

FCC Test Report

Report No.: RF150727C10-6

FCC ID: NM82PQ9300

Test Model: 2PQ9300

Received Date: Jul. 27, 2015

Test Date: Aug. 29, 2015

Issued Date: Sep. 17, 2015

Applicant: HTC Corporation

Address: 1F, 6-3 Baoqiang Road, Xindian City, Taipei County 231, Taiwan

- Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)
- **Test Location:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Re	leas	e Control Record	4
1	Cer	tificate of Conformity	5
2	Sun	nmary of Test Results	6
	2.1	Measurement Uncertainty	6
		Modification Record	
3	Ger	neral Information	7
	3 1	General Description of EUT	7
		Description of Test Modes	
	0.2	3.2.1 Test Mode Applicability and Tested Channel Detail	
	3.3	Description of Support Units	
		3.3.1 Configuration of System under Test	
	3.4	General Description of Applied Standards	.11
4	Tes	t Types and Results	12
	4.1	Radiated Emission and Bandedge Measurement	
		4.1.1 Limits of Radiated Emission and Bandedge Measurement	
		4.1.2 Test Instruments	
		4.1.3 Test Procedures	
		4.1.4 Deviation from Test Standard	
		4.1.5 Test Set Up4.1.6 EUT Operating Conditions	
		4.1.7 Test Results	
	42	Conducted Emission Measurement	
	7.2	4.2.1 Limits of Conducted Emission Measurement	
		4.2.2 Test Instruments	
		4.2.3 Test Procedures	
		4.2.4 Deviation From Test Standard	21
		4.2.5 Test Setup	
		4.2.6 EUT Operating Condition	
		4.2.7 Test Results	
	4.3	Number of Hopping Frequency Used	
		4.3.1 Limits of Hopping Frequency Used Measurement4.3.2 Test Setup	
		4.3.3 Test Instruments	
		4.3.4 Test Procedure	
		4.3.5 Deviation fromTest Standard	
		4.3.6 Test Results	
	4.4	Dwell Time on Each Channel	
		4.4.1 Limits of Dwell Time on Each Channel Measurement	
		4.4.2 Test Setup	
		4.4.3 Test Instruments	
		4.4.4 Test Procedures4.4.5 Deviation from Test Standard	
		4.4.6 Test Results	
	45	Channel Bandwidth	
	4.0	4.5.1 Limits of Channel Bandwidth Measurement	
		4.5.2 Test Setup	
		4.5.3 Test Instruments	
		4.5.4 Test Procedure	
		4.5.5 Deviation from Test Standard	
		4.5.6 EUT Operating Condition	
		4.5.7 Test Results	
	4.6	Hopping Channel Separation	
		4.6.1 Limits of Hopping Channel Separation Measurement	32

Ap	pen	dix – Information on the Testing Laboratories	. 41
5	Pict	ures of Test Arrangements	. 40
		4.8.6 Test Results	. 36
		4.8.5 EUT Operating Condition	
		4.8.4 Deviation from Test Standard	. 36
		4.8.3 Test Procedure	
		4.8.2 Test Instruments	
		4.8.1 Limits Of Conducted Out Of Band Emission Measurement	
	4.8	Conducted Out of Band Emission Measurement	
		4.7.7 Test Results	
		4.7.6 EUT Operating Condition	
		4.7.4 Test Procedure	
		4.7.3 Test Instruments	
		4.7.2 Test Setup4.7.3 Test Instruments	
		4.7.1 Limits of Maximum Output Power Measurement	
	4.7	Maximum Output Power	
	. –	4.6.6 Test Results	
		4.6.5 Deviation From Test Standard	
		4.6.4 Test Procedure	
		4.6.3 Test Instruments	
		4.6.2 Test Setup	

Release Control Record Description Issue No. Date Issued **Original Release** Sep. 17, 2015 RF150727C10-6

1 Certificate of Conformity

Product:	Smartphone
Brand:	HTC
Test Model:	2PQ9300
Sample Status:	Identical Prototype
Applicant:	HTC Corporation
Test Date:	Aug. 29, 2015
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

Ivonne Wu / Supervisor

Date: Sep. 17, 2015

Sep. 17, 2015

Date:

Wu

Approved by :

Kay Wu / Supervisor

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (SECTION 15.247)							
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -10.58dB at 0.15391MHz.					
15.247(a)(1) (iii)			Meet the requirement of limit.					
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.					
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS	Meet the requirement of limit.					
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.					
15.205 & 209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -3.37dB at 40.53MHz.					
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.					
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.					
15.203	Antenna Requirement	PASS	No antenna connector is used.					

