DASY4 Validation Report for Head TSL Date/Time: 14.03.2006 16:18:53 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) # DASY4 Configuration: - Probe: ET3DV6 SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 15.12.2005 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;; - Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165 # Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.7 mW/g ### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.9 V/m; Power Drift = -0.093 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.75 mW/g; SAR(10 g) = 5.17 mW/gMaximum value of SAR (measured) = 11.1 mW/g 0 dB = 11.1 mW/g Certificate No: D1900V2-5d041_Mar06 Page 6 of 9 # Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d041_Mar06 Page 7 of 9 # Test Report No : FA780709-01-1-2-03 #### DASY4 Validation Report for Body TSL Date/Time: 21.03.2006 13:59:55 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U10; Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_f = 54.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) # DASY4 Configuration: - Probe: ET3DV6 SN1507 (HF); ConvF(4.3, 4.3, 4.3); Calibrated: 28.10.2005 - · Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 15.12.2005 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;; - Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161 # Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.8 mW/g # Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.3 V/m; Power Drift = 0.045 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.4 mW/g Maximum value of SAR (measured) = 11.6 mW/g 0 dB = 11.6 mW/g Certificate No: D1900V2-5d041_Mar06 Page 8 of 9 # Impedance Measurement Plot for Body TSL Certificate No: D1900V2-5d041_Mar06 Page 9 of 9 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Accreditation No.: SCS 108 Sporton (Auden) Certificate No: D2450V2-736_Jul07 | CALIBRATION C | CERTIFICATE | | | |------------------------------------|-----------------------------------|---|----------------------------| | Object | D2450V2 - SN: 7 | 36 | | | Calibratian and a color | OA CAL OF LC | | | | Calibration procedure(s) | QA CAL-05.v6
Calibration proce | dure for dipole validation kits | | | | | | | | | | | | | Calibration date: | July 12, 2007 | | | | Condition of the calibrated item | In Tolerance | CONTRACTOR SOURCE | energy markets. | | | | | | | This calibration certificate docum | ents the traceability to nati | onal standards, which realize the physical units of | f measurements (SI). | | The measurements and the unce | ertainties with confidence p | robability are given on the following pages and are | e part of the certificate. | | All calibrations have been condu- | cted in the closed laborator | ry facility: environment temperature (22 ± 3)°C and | d humidity < 70%. | | | | ,, | a namasy v a su | | Calibration Equipment used (M& | TE critical for calibration) | | | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 03-Oct-06 (METAS, No. 217-00608) | Oct-07 | | Power sensor HP 8481A | US37292783 | 03-Oct-06 (METAS, No. 217-00608) | Oct-07 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 10-Aug-06 (METAS, No 217-00591) | Aug-07 | | Reference 10 dB Attenuator | SN: 5047.2 (10r) | 10-Aug-06 (MĚTAS, No 217-00591) | Aug-07 | | Reference Probe ES3DV3 | SN 3025 | 19-Oct-06 (SPEAG, No. ES3-3025_Oct06) | Oct-07 | | DAE4 | SN 601 | 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) | Jan-08 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (SPEAG, in house check Oct-05) | In house check: Oct-07 | | RF generator Agilent E4421B | MY41000675 | 11-May-05 (SPEAG, in house check Nov-05) | In house check: Nov-07 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (SPEAG, in house check Oct-06) | In house check: Oct-07 | | | | | | | | Name | Function | Signature | | Calibrated by: | Mike Meili | Laboratory Technician | T. telli | | Approved by: | Katja Pokovic | Technical Manager | | | | . togo i ottorio | 100 moai managoi | Sout les | | | | | | | | | | Issued: July 12, 2007 | Certificate No: D2450V2-736_Jul07 Page 1 of 9 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Service suisse d etalonnage Servicio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 # **Additional Documentation:** d) DASY4 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-736_Jul07 Page 2 of 9 # FCC SAR Test Report #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.7 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | A | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.6 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature during test | (22.0 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 13.3 mW / g | | SAR normalized | normalized to 1W | 53.2 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 52.7 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.17 mW / g | | SAR normalized | normalized to 1W | 24.7 mW / g- | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 24.5 mW / g ± 16.5 % (k=2) | Certificate
