

Test report No.: KES-RF-19T0014 Page (1) of (19)

DFS TEST REPORT

Part 15 Subpart E 15.407

Equipment under test NETWORK VIDEO RECORDER

Model name TRM-410S

FCC ID NLMTRM410S

Applicant Hanwha Techwin Co., Ltd.

Manufacturer Hanwha Techwin (Tianjin) Co.,Ltd. Hanwha Techwin Security Vietnam Co.,Ltd. D-TECH Co.,Ltd.

Date of test(s) 2019.01.07 ~ 2019.01.30

Date of issue 2019.02.14

Issued to Hanwha Techwin Co., Ltd.

6, Pangyo-ro 319 Beon-gil, Bundang-gu Seongnam-si, Gyeonggi-do, 13488, Korea Tel: +82-70-7147-8361/ Fax: +82-31-8108-3717

Issued by

KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Kore
473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
lee	
Young-Jin Lee Test engineer	Hyeon-Su, Jang Technical manager

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0014 Page (2) of (19)

Revision history

Revision	Date of issue	Test report No.	Description
-	2019.02.14	KES-RF-19T0014	Initial

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0014 Page (3) of (19)

TABLE OF CONTENTS

1.	General information	4
1.1.	EUT description	.4
1.2.	Test configuration	. 5
1.3.	Accessory information	. 5
1.4.	Software and Firmware description	. 5
1.5.	Device modifications	. 5
1.6.	Frequency/channel operations	
2.	Summary of tests	. 7
3. DFS (D	ynamic Frequency Selection) test description	. 8
3.1.	Applicability	. 8
3.2.	Requirements	9
3.3.	DFS Detection Thresholds	10
3.4.	Parameters of DFS Test Signals	11
4. Test res	ults	12
4.1.1	DFS (Dynamic Frequency Selection)	12
4.1.1	Radar waveform	13
4.1.2	LAN Traffic	14
4.1.3		15
4.1.4		17
Appendix	A	18

1. General information

Applicant:	Hanwha Techwin Co., Ltd.		
Applicant address:	1204, Changwon-daero, Sec	ongsan-gu, Changwon-si,	
	Gyeongsangnam-do, South	Korea	
Test site:	KES Co., Ltd.		
Test site address:	3701, 40, Simin-daero 365b	eon-gil, Dongan-gu, Anyang	-si, Gyeonggi-do, Korea
	473-21, Gayeo-ro, Yeoju-si,	Gyeonggi-do, Korea	
Test Facility	FCC Accreditation Designa	tion No.: KR0100, Registrati	on No.: 444148
Rule part(s):	15.407		
FCC ID:	NLMTRM410S		
Test device serial No.:	Production	Pre-production	Engineering

1.1. EUT description

Equipment under test	NETWORK	X VIDEO RECORDER
Frequency range	UNII-1	5 180 Mz ~ 5 240 Mz (11ac_VHT20)
		5 190 MHz ~ 5 230 MHz (11ac_VHT40)
		5 210 Mtz (11ac_VHT80)
	UNII-2A	5 260 MHz ~ 5 320 MHz (11ac_VHT20)
		5 270 MHz ~ 5 310 MHz (11ac_VHT40)
		5 290 MHz (11ac_VHT80)
	UNII-2C	5 500 MHz ~ 5 720 MHz (11ac_VHT20)
		5 510 MHz ~ 5 710 MHz (11ac_VHT40)
		5 530 MHz ~ 5 690 MHz (11ac_VHT80)
	UNII-3	5 745 MHz ~ 5 825 MHz (11ac_VHT20)
		5 755 MHz ~ 5 795 MHz (11ac_VHT40)
		5 775 MHz (11ac_VHT80)
	GPS	1 575.42 Mz (GPS)
Model:	TRM-410S	
Modulation technique	OFDM	
Antenna specification	5 GHz_UNII	1, 2A // Dipole Antenna & 2.72 dBi
	5 GHz_UNII	2C // Dipole Antenna & 3.45 dBi
	5 GHz_UNII	3 // Dipole Antenna & 5.63 dBi
Power source	DC 9V~36	V