NOTE: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.44 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	2.0153 dB
Radiated Emissions up to 1 GHz	200MHz ~1000MHz	2.0224 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	1.0121 dB
	18GHz ~ 40GHz	1.1508 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smartphone
Brand	HTC
Test Model	2PQ9300
Status of EUT	Identical Prototype
Power Supply Rating	5.0Vdc (adapter or host equipment) 3.85Vdc (Li-ion battery)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Transfer Rate	1/2/3 Mbps
Operating Frequency	2402 ~ 2480 MHz
Number of Channel	79
Output Power	10.965 mW
Antenna Type	PIFA antenna with 0 dBi gain
Antenna Connector	N/A
Accessory Device	Refer to Note as below
Data Cable Supplied	Refer to Note as below

Note:

- 1. The EUT's accessories list refers to Ext. Pho.
- 2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To		Description
Mode	RE≥1G	RE<1G	PLC	APCM	Description
-	\checkmark	\checkmark	\checkmark	\checkmark	-
Where R	≥1G: Radiated Emission above 1GHz			RE<1G: Radiated Emission below 1GHz	
P	LC: Power Line	Conducted Em	ission	APCM: Antenna Port Conducted Measurement	

NOTE:

1. For Radiated emission test, pre-tested GFSK, π /4-DQPSK, 8DPSK modulation type and found GFSK was the worse, therefore chosen for the final test and presented in the test report.

2. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**.

3. "-" means no effect.

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

C	EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
	-	0 to 78	78	FHSS	GFSK	DH5

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT	3 · · · · (·) · · · (Modulation		
_	Available Channel	Tested Channel		Modulation Type	Packet Type
Configure Mode			Technology		
-	0 to 78	78	FHSS	GFSK	DH5

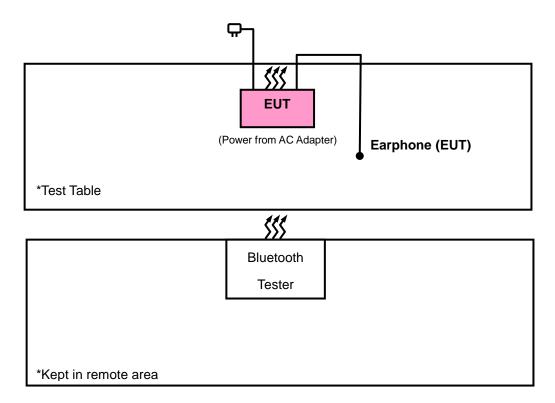
Antenna Port Conducted Measurement:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
-	0 to 78	0, 39, 78	FHSS	π /4-DQPSK	DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	DH5

Test Condition:


Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Gavin Wu
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Gavin Wu
PLC	25deg. C, 65%RH	120Vac, 60Hz	Toby Tian
APCM	25deg. C, 65%RH	3.85Vdc	Luke Chen

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) FCC Public Notice DA 00-705 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manaufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Jan. 21, 2015	Jan. 21, 2016
Spectrum Analyzer Agilent	N9010A	MY52220314	Sep. 03, 2015	Sep. 02, 2016
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 10, 2014	Dec. 09, 2015
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Feb. 04, 2015	Feb. 04, 2016
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Feb. 09, 2015	Feb. 09, 2016
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Feb. 04, 2015	Feb. 04, 2016
Loop Antenna	EM-6879	269	Jul. 31, 2015	Jul. 30, 2016
Bluetooth Tester	CBT	100980	Apr. 27, 2015	Apr. 26, 2017
Preamplifier EMCI	EMC 012645	980115	Dec. 12, 2014	Dec. 11, 2015
Preamplifier EMCI	EMC 184045	980116	Jan. 09, 2015	Jan. 08, 2016
Preamplifier EMCI	EMC 330H	980112	Dec. 27, 2014	Dec. 26, 2015
Power Meter Anritsu	ML2495A	1232002	Sep. 17, 2014	Sep. 16, 2015
Power Sensor Anritsu	MA2411B	1207325	Sep. 17, 2014	Sep. 16, 2015
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4 2950114	Oct. 18, 2014	Oct. 17, 2015
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 18, 2014	Oct. 17, 2015
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Nov. 07, 2014	Nov. 06, 2015
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

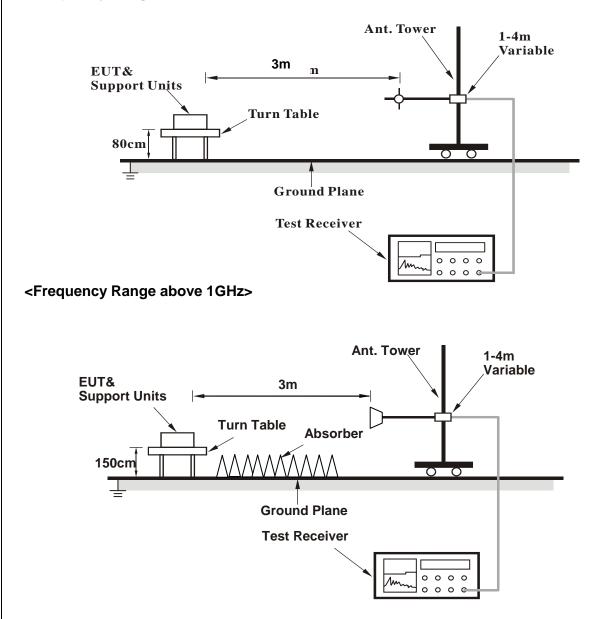
Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 10.
- 3. The horn antenna and preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 690701.
- 5. The IC Site Registration No. is IC7450F-10.