No: D2450V2-736_Jul07 Page 3 of 9 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # FCC SAR Test Report # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.5 ± 6 % | 1.94 mho/m ± 6 % | | Body TSL temperature during test | (22.0 ± 0.2) °C | F | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR normalized | normalized to 1W | 52.0 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 52.5 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.05 mW / g | | SAR normalized | normalized to 1W | 24.2 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 24.4 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-736_Jul07 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.1 Ω + 3.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.6 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | $48.7 \Omega + 4.6 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 26.3 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.158 ns | |---|----------| | , | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-----------------|--| | Manufactured on | August 26, 2003 | | Certificate No: D2450V2-736_Jul07 Page 5 of 9 # **DASY4 Validation Report for Head TSL** Date/Time: 12.07.2007 11:00:03 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 38.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: - Probe: ES3DV2 SN3025 (HF); ConvF(4.5, 4.5, 4.5); Calibrated: 19.10.2006 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.01.2007 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA - Measurement SW: DASY4, V4.7 Build 53, Postprocessing SW: SEMCAD, V1.8 Build 172 #### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.0 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.17 mW/gMaximum value of SAR (measured) = 15.0 mW/g 0 dB = 15.0 mW/g Certificate No: D2450V2-736_Jul07 Page 6 of 9 # Impedance Measurement Plot for Head TSL Certificate No: D2450V2-736_Jul07 Page 7 of 9 #### DASY4 Validation Report for Body TSL Date/Time: 12.07.2007 12:28:49 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB; Medium parameters used: f = 2450 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 53.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) # DASY4 Configuration: - Probe: ES3DV2 SN3025 (HF); ConvF(4.16, 4.16, 4.16); Calibrated: 19.10.2006 - Sensor-Surface: 4mm (Mechanical Surface Detection) - · Electronics: DAE4 Sn601; Calibrated: 30.01.2007 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA - Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172 # Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.6 V/m; Power Drift = 0.005 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 6.05 mW/gMaximum value of SAR (measured) = 14.8 mW/g 0 dB = 14.8 mW/g Certificate No: D2450V2-736_Jul07 Page 8 of 9 # Impedance Measurement Plot for Body TSL Certificate No: D2450V2-736_Jul07 Page 9 of 9 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Certificate No: DAE3-577_Nov06 Accreditation No.: SCS 108 | Object | DAE3 - SD 000 D | 03 AA - SN: 577 | | |---|---|--|--| | Calibration procedure(s) | QA CAL-06.v12
Calibration proceed | dure for the data acquisition electro | nics (DAE) | | Calibration date: | November 21, 20 | 06 | | | Condition of the calibrated item | In Tolerance | | | | | 일시 살았다. 이번 경험을 잃었는데 전 11. 15시간 이 것 같아 있다. | onal standards, which realize the physical units of obability are given on the following pages and a | | | All calibrations have been conducted | ed in the closed laboratory | y facility: environment temperature (22 ± 3)°C ar | nd humidity < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | luke Process Calibrator Type 702 | SN: 6295803
SN: 0810278 | 13-Oct-06 (Elcal AG, No: 5492)
03-Oct-06 (Elcal AG, No: 5478) | Oct-07