Number of channels	5 180 MHz ~ 5 240 MHz (11ac_VHT20) : 4ch
	5 190 MHz ~ 5 230 MHz $(11ac_VHT40)$: 2ch
	5 210 Mz (11ac_VHT80) : 1ch
	5 260 MHz ~ 5 320 MHz (11ac_VHT20) : 4ch
	5 270 MHz ~ 5 310 MHz $(11ac_VHT40)$: 2ch
	5 290 Mtz (11ac_VHT80) : 1ch
	5 500 MHz ~ 5 720 MHz (11ac_VHT20): 12ch
	5 510 Mz ~ 5 710 Mz $(11ac_VHT40)$: 6ch
	5 530 Mz ~ 5 690 Mz $(11ac_VHT80)$: 3ch
	5 745 MHz ~ 5 825 MHz (11ac_VHT20) : 5ch
	5 755 MHz ~ 5 795 MHz $(11ac_VHT40)$: 2ch
	5 775 Mtz (11ac_VHT80) : 1ch
	1 575.42 MHz (GPS): 1ch

1.2. Test configuration

The <u>Hanwha Techwin Co., Ltd. NETWORK VIDEO RECORDER FCC ID: NLMTRM410S</u> was tested per the guidance of KDB 905462 D02 v02, D03 v01r02.

1.3. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
Control Box	Hanwha Techwin(Tianjin) Co., Ltd.	-	-	-

1.4. Software and Firmware description

The software and firmware installed in the EUT is version V1.00 190129183607

1.5. Device modifications

N/A

Test report No .: KES-RF-19T0014 Page (6) of (19)

1.6. **Frequency/channel operations** UNII-1 UNII-2A

UNII-2C

UNII-3

Ch.	Frequency (Mb)
36	5 180
44	5 220
48	5 240

Ch.	Frequency (Mz)
52	5 260
56	5 280
64	5 320

Ch.	Frequency (Mz)
100	5 500
120	5 600
144	5 720

Ch.	Frequency (Mb)
149	5 745
157	5 785
165	5 825

Table 1.7-1. 802.11ac_VHT20 mode

UNII-1

UNII-2C

UNII-3

Ch.	Frequency (Mb)
38	5 190
46	5 230

Ch.	Frequency (Mz
54	5 270
62	5 310

Ch.	Frequency (Mb)
102	5 510
118	5 590
142	5 710

Ch.	Frequency (Mb)
151	5 755
159	5 795

Table 1.7-2. 802.11ac_VHT40 mode

UNII-1

UNII-2A

UNII-2C

UNII-3

Ch.	Frequency (Mz)	Ch.	Frequency (Mz)	Ch.	Free
42	5 210	58	5 290	106	
				100	

Ch.	Frequency (Mb)
106	5 530
122	5 610
138	5 690

Ch.	Frequency (Mb)	
155	5 775	

Table 1.7-3. 802.11ac_VHT80 mode

2. Summary of tests

Reference	Parameter	Test results
	Channel Move Time	Pass
15.407(h)(iii)(iv)	Channel Closing Transmission Time	Pass
	Non-Occupancy Period	Pass

3. DFS (Dynamic Frequency Selection) test description

3.1. Applicability

The following table from KDB 905462 D02 v02 lists the applicable requirements for the DFS testing. The device evaluated in this report is considered a client device without radar detection capability.

Requirement Operational Mode			
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2.1. DFS Applicability

Requirement	Operational Mode		
	Master Device or Client	Client Without	
	with Radar Detection	Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	
Non-Occupancy Period	NA/Yes	Yes	

Additional requirements for	Master Device or Client with	Client Without Radar Detection		
devices with multiple	Radar Detection			
U-NII Detection Bandwidth and	All BW modes must be tested	Not required		
statistical Performance Check				
Channel Move Time and Channel	Test using widest BW mode	Test using the widest BW mode		
Closing Transmission Time	available	available for the link		
All other tests	Any single BW mode	Not required		
Note: Fraguencies selected for statistical performance check (Section 7.8.4) should include several				

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 2.2. DFS Applicability During normal operation

3.2. Requirements

KDB 905462 D02 v02 the following are the requirements for Client Devices:

- a) A Client Device will not transmit before having received appropriate control signals from a Master Device.
- b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.
- c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.
- d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.
- e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shutdown (rather than moving channels), no beacons should appear

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	Aggregate of 60 milliseconds over remaining 10
	second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission
	power bandwidth. See Note3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (and aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should the used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 2.3. DFS Response Requirement Values

Test report No.: KES-RF-19T0014 Page (10) of (19)

3.3. DFS Detection Thresholds

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection Thresholds are listed in the following table.

