ANSI/IEEE Std. C95.1-1992

in accordance with the requirements of

FCC Report and Order: ET Docket 93-62, and OET Bulletin 65 Supplement C

FCC SAR TEST REPORT

For

High Tech Computer Corp.

Pocket PC

Model Number: HSTNH-H03C-WL

Model Name: rx3700 series; rx3400 series

Trade Name: hp

Prepared for

High Tech Computer Corp. No. 23, Hsin Hua Rd., Taoyuan Hsien 330, Taiwan, R.O.C.

Prepared by

Compliance Certification Services Inc.
No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang,
Taoyuan Hsien, (338) Taiwan, R.O.C.
TEL: 886-3-324-0332

0363 ILAC MRA

FAX: 886-3-324-5235

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Date of Issue: April 28, 2004

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Dates of Tests: April 24-27, 2004

Applicant:

High Tech Computer Corp.

No. 23, Hsin Hua Rd., Taoyuan Hsien 330,

Taiwan, R.O.C.

Model Number:

HSTNH-H03C-WL

Model Name

rx3700 series; rx3400 series

Model Name Discrepancy

rx3700 series with CPU400 rx3400 series with CPU300

Device Category:

PORTABLE DEVICES

Exposure Category:

GENERAL POPULATION/UNCONTROLLED EXPOSURE

Test Sample is a:

Production unit

Modulation type:

802.11b

Direct Sequence Spread Spectrum

Tx Frequency:

2412 ~ 2462 MHz

Max. O/P Power:)

16.30dBm

(Conducted/Peak)

Max. SAR (1g):

0.511W/kg

Application Type:

Certification

FCC Rule Part(s):

15C

Note: This Report is only applicable for 802.11b.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (released on 6/29/2001 see Test Report).

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Approved by:

Reviewed by:

Harris Lai / Executive Vice President **Compliance Certification Services Inc.**

James Lee / Senior engineer **Compliance Certification Services Inc.**

TABLE OF CONTENTS

1.	EU'	F DESCRIPTION	4
2.	RE	QUIREMENTS FOR COMPLIANCE TESTING DEFINED BY TH	E FCC5
3.	DO	SIMETRIC ASSESSMENT SYSTEM	5
	3.1	MEASUREMENT SYSTEM DIAGRAM	6
	3.2	SYSTEM COMPONENTSDASY4 Measurement Server	
		Data Acquisition Electronics (DAE)	
		ES3DV2 Isotropic E-Field Probe for Dosimetric Measurements	
		Device Holder for SAM Twin Phantom	8
		System Validation Kits	8
4.	\mathbf{EV}	ALUATION PROCEDURES	9
5.	ME	ASUREMENT UNCERTAINTY	12
6.	EXI	POSURE LIMIT	13
7.	ME	ASUREMENT RESULTS	14
	7.1	SYSTEM PERFORMANCE CHECK	14
	7.2	TEST LIQUID CONFIRMATION	16
	7.3	EUT TUNE-UP PROCEDURES	18
	7.4	SAR MEASUREMENTS RESULTS	19
8.	EU	Г РНОТОЅ	21
9.	EQ	UIPMENT LIST & CALIBRATION STATUS	23
10.	FAC	CILITIES	24
11.	RE	FERENCES	24
12	ΔT	TACHMENTS	25

Date of Issue: April 28, 2004

1. EUT DESCRIPTION

High Tech Computer Corp.

Applicant: No. 23, Hsin Hua Rd., Taoyuan Hsien 330,

Taiwan, R.O.C.

Model Number: HSTNH-H03C-WL

Model Namerx3700 series; rx3400 seriesModel Name Discrepancyrx3700 series with CPU400
rx3400 series with CPU300

Device Category: PORTABLE DEVICES

Exposure Category: GENERAL POPULATION/UNCONTROLLED EXPOSURE

Test Sample is a: Production unit

Modulation type: 802.11b

Direct Sequence Spread Spectrum

Tx Frequency: 2412 ~ 2462 MHz

Max. O/P Power: (Conducted/Peak)

Max. SAR (1g):

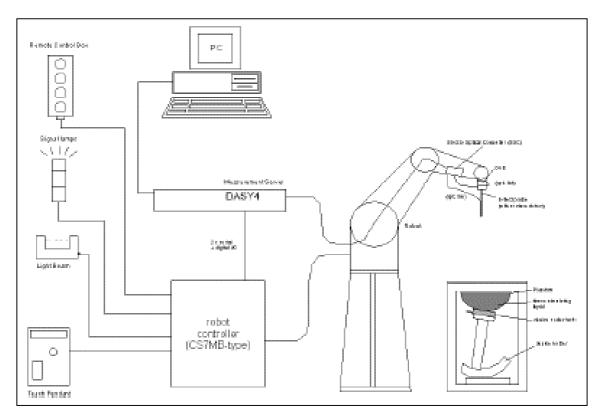
Application Type:

Certification

FCC Rule Part(s): 15C

Antennas: PIFA Ant.(WLAN),Chip Ant.(BT)

Date of Issue: April 28, 2004


2. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996 [1]. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992 [6]. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

3. DOSIMETRIC ASSESSMENT SYSTEM

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m) which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe ES3DV2-SN: 3023 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEEE P1528 and EN50361.

3.1 MEASUREMENT SYSTEM DIAGRAM

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

3.2 SYSTEM COMPONENTS

DASY4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE3 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.

The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.

Data Acquisition Electronics (DAE)

Calibration:

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

ES3DV2 Isotropic E-Field Probe for Dosimetric Measurements

Construction: Symmetrical design with triangular core Interleaved sensors

Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycolether) Basic Broad Band Calibration in air: 10-2500 MHz.

Conversion Factors (CF) for HSL 900 and HSL 1800 CF-

Calibration for other liquids and frequencies upon request.

Frequency: 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$ Directivity: $\pm 0.2 \text{ dB}$ in HSL (rotation around probe axis);

 \pm 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range: $5 \mu \text{W/g to} > 100 \text{ mW/g}$; Linearity: $\pm 0.2 \text{ dB}$ **Dimensions:** Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 6 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

SAM Phantom (V4.0)

Construction: The shell corresponds to the specifications of the

Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness: $2 \pm 0.2 \text{ mm}$

Filling Volume: Approx. 25 liters

Dimensions: Height: 810mm; Length: 1000mm; Width:

500mm

Device Holder for SAM Twin Phantom

Construction: In combination with the Twin SAM Phantom V4.0 or Twin SAM, the

Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

System Validation Kits

Construction: Symmetrical dipole with 1/4 balun Enables measurement of feedpoint

impedance with NWA Matched for use near flat phantoms filled with brain

simulating solutions Includes distance holder and tripod adaptor.

Frequency: 450, 900, 1800, 2450, 5800 MHz

Return loss: > 20 dB at specified validation position

 $\textbf{Power capability:} \ > 100 \ W \ (f < 1 GHz); > 40 \ W \ (f > 1 GHz)$

Dimensions: 450V2: dipole length: 270 mm; overall height: 330 mm

D900V2: dipole length: 149 mm; overall height: 330 mm D1800V2: dipole length: 72 mm; overall height: 300 mm

D2450V2: dipole length: 51.5 mm; overall height: 300 mm D5GHzV2: dipole

length: 25.5 mm; overall height: 290 mm

4. EVALUATION PROCEDURES **DATA EVALUATION**

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

> Probe parameters: - Sensitivity $Norm_i$, a_{i0} , a_{i1} , a_{i2}

> > - Conversion factor $ConvF_i$ dcp_i

- Diode compression point

Device parameters: - Frequency f

> - Crest factor cf

Media parameters: - Conductivity σ

- Density

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

 $\begin{array}{ll} \text{with} & V_i & = \text{Compensated signal of channel i} \\ & U_i & = \text{Input signal of channel i} \\ & cf & = \text{Crest factor of exciting field} \\ \end{array}$ (i = x, y, z)

(i = x, y, z)(DASY parameter)

 dcp_i = Diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \bullet ConvF}}$$

 $H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f^2}{f}$ H-field probes:

= Compensated signal of channel i (i = x, y, z)with

> $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z)

> > $\mu V/(V/m)^2$ for E0field Probes

ConvF = Sensitivity enhancement in solution

= Sensor sensitivity factors for H-field probes aij

f = Carrier frequency (GHz)

Ei= Electric field strength of channel i in V/m

Hi = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

SAR MEASUREMENT PROCEDURES

The procedure for assessing the peak spatial-average SAR value consists of the following steps:

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Date of Issue: April 28, 2004

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to **15 mm by 15 mm** and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures **5x5x7** points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

• Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY4 software stop the measurements if this limit is exceeded.

Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Z-axis of the anchor location establishes the Z-axis of the grid.

