

FCC TEST REPORT (PART 22)

REPORT NO.: RF950817L14B MODEL NO.: CENSUS RECEIVED: Apr. 13, 2008 TESTED: Apr. 15 ~ Apr. 21, 2008 ISSUED: Apr. 24, 2008

APPLICANT: High Tech Computer Corp.

- ADDRESS: 1F, No. 6-3, Baoqiang Rd., Xindian City, Taipei County 231, Taiwan, R.O.C.
- **ISSUED BY:** Advance Data Technology Corporation
- **LAB ADDRESS:** No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang 244, Taipei Hsien, Taiwan, R.O.C.
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd., Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 54 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF, A2LA or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1	CERTIFICATION	
2	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	5
3	GENERAL INFORMATION	6
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	8
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	11
3.4	DESCRIPTION OF SUPPORT UNITS	11
4	TEST TYPES AND RESULTS	
4.1	OUTPUT POWER MEASUREMENT	
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	
4.1.2	TEST INSTRUMENTS.	
4.1.3	TEST PROCEDURES	
4.1.4	TEST SETUP	
4.1.5	EUT OPERATING CONDITIONS	
4.1.6	TEST RESULTS	
4.2	FREQUENCY STABILITY MEASUREMENT.	
4.2.1	LIMITS OF FREQUENCY STABILITY MEASUREMENT	
4.2.2	TEST INSTRUMENTS.	
4.2.3	TEST PROCEDURE	-
4.2.4	TEST SETUP	
4.2.5	TEST RESULTS	
4.3	OCCUPIED BANDWIDTH MEASUREMENT	
4.3.1	LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT	
4.3.2	TEST INSTRUMENTS.	
4.3.3	TEST SETUP	
4.3.4	TEST PROCEDURES	22
4.3.5	TEST RESULTS	
4.4	BAND EDGE MEASUREMENT	
4.4.1	LIMITS OF BAND EDGE MEASUREMENT	
4.4.2	TEST INSTRUMENTS.	
4.4.3	TEST SETUP	
4.4.4	TEST PROCEDURES	
4.4.5	EUT OPERATING CONDITION	
4.4.6	TEST RESULTS	
4.5	CONDUCTED SPURIOUS EMISSIONS	
4.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	
4.5.2	TEST INSTRUMENTS.	
4.5.3	TEST PROCEDURE	
4.5.4	TEST SETUP	
4.5.5	EUT OPERATING CONDITIONS	
4.5.6	TEST RESULTS	
4.5.0	RADIATED EMISSION MEASUREMENT (BELOW 1GHz)	
4.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT (BELOW 1912)	
4.6.1	TEST INSTRUMENTS	
4.6.2	TEST PROCEDURES	
4.0.3		43

4.6.4	DEVIATION FROM TEST STANDARD	43
4.6.5	TEST SETUP	44
4.6.6	EUT OPERATING CONDITIONS	44
4.6.7	TEST RESULTS	45
4.7	RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)	46
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.7.2	TEST INSTRUMENTS	47
4.7.3	TEST PROCEDURES	48
4.7.4	DEVIATION FROM TEST STANDARD	48
4.7.5	TEST SETUP	49
4.7.6	EUT OPERATING CONDITIONS	49
4.7.7	TEST RESULTS	50
5	INFORMATION ON THE TESTING LABORATORIES	53
6	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANG TO THE EUT BY THE LAB	ES

1 CERTIFICATION

PRODUCT: Handheld computer MODEL: CENSUS APPLICANT: High Tech Computer Corp. TESTED: Apr. 15 ~ Apr. 21, 2008 TEST SAMPLE: ENGINEERING SAMPLE TEST STANDARDS: FCC Part 22, Subpart H ANSI C63.4-2003

The above equipment (model: CENSUS) has been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

 PREPARED BY
 :
 Andrea Hsia / Specialist
 , DATE: Apr. 24, 2008

 TECHNICAL
 Andrea Hsia / Specialist
 , DATE: Apr. 24, 2008

 ACCEPTANCE
 :
 Long Chen / Senior Engineer
 , DATE: Apr. 24, 2008

 Responsible for RF
 :
 Long Chen / Senior Engineer
 , DATE: Apr. 24, 2008

 APPROVED BY
 :
 Clan Chan G Assistant Manager
 , DATE: Apr. 24, 2008

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 22 & Part 2 / IC RSS-132									
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK							
2.1046 22.913 (a)	Maximum Peak Output Power Limit: max. 7 watts e.r.p peak power	PASS	Meet the requirement of limit. Minimum passing margin is 21.66dBm at 848.3MHz.							
2.1055	Frequency Stability AFC Freq. Error vs. Voltage AFC Freq. Error vs. Temperature Limit: max. ±2.5ppm	PASS	Meet the requirement of limit.							
2.1049 (h)	Occupied Bandwidth	PASS	Meet the requirement of limit.							
22.917	Band Edge Measurements	PASS	Meet the requirement of limit.							
2.1051 22.917	Conducted Spurious Emissions	PASS	Meet the requirement of limit.							
2.1053 22.917	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -42.87dB at 959.18MHz.							

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	3.34 dB
Dedicted emissions	200MHz ~1000MHz	3.35 dB
Radiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Handheld computer
MODEL NO.	CENSUS
FCC ID	NM8CENSUS
POWER SUPPLY	5.0Vdc from adapter 5.0Vdc from car charger 3.7Vdc from li-ion rechargeable battery
MODULATION TYPE	HPSK
FREQUENCY RANGE	824MHz ~ 849MHz
NUMBER OF CHANNEL	788
MAX. ERP POWER	21.66dBm (0.147Watts)
ANTENNA TYPE	Monopole antenna with 1.5dBi gain
DATA CABLE	1.8m RJ11 non-shielded cable without core 0.25m Velcro cable
I/O PORTS	Refer to user's manual
ACCESSORY DEVICES	Handset, Car charger, Adapter, Battery
EUT EXTREME VOL. RANGE	3.6Vdc to 4.2Vdc

NOTE:

1. This report is issued as a supplementary report to the original ADT report no.: RF950817L14. The difference compared with original design are changing the CDMA PA and adding a new battery as below. Therefore we re-tested all the test items and presented in the test report.

