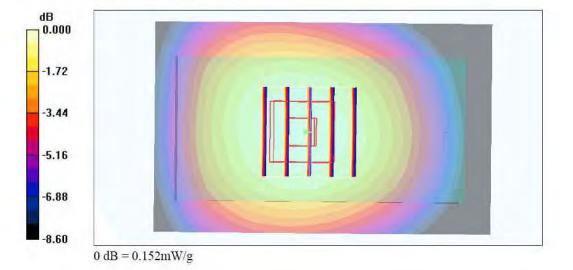
Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.4 V/m; Power Drift = -0.103 dB Peak SAR (extrapolated) = 1.69 W/kg SAR(1 g) = 0.992 mW/g; SAR(10 g) = 0.542 mW/g Maximum value of SAR (measured) = 1.07 mW/g

Date: 2008/5/21

Body_WCDMA850 Ch4182_Face With 1.5cm Gap_RMC12.2K_Earphone2_Battery2_Sample B

DUT: 832620

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1


Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.967 \text{ mho/m}$; $\varepsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4182/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.152 mW/g

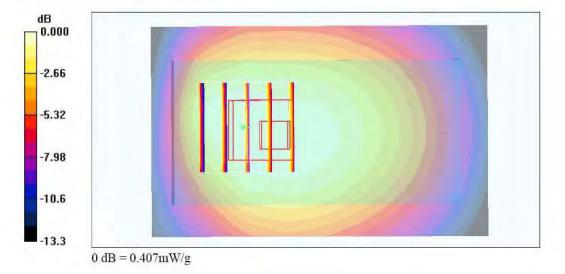
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.12 V/m; Power Drift = 0.023 dB Peak SAR (extrapolated) = 0.176 W/kg SAR(1 g) = 0.144 mW/g; SAR(10 g) = 0.107 mW/g Maximum value of SAR (measured) = 0.152 mW/g

Date: 2008/5/21

Body_WCDMA850 Ch4233_Bottom With 1.5cm Gap_RMC12.2K_Earphone2_Battery2_Sample B

DUT: 832620

Communication System: WCDMA; Frequency: 846.6 MHz;Duty Cycle: 1:1


Medium: MSL_850 Medium parameters used: f = 847 MHz; $\sigma = 0.975$ mho/m; $\varepsilon_r = 56.2$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C: Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4233/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.434 mW/g

Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.48 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 0.575 W/kg SAR(1 g) = 0.384 mW/g; SAR(10 g) = 0.275 mW/g Maximum value of SAR (measured) = 0.407 mW/g

Body_WCDMA1900 Ch9400_Face With 1.5cm Gap_RMC12.2K_Earphone2_Battery2_Sample B

Date: 2008/5/20

DUT: 832620

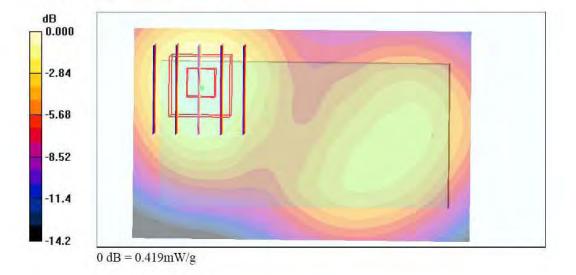
Communication System: WCDMA Band 2; Frequency: 1880 MHz;Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 51.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.8 °C; Liquid Temperature : 21.9 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE4 Sn778; Calibrated: 2007/9/17

- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch9400/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.424 mW/g

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.8 V/m; Power Drift = 0.124 dB Peak SAR (extrapolated) = 0.607 W/kg SAR(1 g) = 0.389 mW/g; SAR(10 g) = 0.239 mW/g Maximum value of SAR (measured) = 0.419 mW/g