5. MEASUREMENT UNCERTAINTY

Un	UNCERTAINTY BUDGE ACCORDING TO IEEE P1528											
Error Description	Uncertainty Value ±%	Probability distribution	Divisor	C ₁ 1g	Standard unc.(1g) ±%	V ₁ or V _{eff}						
Measurement System												
Probe calibration	±4.8	normal	1	1	±4.8							
Axial isotropy of probe	±4.6	rectangular	3	$(1-Cp)^{1/2}$	±1.9							
Sph. Isotropy of probe	±9.7	rectangular	3	$(Cp)^{1/2}$	±3.9							
Probe linearity	±4.5	rectangular	3	1	±2.7							
Detection Limit	±0.9	rectangular	3	1	±0.6							
Boundary effects	±8.5	rectangular	3	1	±4.8							
Readoutelectronics	±1.0	normal	1	1	±1.0							
Response time	±0.9	rectangular	3	1	±0.5							
Integration time	±1.2	rectangular	3	1	±0.8							
Mech Constrains of robot	±0.5	rectangular	3	1	±0.2							
Probe positioning	±2.7	rectangular	3	1	±1.7							
Extrap. And integration	±4.0	rectangular	3	1	±2.3							
RF ambient conditiona	±0.54	rectangular	3	1	±0.43							
Test Sample Related												
Device positioning	±2.2	normal	1	1	±2.23	11						
Device holder uncertainty	±5	normal	1	1	±5.0	7						
Power drift	±5	rectangular	3	1	±2.9							
Phantom and Set up												
Phantom uncertainty	±4	rectangular	3	1	±2.3							
Liquid conductivity	±5	rectangular	3	0.6	±1.7							
Liquid conductivity	±5	rectangular	3	0.6	±3.5/1.7							
Liquid permittivity	±5	rectangular	3	0.6	±1.7							
Liquid permittivity	±5	rectangular	3	0.6	±1.7							
Combined Standard Uncertainty					±12.14/11.76							
Coverage Factor for 95%		kp=2										
Expanded Standard Uncertainty					±24.29/23.51							

Table: Worst-case uncertainty for DASY4 assessed according to IEEE P1528.

The budge is valid for the frequency range 300 MHz to 6G Hz and represents a worst-case analysis.

Report No: B40412405-SF Date of Issue: April 28, 2004

6. EXPOSURE LIMIT

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.4 8.0 2.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any

1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the

shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

7. MEASUREMENT RESULTS

7.1 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

Date of Issue: April 28, 2004

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an E-fileld probe ES3DV2 SN: 3023 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of
 the phantom). The standard measuring distance was 10 mm (above 1 GHz) from dipole center to the
 simulating liquid surface.
- The coarse grid with a grid spacing of 10mm was aligned with the dipole.
- Special 5x5x7 fine cube was chosen for cube integration (dx=dy= 7.5 mm, dz= 3 mm).
- Distance between probe sensors and phantom surface was set to 3.0 mm.
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR values

The reference SAR values were using measurement results indicated in the dipole calibration document (see table below)

Frequency (MHz)	1g SAR	10g SAR	Local SAR at Surface (Above Feed Point)	Local SAR at Surface (y = 2cm offset from feed point)
900	10.3	6.57	16.4	5.4
1800	38.2	20.3	69.5	6.8
2450(Body)	53.2	24.3	104.2	7.7

SYSTEM PERFORMANCE CHECK RESULTS

Dipole: D2450V2 SN: 731 **Date:** April 24, 2004

Ambient condition: Temperature 24.1°C; Relative humidity: 55%

Body Simulating Liquid		Parameters	Target	Measured	Deviation[%]	Limited[%]		
f(MHz)	Temp. [°C]	Depth [cm]	Farameters	Target	Measureu	Deviation[%]	Limited[%]	
			Permitivity:	52.70	51.20	-2.85	± 5	
2450.00	23.20	15.00	Conductivity:	1.95	2.00	2.56	± 5	
			1g SAR:	53.20	54.40	2.26	± 5	

Date of Issue: April 28, 2004

Dipole: D2450V2 SN: 731 **Date:** April 27, 2004

Ambient condition: Temperature 24.6°C; Relative humidity: 53%

Body	Body Simulating Liquid		Parameters	Target	Measured	Deviation[%]	Limited[%]	
f(MHz)	Temp. [°C]	Depth [cm]	Farameters	Target	Measured	Deviation[%]	Limited[%]	
			Permitivity:	52.70	51.00	-3.23	± 5	
2450.00	23.10	15.00	Conductivity:	1.95	1.96	0.51	± 5	
			1g SAR:	53.20	53.20	0.00	± 5	

7.2 TEST LIQUID CONFIRMATION

SIMULATING LIQUIDS PARAMETER CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

Date of Issue: April 28, 2004

The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below. 5% may not be easily achieved at certain frequencies. Under such circumstances, 10% tolerance may be used until more precise tissue recipes are available

IEEE SCC-34/SC-2 P1528 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528

Target Frequency	He	ead	Во	ody
(MHz)	$\epsilon_{ m r}$	σ (S/m)	ε _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	45.3	5.27	48.2	6.00

SIMULATING LIQUIDS PARAMETER CHECK RESULTS

Ambient condition: Temperature: 24.1°C; Relative humidity: 55% **Date:** April 24, 2004

Body Simulating Liquid			Danamatana	Towart	Magaymad	Deviation[%]	Limited[%]	
f (MHz)	Temp. [°C]	Depth (cm)	Parameters	Target	Measured	Deviation[%]	Limited[%]	
2450.00	23.20	15.00	Permitivity:	52.70	51.20	-2.85	± 5	
2430.00	23.20	13.00	Conductivity:	1.95	2.00	2.56	± 5	

Date of Issue: April 28, 2004

Ambient condition: Temperature: 24.6°C; Relative humidity: 53% **Date:** April 27, 2004

Body Simulating Liquid			Parameters	Target	Maggurad	Deviation[%]	Limited[%]	
f (MHz)	Temp. [°C]	Depth (cm)	Parameters	Target	Measured	Deviation[%]	Lilliteu[%]	
2450.00	23.10	15.00	Permitivity:	52.70	51.00	-3.23	± 5	
2430.00	23.10	15.00	Conductivity:	1.95	1.96	0.51	± 5	

7.3 EUT TUNE-UP PROCEDURES

The following procedure had been used to prepare the EUT for the SAR test.

- The client supplied a special driver to program the EUT, allowing it to continually transmit the specified maximum power and change the channel frequency.
- The conducted power was measured at the high, middle and low channel frequency before and after the SAR measurement.

Date of Issue: April 28, 2004

o The output power(dBm) we measured before SAR test in different transition rate and channel

IEEE802.11b:

111111111111111111111111111111111111111	LD.			
Rate CH	1M	2M	5.5M	11M
1	15.85	15.95	16.03	16.13
6	16.00	16.10	16.20	16.30
11	15.45	15.55	15.65	15.75

7.4 SAR MEASUREMENTS RESULTS

EUT Setup Configuration 1

802.11b (DSSS): Duty Cycle =100 %, Crest Factor: 1.

Depth of liquid	d: 15.0 cm
-----------------	------------

0.315

1.6

Sep. [mm]	Antenna	Channel	Frequency	*Conducted	Power_dBm	Liquid	SAR	Limit
	Antenna	Chamie	[MHz]	Before	After	Temp [°C]	(W/kg)	(W/kg)
0	A	1	2412	16.13	16.10	23.2	0.511	1.6
0	A	6	2437	16.30	16.28	23.2	0.271	1.6
0	A	11	2462	15.75	15.73	23.2	0.354	1.6

802.11b (DSSS) with Bluetooth: Duty Cycle =100 %, Crest Factor: 1. Depth of liquid: 15.0 cm Liquid *Conducted Power_dBm Frequency SAR Limit Sep. [mm] Channel Antenna Temp (W/kg) [MHz] (W/kg) Before After [°C]

16.13

16.10

23.1

Notes:

1. *: Peak power.

A

2. Bottom face in parallel with flat phantom.

1

3. See attachment for the result presentation in plot format.

2412

EUT Setup Configuration 2

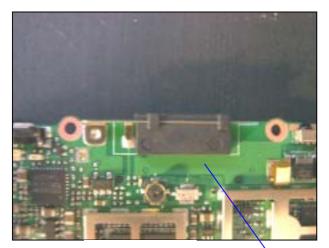
802.11b (DSSS): Duty Cycle = 100 %, Crest Factor: 1. Depth of liquid: 15.0 cm

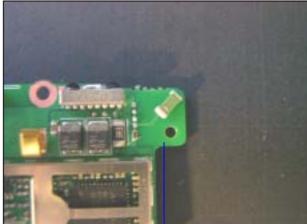
302.110 (2	222). 2 40	0)010 10	0 70, 010801 40001		2 opin of inquity 12 to tim				
Sep. [mm]	Antenna	Channel	Frequency	*Conducted	Power_dBm	Liquid Temp	SAR	Limit	
	Antenna	Chamici	[MHz]	Before	After	[°C]	(W/kg)	(W/kg)	
15	A	1	2412	16.11	16.09	23.2	0.236	1.6	
15	A	6	2437	16.28	16.26	23.2	0.234	1.6	
15	A	11	2462	15.73	15.71	23.2	0.215	1.6	

Notes:

- 1. *: Peak power.
- 2. Host device perpendicular to flat phantom.
- 3. See attachment for the result presentation in plot format.