4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Set Up

<Frequency Range below 1GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA :

GFSK

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 0	FREQUENCY RANGE	1GHz ~ 25GHz		
INPUT POWER	120Vac, 60 Hz		Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Gavin Wu		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2360	33.26	39.89	54	-20.74	26.81	4.05	37.49	187	8	Average
2360	56.68	63.31	74	-17.32	26.81	4.05	37.49	187	8	Peak
2402	85.44	91.96			26.91	4.09	37.52	187	8	Average
2402	97.62	104.14			26.91	4.09	37.52	187	8	Peak
2484	33.85	39.87	54	-20.15	27.15	4.15	37.32	187	8	Average
2484	56.25	62.27	74	-17.75	27.15	4.15	37.32	187	8	Peak
		ANTE	NNA POLA	RITY & T	EST DISTA	ANCE: VI	ERTICAL A	AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2388	33.36	39.87	54	-20.64	26.91	4.08	37.5	229	3	Average
2388	57.42	63.93	74	-16.58	26.91	4.08	37.5	229	3	Peak
2402	90.82	97.34			26.91	4.09	37.52	229	3	Average
2402	101.57	108.09			26.91	4.09	37.52	229	3	Peak
2488	33.9	39.86	54	-20.1	27.2	4.16	37.32	229	3	Average
2488	57.26	63.22	74	-16.74	27.2	4.16	37.32	229	3	Peak

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2402MHz: Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL				
CHANNEL	Channel 39	FREQUENCY RANGE	1GHz ~ 25GHz			
INPUT POWER	120Vac, 60 Hz		Peak (PK) Average (AV)			
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Gavin Wu			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2388	33.37	39.88	54	-20.63	26.91	4.08	37.5	195	15	Average
2388	56.33	62.84	74	-17.67	26.91	4.08	37.5	195	15	Peak
2441	86.44	92.65			27.06	4.12	37.39	195	15	Average
2441	97.5	103.71			27.06	4.12	37.39	195	15	Peak
2488	33.9	39.86	54	-20.1	27.2	4.16	37.32	195	15	Average
2488	56.41	62.37	74	-17.59	27.2	4.16	37.32	195	15	Peak
		ANTE	NNA POLA	RITY & T	EST DISTA	NCE: VI		AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2318	33.11	39.83	54	-20.89	26.72	4.03	37.47	154	2	Average
2318	56.89	63.61	74	-17.11	26.72	4.03	37.47	154	2	Peak
2441	90.07	96.28			27.06	4.12	37.39	154	2	Average
2441	101.34	107.55			27.06	4.12	37.39	154	2	Peak
2486	33.88	39.9	54	-20.12	27.15	4.15	37.32	154	2	Average
2486	57.23	63.25	74	-16.77	27.15	4.15	37.32	154	2	Peak

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2441MHz: Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 78	FREQUENCY RANGE	1GHz ~ 25GHz		
INPUT POWER	120Vac, 60 Hz		Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Gavin Wu		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2376	33.29	39.86	54	-20.71	26.86	4.07	37.5	207	16	Average
2376	56.87	63.44	74	-17.13	26.86	4.07	37.5	207	16	Peak
2480	86.11	92.13			27.15	4.15	37.32	207	16	Average
2480	97.64	103.66			27.15	4.15	37.32	207	16	Peak
2498	34.63	40.52	54	-19.37	27.2	4.16	37.25	207	16	Average
2498	57.57	63.46	74	-16.43	27.2	4.16	37.25	207	16	Peak
		ANTE	NNA POLA	RITY & T	EST DISTA	NCE: VI		AT 3 M	-	
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2386	33.34	39.85	54	-20.66	26.91	4.08	37.5	182	3	Average
2386	56.8	63.31	74	-17.2	26.91	4.08	37.5	182	3	Peak
2480	90.16	96.18			27.15	4.15	37.32	182	3	Average
2480	101.39	107.41			27.15	4.15	37.32	182	3	Peak
2486	35.12	41.14	54	-18.88	27.15	4.15	37.32	182	3	Average
2486	58.25	64.27	74	-15.75	27.15	4.15	37.32	182	3	Peak

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2480MHz: Fundamental frequency.

9kHz ~ 30MHz DATA:

The amplitude of spurious emissions attenuated more than 20dB below the permissible value is not required to be report.

30MHz ~ 1GHz WORST-CASE DATA:

EUT TEST CONDITION		MEASUREMENT DETAIL				
CHANNEL	Channel 78	FREQUENCY RANGE	30MHz ~ 1GHz			
INPUT POWER	120Vac, 60 Hz		Peak (PK) Quasi-peak (QP)			
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Gavin Wu			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
120.99	31.8	51.45	43.5	-11.7	11.09	1.16	31.9	124	200	Peak
183.09	33.83	53.86	43.5	-9.67	10.53	1.23	31.79	137	164	Peak
213.6	34.43	54.78	43.5	-9.07	9.93	1.35	31.63	132	94	Peak
336.4	20.49	36.76	46	-25.51	13.82	1.73	31.82	104	279	Peak
524.7	21.49	33.1	46	-24.51	17.88	2.14	31.63	110	112	Peak
647.9	23.74	33.23	46	-22.26	20.19	2.35	32.03	126	190	Peak
		ANTE	NNA POLA	RITY & T	EST DISTA	NCE: VI	ERTICAL A	AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
40.53	36.63	53.45	40	-3.37	13.55	0.65	31.02	140	210	Peak
64.56	30.41	49.81	40	-9.59	11.35	0.84	31.59	113	154	Peak
151.77	25.9	43.73	43.5	-17.6	12.71	1.12	31.66	118	117	Peak
387.5	18.23	33.32	46	-27.77	15.05	1.88	32.02	116	172	Peak
514.9	20.45	32.25	46	-25.55	17.66	2.12	31.58	108	149	Peak
622	23.59	33.58	46	-22.41	19.87	2.3	32.16	131	290	Peak