Test Report No : FA832620A

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

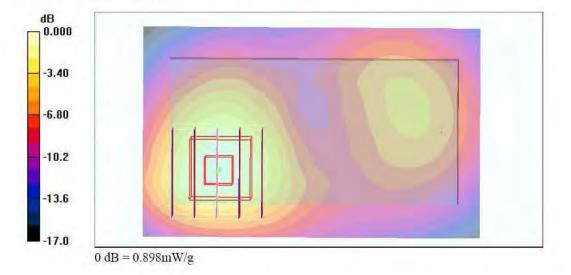
Date: 2008/5/21

Body_WCDMA1900 Ch9262_Bottom With 1.5cm Gap_RMC12.2K_Earphone2_Battery2_Sample B

DUT: 832620

Communication System: WCDMA Band 2; Frequency: 1852.4 MHz;Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³


Ambient Temperature : 22.9 °C; Liquid Temperature : 21.9 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch9262/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.883 mW/g

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = 0.172 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.801 mW/g; SAR(10 g) = 0.451 mW/g Maximum value of SAR (measured) = 0.898 mW/g

Date: 2008/5/23

Left Cheek_GSM850 Ch251_Battery5_Sample A_2D

DUT: 832620

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3

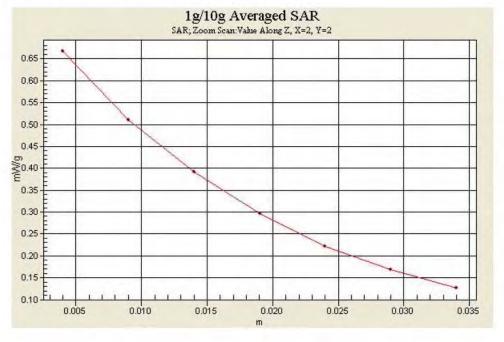
Medium: HSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.923$ mho/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn778; Calibrated: 2007/9/17


- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.641 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.7 V/m; Power Drift = 0.099 dB Peak SAR (extrapolated) = 0.818 W/kg SAR(1 g) = 0.628 mW/g; SAR(10 g) = 0.455 mW/g

Maximum value of SAR (measured) = 0.665 mW/g

Date: 2008/5/22

Left Cheek_GSM1900 Ch512_Battery5_Sample A_2D

DUT: 832620

Communication System: PCS: Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used; f = 1850.2 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.1 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn778; Calibrated: 2007/9/17

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.881 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.45 V/m; Power Drift = 0.028 dB Peak SAR (extrapolated) = 1.24 W/kg SAR(1 g) = 0.784 mW/g; SAR(10 g) = 0.452 mW/g Maximum value of SAR (measured) = 0.878 mW/g

Date: 2008/5/23

Left Cheek_WCDMA850 Ch4233_Battery5_Sample A_2D

DUT: 832620

Communication System: WCDMA Band 5; Frequency: 846.6 MHz;Duty Cycle: 1:1

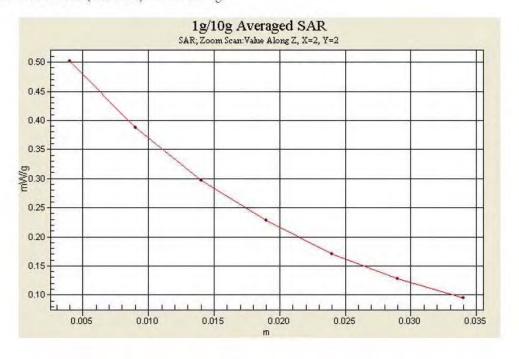
Medium: HSL_850 Medium parameters used: f = 847 MHz; $\sigma = 0.922$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.8 °C: Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn778; Calibrated: 2007/9/17


- Phantom: SAM-B: Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4233/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.493 mW/g

Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.02 V/m; Power Drift = 0.035 dB Peak SAR (extrapolated) = 0.619 W/kg

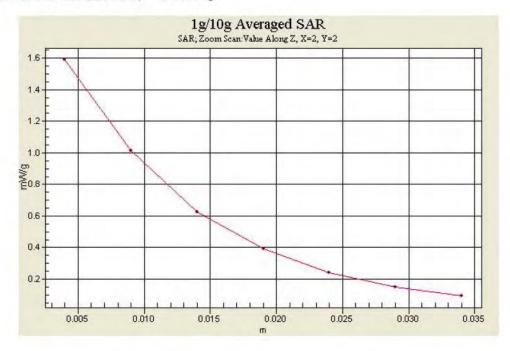
SAR(1 g) = 0.471 mW/g; SAR(10 g) = 0.344 mW/gMaximum value of SAR (measured) = 0.501 mW/g