Oct-07 | | Ceithley Multimeter Type 2001 | | | | | | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards | ID#
SE UMS 006 AB 1002 | | Scheduled Check
In house check Jun-07 | | Secondary Standards | | | | | Secondary Standards | | | | | Secondary Standards | SE UMS 006 AB 1002 | 15-Jun-06 (SPEAG, in house check) | In house check Jun-07 | | Secondary Standards Calibrator Box V1.1 | | | | | Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1 Calibrated by: Approved by: | SE UMS 006 AB 1002 | 15-Jun-06 (SPEAG, in house check) Function Technician | In house check Jun-07 | Certificate No: DAE3-577_Nov06 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE3-577 Nov06 Page 2 of 5 # **DC Voltage Measurement** A/D - Converter Resolution nominal $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1}\mu\mbox{V} \,, & \mbox{full range} = & \mbox{-100...+300 mV} \\ \mbox{Low
Range:} & \mbox{1LSB} = & \mbox{61nV} \,, & \mbox{full range} = & \mbox{-1.....+3mV} \end{array}$ DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Y | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.355 ± 0.1% (k=2) | 403.806 ± 0.1% (k=2) | 404.276 ± 0.1% (k=2) | | Low Range | 3.92854 ± 0.7% (k=2) | 3.93862 ± 0.7% (k=2) | 3.93591 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 268 ° ± 1 ° | |---|-------------| | Connector Angle to be used in DASY system | 268 ° ± 1 ° | Certificate No: DAE3-577_Nov06 Page 3 of 5 # Appendix # 1. DC Voltage Linearity | High Range | Input (μV) | Reading (μV) | Error (%) | |-------------------|------------|--------------|-----------| | Channel X + Input | 200000 | 199999.5 | 0.00 | | Channel X + Input | 20000 | 20005.87 | 0.03 | | Channel X - Input | 20000 | -19998.71 | -0.01 | | Channel Y + Input | 200000 | 200000 | 0.00 | | Channel Y + Input | 20000 | 20004.22 | 0.02 | | Channel Y - Input | 20000 | -20003.23 | 0.02 | | Channel Z + Input | 200000 | 200000.6 | 0.00 | | Channel Z + Input | 20000 | 20005.24 | 0.03 | | Channel Z - Input | 20000 | -20001.80 | 0.01 | | Low Range | | Input (μV) | Reading (μV) | Error (%) | |-----------|---------|------------|--------------|-----------| | Channel X | + Input | 2000 | 1999.9 | 0.00 | | Channel X | + Input | 200 | 200.27 | 0.13 | | Channel X | - Input | 200 | -200.73 | 0.36 | | Channel Y | + Input | 2000 | 2000.1 | 0.00 | | Channel Y | + Input | 200 | 199.22 | -0.39 | | Channel Y | - Input | 200 | -200.86 | 0.43 | | Channel Z | + Input | 2000 | 1999.9 | 0.00 | | Channel Z | + Input | 200 | 199.28 | -0.36 | | Channel Z | - Input | 200 | -200.94 | 0.47 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | 200 | 44.54 | | |-------|---------------------|-------------------------------------| | | 14.24 | 12.49 | | - 200 | -12.13 | -12.92 | | 200 | -6.51 | -7.06 | | - 200 | 6.05 | 5.81 | | 200 | 1.09 | 0.86 | | - 200 | -2.86 | -2.63 | | | 200
- 200
200 | 200 -6.51
- 200 6.05
200 1.09 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 2.51 | 0.09 | | Channel Y | 200 | 0.43 | 24 | 3.37 | | Channel Z | 200 | -0.55 | 0.96 | | Certificate No: DAE3-577_Nov06 Page 4 of 5 # 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15970 | 16306 | | Channel Y | 15851 | 16305 | | Channel Z | 16208 | 17068 | # 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MC | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -0.51 | -1.55 | 0.47 | 0.50 | | Channel Y | -2.06 | -4.32 | -0.65 | 0.60 | | Channel Z | -1.63 | -2.56 | -0.15 | 0.35 | # 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance | | Zeroing (MOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 0.2000 | 199.8 | | Channel Y | 0.2000 | 200.7 | | Channel Z | 0.2000 | 199.8 | 8. Low Battery Alarm Voltage (verified during pre test) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (verified during pre test) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.0 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE3-577_Nov06 Page 5 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Certificate No: ET3-1787_Aug07 Accreditation No.: SCS 108 | | ET3DV6 - SN:1 | 787 | | |---|----------------------------------|--|---| | Calibration procedure(s) | QA CAL-01.v6