REMARKS: Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor

Margin value = Emission level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56 56 - 46				
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

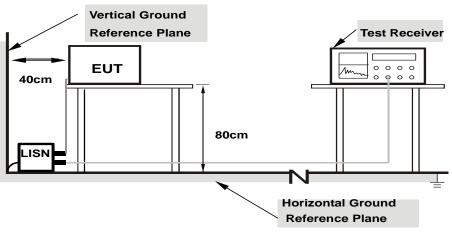
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 11, 2014	Nov. 10, 2015
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Dec. 26, 2014	Dec. 25, 2015
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Feb. 26, 2015	Feb. 25, 2016
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 24, 2015	Jul. 23, 2016
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation From Test Standard

No deviation.

4.2.5 Test Setup

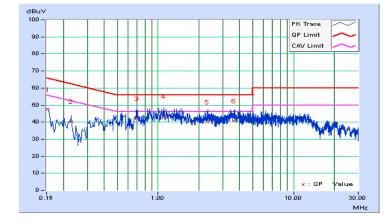
Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.

4.2.7 Test Results

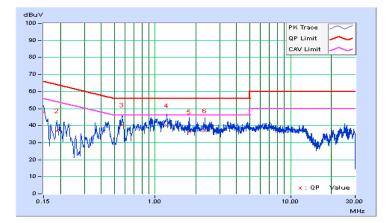

CONDUCTED WORST-CASE DATA : GFSK

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV)
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2015/8/25

				Phase Of	Power : L	ine (L)				
	Frequency	Correction	Reading Value		Emission Level		Lir	nit	Margin	
No		Factor	(dBuV)		(dB	uV)	(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P. AV.		Q.P.	AV.	Q.P.	AV.
1	0.15391	0.05	47.43	45.16	47.48	45.21	65.79	55.79	-18.31	-10.58
2	0.22820	0.06	40.22	37.41	40.28	37.47	62.51	52.51	-22.23	-15.04
3	0.69349	0.07	42.09	32.52	42.16	32.59	56.00	46.00	-13.84	-13.41
4	1.09622	0.08	43.39	32.11	43.47	32.19	56.00	46.00	-12.53	-13.81
5	2.30050	0.13	39.93	30.90	40.06	31.03	56.00	46.00	-15.94	-14.97
6	3.63381	0.18	40.66	31.79	40.84	31.97	56.00	46.00	-15.16	-14.03

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

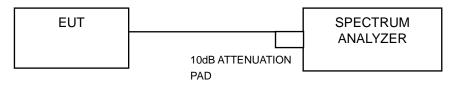


Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV)
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2015/8/25

			Pł	nase Of P	ower : Ne	utral (N)				
	Frequency	Correction	Reading Value		Emission Level		Limit		Margin	
No		Factor	(dBuV)		(dBuV)		(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P. AV.		Q.P.	AV.	Q.P.	AV.
1	0.15000	0.05	47.61	45.03	47.66	45.08	66.00	56.00	-18.34	-10.92
2	0.18903	0.05	36.92	24.09	36.97	24.14	64.08	54.08	-27.11	-29.94
3	0.57228	0.07	40.50	30.43	40.57	30.50	56.00	46.00	-15.43	-15.50
4	1.21743	0.09	40.04	30.62	40.13	30.71	56.00	46.00	-15.87	-15.29
5	1.77656	0.10	36.16	27.28	36.26	27.38	56.00	46.00	-19.74	-18.62
6	2.33960	0.12	36.81	28.27	36.93	28.39	56.00	46.00	-19.07	-17.61

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

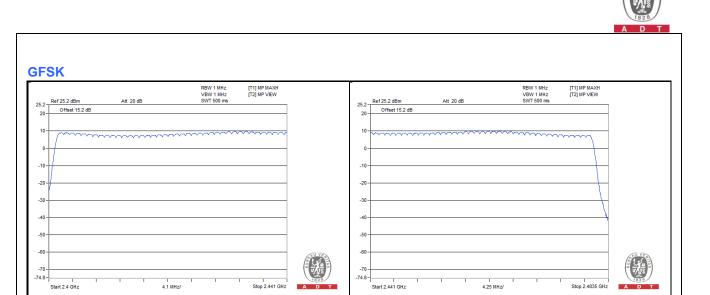
At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

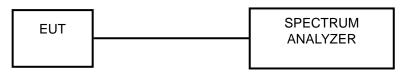

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.



4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.
- 4.4.5 Deviation from Test Standard

No deviation.

