Calibration Laboratory of Schmid & Partner **Engineering AG**

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Auden

Taoyuan City

Certificate No. D2450V2-735 Dec23

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:735

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

December 07, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24
DAE4	SN: 601	03-Oct-23 (No. DAE4-601_Oct23)	Oct-24
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	
			Jan
Approved by:	Sven Kühn	Technical Manager	01
			5-

Issued: December 12, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-735_Dec23

Page 1 of 6

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-735_Dec23 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.3 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-735_Dec23 Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.9 Ω + 7.9 jΩ
Return Loss	- 21.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG

Certificate No: D2450V2-735_Dec23 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 07.12.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:735

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 03.11.2023

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601: Calibrated: 03.10.2023

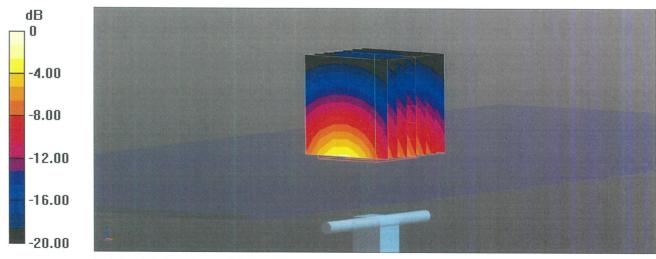
• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

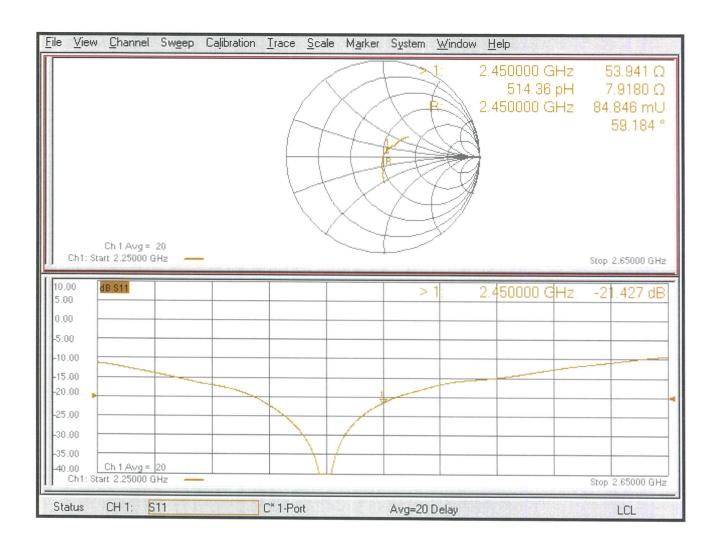
Reference Value = 117.0 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.35 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 51.1%


Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dBW/kg

Certificate No: D2450V2-735_Dec23

Impedance Measurement Plot for Head TSL

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client AII

Auden
Taoyuan City

Certificate No.

S

C

S

D5GHzV2-1145_Feb24

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN:1145

Calibration procedure(s) QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: February 21, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 3503	07-Mar-23 (No. EX3-3503_Mar23)	Mar-24
DAE4	SN: 601	30-Jan-24 (No. DAE4-601_Jan24)	Jan-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	falle
Approved by:	Sven Kühn	Technical Manager	Ca
	AND		

Issued: February 22, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1145_Feb24 Page 1 of 8

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1145 Feb24 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5850 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.61 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	***	

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.00 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1145_Feb24 Page 3 of 8

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.16 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		4

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5850 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.2	5.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	5.25 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	Table State State	

SAR result with Head TSL at 5850 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1145_Feb24 Page 4 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	52.2 Ω - 9.2 jΩ
Return Loss	- 20.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	59.3 Ω - 1.0 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	58.2 Ω - 0.6 jΩ
Return Loss	- 22.4 dB

Antenna Parameters with Head TSL at 5850 MHz

Impedance, transformed to feed point	59.8 Ω - 3.6 jΩ
Return Loss	- 20.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1145_Feb24 Page 5 of 8