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
$EIRP \ge 200 \text{ milliwatt}$	-64 dBm
EIRP< 200 milliwatt and	-62 dBm
Power spectral density < 10 dBm/Mtz EIRP < 200 milliwatt that do not meet the power spectral	
density requirement	-64 dBm
Note 1: This is the level at the input of the receiver assuming a 0) dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS respons.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01

Table 2.4. DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

3.4. Parameters of DFS Test Signals

As the EUT is a Client Device with no Radar Detection only Zero type radar pulse is required for the testing. Radar Pulse type 0 was used in the evaluation of the Client device for the purpose of measuring the channel Move Time and the Channel Closing Transmission Time.

Radar Type	Pulse Width (μsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Mnimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum	Roundup: {(1/360)*(19*10 ⁶ PRI μsec)}	60%	30
	1.5	increment of 1 µsec, excluding PRI values selected in Test A	22.20	(00/	20
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types	s 1-4)		80%	120
Note 1: Sh	ort Pulse Rac	lar Type 0 should be used for	or the detection bandw	idth test, channel r	nove time, and

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 2.5. Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

Table 2.6. Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

Table 2.7. Frequency Hopping Radar Test Waveform

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact shchoi@kes.co.kr

4. Test results

4.1. DFS (Dynamic Frequency Selection)

Test setup

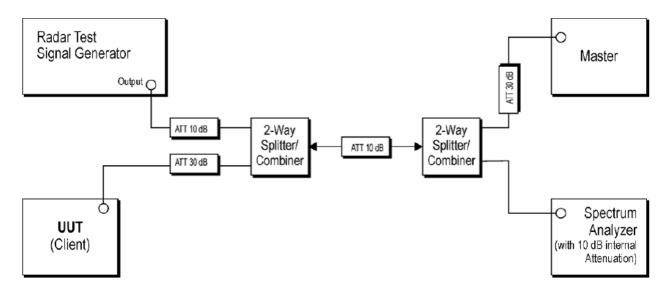
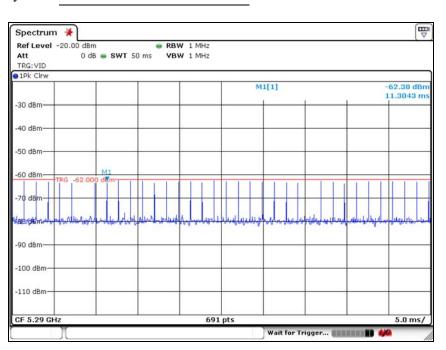


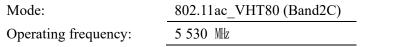
Figure 1: Conducted Test Setup for DFS

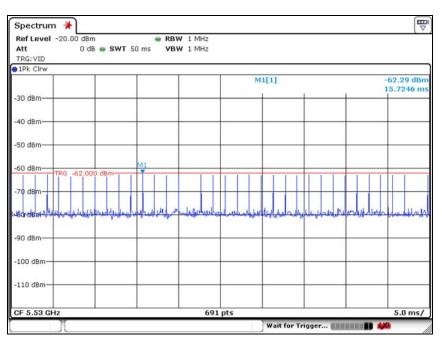
Test procedure

KDB 905462 D02 v02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 1 shows the typical test setup.

- 1. One frequency will be chosen from the Operating Channels of the UUT within the 5250 ~5350 M b or 5470 ~5725 M bands.
- 2. The Client Device (EUT) is setup per the diagram in Firure1 and communications between the Master device and the Client is established.
- 3. An MPEG or data file that is typical for the device is streamed from the Master to the Client to properly load the network.


