

Test report No.: KES-RF-17T0019 Page (1) of (63)

TEST REPORT

Part 15 Subpart C 15.247

Equipment under test Station Camera

Model name SNW-R0210SW

FCC ID NLMSNWR0210SW

Applicant Hanwha Techwin Co., Ltd.

Manufacturer Hanwha Techwin(Tianjin) Co., Ltd

Date of test(s) 2017.02.09 ~ 2017.02.21

Date of issue 2017.02.22

Issued to Hanwha Techwin Co., Ltd.

1204, Changwon-daero, Seongsan-gu Changwon-si, Gyeongsangnam-do, South Korea Tel: +82-70-7147-8361/ Fax: +82-31-8108-3717

Issued by

KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :	
The	Hono -	
Hyeon-su Jang	Jeff Do	
Test engineer	Technical manager	

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test report No .: KES-RF-17T0019 Page (2) of (63)

Revision history

Revision	Date of issue	Test report No.	Description
-	2017.02.22	KES-RF-17T0019	Initial

Test report No .: KES-RF-17T0019 Page (3) of (63)

TABLE OF CONTENTS

1.	General	information	4
	1.1.	EUT description	4
	1.2.	Test configuration	4
	1.3.	Device modifications	4
	1.4.	Information about derivative model	4
	1.5.	Frequency/channel operations	5
	1.6.	Worst case data rate	5
	1.7.	Accessory information	5
2.	Summary	y of tests	6
3.		lts	
	3.1.	6 dB bandwidth	7
	3.2.	Output power	.11
	3.3.	Power spectral density	
	3.4.	Radiated restricted band and emissions	
	3.5	Conducted spurious emissions & band edge	55
	3.6.	AC conducted emissions	
App	endix A.	Measurement equipment	. 62
App	endix B.	Test setup photos	63

1. General information

Applicant:	Hanwha Techwin Co., Ltd.			
Applicant address:	1204, Changwon-daero, Seongsan-gu, Changwon-si			
	Gyeongsangnam-do, South	Gyeongsangnam-do, South Korea		
Test site:	KES Co., Ltd.			
Test site address:	C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea			
	473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea			
FCC rule part(s):	15.247			
FCC ID:	NLMSNWR0210SW			
Test device serial No.:	Production	Pre-production	Engineering	

1.1. EUT description

Equipment under test	Station Camera
Frequency range	2412 MHz ~ 2462 MHz(11b/g/n_HT20)
	2422 MHz ~ 2452 MHz(11n_HT40)
Modulation technique	DSSS, OFDM
Number of channels	2412 MHz ~ 2462 MHz(11b/g/n_HT20): 11ch
	2422 MHz ~ 2452 MHz(11n_HT40): 7ch
Antenna type	PCB antenna
Antenna gain	1.70 dBi
Power source	DC 3.7 V (Rechargeable Battery)

1.2. Test configuration

The <u>Hanwha Techwin Co., Ltd. Station Camera FCC ID: NLMSNWR0210SW</u> was tested per the guidance of KDB 558074 D01 v03r05. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

1.3. Device modifications

N/A

1.4. Information about derivative model

N/A

1.5. Frequency/channel operations

Ch.	Frequency (Mz)	Mode
01	2412	802.11b/g/n_HT20
:		
06	2437	802.11b/g/n_HT20
· · ·		
11	2462	802.11b/g/n_HT20

Ch.	Frequency (Mz)	Mode
03	2422	802.11n_HT40
06	2437	802.11n_HT40
·		
09	2452	802.11n_HT40

1.6. Worst case data rate

- 1. Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.
- 2. Worst-case data rates were:
 - 802.11b: <u>1 Mbps</u> 802.11g: <u>6 Mbps</u> 802.11n_HT20: <u>MCS0</u> 802.11n_HT40: <u>MCS0</u>

1.7. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
Satation Hub	Hanwha Techwin(Tianjin) Co., Ltd	SNS-R0810W	-	AC 120V (Output : DC 12V / 1.5 A)
AC/DC Adapter	DELTA ELECTRONICS, INC.	ADP-18TB C	146W6980005	AC 120V (Output : DC 12V / 1.5 A)

Test report No .: KES-RF-17T0019 Page (6) of (63)

2. Summary of	tests	
Reference	Parameter	Test results
15.247(a)(2)	6 dB bandwidth	Pass
15.247(b)(3)	Peak output power	Pass
15.247(e)	Power spectral density	Pass
15.205 15.209	Radiated restricted band and emission	Pass
15.247(d)	Conducted spurious emission and band edge	Pass
15.207(a)	AC conducted emissions	Pass

Test report No.: KES-RF-17T0019 Page (7) of (63)

3. Test results

3.1. 6 dB bandwidth

Test procedure

KDB 558074 D01 v03r05 – Section 8.1 or 8.2 Used test method is section 8.1.