4.4.6 Test Results

GFSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
DH1	10.40	405.00	0.13	0.4
DH3	5.20	1690.00	0.28	0.4
DH5	3.60	2915.00	0.33	0.4

NOTE:

- 1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
- 2. 79 channels come from the Hopping Channel number
- 3. Average Hopping Channel = hops/sweep time
- 4. t: Package Transfer Time(us)

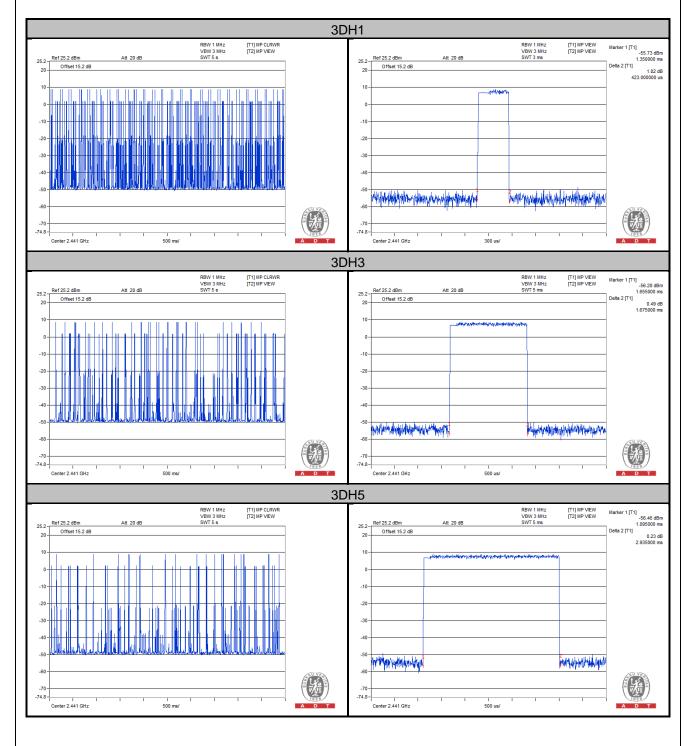
5. Test plots of the transmitting time slot are shown as below.

Π/4-DQPSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
2DH1	5.00	411.00	0.06	0.4
2DH3	5.00	1690.00	0.27	0.4
2DH5	3.60	2940.00	0.33	0.4

NOTE:

- 1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
- 2. 79 channels come from the Hopping Channel number
- 3. Average Hopping Channel = hops/sweep time
- 4. t: Package Transfer Time(us)
- 5. Test plots of the transmitting time slot are shown as below.

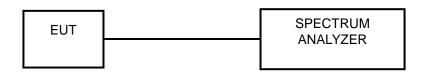


8DPSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
3DH1	10.40	423.00	0.14	0.4
3DH3	5.40	1675.00	0.29	0.4
3DH5	3.40	2935.00	0.32	0.4

NOTE:

- 1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
- 2. 79 channels come from the Hopping Channel number
- 3. Average Hopping Channel = hops/sweep time
- 4. t: Package Transfer Time(us)
- 5. Test plots of the transmitting time slot are shown as below.



4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

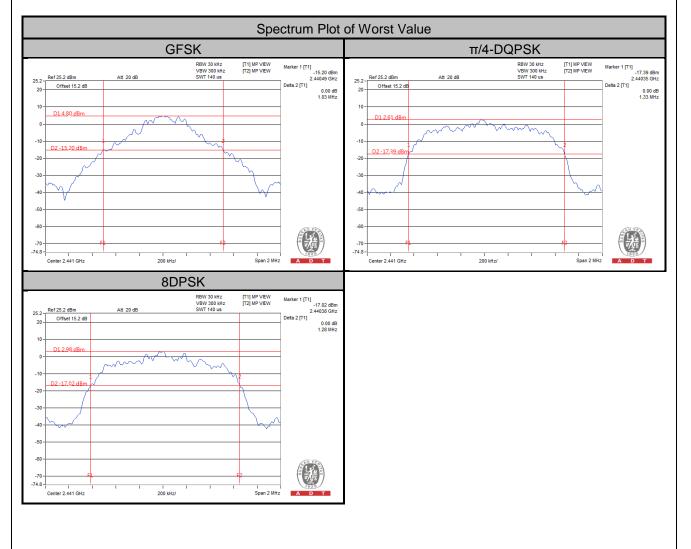
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

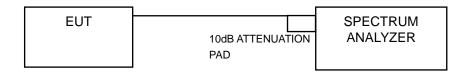
No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency	20dB Bandwidth (MHz)					
Channel	(MHz)	GFSK	π/4-DQPSK	8DPSK			
0	2402	1.030	1.33	1.27			
39	2441	1.030	1.33	1.28			
78	2480	0.941	1.33	1.28			



4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

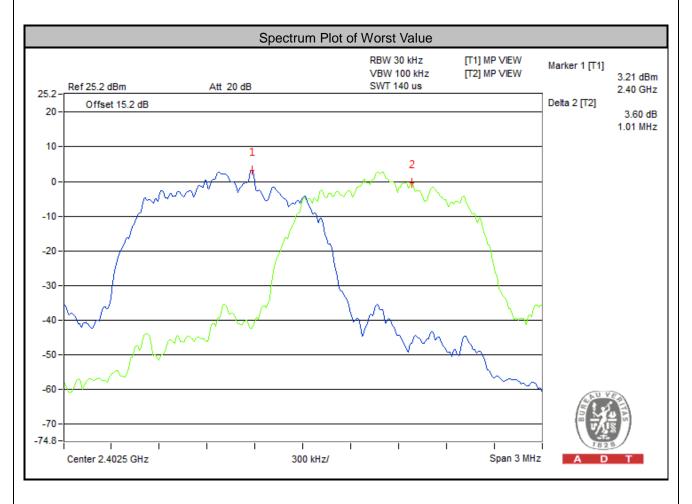
4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.6.5 Deviation From Test Standard

No deviation.