Date: 2008/5/22

Left Cheek_WCDMA1900 Ch9400_Battery5_Sample A_2D

DUT: 832620

Communication System: WCDMA Band 2; Frequency: 1880 MHz;Duty Cycle: 1:1


Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.3 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch9400/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.50 mW/g

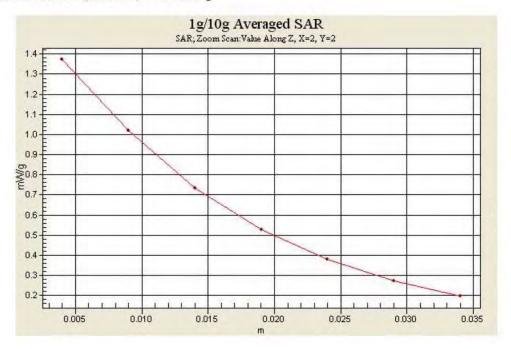
Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.6 V/m; Power Drift = 0.163 dB Peak SAR (extrapolated) = 2.17 W/kg SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.815 mW/g Maximum value of SAR (measured) = 1.52 mW/g

Date: 2008/5/21

Body_GSM850 Ch128_Bottom With 1.5cm Gap_GPRS12_Earphone2_Battery2_Sample B_2D

DUT: 832620

Communication System: GSM850; Frequency: 824.2 MHz;Duty Cycle: 1:2


Medium: MSL_850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.955 \text{ mho/m}$; $\varepsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.6 °C: Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch128/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.45 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.2 V/m; Power Drift = -0.186 dB Peak SAR (extrapolated) = 2.65 W/kg SAR(1 g) = 1.32 mW/g; SAR(10 g) = 0.950 mW/g Maximum value of SAR (measured) = 1.37 mW/g

Date: 2008/5/20

Body_GSM1900 Ch512_Bottom With 1.5cm Gap_GPRS12_Earphone2_Battery2_Sample B_2D

DUT: 832620

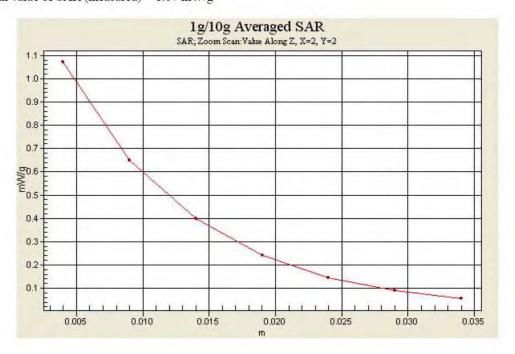
Communication System: PCS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:2

Medium: MSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.8 °C: Liquid Temperature : 21.9 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE4 Sn778; Calibrated: 2007/9/17

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.11 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.4 V/m; Power Drift = -0.103 dB Peak SAR (extrapolated) = 1.69 W/kg SAR(1 g) = 0.992 mW/g; SAR(10 g) = 0.542 mW/g Maximum value of SAR (measured) = 1.07 mW/g

Date: 2008/5/21

Body_WCDMA850 Ch4233_Bottom With 1.5cm Gap_RMC12.2K _Earphone2_Battery2_Sample B_2D

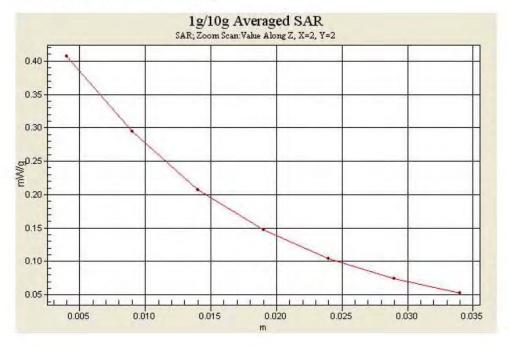
DUT: 832620

Communication System: WCDMA; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 847 MHz; $\sigma = 0.975$ mho/m; $\varepsilon_r = 56.2$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE4 Sn778; Calibrated: 2007/9/17