- 2. The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.2Vdc.
- 3. The EUT is an Handheld computer. The functions of EUT listed as below:

	TEST STANDARD	REFERENCE REPORT
CDMA 850	FCC Part 22	RF950817L14B
CDMA 1900	FCC Part 24	RF950817L14B-1

4. The EUT only support data transmission, not for voice.

5. The EUT is powered by the following battery.

BRAND	WELLDONE COMPANY
MODEL	MELB160
OUTPUT POWER	3.7Vdc, 3000mAh

6. The EUT is powered by the following adapter or car charger as below.

ADAPER	
BRAND	PHIHONG
MODEL	PSC11A-050
INPUT POWER	100-240Vac, 300mA
OUTPUT POWER	+5Vdc, 2A
POWER LINE	1.8 m non-shielded cable without core

CAR CHARGER					
BRAND	PHIHONG				
MODEL	CLM10D-050				
INPUT POWER	10-30Vdc				
OUTPUT POWER	5Vdc, 2A				
POWER LINE	1.6 m non-shielded cable without core				

7. IMEI Code: 36650003, 36650009.

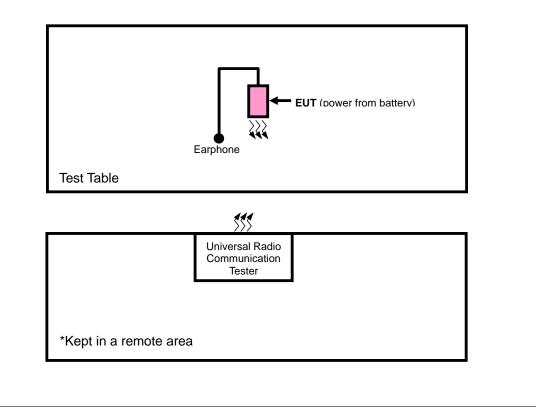
8. Software version: 0.91.

9. Hardware version: XA.

10. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

788 channels are provided to this EUT in the CDMA850 band. Therefore, the low, middle and high channels are chosen for testing.


	CHANNEL	FREQUENCY	TX MODE
LOW	1013	824.12 MHz	CDMA
MIDDLE	384	836.58 MHz	CDMA
HIGH	777	848.76 MHz	CDMA

NOTE:

1. Below 1 GHz, the channel 1013, 384 and 777 were pre-tested in chamber. The channel 1013 was the worst case and chosen for final test.

- 2. Above 1 GHz, the channel 1013, 384 and 777 were tested individually.
- 3. The channel space is 0.03MHz.
- 4. In this report, CDMA2000 1xEV-DO was the worst case for all test items, therefore, only the data was recorded in the following section.

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Г	EUT	APPLICABLE TO						DESCRIPTION		
	CONFIGURE MODE	OP	FS	ОВ	BE	CE	RE<1G	RE≥1G	DESCRIPTION	
	-	V	V	V	V	V	V	V	-	
Where										
Pı be div		been co able moo ecture).	nducted dulations	to deter s, data ra	ates, xyz	axis and	antenna	a ports (II possible combinatior f EUT with antenna v.	
	EUT CONFIGURE MODE	AVAILA	BLE CHA	NNEL T	ESTED CI	HANNEL		JLATION NOLOGY	AXIS	
		1013 to 777 1013								
🛛 Pi		BILITY N	MEASUF	REMENT to deter	mine the	e worst-c	ase mod		Il possible combination	
Pi be ar	re-Scan has	BILITY N been co able mod	MEASUF Inducted dulations	REMENT to deter s, data ra	rmine the ates, and	e worst-c I antenna	ase moc a ports (i	le from a f EUT wi	Il possible combination th antenna diversity	
Pı be ar	re-Scan has etween availa rchitecture).	BILITY N been co able mod	MEASUF Inducted dulations	to deter s, data ra e) select	<u>r</u> mine the ates, and ted for th	e worst-c I antenna	ase moc a ports (i est as list	le from a f EUT wi ted belov	Il possible combination th antenna diversity	
Pi be ar	re-Scan has etween availa rchitecture). ollowing char EUT CONFIGURE	BILITY N been co able mod	MEASUF Inducted dulations vas (wer	to deter s, data ra e) select	<u>r</u> mine the ates, and ted for th	e worst-c I antenna ne final te	ase moc a ports (i est as list	le from a f EUT wi ted belov	Il possible combination th antenna diversity v.	
OCCL	re-Scan has etween availa rchitecture). ollowing char EUT CONFIGURE MODE - - UPIED BANI re-Scan has etween availa rchitecture).	BILITY I been co able mod nnel(s) v AVAII DWIDTH been co able mod	MEASUF Inducted dulations vas (wer LABLE CH 1013 to 7 I MEASU Inducted dulations	to deter s, data ra e) select hANNEL 777 UREMEI to deter s, data ra	<u>T</u> : ted for the TE NT : mine the ates, and	e worst-c l antenna ne final te ESTED CH 384	ase moc a ports (i ANNEL ase moc a ports (i	le from a f EUT wi ted below Mod	Il possible combination th antenna diversity v. ULATION TECHNOLOGY CDMA Il possible combination th antenna diversity	
Pridet Strain Strai	re-Scan has etween availa rchitecture). ollowing chan EUT CONFIGURE MODE - - UPIED BANI re-Scan has etween availa	BILITY I been co able mod nnel(s) v AVAII DWIDTH been co able mod	MEASUF Inducted dulations vas (wer LABLE CH 1013 to 7 I MEASU Inducted dulations	to deter s, data ra e) select hANNEL 777 UREMEI to deter s, data ra e) select	<u>T</u> : MT: mine the ted for th ted for th	e worst-c l antenna ne final te ESTED CH 384	ase moc a ports (i est as list ANNEL ase moc a ports (i est as list	le from a f EUT wi ted below MOD le from a f EUT wi ted below	Il possible combination th antenna diversity v. ULATION TECHNOLOGY CDMA Il possible combination th antenna diversity	