DASY5 Validation Report for Head TSL

Date: 21.02.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1145

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750

MHz, Frequency: 5850 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.61$ S/m; $\epsilon_r = 36.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5$ S/m; $\epsilon_r = 35.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 5.16$ S/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5850 MHz; $\sigma = 5.25$ S/m; $\epsilon_r = 35.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(4.99, 4.99, 4.99) @ 5850 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2024
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.60 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.26 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 70.3%

Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.80 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.34 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 67.4%

Maximum value of SAR (measured) = 20.0 W/kg

Certificate No: D5GHzV2-1145_Feb24 Page 6 of 8

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.69 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 30.5 W/kg

SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.23 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

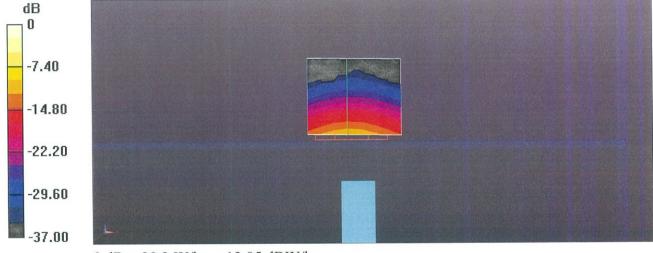
Ratio of SAR at M2 to SAR at M1 = 65.9%

Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

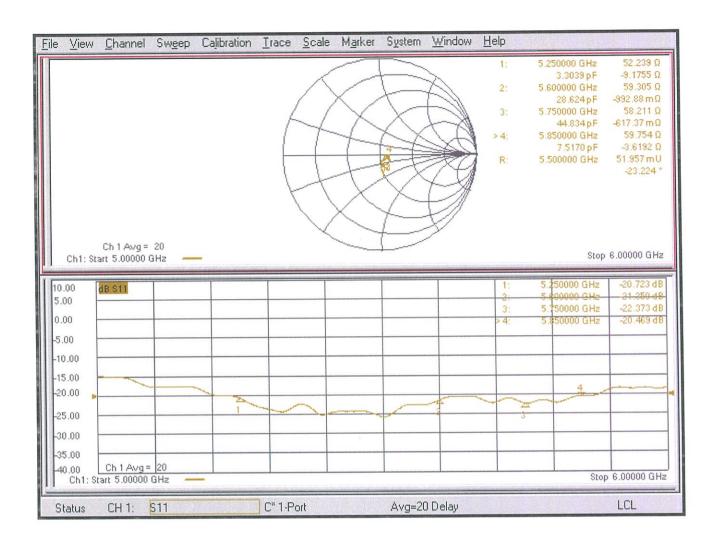
Reference Value = 69.91 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.31 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 64.7%


Maximum value of SAR (measured) = 20.2 W/kg

0 dB = 20.2 W/kg = 13.05 dBW/kg

Certificate No: D5GHzV2-1145_Feb24 Page 7 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1145_Feb24

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

TUV

New Taipei City, Taiwan

Certificate No. D6.5GHzV2-1044 Apr23

CALIBRATION CERTIFICATE

Object

D6.5GHzV2 - SN:1044

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date:

April 18, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

1		
ID#	Cal Date (Certificate No.)	Scheduled Calibration
SN: 100967	03-Apr-23 (No. 217-03806)	Apr-24
SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
SN: 84224 / 360D		Apr-24
SN: 7405		Jun-23
SN: 908	27-Jun-22 (No. DAE4-908_Jun22)	Jun-23
ID#	Check Date (in house)	Scheduled Check
SN: 827	18-Dec-18 (in house check Dec-21)	In house check: Dec-23
SN: 100169	10-Jan-19 (in house check Nov-22)	In house check: Nov-23
SN: 100950		In house check: Nov-23
SN:MY54504221	31-Oct-19 (in house check Oct-22)	In house check: Oct-25
	Function	Signature
Leif Klysner	Laboratory Technician	Seef The
Sven Kühn	Technical Manager	X
	SN: 100967 SN: BH9394 (20k) SN: 84224 / 360D SN: 7405 SN: 908 ID # SN: 827 SN: 100169 SN: 100950 SN:MY54504221 Name Leif Klysner	SN: 100967 03-Apr-23 (No. 217-03806) SN: BH9394 (20k) 30-Mar-23 (No. 217-03809) SN: 84224 / 360D 03-Apr-23 (No. 217-03812) SN: 7405 02-Jun-22 (No. EX3-7405_Jun22) SN: 908 27-Jun-22 (No. DAE4-908_Jun22) ID # Check Date (in house) SN: 827 18-Dec-18 (in house check Dec-21) SN: 100169 10-Jan-19 (in house check Nov-22) SN: 100950 28-Sep-22 (in house check Nov-22) SN:MY54504221 31-Oct-19 (in house check Oct-22) Name Function Leif Klysner Laboratory Technician

Issued: April 23, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D6.5GHzV2-1044_Apr23

Page 1 of 6

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1044_Apr23

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	6.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	29.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	294 W/kg ± 24.7 % (k=2)

SAR averaged over 8 cm ³ (8 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.8 W/kg ± 24.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.9 W/kg ± 24.4 % (k=2)

Certificate No: D6.5GHzV2-1044_Apr23

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.5 Ω - 2.8 jΩ
Return Loss	- 30.8 dB

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	293 W/m ²
APD measured	normalized to 1W	2930 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	131 W/m²
APD measured	normalized to 1W	1310 W/m ² ± 28.9 % (k=2)

^{*}The reported APD values have been derived using the psSAR1g and psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

14 4 4 4	
Manufactured by	SDEAG
	SI LAG

Certificate No: D6.5GHzV2-1044_Apr23 Page 4 of 6

DASY6 Validation Report for Head TSL

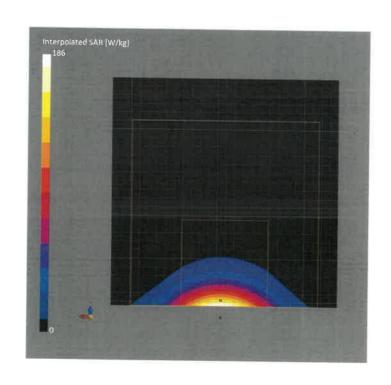
Measurement Report for D6.5GHz-1044, UID 0 -, Channel 6500 (6500.0MHz)

Device under	Test Propertie	es
--------------	----------------	----

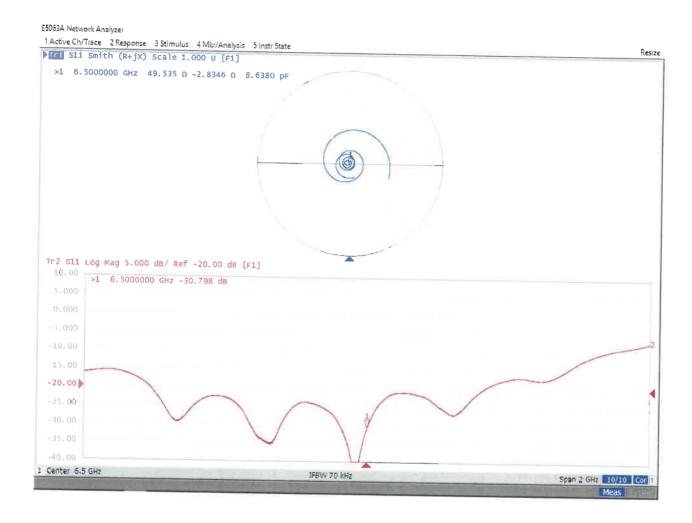
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
D6.5GHz	16.0 x 6.0 x 300.0	SN: 1044	- -