4.1.1 Radar waveform

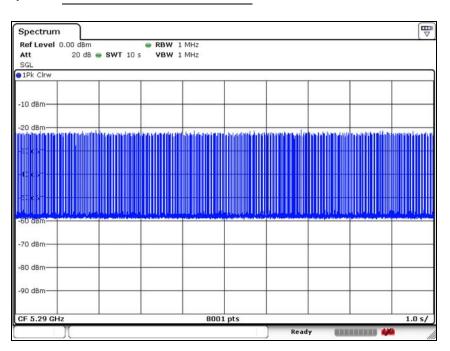

Mode:


802.11ac VHT80 (Band2A)

5 290 MHz

Operating frequency:

Test report No.: KES-RF-19T0014 Page (14) of (19)


4.1.2 LAN Traffic

Mode:

802.11ac VHT80 (Band2A)

5 290 MHz

Operating frequency:

Mode:

802.11ac_VHT80 (Band2C) 5 530 Mbz

Test report No.: KES-RF-19T0014 Page (15) of (19)

4.1.3 Channel move time & aggregate channel closing transmission time

Mode:

802.11ac VHT80 (Band2A)

5 290 MHz

Operating frequency:

Spect	um						
Ref Le	evel (0.00 dBm	e RB	W 3 MHz			(.
Att		10 dB	SWT 10 s VB	W 3 MHz			
GGL	_						
1Pk Cl	rw:			- T - T	00[1]		0.00.4
					D3[1]		-0.08 d 512.251 m
10 dBm	M	D3		-	M1[1]		-15.22 dBr
Pile We	milit				here all		1.126282
	m						
				-			
					_		
	11 Y.	12		and the second second second		Selection of the select	and the second second second second second
70 dBm	-					_	
in de							
30 dBm							
90 dBm							c 6
o ubii	2						
F 5.29) GHz	2		32001 pt	s		1.0 s/
arker	_						
Type	Ref	Trc	Stimulus	Response	Function	Fun	ction Result
M1		1	1.126282 s	-15.22 dBm		0.01010	
M2		1	1.326282 s	-63.75 dBm			
D3	M1	1	512.251 ms	-0.08 dB			

Channel closing transmission time calculated	Test results
Sweep time[S] sec	10
Sampling bins[B]	32001
Number of sampling bins in 10 sec[N]	1
Closing transmission time [C] ms	0.312

Channel move time (s)	Limit
0.512	$\leq 10 \text{ s}$

Note:

Dwell = S/B;

Where **dwell** is the dwell time per spectrum analyzer sampling bin, **S** is the sweep time and **B** is the number of spectrum analyzer sampling bins.

An upper bound of the aggregate duration of the channel closing transmission time is calculated by:

 $C = N \times Dwell;$

Where C is the closing time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and dwell is the dwell time per bin.

Dwell = [S] / [B] = 10 / 32001 = 0.000312 Closing Transmission Time[C] = [N] × [Dwell] = 1 × 0.000312 = 0.000312 s = 0.312 ms

Mode:

KES Co., Ltd. C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-19T0014 Page (16) of (19)

Operating frequency:	-	5 5.	30 MHz				
Spect			Spectrum 🗴				
Att SGL		0.00 dBr 10 d	m 🛛 🗰 RE B 🖶 SWT 10 s 🖷 VE	3 MHz 3 W 3 MHz			
• 1Pk C		<u>vi.</u> p			D3[1]	(0.57 dB 514.387 ms -14.51 dBm
							1.231425 s
4.0d2 6000							
-70 dBr			sha ya maaddaa aa aynadaya	teles de la cara de seguenda se d	ali an	de hores de la sentide de la	anotestadan tarki ana bia, jamle
-80 dBr	n						
-90 dBr	3 GHz			32001 pt	ts		1.0 s/
Marker Type		Trc	Stimulus	Response	Function	Euno	tion Result
N1 N2		1 1	1.231425 s 1.431425 s	-14.51 dBm -62.02 dBm			
D3	N1	1	514.387 ms	0.72 dB			
0)(Ready	

802.11ac VHT80 (Band2C)

Channel closing transmission time calculated	Test results
Sweep time[S] sec	10
Sampling bins[B]	32001
Number of sampling bins in 10 sec[N]	1
Closing transmission time [C] ms	0.312

Channel move time (s)	Limit
0.514	≤ 10 s

Note:

Dwell = S/B;

Where **dwell** is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins.

An upper bound of the aggregate duration of the channel closing transmission time is calculated by:

 $C = N \times Dwell;$

Where C is the closing time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and dwell is the dwell time per bin.