Section 8.1

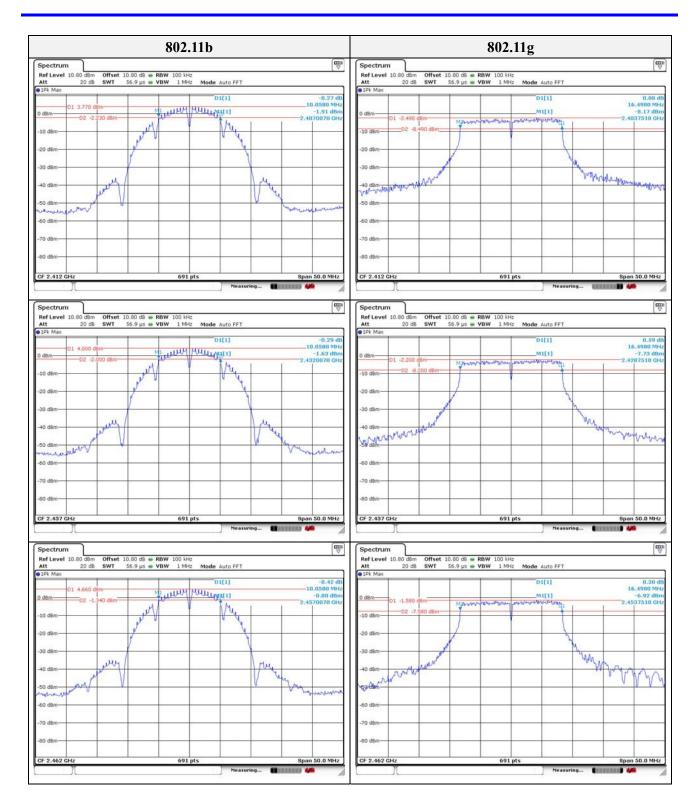
- 1. RBW = 100 kHz.
- 2. VBW \geq 3 \times RBW.
- 3. Detector = peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Section 8.2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, $VBW \ge 3 \times RBW$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\ge 6 \text{ dB}$.

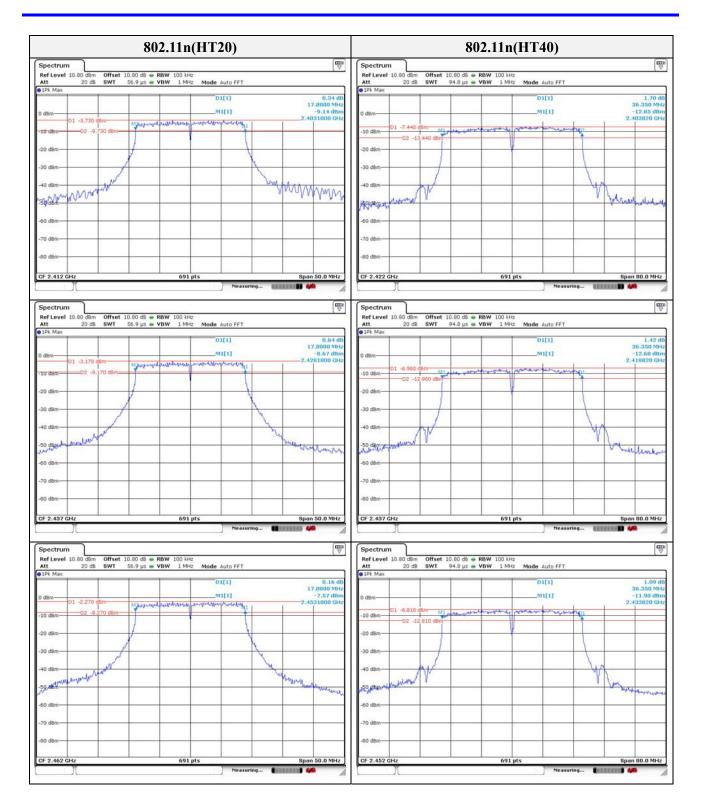
Limit

According to \$15.247(a)(2), systems using digital modulation techniques may operate $902 \sim 928$ Mb, $2400 \sim 2483.5$ Mb, and $5725 \sim 5850$ Mb bands. The minimum 6 dB bandwidth shall be at least 500 kb.