Calibration proc | edure for dosimetric E-field probes | | | Calibration date: | August 28, 2007 | 7 | | | condition of the calibrated item | In Tolerance | | | | | A | | | | | ucted in the closed laborate | probability are given on the following pages and are only facility: environment temperature $(22 \pm 3)^{\circ}$ C and | CONTRACTOR | | rimary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | ower meter E4419B | GB41293874 | 29-Mar-07 (METAS, No. 217-00670) | Mar-08 | | ower sensor E4412A | MY41495277 | 29-Mar-07 (METAS, No. 217-00670) | Mar-08 | | ower sensor E4412A | MY41498087 | 29-Mar-07 (METAS, No. 217-00670) | Mar-08 | | eference 3 dB Attenuator | SN: S5054 (3c) | 8-Aug-07 (METAS, No. 217-00719) | Aug-08 | | eference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-07 (METAS, No. 217-00671) | Mar-08 | | eference 30 dB Attenuator | SN: S5129 (30b) | 8-Aug-07 (METAS, No. 217-00720) | Aug-08 | | eference Probe ES3DV2
AE4 | SN: 3013
SN: 654 | 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)
20-Apr-07 (SPEAG, No. DAE4-654_Apr07) | Jan-08
Apr-08 | | econdary Standards | ID# | Check Date (in house) | Scheduled Check | | | US3642U01700 | 4-Aug-99 (SPEAG, in house check Nov-05) | In house check: Nov-07 | | F generator HP 8648C | US37390585 | 18-Oct-01 (SPEAG, in house check Oct-06) | In house check: Oct-07 | | F generator HP 8648C
letwork Analyzer HP 8753E | | | | | etwork Analyzer HP 8753E | Name | Function | Signature | | | Name
Katja Pokovic | Function
Technical Manager | Signature | Certificate No: ET3-1787_Aug07 Page 1 of 9 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Accreditation No.: SCS 108 **Swiss Calibration Service** Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z ConF DCP diode compression point Polarization o Polarization 9 φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., θ = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - R22 waveguide). NORMx,y,z are only
intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: ET3-1787_Aug07 Page 2 of 9 August 28, 2007 # Probe ET3DV6 SN:1787 Manufactured: May 28, 2003 Last calibrated: May 31, 2006 Recalibrated: August 28, 2007 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ET3-1787_Aug07 Page 3 of 9 August 28, 2007 # DASY - Parameters of Probe: ET3DV6 SN:1787 | Sensitivity in Free | e Space ^A | | Diode C | ompression ^t | 3 | |---------------------|----------------------|-----------------|---------|-------------------------|---| | NormX | 1.63 ± 10.1% | $\mu V/(V/m)^2$ | DCP X | 92 mV | | NormY 1.66 \pm 10.1% μ V/(V/m)² DCP Y 96 mV NormZ 2.08 \pm 10.1% μ V/(V/m)² DCP Z 91 mV Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. # **Boundary Effect** TSL 900 MHz Typical SAR gradient: 5 % per mm | Sensor Cente | r to Phantom Surface Distance | 3.7 mm | 4.7 mm | |-----------------------|-------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 4.7 | 2.0 | | SAR _{be} [%] | With Correction Algorithm | 0.1 | 0.0 | TSL 1810 MHz Typical SAR gradient: 10 % per mm | Sensor Cente | er to Phantom Surface Distance | 3.7 mm | 4.7 mm | |-----------------------|--------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 11.8 | 7.0 | | SAR _{be} [%] | With Correction Algorithm | 0.2 | 0.4 | # Sensor Offset Probe Tip to Sensor Center 2.7 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ET3-1787 Aug07 Page 4 of 9 [^] The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8). ⁸ Numerical linearization parameter: uncertainty not required. August 28, 2007 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ET3-1787_Aug07 Page 5 of 9 August 28, 2007 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ET3-1787_Aug07 Page 6 of 9 August 28, 2007 # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ET3-1787_Aug07 Page 7 of 9 August 28, 2007 # **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^c | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|----------------|----------------|-------|-------|--------------------| | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | $0.97 \pm 5\%$ | 0.32 | 2.42 | 6.58 ± 11.0% (k=2) | | 1810 | ± 50 / ± 100 | Head | $40.0 \pm 5\%$ | $1.40 \pm 5\%$ | 0.50 | 2.61 | 5.16 ± 11.0% (k=2) | | 2000 | ± 50 / ± 100 | Head | $40.0 \pm 5\%$ | $1.40 \pm 5\%$ | 0.55 | 2.45 | 4.80 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Head | 39.2 ± 5% | 1.80 ± 5% | 0.67 | 1.81 | 4.50 ± 11.8% (k=2) | | | | | | 1, 4 | | | | | 900 | ± 50 / ± 100 | Body | 55.0 ± 5% | 1.05 ± 5% | 0.36 | 2.52 | 6.10 ± 11.0% (k=2) | | 1810 | \pm 50 / \pm 100 | Body | 53.3 ± 5% | $1.52 \pm 5\%$ | 0.61 | 2.56 | 4.68 ± 11.0% (k=2) | | 2000 | ± 50 / ± 