BAND EDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
-	1013 to 777	1013, 777	CDMA

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
-	1013 to 777	1013, 384, 777	CDMA

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, xyz axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
-	1013 to 777	1013	CDMA	Х

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, xyz axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

с	EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
	-	1013 to 777	1013, 384, 777	CDMA	Х

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 22 IC RSS-132 ANSI C63.4-2003 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT BRAND MODEL NO		MODEL NO.	SERIAL NO.	CAL. DATE	
1	UNIVERSAL RADIO COMMUNICATION TESTER	R&S	CMU200	101095	Nov. 25, 2008	

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE:

1. All power cords of the above support units are non shielded (1.8m).

2. Item 1 acted as a communication partners to transfer data.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated peak output power shall be according to the specific rule Part 22.913 (a) that "Mobile / Portable station are limited to 7 watts e.r.p".

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Jul. 27, 2008
Spectrum Analyzer Agilent	E4446A	MY44360128	Dec. 06, 2008
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	May 31, 2008
HORN Antenna SCHWARZBECK	9120D	9120D-209	Jun. 28, 2008
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 24, 2008
Preamplifier Agilent	8447D	2944A10633	Oct. 28, 2008
Preamplifier Agilent	8449B	3008A01964	Oct. 23, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	283402/4	Dec. 06, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	251644/4	Dec. 06, 2008
Software ADT.	ADT_Radiated_V7.6	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA
Turn Table ADT.	TT100.	TT93021703	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA

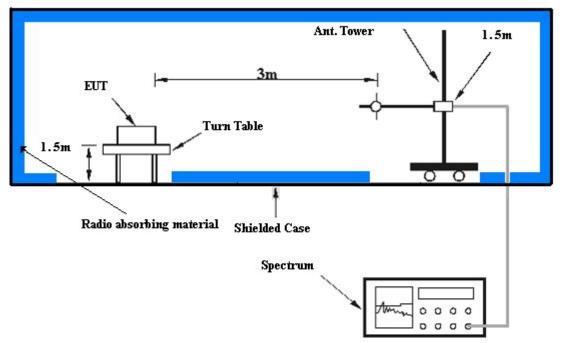
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

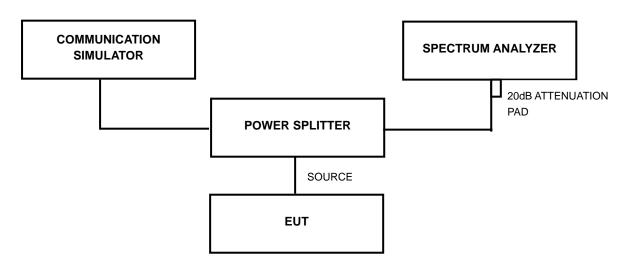
3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

4. The FCC Site Registration No. is 988962.

5. The IC Site Registration No. is IC3789B-3.



4.1.3 TEST PROCEDURES


- a. The EUT was set up for the maximum peak power with CDMA link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels: 1013, 384 and 777 (low, middle and high operational frequency range.)
- b. The conducted peak output power used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. The path loss included the splitter loss, cable loss and 20dB pad loss. The spectrum set RB/VB 3MHz,then read peak power value and record to the test. (All transmitted path loss shall be considered in the test report data.)
- c. E.I.R.P peak power measurement. In the fully anechoic chamber, EUT placed on the 1.5m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- d. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the calibration antenna. Rotated the Turn Table to find the maximum radiation power. "Raw" is the spectrum reading value, "SG" is signal generator export power, "TX Gain" is calibration antenna isotropic gain value, "TX cable" is the transmitted cable loss between the calibration antenna and signal generator. The "Factor" means that the transmission path loss is equal to "SG" "TX cable" + "TX Gain" "Raw".
- e. Actually the real E.I.R.P peak power is equal to "Read Value" + "Factor".
- f. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.

4.1.4 TEST SETUP EIRP POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.5 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.1.6 TEST RESULTS

MODE	TX connected	DETECTOR FUNCTION	Average
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH, 988hPa
TESTED BY	Match Tsui		

	CONDUCTED POWER (1x EV-DO)									
	FREQ.	RAW VAL	UE (dBm)	COPP	OUTPUT POWER					
CHANNEL	(MHz)		(u2m)	FACTOR (dB)		RT	RTAP		FTAP	
		RTAP	FTAP		dBm	Watt	dBm	Watt		
1013	824.70	22.88	23.00	0.50	23.38	0.218	23.50	0.224		
384	836.52	23.00	23.23	0.50	23.50	0.224	23.73	0.236		
777	848.31	22.85	23.00	0.50	23.35	0.216	23.50	0.224		

	CDMA 2000 CONDUCTED POWER (SO2, SO55, TDSO SO32, SO3)								
	FREQ.	CDMA 2000	RA	RAW VALUE (dBm)		(,) ••••••••••••••••••••••••••••••••••		dBm)	
CHAN.	(MHz)	RC	SO2	TDSO (ID)	FACTOR (dB)	SO2	SO55	TDSO SO32	
1010	00470	RC1	22.75	22.76	-	0.50	23.25	23.26	-
1013	824.70	RC3	22.66	22.68	22.70	0.50	23.16	23.18	23.20
204	926 52	RC1	22.92	22.95	-	0.50	23.42	23.45	-
384 836.52	030.52	RC3	22.87	22.90	22.85	0.50	23.37	23.40	23.35
777 848	848.31	RC1	23.10	22.50	_	0.50	23.60	23.00	-
	040.31	RC3	22.63	22.62	22.50	0.50	23.13	23.12	23.00

REMARKS: 1. Peak Output Power (dBm) = Raw Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB).