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.50	6.08	34.8


Hardware Setup

Phantom	TSL	Probe, Calibration Date EX3DV4 - SN7405, 2022-06-02	DAE, Calibration Date
MFP V8.0 Center - 1182	HBBL600-10000V6		DAE4 Sn908, 2022-06-27
			,


Scan Setup

	Zoom Scan		Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2023-04-18, 14:46
Grid Steps [mm]	3.4 x 3.4 x 1.4	psSAR1g [W/Kg]	29.3
Sensor Surface [mm]	1.4	psSAR8g [W/Kg]	6.57
Graded Grid	Yes	psSAR10g [W/Kg]	5.38
Grading Ratio	1.4	Power Drift [dB]	0.01
MAIA	N/A	Power Scaling	Disabled
Surface Detection	VMS + 6p	Scaling Factor [dB]	
Scan Method	Measured	TSL Correction	No correction
		M2/M1 [%]	55.4
		Dist 3dB Peak [mm]	4.7

Measurement Results

Impedance Measurement Plot for Head TSL

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

TUV

New Taipei City, Taiwan

Certificate No. 5G-Veri10-2013_Apr23

CALIBRATION CERTIFICATE

Object

5G Verification Source 10 GHz - SN: 2013

Calibration procedure(s)

QA CAL-45.v4

Calibration procedure for sources in air above 6 GHz

Calibration date:

April 26, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Reference Probe EUmmWV3	SN: 9374	2023-01-03(No. EUmmWV3-9374_Jan23)	Jan-24
DAE4ip	SN: 1602	2022-06-27 (No. DAE4ip-1602_Jun22)	Jun-23

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMF100A	SN: 100184	19-May-22 (in house check Nov-22)	In house check: Nov-23
Power sensor R&S NRP18S-10	SN: 101258	31-May-22 (in house check Nov-22)	In house check: Nov-23
Network Analyzer Keysight E5063A	SN: MY54504221	31-Oct-19 (in house check Oct-22)	In house check: Oct-25

Calibrated by:

Name

Function

Signature

Leif Klysner

Laboratory Technician

Approved by:

Sven Kühn

Technical Manager

Issued: April 26, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-2013 Apr23

Page 1 of 8

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz. The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- *E- field distribution:* E field is measured in two x-y-plane (10mm, 10mm + λ /4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-2013_Apr23 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

	33					
Distance Horn	Prad1	Max E-field	Uncertainty	Avg Power Density		Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
Measured Plane				(W/m²)		, ,
				1 cm ²	4 cm ²	
10 mm	132	294	1.27 dB	220	173	1.28 dB

Distance Horn Aperture to	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+		Uncertainty (k = 2)
Measured Plane				(W/m²) 1 cm² 4 cm²		
10 mm	132	294	1.27 dB	219, 219, 221	171, 172, 176	1.28 dB

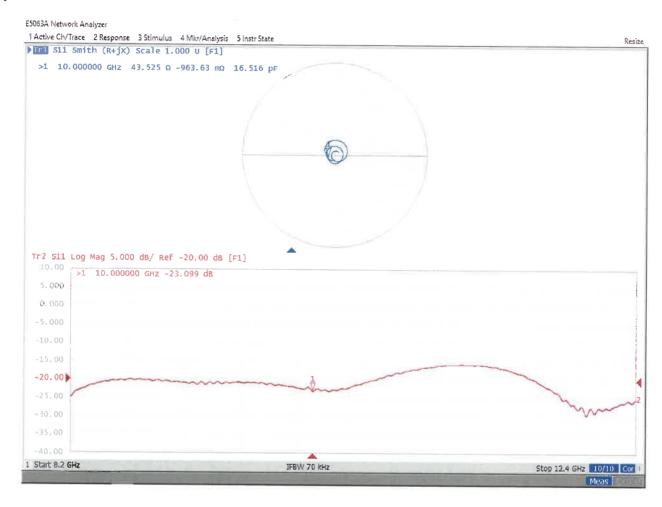
Square Averaging

Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+)		Uncertainty (k = 2)
					