Test results

6 dB bandwidth of 20 Mz bandwidth				
Measured 6 dB bandwidth(MHz)			I :::4(MIr)	
Frequency(Mz)	802.11b	802.11g	802.11n	Limit(Mz)
2412	10.06	16.50	17.80	
2437	10.06	16.50	17.80	0.5
2462	10.06	16.50	17.80	

6 dB bandwidth of 40 Mz bandwidth			
Measured 6 dB bandwidth(Mz)			
Frequency(Mz) 802.11n Limit(Mz)			
2422	36.35		
2437	36.35	0.5	
2452	36.35		



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0019 Page (9) of (63)

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0019 Page (10) of (63)

3.2. Output power

Test procedure KDB 558074 D01 v03r05 – section 9.1.1 or 9.1.2 Used test method is section 9.1.2.

Section 9.1.1

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is gr eater than the DTS bandwidth.

- 1. Set the RBW \geq DTS bandwidth.
- 2. Set VBW \geq 3 \times RBW.
- 3. Set span \geq 3 \times RBW
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level

Section 9.1.2

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS ba ndwidth and shall utilize a fast-responding diode detector.

Limit

According to \$15.247(b)(3), For systems using digital modulation in the 902~928 MŁ, 2 400~2 483.5 MŁ, and 5 725~5 850 MŁ bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmit-ting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test report No.: KES-RF-17T0019 Page (12) of (63)

	Measured output power (dBm)											
Mada	2412 MHz		243'	7 MHz	2462 MHz							
Mode	Peak	Average	Peak	Average	Peak	Average						
11b	17.75	15.29	17.91	15.40	18.61	16.24						
11g	23.81	12.49	23.84	12.97	23.92	13.78						
11n_HT 20	21.85	11.37	21.93	11.74	22.01	12.65						
Mada	2422 MHz		243'	2437 MHz		2 MHz						
Mode	Peak	Average	Peak	Average	Peak	Average						
11n_HT 40	20.03	10.82	20.74	10.97	21.06	11.49						

Test report No.: KES-RF-17T0019 Page (13) of (63)

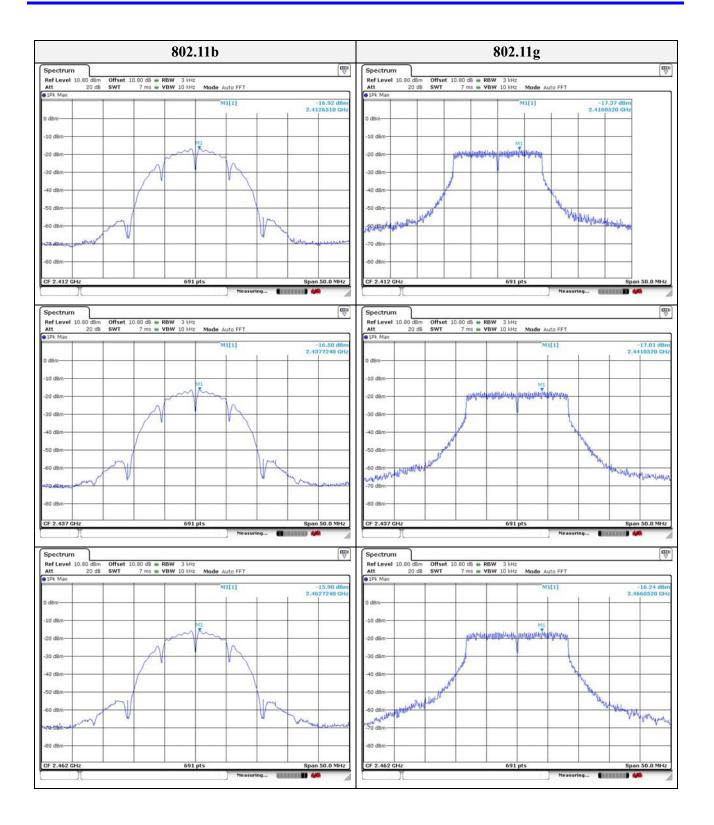
3.3. Power spectral density Test procedure KDB 558074 D01 v03r05- section 10.2

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz
- 4. Set the VBW \geq 3 \times RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW(no less than 3 kHz) and repeat.