3. The value in bold is the worst.

MODE	TX connected	DETECTOR FUNCTION	Average
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH, 988hPa
TESTED BY	Match Tsui		

ERP POWER								
CHANNEL NO.	FREQUENCY (MHz)	MHz) RAW VALUE (dBm)						
			FACTOR (dB)	dBm	Watt			
1013	824.70	-18.42	40.03	21.61	0.145			
384	836.52	-18.66	40.32	21.66	0.147			
777	848.31	-19.19	40.62	21.43	0.139			

REMARKS: 1. Peak Output Power (dBm) = Raw Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = Receiver Antenna Gain (dBi) + Cable Loss (dB) + Free Space Loss (dB).

3. The value in bold is the worst.

4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT

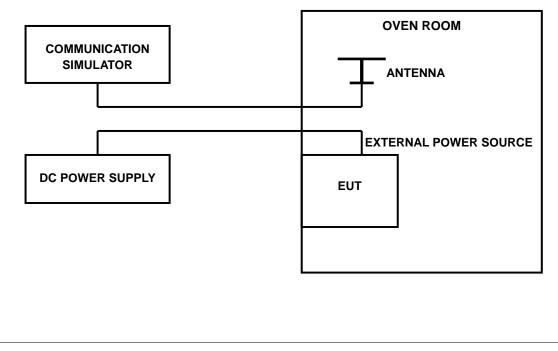
According to the FCC part 2.4235 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The frequency error rate is according to the JTC standard that the frequency error rate shall be accurate to within 2.5ppm of the received frequency from the base station. The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with the 2.1055(a)(1) –30°C ~50°C.

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
* ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100040	Jul. 28, 2008
* Hewlett Packard RF cable	8120-6192	01428251	NA
* Suhner RF cable	Sucoflex104	204850/4	NA
* WIT Standard Temperature & Humidity Chamber	TH-4S-C	W981030	Jun. 28, 2008

4.2.2 TEST INSTRUMENTS

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. "*" = These equipments are used for the final measurement.


3. The test was performed in ADT RF OVEN room.

4.2.3 TEST PROCEDURE

- a. Because of the measure the carrier frequency under the condition of the AFC lock, it shall be used the mobile station in the CDMA link mode. This is accomplished with the use of the communication simulator station. The oven room could control the temperatures and humidity. The CDMA link channel is the 384.
- b. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- c. EUT is connected the external power supply to control the DC input power. The various Volts from the minimum 3.7 Volts to 4.2 Volts. Each step shall be record the frequency error rate.
- d. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing.
- e. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.4 TEST SETUP

4.2.5 TEST RESULTS

MODE	Middle Channel		23deg. C, 60%RH, 988hPa
INPUT POWER (SYSTEM)	120Vac, 60Hz	TESTED BY	Match Tsui

AFC FREQUENCY ERROR vs. VOLTAGE			
VOLTAGE (Volts) FREQUENCY ERROR (Hz) FREQUENCY ERROR (ppm) LIMIT (ppm)			
4.2	5	0.0059772863	2.5
3.6	9	0.0107591154	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.2Vdc.

AFC FREQUENCY ERROR vs. TEMP.			
TEMP. (℃)	FREQUENCY ERROR (Hz)	FREQUENCY ERROR (ppm)	LIMIT (ppm)
50	21	0.0251046025	2.5
40	16	0.0191273162	2.5
30	10	0.0119545726	2.5
20	2	0.0023909145	2.5
10	3	0.0035863718	2.5
0	6	0.0071727436	2.5
-10	11	0.0131500299	2.5
-20	13	0.0155409444	2.5
-30	17	0.0203227735	2.5

4.3 OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT

According to FCC 2.1049 (h) specified that emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
* ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100040	Jul. 28, 2008
* Mini-Circuits Power Splitter	ZAPD-4	400005	NA
* Hewlett Packard RF cable	8120-6192	01428251	NA
* JFW 20dB attenuation	50HF-020-SMA	NA	NA
* Suhner RF cable	Sucoflex104	204850/4	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

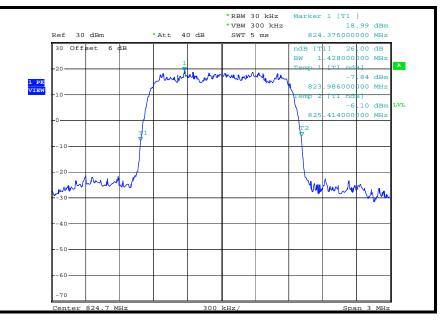
2. "*" = These equipments are used for the final measurement.

4.3.3 TEST SETUP

Same as Item 4.2.4 (Conducted Power Setup)

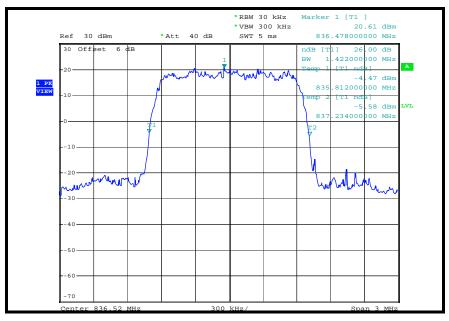
4.3.4 TEST PROCEDURES

- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels: 1013, 384 and 777 (low, middle and high operational frequency range.)
- b. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss is the worst loss 6dB in the transmitted path track.
- c. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. FCC 2.1049 (h) required a measurement bandwidth is the fundamental emission below 26dB bandwidth.