8. EUT PHOTOS





WLAN Ant. BT Ant.

9. EQUIPMENT LIST & CALIBRATION STATUS

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Due
S-Parameter Network Analyzer	Agilent	E8358A	US40280243	05/24/04
Electronic Probe kit	Hewlett Packard	85070D	N/A	N/A
Power Meter	Boonton	4531	13061	07/13/04
Power Sensor	Boonton	56218	2240	07/13/04
Thermometer	Amarell	4046	24775	10/10/13
Thermometer	Amarell	4046	23641	12/12/12
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	1100.0008.02	N/A
Signal Generator	Agilent	E8257C	US542340383	04/22/04
Amplifier	Mini-Circuit	ZHL-1724HLN	N/A	N/A
DC Power generator	ABM	8301HD		N/A
Data Acquisition Electronics (DAE)	SPEAG	DAE3	427	03/14/05
Dosimetric E-Field Probe	SPEAG	ES3DV2	3023	09/22/04
900 MHz System Validation Dipole	SPEAG	D900V2	172	01/12/05
1800 MHz System Validation Dipole	SPEAG	D1800V2	2d057	02/09/05
2450 MHz System Validation Dipole	SPEAG	D2450V2	731	03/21/05
Probe Alignment Unit	SPEAG	LB (V2)	348	N/A
Robot	Staubli	RX90B L	F02/5T69A1/A/01	N/A
SAM Twin Phantom V4.0	SPEAG	N/A	N/A	N/A
Devices Holder	SPEAG	N/A	N/A	N/A
Head 835 MHz	CCS	H835A	N/A	N/A
Muscle 835 MHz	CCS	M835A	N/A	N/A
Head 900 MHz	CCS	H900A	N/A	N/A
Muscle 900 MHz	CCS	M900A	N/A	N/A
Head 1800 MHz	CCS	H1800A	N/A	N/A
Muscle 1800 MHz	CCS	M1800A	N/A	N/A
Head 1900 MHz	CCS	H1900A	N/A	N/A
Muscle 1900 MHz	CCS	M1900A	N/A	N/A
Head 2450 MHz	CCS	H2450A	N/A	N/A
Muscle 2450 MHz	CCS	M2450A	N/A	N/A

10. FACILITIES

	All measurement facilities used to collect the measurement data are located at
	No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.
	No. 11, Wu-Kung 6 Rd, Wu-Ku Hsiang, Wu-Ku Industrial District, Taipei Hsien, (248) Taiwan.
1	No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. REFERENCES
Ι.	KREKRINGES

Date of Issue: April 28, 2004

11

- [1] Federal Communications Commission, Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.
- Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- CENELEC, Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175.
- Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992...Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, 'The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

12. ATTACHMENTS

Exhibit	Content	
1	System Performance Check Plots	
2	SAR Test Plots	

END OF REPORT

Date/Time: 04/24/04 23:16:41

Test Laboratory: Compliance Certification Services Inc.

D2450V2 SN 728

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 731

Communication System: CW2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ mho/m}$; $\varepsilon_r = 51.2$; $\rho = 1000 \text{ kg/m}^3$

Air Temperature:24.3 deg C;Liquid Temperature:23.2 deg C

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV2 SN3023; ConvF(4.1, 4.1, 4.1); Calibrated: 9/23/2003
- Sensor-Surface: 3mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn427; Calibrated: 3/15/2004
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Pin=250mW,d=10mm/Area Scan (6x6x1): Measurement grid: dx=15mm,

dy=15mm

Reference Value = 97.9 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 10.5 mW/g

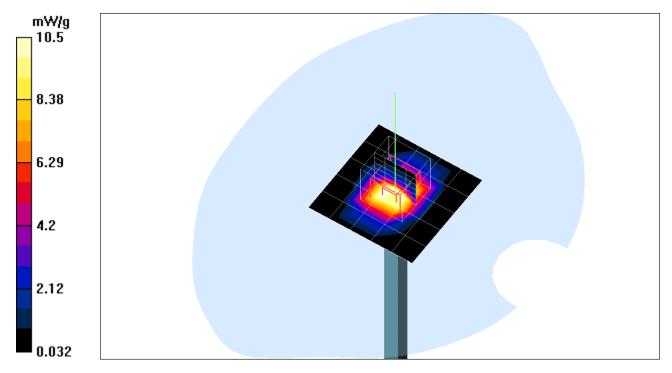
Pin=250mW,d=10mm/Z Scan (1x1x21): Measurement grid: dx=20mm,

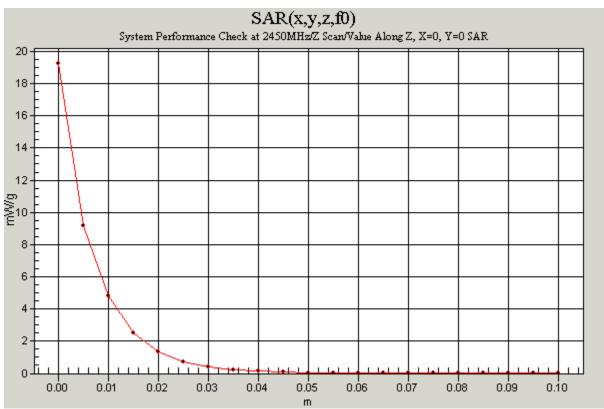
dy=20mm, dz=5mm

Reference Value = 97.9 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 19.2 mW/g

Pin=250mW,d=10mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 97.9 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 17.9 mW/g

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.32 mW/g

Date/Time: 04/27/04 23:16:41

Test Laboratory: Compliance Certification Services Inc.

D2450V2 SN 728

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 731

Communication System: CW2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.96 \text{ mho/m}$; $\varepsilon_r = 51$; $\rho = 1000 \text{ kg/m}^3$

Air Temperature: 24.6 deg C; Liquid Temperature: 23.1 deg C

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV2 SN3023; ConvF(4.1, 4.1, 4.1); Calibrated: 9/23/2003
- Sensor-Surface: 3mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn427; Calibrated: 3/15/2004
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Pin=250mW,d=10mm/Area Scan (6x6x1): Measurement grid: dx=15mm,

dy=15mm

Reference Value = 97.9 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 10.3 mW/g

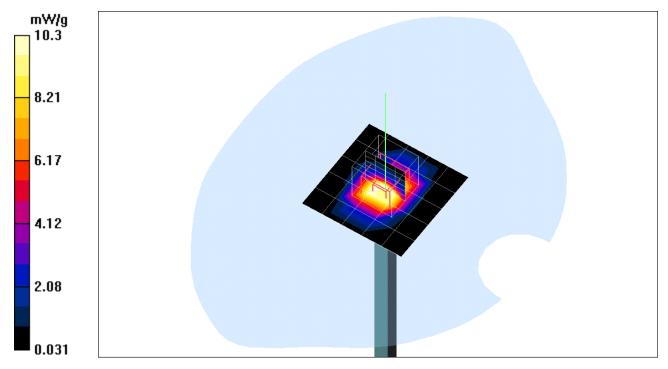
Pin=250mW,d=10mm/Z Scan (1x1x21): Measurement grid: dx=20mm,

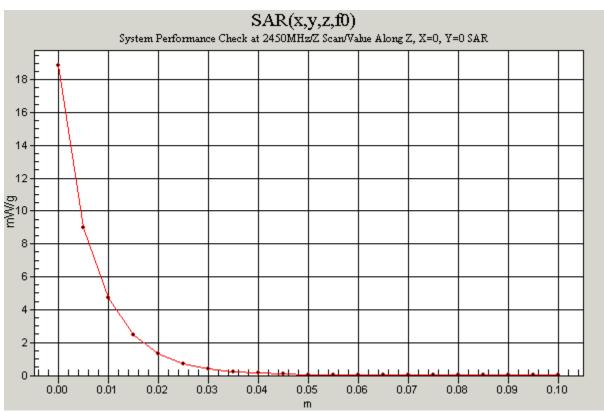
dy=20mm, dz=5mm

Reference Value = 97.9 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 18.9 mW/g

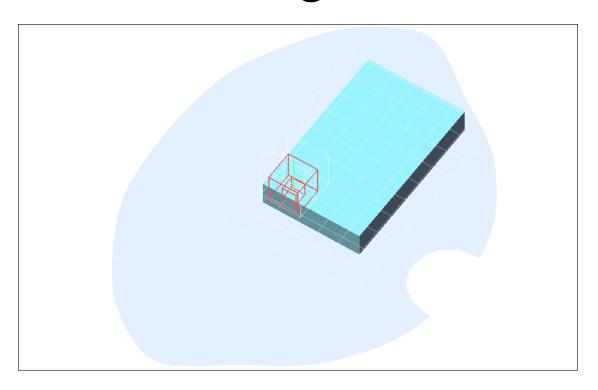
Pin=250mW,d=10mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 97.9 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 17.5 mW/g

Peak SAR (extrapolated) = 26.4 W/kg


SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.19 mW/g

Test Laboratory: Compliance Certification Services Inc.