132	294	1.27 dB			1.28 dB
		(mW) (V/m)	(mW) (V/m) (k = 2)	(mW) (V/m) (k = 2) Avg (psPDn+, psl (W. 1 cm ²	(mW) (V/m) (k = 2) Avg (psPDn+, psPDtot+, psPDmod+) (W/m²) 1 cm² 4 cm²

Distance Horn Aperture to Measured Plane	Prad¹ (mW)		Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	132	294	1.27 dB	219, 219, 221	170, 171, 176	1.28 dB

Max Power Density

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m²)	Uncertainty (k = 2)
10 mm	132	294	1.27 dB	239, 239, 239	1.28 dB


 $^{^{\}rm 1}$ Assessed ohmic and mismatch loss plus numerical offset: 0.70 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	43.5 Ω - 1.0 jΩ		
Return Loss	- 23.1 dB		

Impedance Measurement Plot

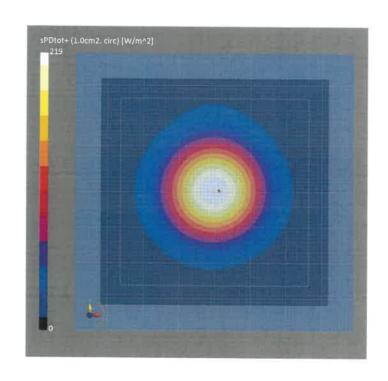
Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, ManufacturerDimensions [mm]IMEIDUT Type5G Verification Source 10 GHz100.0 x 100.0 x 100.0SN: 2013

Exposure Conditions

 Phantom Section
 Position, Test Distance [mm]
 Band
 Group, Channel Number
 Frequency [MHz], Channel Number
 Conversion Factor Channel Number


 5G 10.0 mm
 Validation band
 CW
 10000.0, 10000
 1.0

Hardware Setup

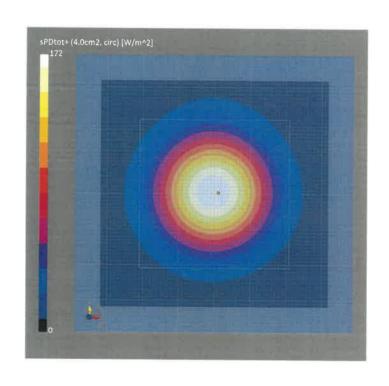
PhantomMediumProbe, Calibration DateDAE, Calibration DatemmWave Phantom - 1002AirEUmmWV3 - SN9374_F1-55GHz,
2023-01-03DAE4ip Sn1602,
2022-06-27

Scan Setup

scan Setup		Measurement Results	
	5G Scan		5G Scan
Sensor Surface [mm]	10.0	Date	2023-04-26, 09:22
MAIA	MAIA not used	Avg. Area [cm²]	1.00
		Avg. Type	Circular Averaging
		psPDn+ [W/m²]	219
		psPDtot+ [W/m²]	219
		psPDmod+ [W/m²]	221
		Max(Sn) [W/m²]	239
		Max(Stot) [W/m ²]	239
		Max(Stot) [W/m²]	239
		E _{max} [V/m]	294
		Power Drift [dB]	0.00

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties


Name, Manufacturer Dimensions [mm] IMEI **DUT Type** 5G Verification Source 10 GHz 100.0 x 100.0 x 100.0 SN: 2013

Exposure Conditions Phantom Section Position, Test Distance Band Group, Frequency [MHz], **Conversion Factor** [mm] **Channel Number** 5G -10.0 mm Validation band CW 10000.0, 1.0 10000