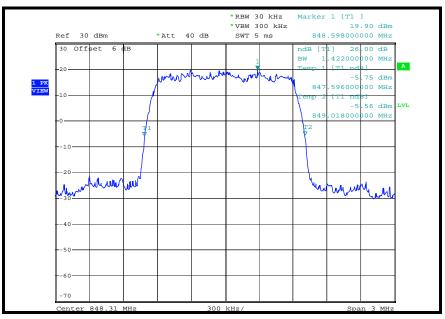


4.3.5 TEST RESULTS

FOR SO55:

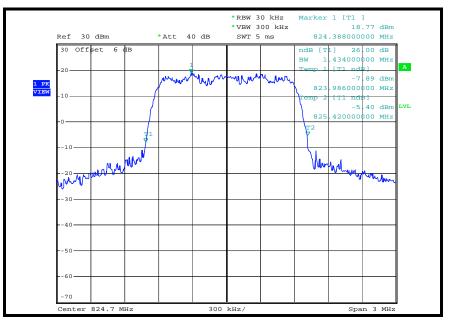

CHANNEL	MAX. OUTPUT POWER -26 dBc BANDWIDTH (MHz)	
LOW	1.428	
MIDDLE	1.422	
HIGH	1.422	

LOW CHANNEL

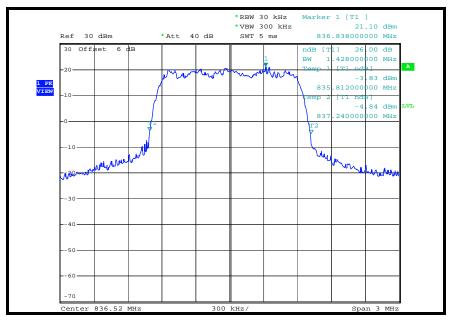


MIDDLE CHANNEL

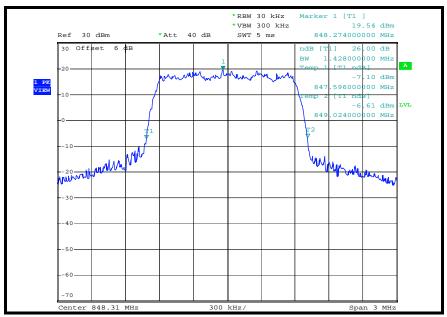
HIGH CHANNEL



FOR EV-DO FTAP:

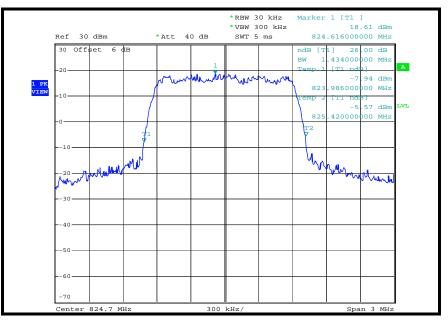

CHANNEL	MAX. OUTPUT POWER -26 dBc BANDWIDTH (MHz)	
LOW	1.434	
MIDDLE	1.428	
HIGH	1.428	

LOW CHANNEL

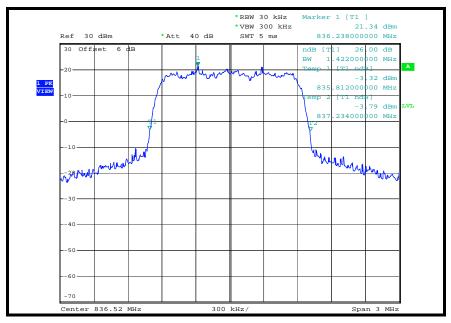


MIDDLE CHANNEL

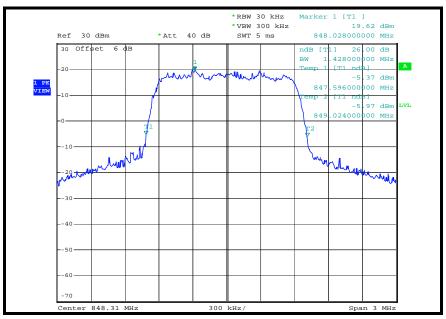
HIGH CHANNEL



FOR EV-DO RTAP:


CHANNEL	MAX. OUTPUT POWER -26 dBc BANDWIDTH (MHz)	
LOW	1.434	
MIDDLE	1.422	
HIGH	1.428	

LOW CHANNEL



MIDDLE CHANNEL

HIGH CHANNEL

4.4 BAND EDGE MEASUREMENT

4.4.1 LIMITS OF BAND EDGE MEASUREMENT

According to FCC 22.917 specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P)dB. In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
* ROHDE & SCHWARZ	FSP40	100040	Jul. 28, 2008
Spectrum Analyzer	1 31 40	100040	Jul. 20, 2000
* Mini-Circuits Power Splitter	ZAPD-4	400005	NA
* Hewlett Packard RF cable	8120-6192	01428251	NA
* JFW 20dB attenuation	50HF-020-SMA	NA	NA
* Suhner RF cable	Sucoflex104	204850/4	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

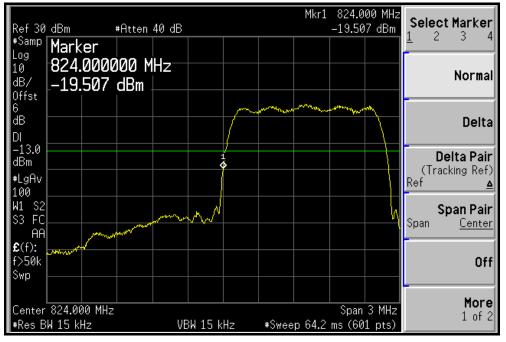
2. "*" = These equipments are used for the final measurement.