Test Configuration-1

Date/Time: 04/24/04 19:54:18

Test Laboratory: Compliance Certification Services Inc.

Touch mode

DUT: Pocket PC; Type: HSTNH-H03C-WL; Serial: N/A

Communication System: Poket PC; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.2$; $\rho = 1000$ kg/m³

Air Temperature:24.3 deg C;Liquid Temperature:23.2 deg C

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV2 SN3023; ConvF(4.1, 4.1, 4.1); Calibrated: 9/23/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn427; Calibrated: 3/15/2004
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Low Rate=11M bit/Area Scan (8x11x1): Measurement grid: dx=15mm,

dy=15mm

Reference Value = 12 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 0.553 mW/g

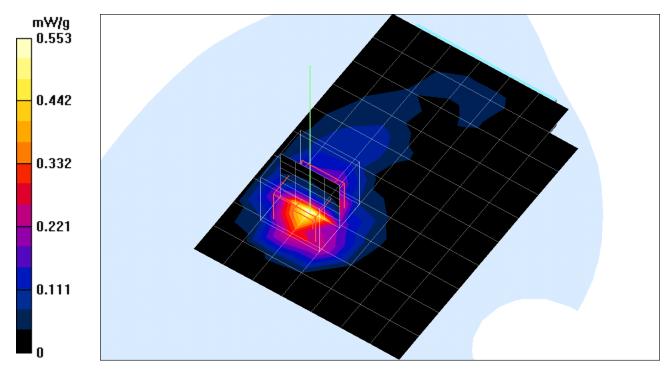
Low Rate=11M bit/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm,

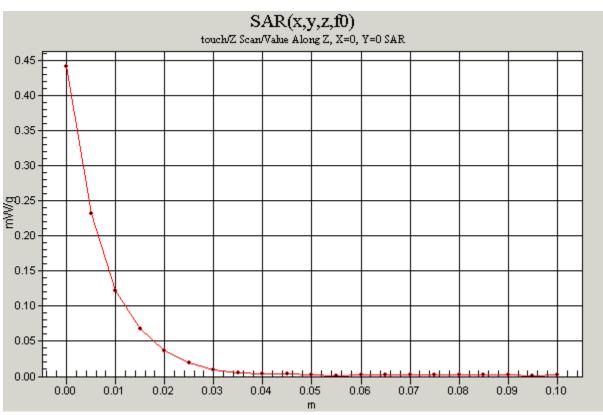
dz=5mm

Reference Value = 12 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 0.442 mW/g

Low Rate=11M bit/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,


dy=7.5mm, dz=5mm


Reference Value = 12 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 0.571 mW/g

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.511 mW/g; SAR(10 g) = 0.248 mW/g

Date/Time: 04/24/04 19:54:18

Test Laboratory: Compliance Certification Services Inc.

Touch mode

DUT: Pocket PC; Type: HSTNH-H03C-WL; Serial: N/A

Communication System: Poket PC; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.2$; $\rho = 1000$ kg/m³ Air

Temperature:24.3 deg C;Liquid Temperature:23.2 deg C

Phantom section: Flat Section

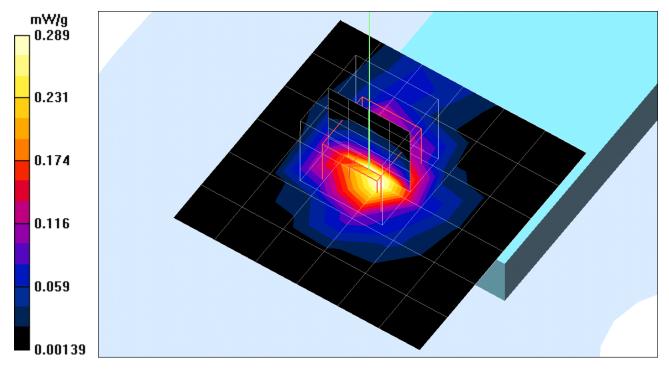
DASY4 Configuration:

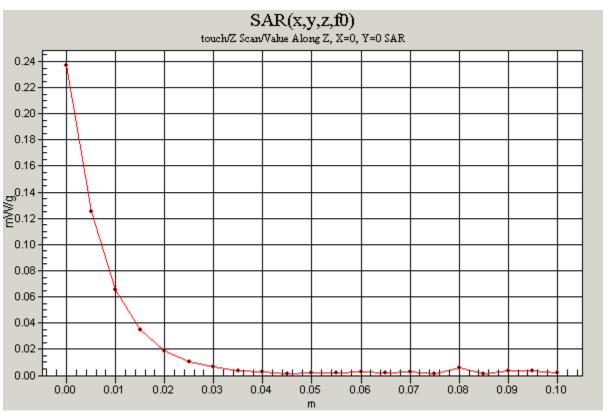
- Probe: ES3DV2 SN3023; ConvF(4.1, 4.1, 4.1); Calibrated: 9/23/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn427; Calibrated: 3/15/2004
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

mid Rate=11M bit/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 8.53 V/m; Power Drift = 0.2 dB Maximum value of SAR (measured) = 0.289 mW/g

mid Rate=11M bit/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 8.53 V/m; Power Drift = 0.2 dB Maximum value of SAR (measured) = 0.237 mW/g


mid Rate=11M bit/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 8.53 V/m; Power Drift = 0.2 dB

Maximum value of SAR (measured) = 0.304 mW/g

Peak SAR (extrapolated) = 0.539 W/kg

SAR(1 g) = 0.271 mW/g; SAR(10 g) = 0.132 mW/g

Date/Time: 04/24/04 19:54:18

Test Laboratory: Compliance Certification Services Inc.

Touch mode

DUT: Pocket PC; Type: HSTNH-H03C-WL; Serial: N/A

Communication System: Poket PC; Frequency: 2462 MHz; Duty Cycle: 1:1

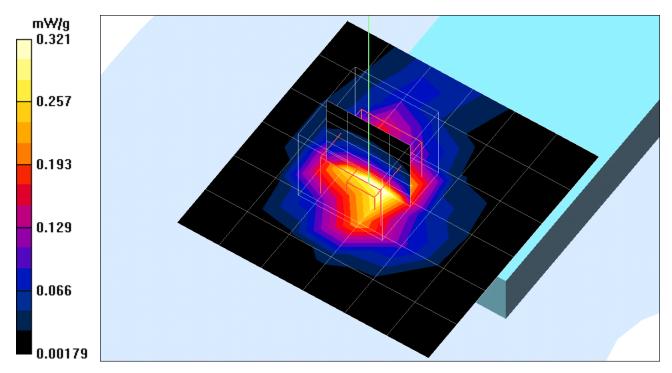
Medium parameters used: f = 2462 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.2$; $\rho = 1000$ kg/m³

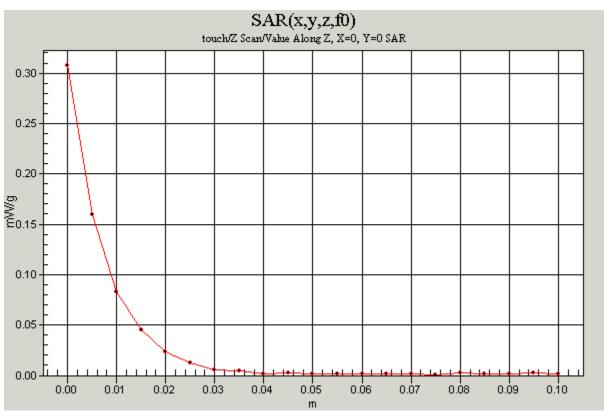
Air Temperature:24.3 deg C;Liquid Temperature:23.2 deg C

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV2 SN3023; ConvF(4.1, 4.1, 4.1); Calibrated: 9/23/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn427; Calibrated: 3/15/2004
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112


High Rate=11M bit/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 9.67 V/m; Power Drift = 0.1 dB Maximum value of SAR (measured) = 0.321 mW/g


High Rate=11M bit/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 9.67 V/m; Power Drift = 0.1 dB Maximum value of SAR (measured) = 0.308 mW/g

High Rate=11M bit/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 9.67 V/m; Power Drift = 0.1 dB Maximum value of SAR (measured) = 0.395 mW/g Peak SAR (extrapolated) = 0.726 W/kg SAR(1 g) = 0.354 mW/g; SAR(10 g) = 0.171 mW/g

Date/Time: 04/27/04 17:49:25

Test Laboratory: Compliance Certification Services Inc.

