

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Auden > Sporton Int. Inc.

CALIBRATION CERTIFICATE ET3DV6 - SN:1788 Object(s) QA CAL-01.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes August 29, 2003 Calibration date: In Tolerance (according to the specific calibration document) Condition of the calibrated item This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard. All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%. Calibration Equipment used (M&TE critical for calibration) Model Type ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration RF generator HP 8684C US3642U01700 4-Aug-99 (SPEAG, in house check Aug-02) In house check: Aug-05 Power sensor E4412A MY41495277 2-Apr-03 (METAS, No 252-0250) Apr-04 Power sensor HP 8481A MY41092180 18-Sep-02 (Agilent, No. 20020918) Sep-03 Power meter EPM E4419B 2-Apr-03 (METAS, No 252-0250) GB41293874 Apr-04 Network Analyzer HP 8753E US37390585 18-Oct-01 (Agilent, No. 24BR1033101) In house check: Oct 03 Fluke Process Calibrator Type 702 SN: 6295803 3-Sep-01 (ELCAL, No.2360) Sep-03 Function Name Signature Calibrated by: Neo Vetleri Technician ilat **Laboratory** Director Approved by: Katja Pokovic Date issued: August 28, 2003 This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

880-KP0301061-A

Page 1 (1)

©2004 SPORTON International Inc. SAR Testing Lab

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1788

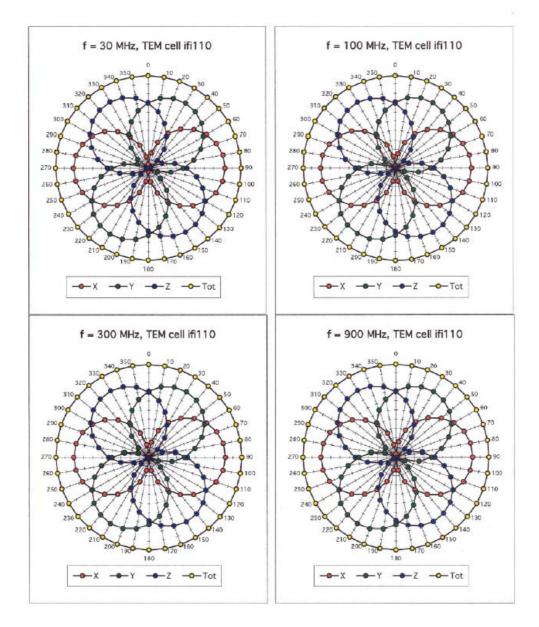
Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