4.4.3 TEST SETUP

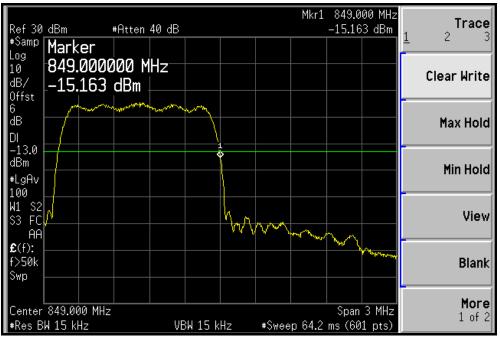
Same as Item 4.2.4 (Conducted Power Setup).

4.4.4 TEST PROCEDURES

- a. The EUT was set up for the maximum peak power with CDMA link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels: 1013 and 777 (low and high operational frequency range).
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss is the worst loss 6dB in the transmitted path track.
- c. The center frequency of spectrum is the band edge frequency and span is 3MHz. RB of the spectrum is 15kHz and VB of the spectrum is 15kHz.
- d. Record the max trace plot into the test report.


4.4.5 EUT OPERATING CONDITION

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.



4.4.6 TEST RESULTS

LOWER BAND EDGE

HIGHER BAND EDGE

4.5 CONDUCTED SPURIOUS EMISSIONS

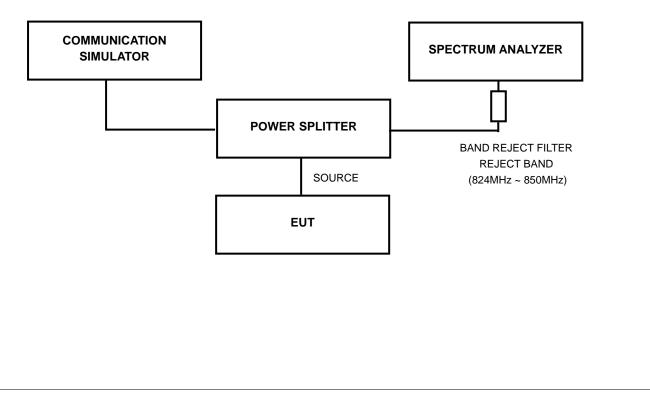
4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

In the FCC 22.917, On any frequency outside a licensee's frequency block within GSM850 spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The limit of emission equal to -13dBm.

4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
* ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100040	Jul. 28, 2008
* Wainwright Instruments Band Reject Filter	WRCG1850/1910- 1830/1930-60/10S S	SN1	NA
* Wainwright Instruments High Pass Filter	WHK3.1/18G-10SS	SN1	NA
* Mini-Circuits Power Splitter	ZAPD-4	400005	NA
* Hewlett Packard RF cable	8120-6192	01428251	NA
* JFW 20dB attenuation	50HF-020-SMA	NA	NA
* Suhner RF cable	Sucoflex104	204850/4	NA

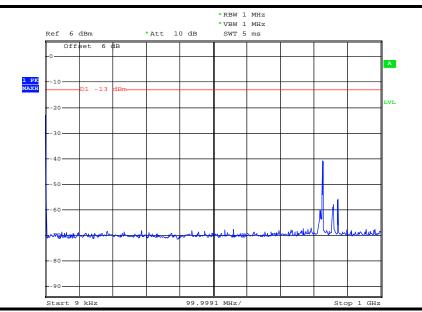
NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

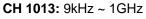

2. "*" = These equipments are used for the final measurement.

4.5.3 TEST PROCEDURE

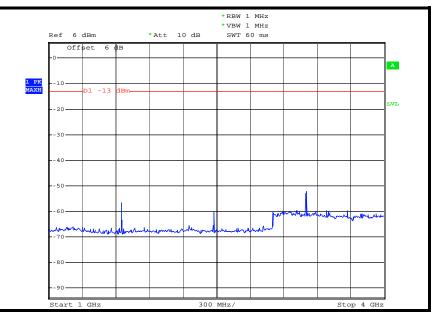
- a. The EUT was set up for the maximum peak power with CDMA link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 1013, 384 and 777(low, middle and high operational frequency range.)
- b. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss are the worst loss 6dB in the transmitted path track.
- c. When the spectrum scanned from 9kHz to 1GHz, it shall be connected to the band reject filter attenuated the carried frequency. The spectrum set RB=1MHz, VB=1MHz.
- d. When the spectrum scanned from 1GHz to 9GHz, it shall be connected to the high pass filter attenuated the carried frequency. The spectrum set RB=1MHz, VB=1MHz.

4.5.4 TEST SETUP

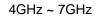


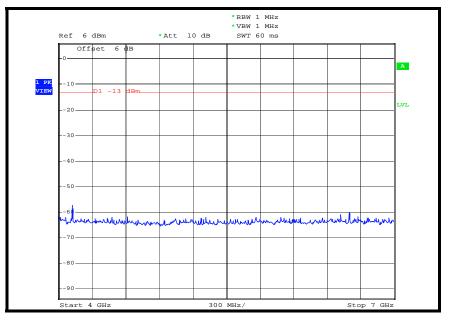

4.5.5 EUT OPERATING CONDITIONS

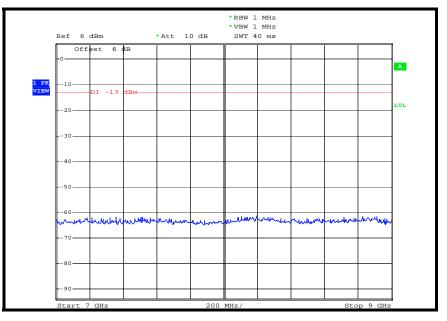
- a. The EUT makes a phone call to the communication simulator
- b. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