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch4233/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.434 mW/g

Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.48 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 0.575 W/kg SAR(1 g) = 0.384 mW/g; SAR(10 g) = 0.275 mW/g Maximum value of SAR (measured) = 0.407 mW/g

Date: 2008/5/21

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body_WCDMA1900 Ch9262_Bottom With 1.5cm Gap_RMC12.2K

_Earphone2_Battery2_Sample B_2D

DUT: 832620

Communication System: WCDMA Band 2; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.9 °C; Liquid Temperature : 21.9 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch9262/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.883 mW/g

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = 0.172 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.801 mW/g; SAR(10 g) = 0.451 mW/g

Maximum value of SAR (measured) = 0.898 mW/g

Test Report No : FA832620A

Appendix C – Calibration Data

	h, Switzerland	Rierato S s	wiss Calibration Service
ccredited by the Swiss Accred he Swiss Accreditation Servic lultilateral Agreement for the n	e is one of the signatorie		.: SCS 108
Client Sporton (Aude			0835V2-499_Mar08
CALIBRATION	CERTIFICATE		
Object	D835V2 - SN: 49	9	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 17, 2008		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical units of robability are given on the following pages and an ry facility: environment temperature $(22 \pm 3)^{\circ}$ C and	e part of the certificate
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1	rtainties with confidence protected in the closed laborator	robability are given on the following pages and an y facility: environment temperature $(22 \pm 3)^{\circ}$ C and	e part of the certificate d humidity < 70%.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards	rtainties with confidence protected in the closed laborator TE critical for calibration)	robability are given on the following pages and an y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.)	e part of the certificate: d humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB37480704	robability are given on the following pages and an ry facility: environment temperature (22 ± 3)°C and <u>Cal Date (Calibrated by, Certificate No.)</u> 04-Oct-07 (METAS, No. 217-00736)	e part of the certificate d humidity < 70%.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&) Primary Standards Power meter EPM-442A Power sensor HP 8481A	rtainties with confidence pro- cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages and an ry facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736)	e part of the certificate d humidity < 70%. Scheduled Calibration Dct-08
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB37480704	robability are given on the following pages and an ry facility: environment temperature (22 ± 3)°C and <u>Cal Date (Calibrated by, Certificate No.)</u> 04-Oct-07 (METAS, No. 217-00736)	e part of the certificate: d humidity < 70%. Scheduled Calibration Dct-08 Dct-08
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2	rtainties with confidence pro- cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	robability are given on the following pages and an ry facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718)	e part of the certificate: d humidity < 70%. Scheduled Calibration Dot-08 Dot-08 Aug-08
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	rtainties with confidence pro- cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025	robability are given on the following pages and an ry facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08)	e part of the certificate: d humidity < 70%. Scheduled Calibration Dot-08 Dot-08 Dot-08 Aug-08 Mar-09
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	rtainties with confidence pro- cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 3025 SN 909	robability are given on the following pages and an ry facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-97 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07)	e part of the certificate d humidity < 70%. Scheduled Calibration Dct-08 Dct-08 Aug-08 Mar-09 Sep-08
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005	robability are given on the following pages and an y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07)	e part of the certificate: d humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # ID # MY41092317	robability are given on the following pages and an y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07)	e part of the certificate: d humidity < 70%. Scheduled Calibration Dct-08 Dct-08 Aug-08 Mar-09 Sep-08 Scheduled Check in house check: Oct-09
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005	robability are given on the following pages and an y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07)	e part of the certificate: d humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09
The measurements and the unce	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206	robability are given on the following pages and an y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07)	e part of the certificate: d humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09 In house check: Oct-08
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence proceed in the closed laborator TE chilcal for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following pages and an ry facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07) Function	e part of the certificate: d humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09 In house check: Oct-08

Certificate No: D835V2-499_Mar08

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS CRUSRATO

S

С

S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-499_Mar08

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.29 mW/g
SAR normalized	normalized to 1W	9.16 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.16 mW/g±17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	condition 250 mW input power	1.50 mW / g
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured SAR normalized		1.50 mW / g 6.00 mW / g