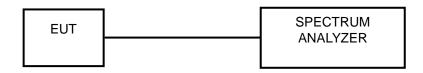


4.6.6 Test Results

Channel	Freq. (MHz)	Adjacent Channel Separation (MHz)			Bai	20dB ndwidth (MI	Hz)	Minimum Limit (MHz)			Pass / Fail
			π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	Faii
0	2402	1.00	1.00	1.01	1.030	1.33	1.27	0.687	0.887	0.847	Pass
39	2441	1.00	1.00	1.00	1.030	1.33	1.28	0.687	0.887	0.853	Pass
78	2480	1.00	1.00 1.00 1.00			1.33	1.28	0.627	0.887	0.853	Pass

NOTE:

1. The minimum limit is two-third 20dB bandwidth.



4.7.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125mW.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.5 Deviation fromTest Standard

No deviation.


4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

Channel	Channel Frequency (MHz)		Output Powe (mW)	r	(Dutput Powe (dBm)	r	Power Limit	Pass / Fail
	(IVI⊓ <i>∠)</i>	GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	(mW)	
0	2402	10.965	9.795	10.715	10.40	9.91	10.30	125	PASS
39	2441	10.046	9.727	10.593	10.02	9.88	10.25	125	PASS
78	2480	7.211	7.015	7.621	8.58	8.46	8.82	125	PASS

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits Of Conducted Out Of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.8.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

No deviation.

4.8.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

		Ho	opping disable	d_Low (Chanr	nel				
Ref 25.2 dBm A Offset 15.2 dB - - D1 0.67 dBm - - D2 31.32 dBm -	,	88W 100 MHz [T1] MP V 89W 300 Htz SWT 4.01 ms	EW Marker 1 [11] 8.67 dBm 2.40185 GHz 40185 GHz 40185 GHz 40185 GHz 40000 GHz 40000 GHz 40000 GHz 40195 GHZ 4000 GHZ 4000 GHZ 4000 GHZ 4	25.2 - Ref 25.2 d 20 Offset 10 - D1 8.5 0	18m t 15.2 dB 7 dBm 3<u>2 d8</u>m	Att 20 dB		RBW 100 kHz VEW 300 kHz SWT 250 ms	[T1] MP VEW	Marker 1 [71] 2.40215 Marker 2 [71] 2.357671 Marker 3 [71] 4.61521 Marker 4 [71] 24.98127
center 2 358 GHz	ини // Пананики/И // улааники/ини 			-50			1 de 11 de 14 de 1		2 3	
		RBW 100 kHz [T1] MP V	opping disable	d_High	Chan	nel		RBW 100 kHz	[T1] MP VIEW	
Ref 25.2 dBm A Offset 15.2 dB I 1 I D1.7.2 dBm I D2.1288 dBm I D2.1288 dBm I I I </td <td>1 20 68</td> <td>VBW 300 kHz [T2] MP V</td> <td>2.41996 GHz -510 0 dBm 2.43550 GHz 4.43550 GHz 4.4355 GHz 2.43550 GHz -57.96 dBm 2.43572 GHz 4.4372 GHz 2.43572 GHz 2.50000 GHz </td> <td>25 2 - Ref 25 2 d 20 Offset 10 - D1 71 0</td> <td>18m t 152 dB 2 dBm 2 dBm 88 dBm 88 dBm</td> <td>Att 20 dB</td> <td>مىلى بىلى بىلى بىلى بىلى بىلى بىلى بىلى</td> <td>VEW 300 H/z SWT 250 ms</td> <td>(т2) MP VIEW 2 2 1</td> <td>Marker 1 [71] 7.12 2.47560 Marker 2 [71] 4.46590 Marker 3 [71] 5.13 2.47400 Marker 4 [71] 2.498751</td>	1 20 68	VBW 300 kHz [T2] MP V	2.41996 GHz -510 0 dBm 2.43550 GHz 4.43550 GHz 4.4355 GHz 2.43550 GHz -57.96 dBm 2.43572 GHz 4.4372 GHz 2.43572 GHz 2.50000 GHz 	25 2 - Ref 25 2 d 20 Offset 10 - D1 71 0	18m t 152 dB 2 dBm 2 dBm 88 dBm 88 dBm	Att 20 dB	مىلى بىلى بىلى بىلى بىلى بىلى بىلى بىلى	VEW 300 H/z SWT 250 ms	(т2) MP VIEW 2 2 1	Marker 1 [71] 7.12 2.47560 Marker 2 [71] 4.46590 Marker 3 [71] 5.13 2.47400 Marker 4 [71] 2.498751
FL F2				-70-					1	
Center 2.5242 GHz	10 MHz/		100 MHz A D T	Start 30 Mi			2.497 GHz/		Stop 25 GH	
Норр	• –	Low Chanr			Ho	opping ei	nabled_		hannel	
Ref 25.2 dBm A Offset 15.2 dB	,	UT11 MP V 100 Hz [T1 MP V [T2 MP V 100 Hz [T2	EW EW Araker 1 [71] 6,74 dBm 2,402900 GHz Marker 2 [71] 	25.2 - Ref 25.2 d 20 - Orfset 10 - D 7.2 S 0 - D 7.2 S - D 7.2	48m t 15.2 dB Q.dBm 5U.dBm	Att 20 dB		RBW 100 kHz VBW 300 kHz SWT 1.01 ms	[T1] MP VIEW [T2] MP VIEW	Marker 1 [71] 7.5 2.475000 Marker 2 [71] 5.0 2.43300 Marker 3 [71] -59.5 2.50000 Detta 4 [71] 64.4 8.500000
Center 2.358 GHz	oopkolsoo paawissisetsiseetsiseetsiseetsiseetsiseetsiseetsiseetsiseetsiseetsiseetsiseetsiseetsiseetsiseetsiseet	5 3		-507074.8 - Center 2.5	4 <u>t_{alloubl}usad</u> L	3 2000 Sh-Aududa Americana E2	<u>иналуууулуулуулуулуу коло</u> 1 1 10 MHz/	<u></u>	Hyr ad at Mar Associat I Span 100 MH:	