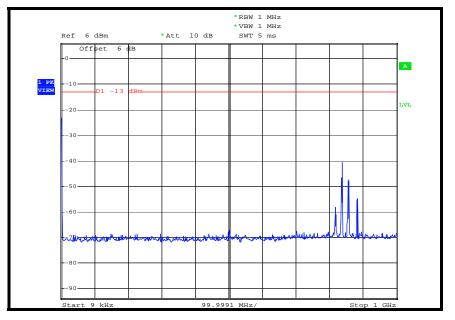


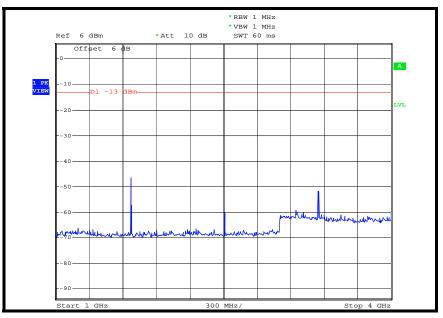
4.5.6 TEST RESULTS

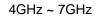


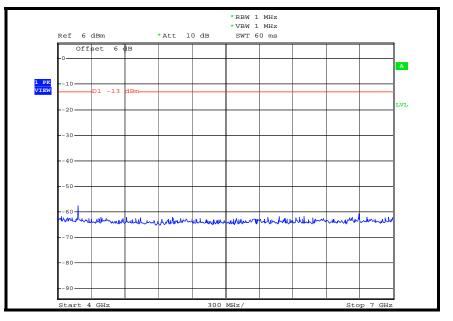




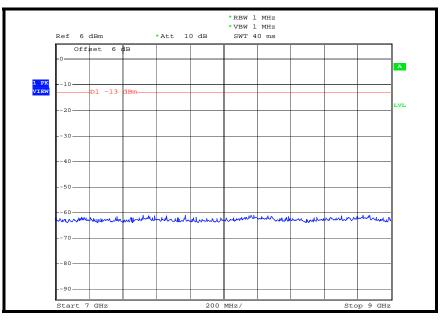


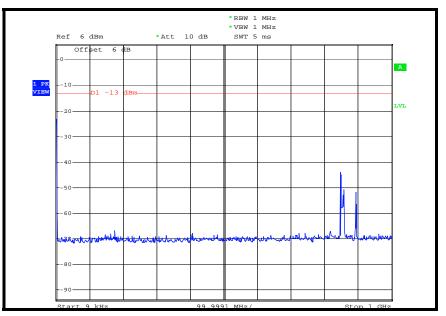


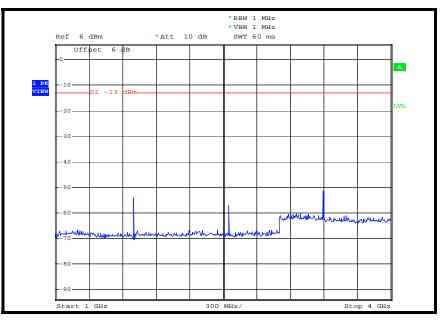

CH 384: 9kHz ~ 1GHz

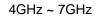


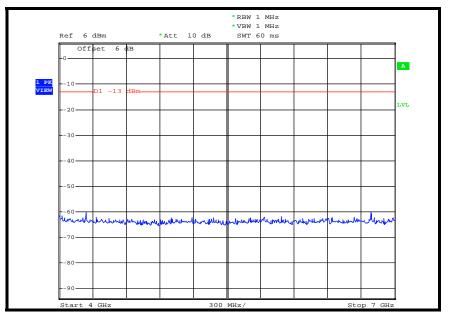
1GHz ~ 4GHz



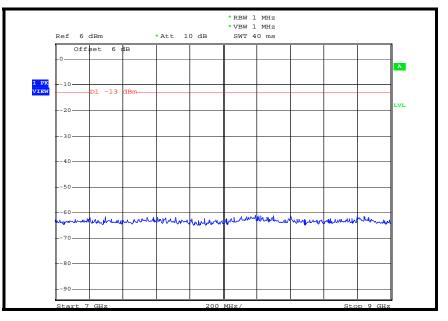





CH 777: 9kHz ~ 1GHz



1GHz ~ 4GHz



4.6 RADIATED EMISSION MEASUREMENT (BELOW 1GHz)

4.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 22.917, On any frequency outside a licensee's frequency block within GSM850 spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P)dB. The limit of emission equal to -13dBm. So the limit of emission is the same absolute specified line.

LIMIT (dBm)	EQUIVALENT FIELD STRENGTH AT 3m (dBuV/m) (NOTE)			
-13	82.22			

NOTE: The following formula is used to convert the equipment radiated power to field strength.

E = $[1000000\sqrt{(30P)}]/3 \text{ uV/m}$, where P is Watts.

4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Jul. 27, 2008
Spectrum Analyzer Agilent	E4446A	MY44360128	Dec. 06, 2008
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	May 31, 2008
HORN Antenna SCHWARZBECK	9120D	9120D-209	Jun. 28, 2008
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 24, 2008
Preamplifier Agilent	8447D	2944A10633	Oct. 28, 2008
Preamplifier Agilent	8449B	3008A01964	Oct. 23, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	283402/4	Dec. 06, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	251644/4	Dec. 06, 2008
Software ADT.	ADT_Radiated_V7.6	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA
Turn Table ADT.	TT100.	TT93021703	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

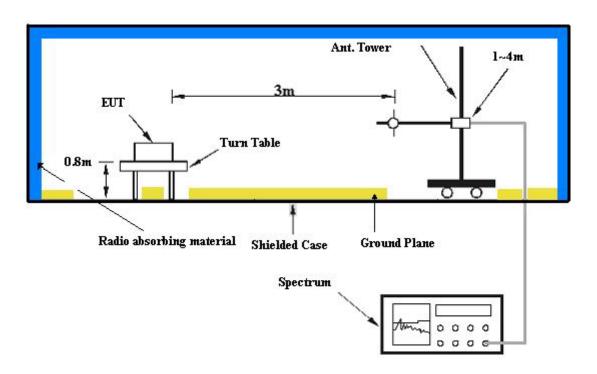
2. The test was performed in HwaYa Chamber 3.