Co-location

DUT: Pocket PC; Type: HSTNH-H03C-WL; Serial: N/A

Communication System: Poket PC; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 51$; $\rho = 1000$ kg/m³

Air Temperature: 25.8 deg C; Liquid Temperature: 24.8 deg C

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV2 SN3023; ConvF(4.1, 4.1, 4.1); Calibrated: 9/23/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn427; Calibrated: 3/15/2004
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Low Rate=11M bit/Area Scan (8x11x1): Measurement grid: dx=15mm,

dy=15mm

Reference Value = 10.1 V/m; Power Drift = 0.1 dB

Maximum value of SAR (measured) = 0.309 mW/g

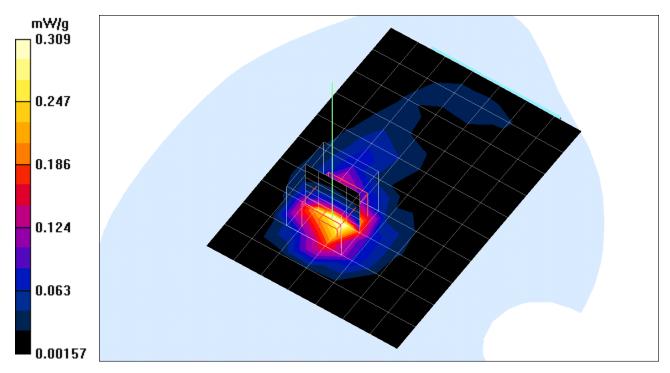
Low Rate=11M bit/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm,

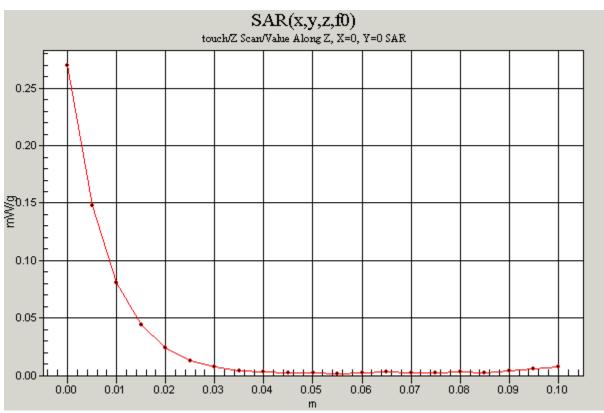
dz=5mm

Reference Value = 10.1 V/m; Power Drift = 0.1 dB

Maximum value of SAR (measured) = 0.270 mW/g

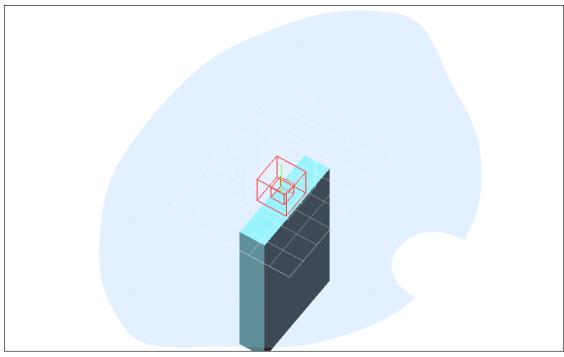
Low Rate=11M bit/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,


dy=7.5mm, dz=5mm


Reference Value = 10.1 V/m; Power Drift = 0.1 dB

Maximum value of SAR (measured) = 0.348 mW/g

Peak SAR (extrapolated) = 0.622 W/kg


SAR(1 g) = 0.315 mW/g; SAR(10 g) = 0.154 mW/g

Test Laboratory: Compliance Certification Services Inc.

Test Configuration-2

0 dB = 0.269 mW/g

Date/Time: 04/24/04 22:23:36

Test Laboratory: Compliance Certification Services Inc.

15mm mode

DUT: Pocket PC; Type: HSTNH-H03C-WL; Serial: N/A

Communication System: Poket PC; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.2$; $\rho = 1000$ kg/m³

Air Temperature:24.3 deg C;Liquid Temperature:23.2 deg C

Phantom section: Flat Section

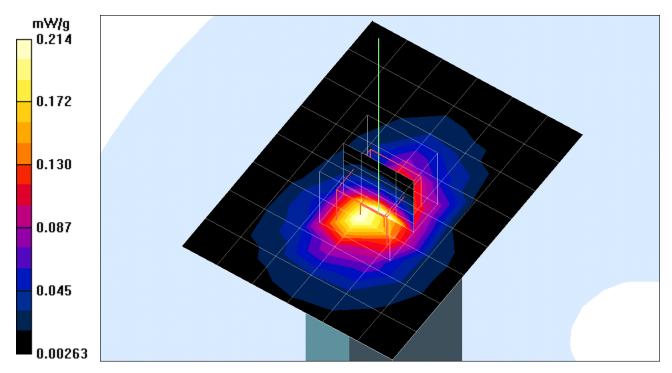
DASY4 Configuration:

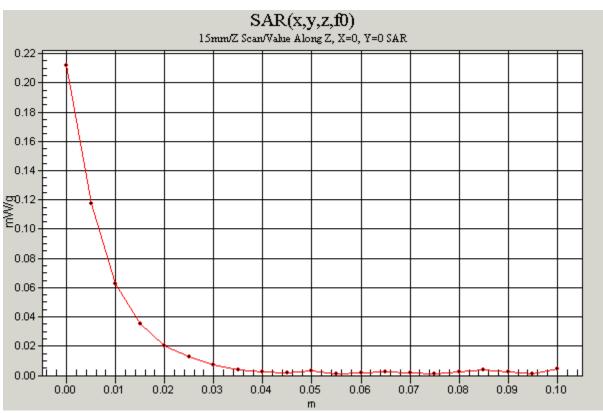
- Probe: ES3DV2 SN3023; ConvF(4.1, 4.1, 4.1); Calibrated: 9/23/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn427; Calibrated: 3/15/2004
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Low Rate=11M bit/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 9.98 V/m; Power Drift = 0.006 dB Maximum value of SAR (measured) = 0.214 mW/g

Low Rate=11M bit/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 9.98 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 0.212 mW/g


Low Rate=11M bit/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 9.98 V/m; Power Drift = 0.006 dB

Maximum value of SAR (measured) = 0.269 mW/g

Peak SAR (extrapolated) = 0.448 W/kg

SAR(1 g) = 0.236 mW/g; SAR(10 g) = 0.116 mW/g

Date/Time: 04/24/04 22:23:36

Test Laboratory: Compliance Certification Services Inc.

15mm mode

DUT: Pocket PC; Type: HSTNH-H03C-WL; Serial: N/A

Communication System: Poket PC; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.2$; $\rho = 1000$ kg/m³

Air Temperature:24.3 deg C;Liquid Temperature:23.2 deg C

Phantom section: Flat Section

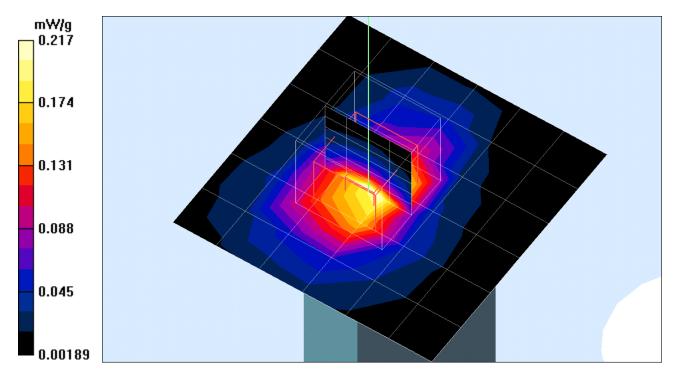
DASY4 Configuration:

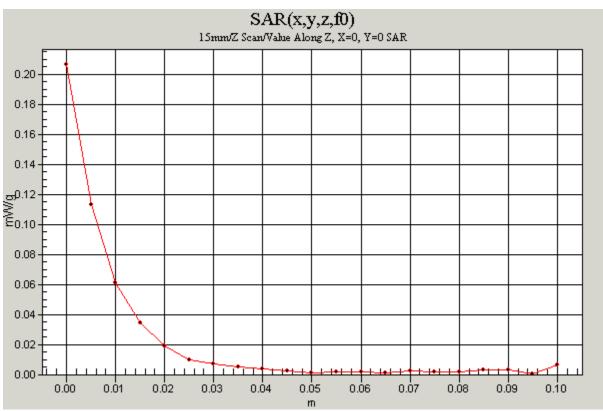
- Probe: ES3DV2 SN3023; ConvF(4.1, 4.1, 4.1); Calibrated: 9/23/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn427; Calibrated: 3/15/2004
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

mid Rate=11M bit/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 10 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 0.217 mW/g

mid Rate=11M bit/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 10 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 0.207 mW/g


mid Rate=11M bit/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 10 V/m; Power Drift = -0.1 dB

Maximum value of SAR (measured) = 0.265 mW/g

Peak SAR (extrapolated) = 0.449 W/kg

SAR(1 g) = 0.234 mW/g; SAR(10 g) = 0.115 mW/g

Date/Time: 04/24/04 22:23:36

Test Laboratory: Compliance Certification Services Inc.