Hardware Setup

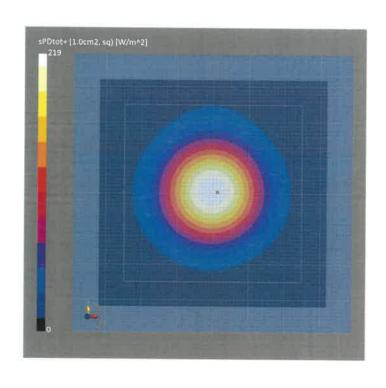
Phantom Medium **Probe, Calibration Date** DAE, Calibration Date mmWave Phantom - 1002 Air EUmmWV3 - SN9374_F1-55GHz, DAE4ip Sn1602, 2023-01-03 2022-06-27

Scan Setup		Measurement Results	
Sensor Surface [mm] MAIA	5G Scan 10.0 MAIA not used	Date Avg. Area [cm²] Avg. Type psPDn+ [W/m²] psPDtot+ [W/m²] psPDmod+ [W/m²] Max(Sn) [W/m²] Max(Stot) [W/m²] Max(Stot) [W/m²] Emax [V/m] Power Drift [dB]	5G Scan 2023-04-26, 09:22 4.00 Circular Averaging 171 172 176 239 239 239 294 0.00

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer Dimensions [mm] IMEI **DUT Type** 5G Verification Source 10 GHz 100.0 x 100.0 x 100.0 SN: 2013


Exposure Conditions

Phantom Section Position, Test Distance Band Group, Frequency [MHz], **Conversion Factor** [mm] **Channel Number** 5G -10.0 mm Validation band CW 10000.0. 1.0 10000

Hardware Setup

Phantom Medium **Probe, Calibration Date DAE, Calibration Date** mmWave Phantom - 1002 Air EUmmWV3 - SN9374_F1-55GHz, DAE4ip Sn1602, 2023-01-03 2022-06-27

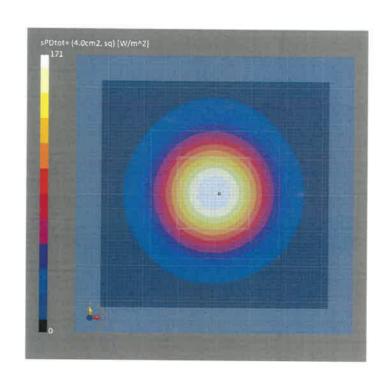
Scan Setup		Measurement Results	
	5G Scan		5G Scan
Sensor Surface [mm]	10.0	Date	2023-04-26, 09:22
MAIA	MAIA not used	Avg. Area [cm²]	1.00
		Avg. Type	Square Averaging
		psPDn+ [W/m²]	219
		psPDtot+ [W/m²]	219
		psPDmod+ [W/m²]	221
	•	Max(Sn) [W/m²]	239
		Max(Stot) [W/m²]	239
		Max(Stot) [W/m²]	239
		E _{max} [V/m]	294
		Power Drift [dB]	0.00

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer Dimensions [mm] IMEI **DUT Type** 5G Verification Source 10 GHz 100.0 x 100.0 x 100.0 SN: 2013

Exposure Conditions


Phantom Section Position, Test Distance Band Group, Frequency [MHz], **Conversion Factor** [mm] **Channel Number** 5G -10.0 mm Validation band CW 10000.0, 1.0 10000

Hardware Setup

Phantom Medium **Probe, Calibration Date** DAE, Calibration Date mmWave Phantom - 1002 EUmmWV3 - SN9374_F1-55GHz, Air DAE4ip Sn1602, 2023-01-03 2022-06-27

Scan Setup

Scan Setup		Measurement Results	
	5G Scan		5G Scan
Sensor Surface [mm]	10.0	Date	2023-04-26, 09:22
MAIA	MAIA not used	Avg. Area [cm²]	4.00
		Avg. Type	Square Averaging
		psPDn+ [W/m²]	170
		psPDtot+ [W/m²]	171
		psPDmod+ [W/m²]	176
		Max(Sn) [W/m²]	239
		Max(Stot) [W/m²]	239
		Max(Stot) [W/m²]	239
		E _{max} [V/m]	294
		Power Drift [dB]	0.00