3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

- 4. The FCC Site Registration No. is 988962.
- 5. The IC Site Registration No. is IC3789B-3.

4.6.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the receiving antenna, which was mounted on antenna tower and its position at 0.8 m above the ground.
- c. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading and recorded the value.
- d. Repeat step a ~ c for horizontal polarization.


NOTE: The resolution bandwidth of spectrum analyzer is 1MHz and the video bandwidth is 3MHz.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.6.6 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.6.7 TEST RESULTS

MODE	TX channel 1013	DETECTOR FUNCTION	Quasi-Peak
FREQUENCY RANGE	REQUENCY RANGE Below 1000MHz		120Vac, 60Hz
ENVIRONMENTAL CONDITIONS	22deg. C, 69%RH, 988hPa	TESTED BY	Lori Chiu

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	49.44	25.88 QP	82.22	-56.34	1.00 H	172	11.05	14.83		
2	286.59	26.32 QP	82.22	-55.90	1.25 H	217	11.49	14.83		
3	805.61	36.46 QP	82.22	-45.76	1.25 H	133	10.45	26.00		
4	889.20	37.85 QP	82.22	-44.37	1.50 H	319	10.39	27.46		
5	933.91	39.16 QP	82.22	-43.06	2.00 H	325	11.07	28.09		
6	959.18	39.35 QP	82.22	-42.87	1.25 H	352	10.97	28.38		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	53.33	26.76 QP	82.22	-55.46	1.25 V	298	12.16	14.60		
2	150.52	26.16 QP	82.22	-56.06	2.00 V	358	12.01	14.15		
3	811.44	36.51 QP	82.22	-45.71	2.50 V	10	10.38	26.13		
4	904.75	37.81 QP	82.22	-44.41	2.00 V	58	10.14	27.67		
5	963.07	39.00 QP	82.22	-43.22	2.00 V	346	10.59	28.41		
6	978.62	39.28 QP	82.22	-42.94	1.50 V	268	10.77	28.52		

NOTE:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. This is valid for all 3 channels.

4.7 RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 22.917 (a), On any frequency outside a licensee's frequency block within GSM spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$. The limit of emission equal to -13 dBm.

4.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Jul. 27, 2008
Spectrum Analyzer Agilent	E4446A	MY44360128	Dec. 06, 2008
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	May 31, 2008
HORN Antenna SCHWARZBECK	9120D	9120D-209	Jun. 28, 2008
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 24, 2008
Preamplifier Agilent	8447D	2944A10633	Oct. 28, 2008
Preamplifier Agilent	8449B	3008A01964	Oct. 23, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	283402/4	Dec. 06, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	251644/4	Dec. 06, 2008
Software ADT.	ADT_Radiated_V7.6	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA
Turn Table ADT.	TT100.	TT93021703	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

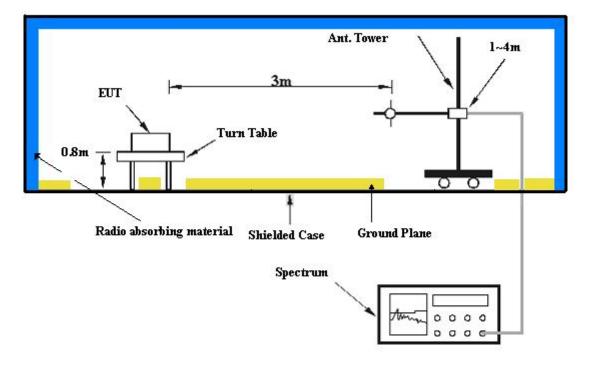
3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

4. The FCC Site Registration No. is 988962.

5. The IC Site Registration No. is IC3789B-3.

4.7.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the receiving antenna, which was mounted on antenna tower and its position at 0.8 m above the ground.
- c. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading and recorded the value.
- d. The EUT is replaced by a horn antenna connected to a signal generator tuned to the frequency of emission.
- e. The signal generator level has to be adjusted to have the same emission nature.
- f. The radiated power can be calculated via the factor and antenna gain.
- g. Repeat step a ~ f for horizontal polarization.


NOTE: The resolution bandwidth of spectrum analyzer is 1MHz and the video bandwidth is 3MHz.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.7.6 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.7.7 TEST RESULTS

MODE	Channel 1013	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25degoC, 65%RH, 988hPa
TESTED BY	Match Tsui		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	No. Freq. (MHz) Limit (dBm)				Power Value (dBm)			
1	1649.40	59.51	-13.00	-46.26	10.12	-36.14		
2	2474.10	44.02	-13.00	-63.65	11.49	-52.16		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)		
1	1649.40	53.90	-13.00	-51.47	10.12	-41.35		
2	2474.10	50.34	-13.00	-56.65	11.49	-45.16		

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

MODE	Channel 384	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz		25degoC, 65%RH, 988hPa
TESTED BY	Match Tsui		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)		
1	1673.04	58.56	-13.00	-47.70	10.12	-37.58		
2	2509.56	43.67	-13.00	-64.59	11.49	-53.10		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)		
1	1673.04	53.46	-13.00	-52.51	10.12	-42.39		
2	2509.56	50.42	-13.00	-57.57	11.49	-46.08		

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

MODE	Channel 777	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25degoC, 65%RH, 988hPa
TESTED BY	Match Tsui		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1696.62	61.55	-13.00	-44.90	10.17	-34.73
2	2544.93	45.27	-13.00	-62.45	11.49	-50.96

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1696.62	55.53	-13.00	-50.24	10.17	-40.07
2	2544.93	48.68	-13.00	-59.35	11.49	-47.86

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

5 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
GERMANY	TUV Rheinland
JAPAN	VCCI
NORWAY	NEMKO
CANADA	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
NETHERLANDS	Telefication
SINGAPORE	GOST-ASIA (MOU)
RUSSIA	CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050 Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

6 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.