100 | Body | 53.3 ± 5% | $1.52 \pm 5\%$ | 0.60 | 2.40 | 4.30 ± 11.0% (k=2) | | 2450 | \pm 50 / \pm 100 | Body | 52.7 ± 5% | 1.95 ± 5% | 0.65 | 2.15 | 4.02 ± 11.8% (k=2) | Certificate No: ET3-1787_Aug07 Page 8 of 9 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. August 28, 2007 # **Deviation from Isotropy in HSL** Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: ET3-1787_Aug07 Page 9 of 9 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland - Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura - Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Sporton (Auden) Certificate No: ET3-1788_Sep06 | Object | ET3DV6 - SN:1 | 788 | 化对对对 电线自由 | |--|---|---|--| | Calibration procedure(s) | QA CAL-01.v5
Calibration proc | edure for dosimetric E-field probes | | | Calibration date: | September 19, | 2006 | | | Condition of the calibrated item | In Tolerance | | | | | | | | | All calibrations have been conduc | cted in the closed laborat | ory facility: environment temperature (22 ± 3)°C and | d humidity < 70%. | | Calibration Equipment used (M& | TE-critical for calibration) | | | | Calibration Equipment used (M&
Primary Standards | TE-critical for calibration) | Cal Date (Calibrated by Certificate No.) | Scheduled Calibration | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B | 10000 | | Scheduled Calibration Apr-07 | | Primary Standards Power meter E4419B | ID# | Cal Date (Calibrated by, Certificate No.) | | | Primary Standards
Power meter E44198
Power sensor E4412A | ID#
GB41293874 | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) | Apr-07 | | Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator | ID #
GB41293874
MY41495277
MY41498087
SN: S5054 (3c) | Cal Date (Calibrated by, Certificate No.)
5-Apr-06 (METAS, No. 251-00557)
5-Apr-06 (METAS, No. 251-00557)
5-Apr-06 (METAS, No. 251-00557)
10-Aug-06 (METAS, No. 217-00592) | Apr-07
Apr-07
Apr-07
Aug-07 | | Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator | ID #
GB41293874
MY41495277
MY41498087
SN: S5054 (3c)
SN: S5086 (20b) | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-08 (METAS, No. 251-00558) | Apr-07
Apr-07
Apr-07
Aug-07
Apr-07 | | Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator | ID#
GB41293874
MY41495277
MY41498087
SN: \$5054 (3c)
SN: \$5086 (20b)
SN: \$5129 (30b) | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00598) 10-Aug-06 (METAS, No. 217-00593) | Apr-07
Apr-07
Apr-07
Aug-07
Apr-07
Aug-07 | | Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 | ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00592) 4-Apr-06 (METAS, No. 251-00592) 10-Aug-06 (METAS, No. 251-00593) 2-Jan-08 (SPEAG, No. ES3-3013_Jan06) |
Apr-07
Apr-07
Apr-07
Aug-07
Aug-07
Aug-07
Jan-07 | | Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 | ID#
GB41293874
MY41495277
MY41498087
SN: \$5054 (3c)
SN: \$5086 (20b)
SN: \$5129 (30b) | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00598) 10-Aug-06 (METAS, No. 217-00593) | Apr-07
Apr-07
Apr-07
Aug-07
Apr-07
Aug-07 | | Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 | ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00592) 4-Apr-06 (METAS, No. 251-00592) 10-Aug-06 (METAS, No. 251-00593) 2-Jan-08 (SPEAG, No. ES3-3013_Jan06) | Apr-07
Apr-07
Apr-07
Aug-07
Aug-07
Aug-07
Jan-07 | | Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards | ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-08 (METAS, No. 251-0058) 10-Aug-06 (METAS, No. 27-00593) 2-Jan-08 (SPEAG, No. ES3-3013_Jan06) 21-Jun-06 (SPEAG, No. DAE4-854_Jun06) | Apr-07
Apr-07
Apr-07
Aug-07
Apr-07
Aug-07
Jan-07
Jun-07 | | Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards RF generator HP 8648C | ID# GB41293974 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-08 (METAS, No. 217-00593) 10-Aug-06 (METAS, No. 217-00593) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 21-Jun-06 (SPEAG, No. DAE4-854_Jun06) Check Date (in housa) | Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Jan-07 Jun-07 Scheduled Check | | Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards RF generator HP 8648C | ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID# US3642U01700 | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00552) 4-Apr-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 21-Jun-06 (SPEAG, No. DAE4-854_Jun06) Check Date (in house) | Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-07 