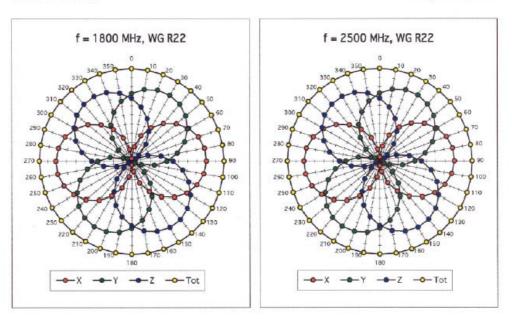
Page 1 of 10

August 29, 2003


DASY - Parameters of Probe: ET3DV6 SN:1788

Sensiti	ivity in Free	e Space		Diode Co	ompressio	on	
	NormX	1.68	μV/(V/m) ²		DCP X	95	mV
	NormY	1.62	μV/(V/m) ²		DCP Y	95	mV
	NormZ	1.71	μV/(V/m) ²		DCP Z	95	mV
Sensitiv	vity in Tissue	e Simulating	Liquid				
Head	90	0 MHz	$\varepsilon_r = 41.5 \pm 5$	i% σ=	0.97 ± 5%	6 mho/m	
Valid for f	=800-1000 MHz v	with Head Tissue	Simulating Liquid accor	ding to EN 5036	1, P1528-200	X	
	ConvF X	6.6	±9.5% (k=2)		Boundary e	ffect:	
	ConvF Y	6.6	±9.5% (k=2)		Alpha	0.34	
	ConvF Z	6.6	± 9.5% (k=2)		Depth	2.48	
Head	180	0 MHz	$\varepsilon_r = 40.0 \pm 5$	i% σ:	= 1.40 ± 5%	i mho/m	
Valid for f	=1710-1910 MHz	with Head Tissue	e Simulating Liquid acco	ording to EN 503	61, P1528-20	xoo	
	ConvF X	5.3	± 9.5% (k=2)		Boundary e	ffect:	
	ConvF Y	5.3	±9.5% (k=2)		Alpha	0.43	
	ConvF Z	5.3	± 9.5% (k=2)		Depth	2.80	
Bound	ary Effect						
Head	90	00 MHz	Typical SAR gradient	t: 5 % per mm			
	Probe Tip to	Boundary			1 mm	2 mm	
	SARbe [%]		ction Algorithm		8.7	5.0	
	SAR _{be} [%]	With Correction	on Algorithm		0.3	0.5	
Head	180	00 MHz	Typical SAR gradien	t: 10 % per mm			
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]		ction Algorithm		12.8	8.9	
	SAR _{be} [%]	With Correction	on Algorithm		0.3	0.1	
Sensor	r Offset						
	Probe Tip to	Sensor Center		2.7		mm	
	Optical Surfa	ace Detection		1.6 ± 0.2		mm	
			Page 2 of 10				

ET3DV6 SN:1788


August 29, 2003

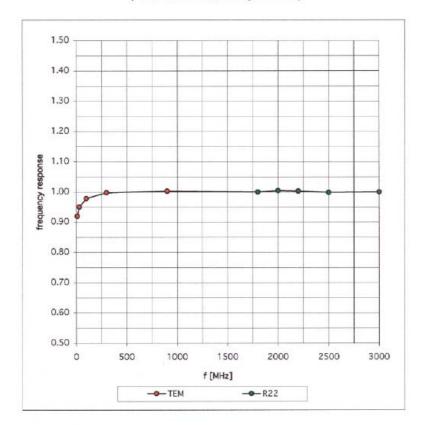
Receiving Pattern (ϕ), $\theta = 0^{\circ}$

Page 3 of 10

ET3DV6 SN:1788

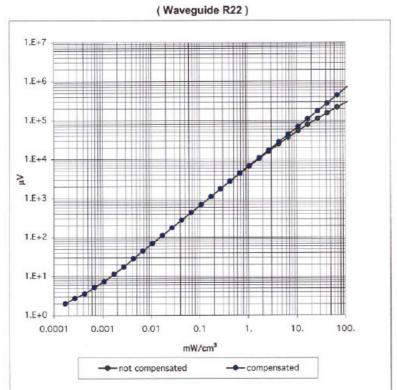
August 29, 2003

Isotropy Error (ϕ), $\theta = 0^{\circ}$

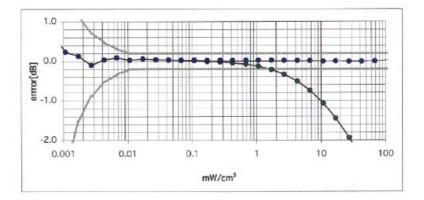

Page 4 of 10

August 29, 2003

Frequency Response of E-Field

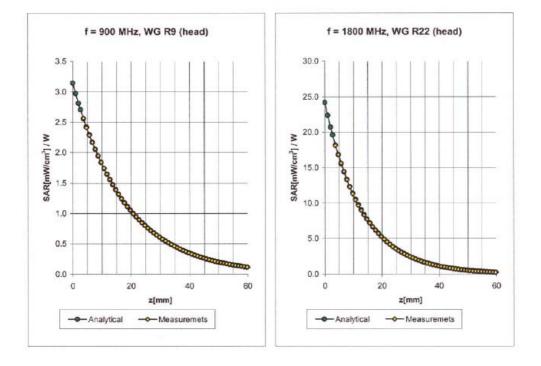

(TEM-Cell:ifi110, Waveguide R22)

Page 5 of 10



ET3DV6 SN:1788

August 29, 2003


Dynamic Range f(SAR_{brain}) (Waveguide R22)