Limit

According to \$15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

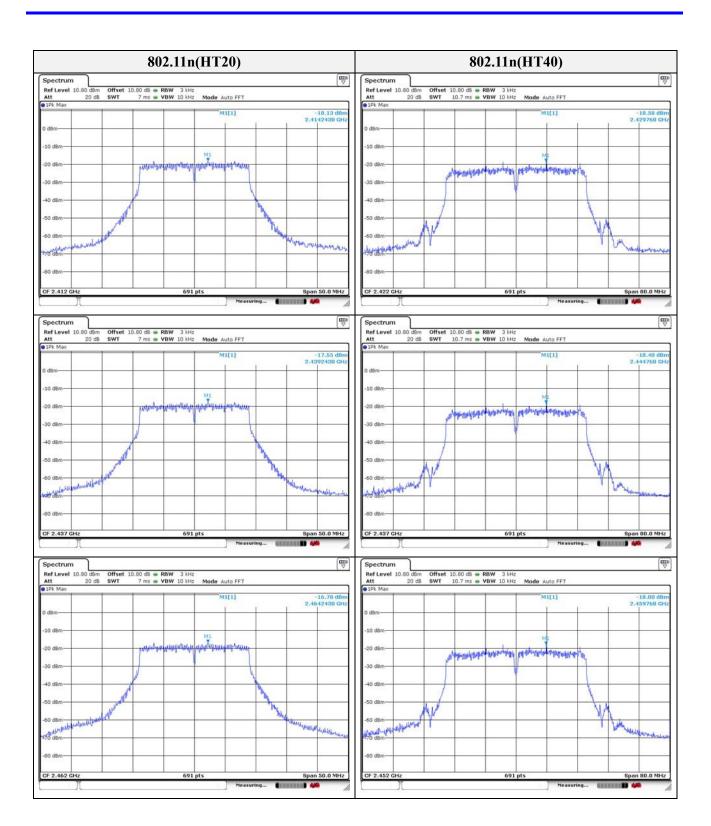
Test report No.: KES-RF-17T0019 Page (14) of (63)


Test results

	PSD of 20 Mz bandwidth									
	Measured PDS(dBm)									
Frequency(Mb)	802.11b	802.11g	802.11n	Limit(dBm)						
2412	-16.92	-17.37	-18.13							
2437	-16.50	-17.01	-17.55	8						
2462	-15.90	-16.24	-16.78							

PS	PSD of 40 Mz bandwidth							
	Measured PDS(dBm)							
Frequency(Mz)	802.11n	Limit(dBm)						
2422	-18.58							
2437	-18.40	8						
2452	-18.00							

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0019 Page (15) of (63)

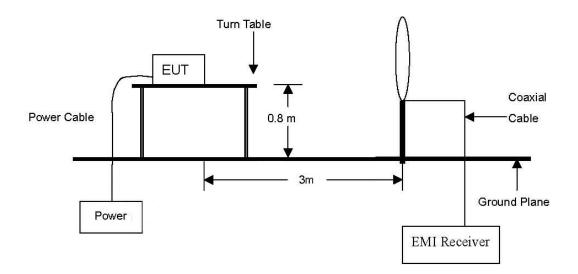


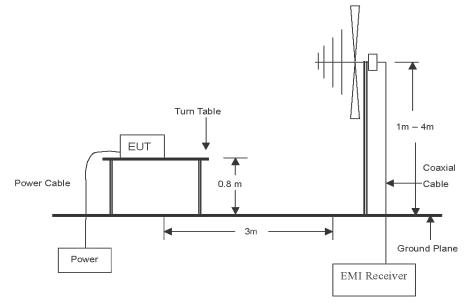
KES Co., Ltd. C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

www.kes.co.kr

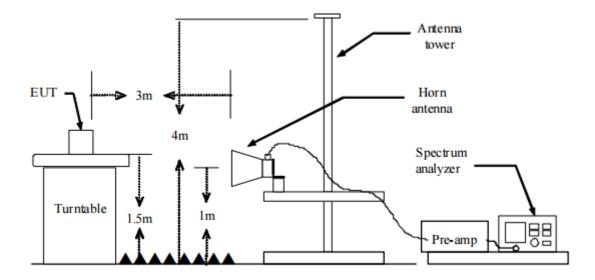
Test report No.: KES-RF-17T0019 Page (16) of (63)


This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.


3.4. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}\mathbb{Z}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}\mathbb{Z}$ emissions, whichever is lower.