15mm mode

DUT: Pocket PC; Type: HSTNH-H03C-WL; Serial: N/A

Communication System: Poket PC; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.2$; $\rho = 1000$ kg/m³

Air Temperature: 24.3 deg C; Liquid Temperature: 23.2 deg C

Phantom section: Flat Section

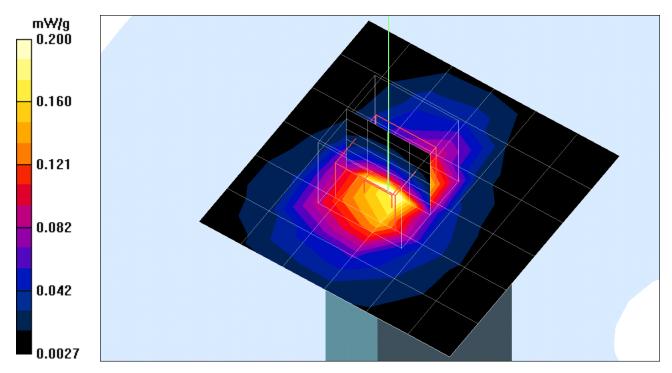
DASY4 Configuration:

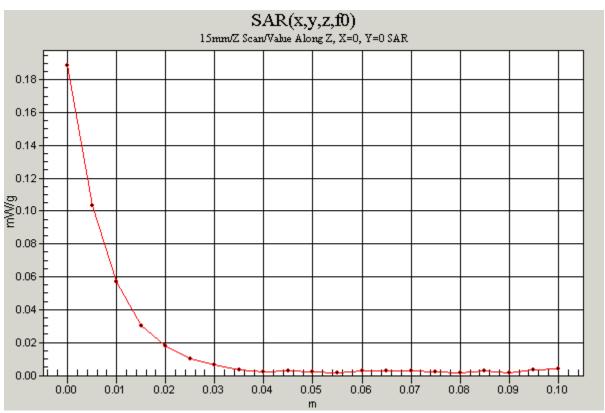
- Probe: ES3DV2 SN3023; ConvF(4.1, 4.1, 4.1); Calibrated: 9/23/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn427; Calibrated: 3/15/2004
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

High Rate=11M bit/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 9.48 V/m; Power Drift = -0.005 dB Maximum value of SAR (measured) = 0.200 mW/g

High Rate=11M bit/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 9.48 V/m; Power Drift = 0.008 dB Maximum value of SAR (measured) = 0.189 mW/g


High Rate=11M bit/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 9.48 V/m; Power Drift = -0.005 dB

Maximum value of SAR (measured) = 0.242 mW/g

Peak SAR (extrapolated) = 0.416 W/kg

SAR(1 g) = 0.215 mW/g; SAR(10 g) = 0.105 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeugheusstrasse 43, 8004 Zurich, Switzerland

Client

Auden

Object(s)	D1800V2 - SN:2d057						
Calibration procedure(s)	QA CAL-05.v2 Calibration procedure for dipole validation kits						
Calibration date:	February 9, 2	004					
Condition of the calibrated item	In Tolerance	In Tolerance (according to the specific calibration document)					
7025 international standard.		Eused in the calibration procedures and conformity of lory facility: environment temperature 22 */- 2 degrees					
Calibration Equipment used (M&	TE critical for calibration)	,					
flodel Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration				
Power meter EPM E442	GB37480704	6-Nov-03 (METAS, No. 252-0254)	Nov-04				
ower sensor HP 8481A	U837292783	6-New-03 (METAS, No. 252-0254)	Nov-04				
Ower sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Ost-04				
tF generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05				
letwork Analyzer HP 8753E	U537390585	18-Oct-01 (SPEAG, in house check Nov-03)	In house check: Oct 05				
	Name	Function	Signature				
calibrated by:	Name Judith Waeller	Technician	mille				
Calibrated by:	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN	Technician	Mintellel Munichly				

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D1800V2

Serial: 2d057

Manufactured: O Calibrated: Fe

Octobre 16, 2002 February 9, 2004

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 1800 MHz:

Relative Dielectricity 39.2 \pm 5% Conductivity 1.37 mho/m \pm 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.08 at 1800 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 39.6 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: 21.1 mW/g \pm 16.2 % (k=2)¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.201 ns (one direction)

Transmission factor:

0.997

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1800 MHz:

 $Re\{Z\} = 48.9 \Omega$

Im $\{Z\} = -5.0 \Omega$

Return Loss at 1800 MHz

-25.8 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 1800 MHz:

Relative Dielectricity

53.0

±5%

Conductivity

1.49 mho/m ± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.61 at 1800 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250 mW ± 3 %. The results are normalized to 1W input power.

SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm3 (1 g) of tissue:

39.8 mW/g \pm 16.8 % (k=2)²

averaged over 10 cm3 (10 g) of tissue:

 $21.6 \text{ mW/g} \pm 16.2 \% (k=2)^2$

Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1800 MHz:

 $Re{Z} = 44.8 \Omega$

 $Im \{Z\} = -3.9 \Omega$

Return Loss at 1800 MHz

-23.2 dB

Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Page 1 of 1

Date/Time: 02/05/04 14:15:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN2d057

Communication System: CW-1800; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(5.08, 5.08, 5.08); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- · Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 93

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

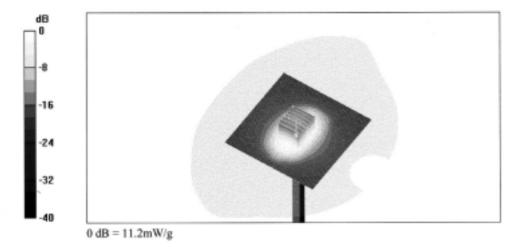
Reference Value = 93.5 V/m

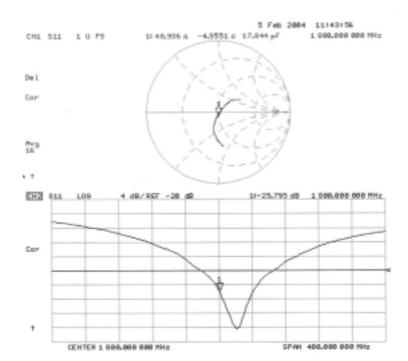
Power Drift = 0.0 dB

Maximum value of SAR = 11.2 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm


Peak SAR (extrapolated) = 17.6 W/kg


SAR(1 g) = 9.9 mW/g; SAR(10 g) = 5.27 mW/g

Reference Value = 93.5 V/m

Power Drift = 0.0 dB

Maximum value of SAR = 11.2 mW/g

Page 1 of 1

Date/Time: 02/09/04 13:04:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN2d057

Communication System: CW-1800; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: Muscle 1800 MHz;

Medium parameters used: f = 1800 MHz; $\sigma = 1.49 \text{ mho/m}$; $\epsilon_{\nu} = 53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

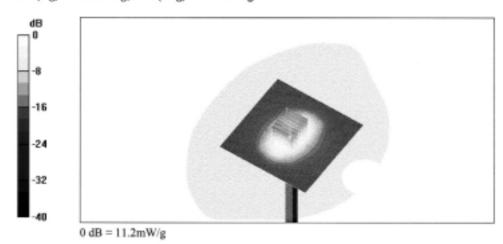
DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.61, 4.61, 4.61); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101

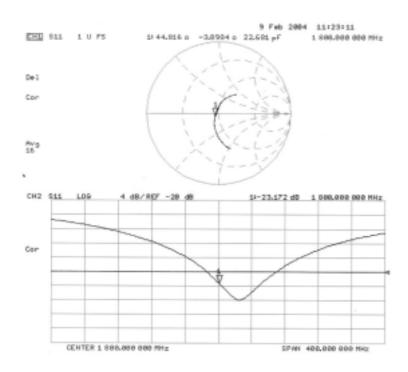
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 93.4 V/m; Power Drift = -0.002 dB

Maximum value of SAR (interpolated) = 11.2 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 93.4 V/m; Power Drift = -0.002 dB