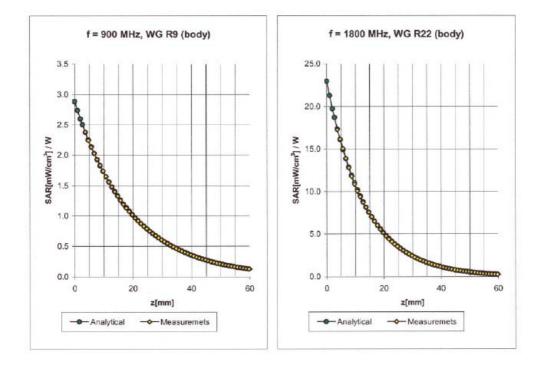
Page 6 of 10

August 29, 2003

Conversion Factor Assessment

Head 900 MHz er= 41.5 ± 5% σ = 0.97 ± 5% mho/m

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X


	ConvF X	6.6	5 ± 9.5% (k=2)	Boundary effe	ct:
	ConvF Y	6.6	± 9.5% (k=2)	Alpha	0.34
	ConvF Z	6.6	± 9.5% (k=2)	Depth	2.48
Head	1800 MHz		ϵ_r = 40.0 ± 5%	σ= 1.40 ± 5% m	nho/m
Valid for	f=1710-1910 MHz with He	ad Tis	sue Simulating Liquid according t	o EN 50361, P1528-200	х
	ConvF X	5.3	± 9.5% (k=2)	Boundary effe	ct
	ConvF Y	5.3	± 9.5% (k=2)	Alpha	0.43
	ConvF Z	5.3	5 ± 9.5% (k=2)	Depth	2.80

Page 7 of 10

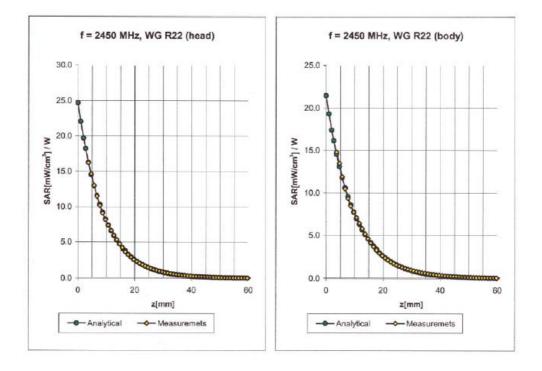
©2004 SPORTON International Inc. SAR Testing Lab

August 29, 2003

Conversion Factor Assessment

Body 900 MHz ε = 55.0 ± 5% σ = 1.05 ± 5% mho/m

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C


	ConvF X	6.5	± 9.5% (k=2)	Boundary effe	ect:
	ConvF Y	6.5	± 9.5% (k=2)	Alpha	0.31
	ConvF Z	6.5	± 9.5% (k=2)	Depth	2.92
Body	1800 MHz		ϵ_r = 53.3 ± 5%	σ = 1.52 ± 5%/ n	nho/m
Valid for f=	-1710-1910 MHz with Bo	dy Tiss	ue Simulating Liquid according to OET	65 Suppl. C	
	ConvF X	5.0	± 9.5% (k=2)	Boundary effe	ect
	ConvF Y	5.0	± 9.5% (k=2)	Alpha	0.51
	ConvF Z	5.0	± 9.5% (k=2)	Depth	2.78

Page 8 of 10

©2004 SPORTON International Inc. SAR Testing Lab

August 29, 2003

Conversion Factor Assessment

Head 2450 MHz ε_r = 39.2 ± 5% σ = 1.80 ± 5% mho/m

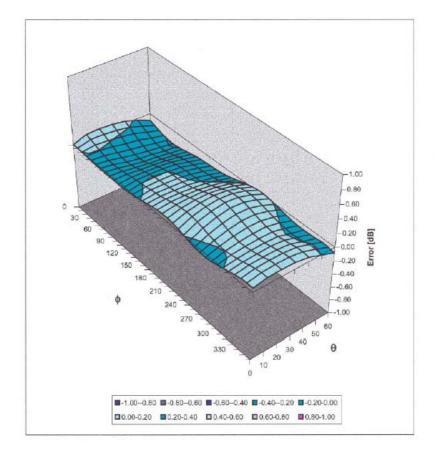
Valid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