Test procedure below 30 Mz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 MHz

- 1. Spectrum analyzer settings for f < 1 GHz:
 - (1) Span = wide enough to fully capture the emission being measured
 - \bigcirc **RBW** = 100 kHz
 - ③ VBW \ge RBW
 - ④ Detector = quasi peak
 - (5) Sweep time = auto
 - 6 Trace = max hold
- 2. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mz
 - ③ VBW \ge 3 MLz
 - (4) Detector = peak
 - \bigcirc Sweep time = auto
 - 6 Trace = max hold
 - \bigcirc Trace was allowed to stabilize

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

- 3. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 MHz

 - (4) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/Ds)$

 $f \ge 30$ Mz, extrapolation factor of 20 dB/decade of distance. $F_d = 20log(D_m/Ds)$ Where:

- F_d = Distance factor in dB
- D_m = Measurement distance in meters
- D_s = Specification distance in meters
- 3. $CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)$
- 4. Field strength($dB\mu N/m$) = Level($dB\mu N$) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB μ V/m) Field strength(dB μ V/m)
- 6. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>X orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>X orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30~88	3	100**
88~216	3	150**
216~960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mz, $76 \sim 88$ Mz, $174 \sim 216$ Mz or $470 \sim 806$ Mz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Duty cycle

Regarding to KDB 558074 D01_v03r05, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

Test mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
802.11b	10.00	10.00	1	100	0
802.11g	10.00	10.00	1	100	0
802.11n(HT20)	10.00	10.00	1	100	0
802.11n(HT40)	10.00	10.00	1	100	0

Duty cycle (Linear) = T_{on} time/Period

DCF(Duty cycle correction factor (dB)) = 10log(1/duty cycle)