π/4-DQPSK Hopping disabled_Low Channel Marker 1 [11] 6.74 dBm 2.40216 GHz Marker 2 [11] - 5.172 dBm 2.0000 GHz Marker 3 [11] - 5.133 dBm 2.39990 GHz Marker 4 [11] - 61.62 dBm 2.39000 GHz Marker 5 [11] RBW 100 kHz VBW 300 kHz SWT 4.01 ms RBW 100 kHz VBW 300 kHz SWT 250 ms (T1) MP VIEW (T2) MP VIEW [T1] MP VIEW [T2] MP VIEW 4.56 dBm 2.40215 GHz Marker 2 [T1] Marker 1 [T1] 25.2 - Ref 25.2 dBm 20 - Offset 15.2 dB 25.2 - Ref 25.2 dBm 20 - Offset 15.2 dB Att 20 dB Att 20 dB Marker 2 [T1] -52.03 dBm 23.67659 GHz Marker 3 [T1] -50.45 dBm 24.68163 GHz Marker 4 [T1] -50.98 dBm 24.78151 GHz 20 10 10-D1 6.74 dBn D1 6.74 dBm 0--10 Marker 5 [T1] -10-D2 -13.26 dBn -58.10 dBm 2.36105 GHz D2 -1 -20 -20--30 -30--40 --40 -50 -50 -60 -60 -漩 -70 -70 -74.8--74.8-I Stop 25 GHz 10 MHz/ 2.497 GHz/ Center 2.358 GHz Span 100 MHz Start 30 MHz Hopping disabled_High Channel RBW 100 kHz VBW 300 kHz SWT 4.01 ms RBW 100 kHz VBW 300 kHz SWT 250 ms [T1] MP VIEW [T2] MP VIEW [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] Marker 1 [T1] 2.29 dBm 2.47706 GHz Marker 2 [T1] -51.85 dBm 24.36326 GHz Marker 3 [T1] -51.82 dBm 24.66915 GHz Marker 4 [T1] -51.98 dBm 24.79400 GHz Marker 1 [T1] 5.19 dBm 2.48000 GHz Marker 2 [T1] -60.20 dBm 2.48350 GHz Marker 1 [T1] 25.2 - Ref 25.2 dBm Ref 25.2 dBm Att 20 dB Att 20 dB 25.2 Offset 15.2 dB Offset 15.2 dB 20 20-2.48350 GHz Marker 3 [T1] -57.33 dBm 2.48395 GHz Marker 4 [T1] -61.79 dBm 2.50000 GHz 10 10-D1 5.19 dBn D1 5.19 dBn 0 -10 -11 D2 -14 81 dBm D2 -14.81 dB -20 -20 -30 -30 -40 40 -50 -50 J Ta -6 -70 -70--74.8--74.8-Stop 25 GHz I Span 100 MHz Start 30 MHz I 10 MHz/ I 2.497 GHz/ Center 2.5242 GHz A D Hopping enabled_Low Channel Hopping enabled_High Channel RBW 100 kHz VBW 300 kHz SWT 1.01 ms RBW 100 kHz VBW 300 kHz SWT 1.01 ms [T1] MP VIEW [T2] MP VIEW /EW Marker 1 [T1] 6.84 dBm 2.402500 GHz .56.75 dBm 2.400000 GHz .56.75 dBm 2.400000 GHz Marker 3 [T1] 2.390000 GHz 2.390000 GHz 2.400000 GHz .58.15 dBm 2.400000 GHz .58.15 dBm .59.15 dBm .58.15 Marker 1 [T1] [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] 5.33 dBm 2.474900 GHz Marker 2 [T1] -59.57 dBm 2.483500 GHz -59.28 dBm 2.500000 GHz Detta 4 [T1] 62.57 dB Marker 1 [T1] 25.2 - Ref 25.2 dBm 25.2 - Ref 25.2 dBr Att 20 dB Att 20 dE 20 - Offset 15.2 dB Offset 15.2 dB 20 10 10-0-WW D1 6.84 dB T1] 62.57 dB 23.800000 MHz -10 -10-D2 -13.16 c T1] 64.05 dB -37.500000 MHz D2 -14 67 dB -20 -20--30 -30 -40 -40--50 -50 -60 -60 --70--74.8--70--74.8-Center 2.358 GHz I 10 MHz/ Span 100 MHz 10 MHz/ Span 100 MHz Center 2.5242 GHz A A