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-499_Mar08

Page 3 of 9

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 mW / g
SAR normalized	normalized to 1W	9.84 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.52 mW/g±17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.63 mW/g
SAR normalized	normalized to 1W	6.52 mW/g
SAR for nominal Body TSL parameters 2	normalized to 1W	6.37 mW/g±16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-499_Mar08

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 2.3 jΩ	
Return Loss	- 28.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω - 3.3 jΩ	
Return Loss	- 29.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 10, 2003

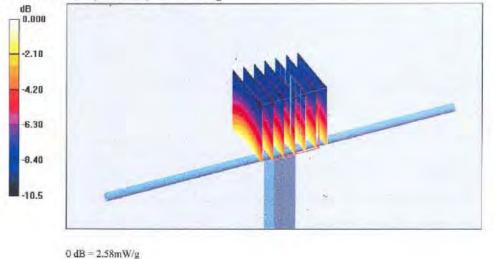
Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 17.03.2008 11:32:45

Test Laboratory: SPEAG, Zurich, Switzerland

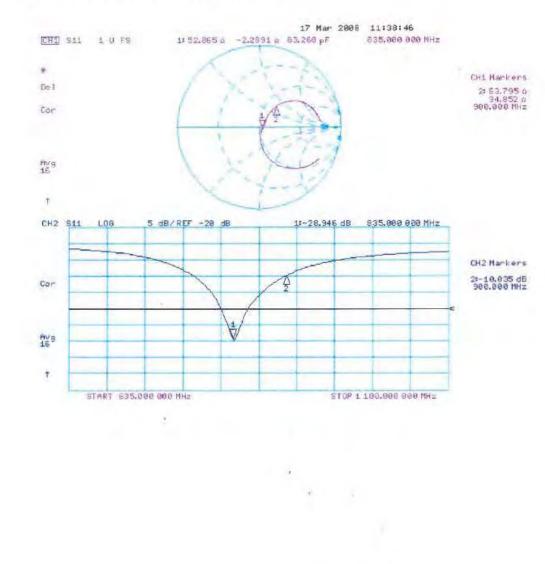
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499


Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 900 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(6.09, 6.09, 6.09); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.9 V/m; Power Drift = -0.005 dB Peak SAR (extrapolated) = 3.34 W/kg SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.5 mW/g Maximum value of SAR (measured) = 2.58 mW/g

Certificate No: D835V2-499_Mar08

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-499_Mar08

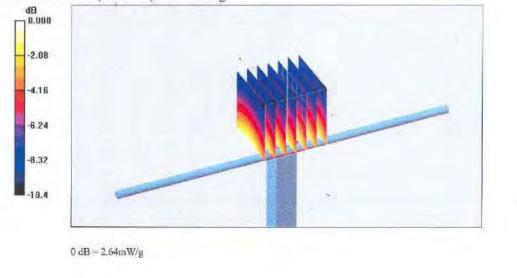
Page 7 of 9

DASY4 Validation Report for Body TSL

Date/Time: 10.03.2008 12:48:36

Test Laboratory: SPEAG, Zurich, Switzerland

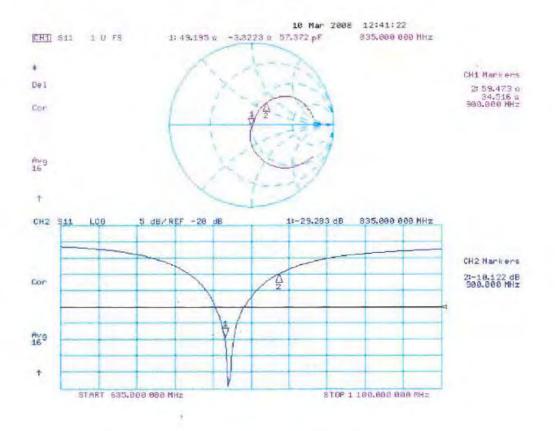
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900; Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.85, 5.85, 5.85); Calibrated: 01.03.2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 51.8 V/m; Power Drift = 0.036 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.63 mW/g Maximum value of SAR (measured) = 2.64 mW/g

Certificate No: D835V2-499_Mar08

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-499_Mar08

Page 9 of 9