802	802.11g // Middle channel											
Spectrum			E ↓	Spectrum								
	10.80 dB 👄 RBW 10 MHz		- Automation	Ref Level 3		10.80 dB 👄 R						
Att 40 dB SWT SGL	10 ms 🖶 VBW 10 MHz			Att	40 dB 🗰 SWT	10 ms 🖷 V	BW 10 MH	z				
e 1Pk Clrw		- F	1	• 1Pk Cirw		r - r						
20 dBm				29 dBm	John John John John John John John John	mention	huelde	Wheelthe	edelucidada	enternet	utrutr	whenthe
10 d8m				10 d8m								
0 dBm				0 dBm								
-10 dBm				-10 dBm		++						
-20 dBm				-20 dBm								
-20 dBm				-20 dBm								
-30 dBm				-30 dBm		+ +						
-40 d8m				-40 dBm								
				10.00111								
-50 dBm	+ + +			-50 dBm						-		
-60 d8m				-60 d8m		-		-				
1016 (1016) (1016)				100000000								
												1.0 ms/
CF 2.437 GHz 802.11	^{691 pts} n(HT20) // M		1.0 ms/	CF 2.437 GH	802.11	n(HT4	⁶⁹¹)	Read dle c		el	
802.11 Spectrum Ref Level 30.80 dBm Offset	n(HT20) // M			Spectrum Ref Level 3	802.11	10.80 dB 👄 R	40) //	Mid				
802.11 Spectrum Ref Level 30.80 dBm Offset Att 40 dB = SWT SGL	n(HT20) // M		nel	Spectrum Ref Level 3 Att SGL	802.11		40) //	Mid				•
802.11 Spectrum Ref Level 30.80 dBm Offset At 40 dB = SWT	n(HT20) // M		nel	Spectrum Ref Level 3 Att	802.11	10.80 dB 👄 R	40) //	Mid				•
802.11 Spectrum Ref Level 30.80 dBm Offset Att 40 dB & SWT SGL 1Pk Clrw	n(HT20) // M		nel	Spectrum Ref Level 3 Att SGL IPk Clrw	802.11	10.80 dB 👄 R	40) //	Mid				•
802.11 Spectrum Ref Level 30.80 dBm Offset Att +0 dB = SWT SGL	n(HT20) // M	liddle chan	nel	Spectrum Ref Level 3 Att SGL • 1Pk Clrw 20 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	Ţ
802.11 Spectrum Ref Level 30.80 dBm Offset 40 dB SGL 1Pk Chw 20 dBm	n(HT20) // M	liddle chan	nel	Spectrum Ref Level 3 Att SGL • 1Pk Clrw 20 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	Ţ
802.11 Spectrum Ref Level 30.80 dBm Offset Att +0 dB = SWT SGL 10k Chw 20 dBm Multi datum Att Att Att Att Att Att Att Att Att At	n(HT20) // M	liddle chan	nel	Spectrum Ref Level 3 Att SGL • 1Pk Clrw 20 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	Ţ
Spectrum Offset Ref Level 30.80 dBm Offset Att 40 dB SWT SGL 51Pk Chw SUPK Chw 20 dBm 10 dBm 00Bm	n(HT20) // M	liddle chan	nel	Spectrum Ref Lovel 3: Att SGL 0 1Pk Clrw 20 dBm r 10 dBm 0 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	Ţ
802.11 Spectrum Ref Level 30.80 dBm Offset Att 40 dB = SWT SGL P/P C/rw 20 dBm 10 dBm	n(HT20) // M	liddle chan	nel	Spectrum Ref Level 3 Att SGL @ JPk Cirw 20 dBm 20 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	Ţ
Spectrum Offset Ref Level 30.80 dBm Offset Att 40 dB SWT SGL 40 dB SWT 1Pk Clrw 20 dBm 10 dBm 0 dBm 0 dBm 0 dBm	n(HT20) // M	liddle chan	nel	Spectrum Ref Lovel 3: Att SGL 0 1Pk Clrw 20 dBm r 10 dBm 0 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	
802.11 Spectrum Ref Level 30.80 dBm 0 dB 1Pk Clrw 20 dBm 10 dBm -10 dBm	n(HT20) // M	liddle chan	nel	Spectrum Ref Lovel 3 Att SGL 20 dBm 20 dBm 20 dBm -10 dBm -20 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	
802.11 Spectrum Ref Level 30.80 dBm Offset Att 40 dB SGL 1PK Chw 20 dBm 10 dBm -10 dBm	n(HT20) // M	liddle chan	nel	Spectrum Ref Level 3 Att SGL I D K Clrw 20 dBm -10 dBm -10 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	
802.11 Spectrum Ref Level 30.80 dBm 0 dB 1Pk Clrw 20 dBm 10 dBm -10 dBm	n(HT20) // M	liddle chan	nel	Spectrum Ref Lovel 3 Att SGL 20 dBm 20 dBm 20 dBm -10 dBm -20 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	
802.11 Spectrum Offset Ref Level 30.80 dBm Offset 10 dBm 40 dB SWT 20 dBm 0 dBm 0 -10 dBm	n(HT20) // M	liddle chan	nel	Spectrum Ref Level 3: Att SGL IPk Clrw 20 dBm /10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	
802.11 Spectrum Offset Ref Level 30.80 dBm Offset Att 40 dB SWT SGL 40 dB SWT 1PR CIrw 20 dBm 00 dBm 10 dBm	n(HT20) // M	liddle chan	nel	Spectrum Ref Level 3 Att SGL D JPk Clrw 20 dBm -10 dBm -20 dBm -20 dBm -30 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	
802.11 Spectrum Ref Level 30.80 dBm 30 dBm 9 Fk Clrw 20 dBm 10 dBm -10 dBm -20 dBm	n(HT20) // M	liddle chan	nel	Spectrum Ref Level 3: Att SGL IPk Clrw 20 dBm /10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	
802.11 Spectrum Offset Ref Level 30.80 dBm Offset Att +0 dB SWT SGL IPFK Clrw IPFK Clrw 20 dBm IPFK Clrw IPFK Clrw -10 dBm IPFK Clrw IPFK Clrw -20 dBm IPFK Clrw IPFK Clrw -30 dBm IPFK Clrw IPFK Clrw	n(HT20) // M	liddle chan	nel	Spectrum Ref Level 3 Att SGL ● 19k Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	802.11	10.80 d8 • R 10 ms • V	40) // BW 10 MH2 BW 10 MH2	Mid	dle c	hann	el	

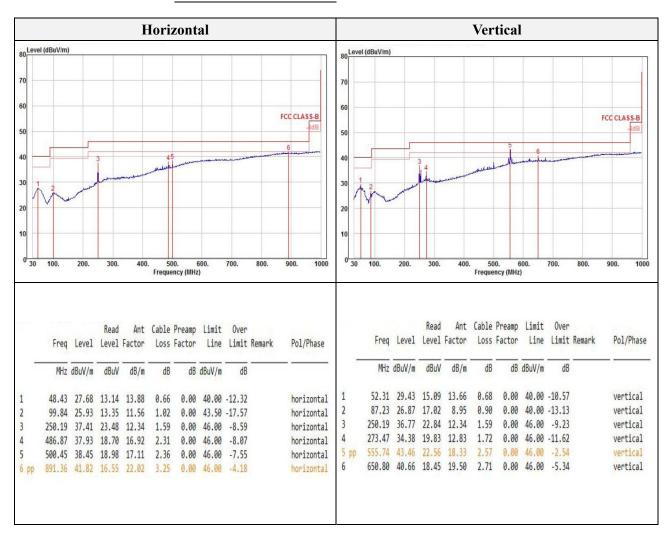
This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

www.kes.co.kr

Test results (Below 30 Mz)	802.11b			
Mode:	802.11b			
Distance of measurement:	3 meter		_	
Channel:	11 (Worst c	case)		