8DPSK Hopping disabled_Low Channel RBW 100 kHz VBW 300 kHz SWT 4.01 ms RBW 100 kHz VBW 300 kHz SWT 250 ms [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] 6.94 dBm 2.40185 GHz Marker 2 [T1] -54.12 dBm 2.40000 GHz Marker 3 [T1] [T1] MP VIEW [T2] MP VIEW 4.65 dBm 2.40215 GHz Marker 2 [T1] 25.2 - Ref 25.2 dBm 20 - Offset 15.2 dB 25.2 - Ref 25.2 dBm 20 - Offset 15.2 dB Att 20 dB Att 20 dB Marker 2 [T1] -52.26 dBm 23.58295 GHz Marker 3 [T1] -52.13 dBm 24.53805 GHz Marker 4 [T1] -50.40 dBm 24.78776 GHz 20 Marker 3 [T1] -52.64 dBm 2.39993 GHz Marker 4 [T1] -58.49 dBm 2.39000 GHz Marker [T1] -Iarker 3 IT11 10 10-D1 6.94 dBn 0--10 Marker 5 [T1] -10-D2 -13.06 dBn D2 -1 -58.24 dBm 2.36885 GHz -20 -20--30 -30--40 --40 -50 -50 -60 -60 --70 -70 W. -74.8--74.8-I Stop 25 GHz 10 MHz/ 2.497 GHz/ Center 2.358 GHz Span 100 MHz Start 30 MHz Hopping disabled_High Channel RBW 100 kHz VBW 300 kHz SWT 4.01 ms [T1] MP VIEW [T2] MP VIEW RBW 100 kHz VBW 300 kHz SWT 250 ms [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] 5.29 dBm 2.47998 GHz Marker 2 [T1] 2.48350 GHz Marker 3 [T1] -56 72 dBm 2.48390 GHz Marker 4 [T1] -61.78 dBm 2.50000 GHz Marker 1 [T1] Marker 1 [T1] 2.94 dBm 2.47706 GHz Marker 2 [T1] -51.92 dBm 24.58175 GHz Marker 3 [T1] -51.94 dBm 24.98751 GHz Marker 4 [T1] -51.20 dBm 25.00000 GHz Marker 1 [T1] 25.2 - Ref 25.2 dBm Ref 25.2 dBm Att 20 dB Att 20 dB 25.2 Offset 15.2 dB Offset 15.2 dB 20 20-10 10--015 29 dBm D1 5.29 dBn 0 -10 -11 D2 -14 71 dBm D2 -14.71 dB -20 -20 -30 -30 -40 40 -50 -50 ł أنشاد -70 -70--74.8--74.8-I Stop 25 GHz I Span 100 MHz Start 30 MHz 10 MHz/ I 2.497 GHz/ Center 2.5242 GHz Α Hopping enabled_Low Channel Hopping enabled_High Channel RBW 100 kHz VBW 300 kHz SWT 1.01 ms RBW 100 kHz VBW 300 kHz SWT 1.01 ms Marker 1 [T1] 5.43 dBm 2.475900 GHz Marker 2 [T1] -59.41 dBm 2.485500 GHz Marker 3 [T1] -58.46 dBm 2.500000 GHz Detta 4 [T1] 63.21 dB [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] 6.85 dBm 2.402900 GHz Marker 2 [T1] -52.82 dBm 2.400000 GHz Marker 3 [T1] -59.28 dBm 2.390000 GHz Detta 4 [T1] 58.99 dB Marker 1 [T1] [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] 25.2 - Ref 25.2 dBm 25.2 - Ref 25.2 dBr Att 20 dB Att 20 dE 20 - Offset 15.2 dB Offset 15.2 dB 20 10 10-D1 6.85 di 0-**H** 43 dBr 1MM -3 012 58.99 dB -3.000000 MHz Delta 5 [T1] T1] 63.21 dB 11.000000 MHz -10 -10-D2 -13.15 c T1] 63.81 dB -40.700000 MHz D2 -14 -20 -20--30 -30 -40 -40--50 -50 -60 -60 --70--74.8--70--74.8-Center 2.358 GHz I 10 MHz/ Span 100 MHz 10 MHz/ Span 100 MHz Center 2.5242 GHz A A

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab/Telecom Lab Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----