Jun-07 Scheduled Check In house check: Nov-07 | | Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E | ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID# US3642U01700 US37390585 | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-08 (METAS, No. 251-0058) 10-Aug-06 (METAS, No. 251-00593) 2-Jan-06 (METAS, No. 251-00593) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Jan-07 Jun-07 Scheduled Check In house check: Nov-07 In house check: Nov 06 | | Primary Standards | ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID# US3642U01700 US37390585 Name | Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-08 (METAS, No. 217-00593) 10-Aug-06 (METAS, No. 251-00588) 10-Aug-06 (METAS, No. 251-00593) 2-Jan-06 (SPEAG, No. DAE4-854_Jun06) 21-Jun-06 (SPEAG, No. DAE4-854_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Jan-07 Jun-07 Scheduled Check In house check: Nov-07 In house check: Nov 06 | Certificate No: ET3-1788_Sep06 Page 1 of 9 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdlenst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z ConF DCP diode compression point Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: ET3-1788_Sep06 Page 2 of 9 September 19, 2006 # Probe ET3DV6 SN:1788 Manufactured: May 28, 2003 Last calibrated: September 30, 2004 Recalibrated: September 19, 2006 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ET3-1788_Sep06 Page 3 of 9 September 19, 2006 # DASY - Parameters of Probe: ET3DV6 SN:1788 | Sensitivity | in | Free | Space ^A | |-------------|----|------|--------------------| |-------------|----|------|--------------------| Diode Compression^B | NormX | 1.73 ± 10.1% | $\mu V/(V/m)^2$ | DCP X | 95 mV | |-------|--------------|-----------------|-------|---------------| | NormY | 1.67 ± 10.1% | $\mu V/(V/m)^2$ | DCP Y | 101 mV | | NormZ | 1.70 ± 10.1% | $\mu V/(V/m)^2$ | DCP Z | 93 mV | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. # **Boundary Effect** TSL 900 MHz Typical SAR gradient: 5 % per mm | Sensor Cente | r to Phantom Surface Distance | 3.7 mm | 4.7 mm | |-----------------------|-------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 7.9 | 4.3 | | SAR _{be} [%] | With Correction Algorithm | 0.1 | 0.3 | TSL 1810 MHz Typical SAR gradient: 10 % per mm | Sensor Cente | r to Phantom Surface Distance | 3.7 mm | 4.7 mm | |-----------------------|-------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 11.8 | 7.0 | | SAR _{be} [%] | With Correction Algorithm | 0.2 | 0.4 | # Sensor Offset Probe Tip to Sensor Center 2.7 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2,
which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ET3-1788_Sep06 Page 4 of 9 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ^a Numerical linearization parameter: uncertainty not required. September 19, 2006 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ET3-1788_Sep06 Page 5 of 9 September 19, 2006 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ET3-1788_Sep06 Page 6 of 9 September 19, 2006 # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ET3-1788_Sep06 Page 7 of # September 19, 2006 # **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^C | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|----------------|-------------------------|-------|-------|--------------------| | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.97 ± 5% | 0.49 | 1.94 | 6.60 ± 11.0% (k=2) | | 1810 | ± 50 / ± 100 | Head | $40.0\pm5\%$ | 1.40 ± 5% | 0.48 | 2.74 | 5.30 ± 11.0% (k=2) | | 2000 | ±50/±100 | Head | $40.0 \pm 5\%$ | 1.40 ± 5% | 0.53 | 2.75 | 5.00 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Head | $39.2\pm5\%$ | $\textbf{1.80} \pm 5\%$ | 0.68 | 1.96 | 4.66 ± 11.8% (k=2) | | | | | | | | | | | 900 | ± 50 / ± 100 | Body | 55.0 ± 5% | 1.05 ± 5% | 0.45 | 2.12 | 6.33 ± 11.0% (k=2) | | 1810 | ±50/±100 | Body | $53.3 \pm 5\%$ | 1.52 ± 5% | 0.59 | 2.89 | 4.67 ± 11.0% (k=2) | | 2000 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.56 | 2.79 | 4.50 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Body | $52.7 \pm 5\%$ | 1.95 ± 5% | 0.60 | 1.70 | 4.11 ± 11.8% (k=2) | Certificate No: ET3-1788_Sep06 Page 8 of 9 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. September 19, 2006 # Deviation from Isotropy in HSL Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: ET3-1788_Sep06 Page 9 of 9