Dwell = [S] / [B] = 10 / 32001 = 0.000312 Closing Transmission Time[C] = [N] × [Dwell] = 1 × 0.000312 = 0.000312 s = 0.312 ms

4.1.4 Non-occupancy period

Mode:

802.11ac VHT80 (Band2A)

5 290 MHz

Operating frequency:

Spect	um								
Ref Le	vel (.00 dBm	📟 R	BW 3 MHz					
Att		10 dB	● SWT 2200 s V	BW 3 MHz					
SGL									
1Pk Cli	w								
					D2[1]			-45.80 dE	
-10 dBm	1				M1[1]			1800.000 s 14.55 dBm	
and a subscription					wit[1]			158.140	
-20 dBm	-						-		
-30 dBm									
-40 dBm	_								
-50 dBm									
*****							.02		
-60 dBm		*****		14.56	hautenider hanstdu	-industry and in the second	and the second s	-tailed thicked	
-70 dBm									
-70 UBIII									
-80 dBm	_			_					
-90 dBm	-			-		_	_		
CF 5.29	GHz			8001 pts	5			220.0 s/	
Marker									
Type	Ref				Function	F	unction Result		
M1		1	158.14 s	-14.55 dBm					
D2	M1	1	1.8 ks	-45.80 dB					

Mode:

802.11ac_VHT80 (Band2C) 5 530 Mb

Operating frequency:

Ref Leve	0.00 dBm	🖷 R	BW 3 MHz					
Att	10 dB	. SWT 2200 s V	BW 3 MHz					
SGL								
1Pk Clrw								
				D2[1]).87 di	
10 dBm-							0.000	
M1				M1[1]			88 dBn	
20 gBm-			- (1 e)			98	3.700	
20 000								
-30 dBm						_		
200 (1 (10)								
40 dBm								
50 dBm-						+		
						D2		
60 dem	and shared be ready		Semidant & Balancia and Semidary	All of the Association of the second s	And the state of the second	An Interference State of States	- Contractions	
TO IN								
70 dBm								
80 dBm								
00 0011								
90 dBm								
CF 5.53 G	1.2		8001 pt				0.0 s/	
larker	12		8001 pt	>		22	J.U S/	
	f Trc	Stimulus	Docnonco	Function		Function Result		
M1 M1	1	98.7 s	-19.38 dBm	Function	Fu	iction Result		
	1 1	1.8 ks	-39.87 dB					

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0014 Page (18) of (19)

Appendix A. Measurement equipment

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0014 Page (19) of (19)

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration date.	Calibration due.
Spectrum Analyzer	R&S	FSV30	100736	1 year	2018.06.28 2019.01.09	2019.06.28 2020.01.09
Vector Signal Generator	R&S	SMBV100A	256397	1 year	2018.06.28	2019.06.28
Attenuator	HP	8495B	110504721	1 year	2018.01.18 2019.01.15	2019.01.18 2020.01.15
Attenuator	WEINSCHEL	200099	8969	1 year	2018.01.18 2019.01.15	2019.01.18 2020.01.15
Attenuator	WEINSCHEL	200099	9011	1 year	2018.01.18 2019.01.15	2019.01.18 2020.01.15
Attenuator	KEYSIGHT	8493C	82506	1 year	2018.01.22 2019.01.15	2019.01.22 2020.01.15
Attenuator	HP	8495B	2630A12857	1 year	2018.01.18 2019.01.15	2019.01.18 2020.01.15
Attenuator	Agilent	8493C	51401	1 year	2018.06.29	2019.06.29
Splitter	MINI-CIRCUITS	ZFSC-2-10G+	F679501347-1	1 year	2018.06.28	2019.06.28
Splitter	MINI-CIRCUITS	ZFSC-2-10G+	F679501347-2	1 year	2018.06.28	2019.06.28
DC Power supply	EXTENDED	EX-1500H2	405410100030	1 year	2018.04.13	2019.04.13

Peripheral devices

Device	Manufacturer	Model No.	Serial No.	Note.
Access Point (Master)	Cisco system Inc.	AIR-RM3000AC-A-K9	-	FCC ID: LDK102086
Notebook Computer	LG	LG15U47	701QCPY564416	-