Frequency	Level	Ant. Pol.	CF	Fd	Field strength	Limit	Margin
(MHz)	(dBµV)	(H/V)	(dB)	(dB)	(dBµV/m)	(dBµN/m)	(dB)
		No spurious er	nissions were c	letected within	20 dB of the limit	it	

	Vertical							
	×			Spectrum Spectru				0
Ref Level 57.00 d8μV Att 0 d8 SWT 13.4 m	RBW (6dB) 200 Hz S VBW 3 kHz M	Hode Auto FFT		Ref Level 57.00 d8µ∨ ■ Att 0 d8 S	RBW (6dB) WT 13.4 ms VBW	3 kHz Mode Auto	FFT	
1Pk View	Server and the	NOLE AUCOTTA		1Pk View		e sie mode Adto		
		M1[1]	-2.16 d8µV			M1[1]		-1.55 dBp
50 d8µV-		1	95.620 kHz	50 dBµV		-	E E	95.620 ki
40 dBµV				40 dBµV				
lo depr				10 0001				
30 dBµV				30 dBµV				
20 dBµV				20 dBµV				
LO dBµV				10 dBµV				_
0 dBµV		T		0 dBµV		X		
10 dBut	and the character and	M.		-10 dBut	- manula man			
		an unanananan	en and the second			and a sea way want	helperture to very	and allowing
20 dBµV		+		-20 dBµV				
				-30 dBµV				
-30 dBµV				-30 0BHA				
-40 dBµV				-40 dBµV				
Start 9.0 kHz	691 pts		Stop 150.0 kHz	Start 9.0 kHz	65	01 pts	- M - 1	Stop 150.0 kH
Type Ref Trc Stimulus M1 1 95.62 kb			nction Result	MI 1	95.62 kHz -1.55 d		Function R	44
Type Ref Trc Stimulus M1 1 95.62 kF Spectrum Spectrum 2 3 Ref Level 67.00 dBµV 3	Hz −2.16 dBµV	Neasuring		M1 1 Spectrum Spectru Ref Level 67.00 dBµV	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	- 44
Spectrum Spectrum C Att 0 dB SWT 2.1 ms 0	Hz −2.16 dBµV	Neasuring		M1 1 Spectrum Spectrum Ref Level 67.00 dBµV Att	95.62 kHz -1.55 d	BµV Near	suring A AAAAAA	- 44
Spectrum Spectrum C Att 0 dB SWT 2.1 ms 0	Hz −2.16 dBµV	Neasuring		M1 1 Spectrum Spectru Ref Level 67.00 dBµV	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	- 44
M1 1 95.62 k+	Hz −2.16 dBµV	Neasuring		M1 1 Spectrum Spectrum Ref Level 67.00 dBµV Att	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	
Spectrum	Hz −2.16 dBµV	Neasuring		MI 1 Spectrum Spectru Ref Level 67.00 dBµV 0 dB SW e 1Pk View 0 dB 60 dBµV Image: SW	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	44
Spectrum Spectrum Spectrum Construction Spectrum 0.68 pV 0.69 pV 0.69 pV Att 0.68 pV 0.69 pVT 2.1 ms 10k View	Hz −2.16 dBµV	Neasuring		MI 1 Spectrum Spectru Ref Level 67.00 dBµV Att Att 0 dB SV 19k View Image: Spectrum S	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	44
Spectrum Spectrum Spectrum Spectrum Gamma Spectrum 0.00 dbµV	Hz −2.16 dBµV	Neasuring		MI I Spectrum Spectru Ref Level 67.00 dbµV 0 db SV e19k View 0 db SV 60 dbµV 50 dbµV	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	- 44
Spectrum Spectrum Spectrum Spectrum Spectrum Galaxy Spectrum <	Hz −2.16 dBµV	Neasuring		MI 1 Spectrum Spectru Ref Level 67.00 dBµV 0 dB SW e 1Pk View 0 dB 60 dBµV Image: SW	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	- 44