Maximum value of SAR (measured) = 11.2 mW/g

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 9.95 mW/g; SAR(10 g) = 5.39 mW/g

201057 Body

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

C&C Taiwan (Auden)

CALIBRATION CERTIFICATE

Object(s)

ES3DV2 - SN:3023

Calibration procedure(s)

QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date:

September 23, 2003

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	1D#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04	
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04	
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS No. 251-0340	Apr-04	
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04	
Power sensor HP 8481A	MY41092180	18-Sep-02 (Agilent, No. 20020918)	In house check: Oct 03	
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agllent, No. 24BR1033101)	In house check: Oct 03	

Calibrated by:

Approved by:

Name Function

Katja Pokovic Laboratory Director

Niels Kuster Quality Manager

Date issued: October 5, 2003

Signature

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ES3DV2

SN:3023

Manufactured:

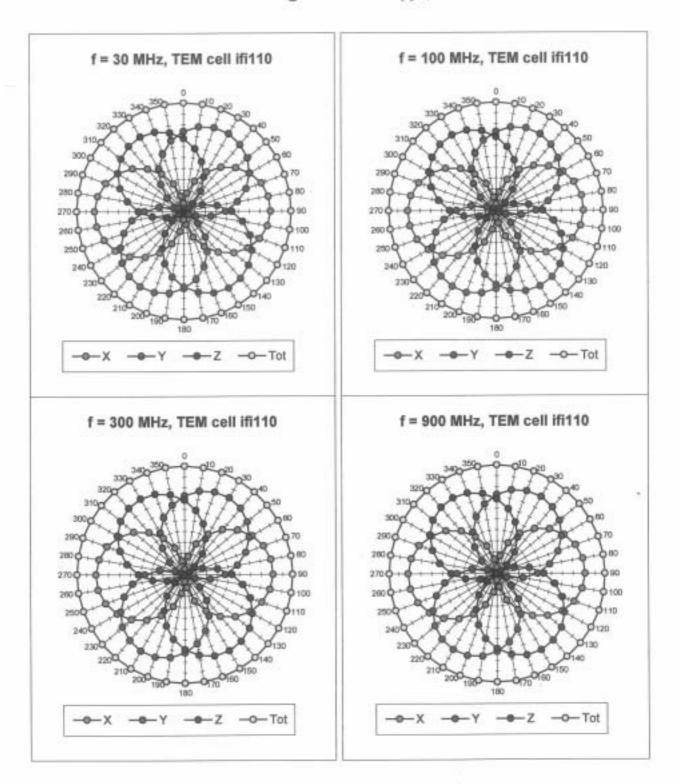
April 15, 2003

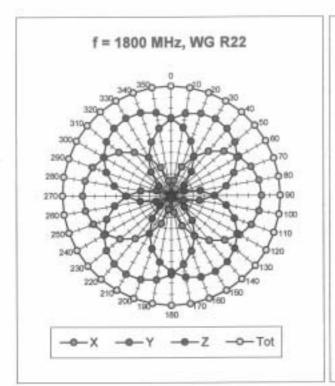
Last calibration:

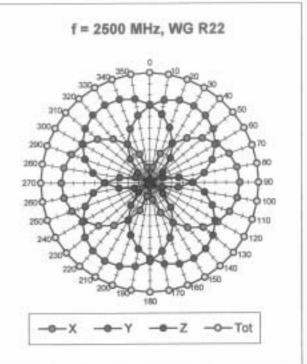
September 23, 2003

Calibrated for DASY Systems

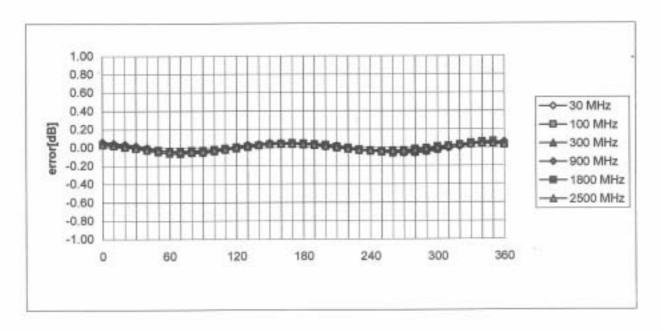
(Note: non-compatible with DASY2 system!)

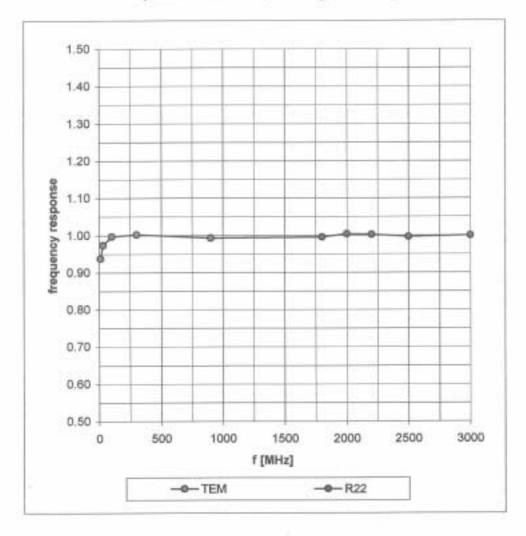

DASY - Parameters of Probe: ES3DV2 SN:3023


Sensi	tivity in Fre	e Space		Diode Compress	ion	
	NormX	0.85	$\mu V/(V/m)^2$	DCP X	96	mV
	NormY	0.94	$\mu V/(V/m)^2$	DCP Y	96	m٧
	NormZ	1.01	$\mu V/(V/m)^2$	DCP Z	96	mV
Sensi	tivity in Tis	sue Simu	lating Liquid			
Head	900 MHz		$\varepsilon_{\rm r}$ = 41.5 ± 5%	σ = 0.97 ± 5% i	σ = 0.97 ± 5% mho/m	
Valid for	f=800-1000 MH	z with Head T	issue Simulating Liquid	according to EN 50361, F	1528-200	X
	ConvF X 6.0		± 9.5% (k=2)	Boundary effect:		
	ConvF Y	6.0	± 9.5% (k=2)	Alpha	0.33	
	ConvF Z	6.0	± 9.5% (k=2)	Depth	1.66	
Head	1800	MHz	ϵ_r = 40.0 ± 5%	σ = 1.40 ± 5% i	σ = 1.40 ± 5% mho/m	
Valid for	f=1710-1910 Mi	Hz with Head	Tissue Simulating Liquid	according to EN 50361,	P1528-20	0X
	ConvF X	4.9	± 9.5% (k=2)	Boundary effect:		
	ConvF Y	4.9	± 9.5% (k=2)	Alpha	0.23	
	ConvF Z	4.9	± 9.5% (k=2)	Depth	2.54	
Bound	dary Effect					
Head	900	MHz	Typical SAR gradient	: 5 % per mm		
	Probe Tip t	o Boundary		1 mm	2 mn	1
	SAR _{be} [%]	Without Co	prrection Algorithm	5.8	2.8	
	SAR _{be} [%]	With Corre	ction Algorithm	0.1	0.3	
Head	1800	MHz	Typical SAR gradient	: 10 % per mm		
	Probe Tip t	o Boundary		1 mm	2 mm	1
	SAR _{be} [%]	Without Co	prrection Algorithm	7.7	4.7	
	CAD 19/1	Mills Come	ction Algorithm	0.1	0.3	

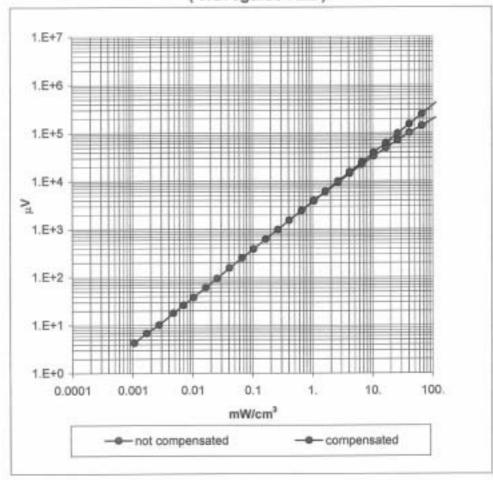

Sensor Offset

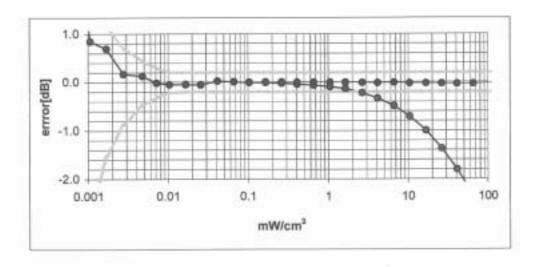
Probe Tip to Sensor Center 2.0 mm

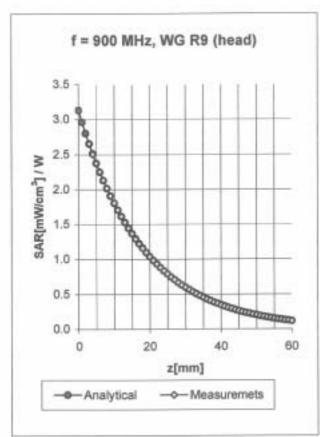

Receiving Pattern (ϕ , θ = 0°

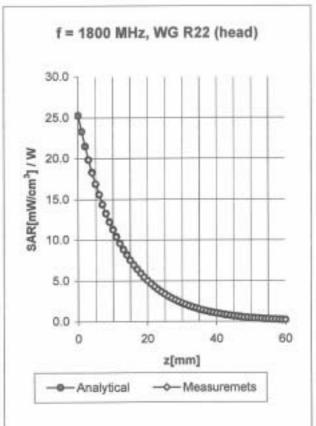


Isotropy Error (ϕ), θ = 0°


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)