	ConvF X	4.7 ± 8.9% (k=2)	Boundary effect:
	ConvF Y	4.7 ± 8.9% (k=2)	Alpha 0.99
	ConvF Z	4.7 ± 8.9% (k=2)	Depth 1.81
Body	2450 MHz	$\epsilon_r = 52.7 \pm 5\%$	σ = 1.95 ± 5% mho/m
Valid for f	=2400-2500 MHz with B	ody Tissue Simulating Liquid according	to OET 65 Suppl. C
	ConvF X	4.5 ±8.9% (k=2)	Boundary effect:

CONV X		10.3 /0 (K-2)	Boundary enec	
ConvF Y	4.5	± 8.9% (k=2)	Alpha	1.01
ConvF Z	4.5	± 8.9% (k=2)	Depth	1.74

Page 9 of 10

©2004 SPORTON International Inc. SAR Testing Lab



ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ , ϕ), f = 900 MHz

Page 10 of 10

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Sporton (Auden)

Object(s)	DAE3 - SD 000 D03	3 AA - SN:577	
Calibration procedure(s)	QA CAL-06.v4 Calibration procedur	re for the data acquisit	tion unit (DAE)
Calibration date:	21.11.2003		
Condition of the calibrated item	In Tolerance (accord	ding to the specific call	ibration document)
This calibration statement docum 17025 international standard	ents traceability of M&TE used in	the calibration procedures and c	onformity of the procedures with the ISO/IE
All calibrations have been conduc	ted in the closed laboratory facilit	ly environment temperature 22 +	I 2 degrees Celsius and humidity < 75%.
Calibration Equipment used (M&T	E critical for calibration)		
Calibration Equipment used (M&T Model Type Fluke Process Calibrator Type 70	ID #	Cai Date 8-Sep-03	Scheduled Calibration Sep-05
Model Type	ID #		
Model Type	ID #	8-Sep-03 Function	Sep-05 Signature
Model Type Fluke Process Calibrator Type 70	ID # 2 SN. 6295803	8-Sep-03 Function	Sep-05 Signature
Model Type	ID # 2 SN. 6295803 Namo	8-Sep-03 Function	Sep-05 Signature
Model Type Fluke Process Calibrator Type 70 Calibrated by:	ID # 2 SN. 6295803 Name Philipp Storchanegger	8-Sep-03 Function	Sep-05

DAE3 SN: 577

1. Cal Lab. Incoming Inspection & Pre Test

DATE: 21.11.2003

Modification Status	Note Status here $\rightarrow \rightarrow \rightarrow \rightarrow$	BC
Visual Inspection	Note anomalies	None
Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	400 mV
Low Range:	1LSB =	61nV ,	full range =	4 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	

High Range	Input	Reading in µV	% Error
Channel X + Input	200mV	200000.6	0.00
	20mV	20000.9	0.00
Channel X - Input	20mV	-19992.7	-0.04
Channel Y + Input	200mV	200000.6	0.00
	20mV	19999.1	0.00
Channel Y - Input	20mV	-19994.7	-0.03
Channel Z + Input	200mV	199999.8	0.00
	20mV	19998.1	-0.01
Channel Z - Input	20mV	-19999.2	0.00

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	1999.94	0.00
	0.2mV	199.08	-0.46
Channel X - Input	0.2mV	-200.24	0.12
Channel Y + Input	2mV	1999.98	0.00
	0.2mV	199.50	-0.25
Channel Y - Input	0.2mV	-200.80	0.40
Channel Z + Input	2mV	1999.98	0.00
	0.2mV	199.11	-0.44
Channel Z - Input	0.2mV	-201.12	0.56
A STATISTICS CONTRACTOR STATISTICS AND A	A 399 A 76 17 17 1		2010

Page 2 of 4

DASY measu	ode sensitivity rement parameters: Time: 3 sec, Range	Measuring time: 3	sec
in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec, Meas High Range

Measuring time: 3 sec

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	-	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

Page 3 of 4

DAE3	SN:	577

DATE: 21.11.2003

DASY measurement parameters: Auto Zero Time: 3 sec, Number of measurements:

Measuring time: 3 sec 100, Low Range

Input 10MΩ

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.64	-1.84	0.71	0.49
Channel Y	-1.77	-3.93	0.94	0.58
Channel Z	-2.21	-3.14	-0.81	0.34

Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level	
Supply (+ Vcc)	7.58	
Supply (- Vcc)	-7.65	

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97

Page 4 of 4