Dynamic Range f(SAR_{brain})

(Waveguide R22)

Head

900 MHz

 $\epsilon_r = 41.5 \pm 5\%$

 $\sigma = 0.97 \pm 5\% \text{ mho/m}$

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

6.0 ± 9.5% (k=2)

Boundary effect:

ConvF Y

6.0 ± 9.5% (k=2)

Alpha

ConvF Z

6.0 ± 9.5% (k=2)

Depth 1.66

Head

1800 MHz

 $E_r = 40.0 \pm 5\%$

 $\sigma = 1.40 \pm 5\% \text{ mho/m}$

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

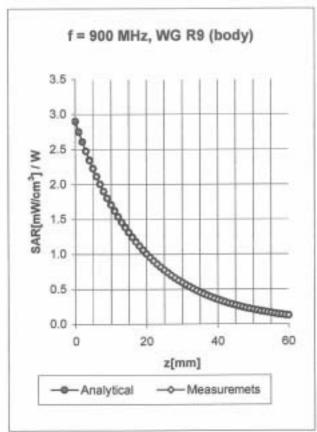
4.9 ± 9.5% (k=2)

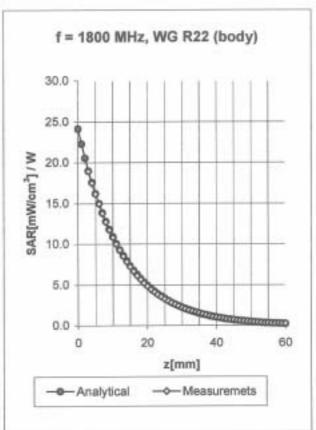
Boundary effect:

ConvF Y

4.9 ± 9.5% (k=2)

Alpha


0.23


ConvF Z

4.9 ± 9.5% (k=2)

Depth

2.54

Body

900 MHz

E, = 55.0 ± 5%

 $\sigma = 1.05 \pm 5\% \text{ mho/m}$

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

6.0 ± 9.5% (k=2)

Boundary effect:

ConvF Y

6.0 ± 9.5% (k=2)

Alpha

0.43

ConvF Z

6.0 ± 9.5% (k=2)

Depth

1.44

Body

1800 MHz

 $\epsilon_r = 53.3 \pm 5\%$

 $\sigma = 1.52 \pm 5\% \text{ mho/m}$

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

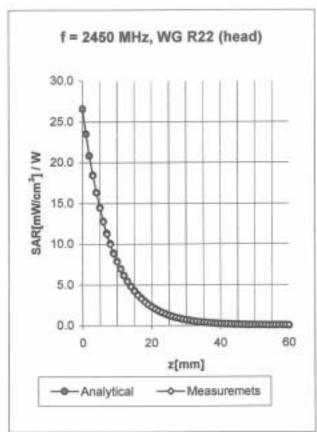
ConvF X

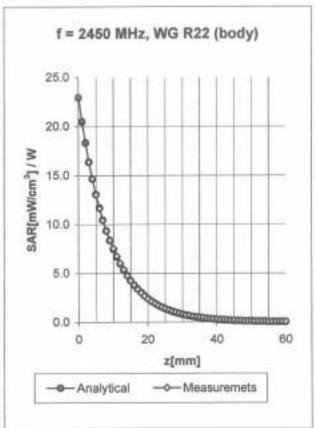
4.5 ± 9.5% (k=2)

Boundary effect:

ConvF Y

4.5 ± 9.5% (k=2)


Alpha


0.26

ConvF Z

4.5 ± 9.5% (k=2)

Depth

Head

2450 MHz

E, = 39.2 ± 5%

 $\sigma = 1.80 \pm 5\% \text{ mho/m}$

Valid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

4.4 ± 9.5% (k=2)

Boundary effect:

ConvF Y

4.4 ± 9.5% (k=2)

0.38 Alpha

ConvF Z

4.4 ± 9.5% (k=2)

1.66

Depth

Body

2450 MHz

 $\epsilon_r = 52.7 \pm 5\%$

 $\sigma = 1.95 \pm 5\% \text{ mho/m}$

Valid for f=2400-2500 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

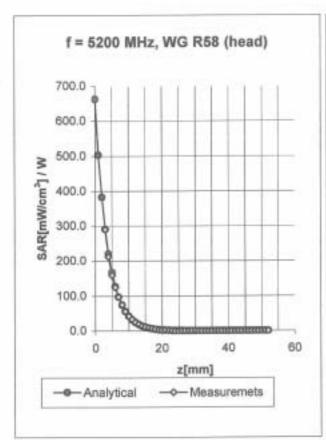
ConvF X

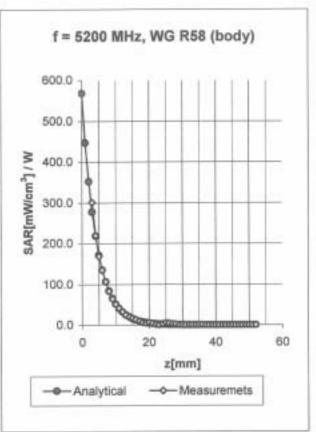
4.1 ± 9.5% (k=2)

Boundary effect:

ConvF Y

4.1 ± 9.5% (k=2)


Alpha


0.35

ConvF Z

4.1 ± 9.5% (k=2)

Depth

Head

5200 MHz

 $E_r = 36.0 \pm 5\%$

 $\sigma = 4.66 \pm 5\% \text{ mho/m}$

Valid for f=4940-5460 MHz with Head Tissue Simulating Liquid according to OET65-SuppC

ConvF X

2.70 ± 16.6% (k=2)

Boundary effect:

ConvF Y

2.70 ± 16.6% (k=2)

Alpha

0.75

ConvF Z

2.70 ± 16.6% (k=2)

Depth

1.45

Body

5200 MHz

 $E_r = 49.0 \pm 5\%$

 $\sigma = 5.30 \pm 5\% \text{ mho/m}$

Valid for f=4940-5460 MHz with Body Tissue Simulating Liquid according to OET65-SuppC

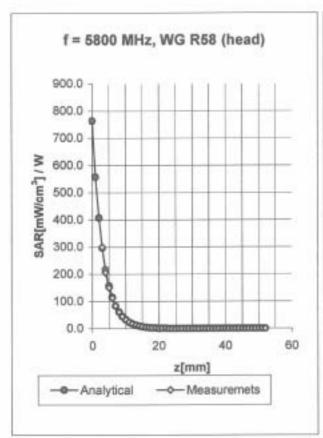
ConvF X

1.82 ± 16.6% (k=2)

Boundary effect:

ConvF Y

1.82 ± 16.6% (k=2)


Alpha

0.90

ConvF Z

1.82 ± 16.6% (k=2)

Depth.

Head

5800 MHz

Er = 35.3 ± 5%

 $\sigma = 5.27 \pm 5\% \text{ mho/m}$

Valid for f=4940-5460 MHz with Head Tissue Simulating Liquid according to OET65-SuppC

ConvF X

2.40 ± 16.6% (k=2)

Boundary effect:

ConvF Y

2.40 ± 16.6% (k=2)

Alpha

0.89

ConvF Z

2.40 ± 16.6% (k=2)

Depth

1.30

Body

5800 MHz

Er = 48.2 ± 5%

 $a = 6.0 \pm 5\% \text{ mho/m}$

Valid for f=4940-5460 MHz with Body Tissue Simulating Liquid according to OET65-SuppC

ConvF X

1.50 ± 16.6% (k=2)

Boundary effect:

ConvF Y

1.50 ± 16.6% (k=2)

Alpha

1.01

ConvF Z

1.50 ± 16.6% (k=2)

Depth

Deviation from Isotropy in HSL

Error ($\theta \phi$), f = 900 MHz