Spectrum Spectrum Spectrum Q Spectrum 0.68 µV 0.68 µV 0.68 µV 0.68 µV Not d8µV 0.68 µV 0.68 µV 0.68 µV 0.68 µV 0.68 µV	Hz −2.16 dBµV	Neasuring		MI I Spectrum Spectru Ref Level 67.00 dbµV 0 db SV e19k View 0 db SV 60 dbµV 50 dbµV	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	- 44
Type Ref Trc Stimulus M1 1 95.62 kF M1 1 95.62 kF Spectrum Spectrum 2 0 Ref Level 67.00 dBµV 0 dB SWT 2.1 ms 1% View 0 dB w/V 0 00 dBµV 0 0 00 dBµV 0 0 00 dBµV 0 0 00 dBµV 0 0	Hz −2.16 dBµV	Neasuring		MI I Spectrum Spectrum Ref Level 67.00 dbµV 0 db SV Att 0 db SV 60 dbµV 50 dbµV 40 dbµV 40 dbµV 30 dbµV 30 dbµV	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	-
Spectrum Spectrum Spectrum Construction Spectrum Spectrum 2 0 Ref Level 67.00 dBµV 0 Nt 0 dB SWT 2.1 ms Pk View 0 dBµV 0 0 dBµV 0 0 0 dBµV 0 0 0 dBµV 0 0	Hz −2.16 dBµV	Neasuring		M1 1 Spectrum Spectrul Ref Level 67.00 dbµV db Att 0 db SV © 1Pk: View db SV 50 dbµV 40 dbµV 40 dbµV	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	-
Spectrum Spectrum Spectrum Constraint Spectrum Spectrum Constraint Constraint Constraint Spectrum Spectrum Constraint Constraint Constraint Constraint Spectrum Spectrum Constraint	Hz −2.16 dBµV	Neasuring		MI I Spectrum Spectru Ref Level 67.00 dbµV 0 db SV 0 dbµV 0 db SV 60 dbµV 0 db SV 90 dbµV 0 dbµV 30 dbµV 20 dbµV	95.62 kHz -1.55 d	BμV Mean	suring A AAAAAA	-
Type Ref Trc Stimulus M1 1 95.62 kF Spectrum Spectrum 2 0 Spectrum Spectrum 2 0 Spectrum 0 dB uV 0 dB swT 2.1 ms 1Pk View 0 8 swT 2.1 ms 00 dBuV 0 0	X RBW (665) 9 kHz VBW 100 kHz Mode	Neasuring		MI I Spectrum Spectru Ref Level 67.00 dbµV 0 db SV 0 dbµV 0 db SV 60 dbµV 0 db SV 30 dbµV 20 dbµV 10 dbµV 10 dbµV	95.62 kHz -1.55 d	kHz kHz Mode Auto FF	suring A AAAAAA	1 4 40
Spectrum Spectrum Spectrum Spectrum Construction Spectrum Spe	X RBW (665) 9 kHz VBW 100 kHz Mode	Neasuring		MI I Spectrum Spectru Ref Level 67.00 dbµV 0 db SV 0 dbµV 0 db SV 60 dbµV 0 db SV 90 dbµV 0 dbµV 30 dbµV 20 dbµV	95.62 kHz -1.55 d	kHz kHz Mode Auto FF	suring A AAAAAA	[t
Type Ref Trc Stimulus M1 1 95.62 kF Spectrum Spectrum 2 0 Spectrum Spectrum 2 0 Spectrum 0 dB uV 0 dB swT 2.1 ms 1Pk View 0 8 swT 2.1 ms 00 dBuV 0 0	X RBW (665) 9 kHz VBW 100 kHz Mode	Neasuring		MI I Spectrum Spectru Ref Level 67.00 dbµV 0 db SV 0 dbµV 0 db SV 60 dbµV 0 db SV 30 dbµV 20 dbµV 10 dbµV 10 dbµV	95.62 kHz -1.55 d	kHz kHz Mode Auto FF	r	(E
Type Ref Trc Stimulus M1 1 95.62 kP Spectrum Spectrum 2 0 Ref Level 67.00 dBµV 0 dB SWT 2.1 ms IPK View 0 dB SWT 2.1 ms 0 dBµV 0 0 dBµV	X RBW (665) 9 kHz VBW 100 kHz Mode	Neasuring		MI I Spectrum Spectru Ref Level 67.00 dbµV 0 db SV 0 dbµV 0 db SV 60 dbµV 0 db SV 30 dbµV 20 dbµV 10 dbµV 10 dbµV	95.62 kHz -1.55 d	kHz kHz Mode Auto FF	r	[t
Type Ref Trc Stimulus M1 1 95.62 kb Spectrum Spectrum 2 0 Spectrum Spectrum 2 0 Spectrum O dB W 0 Nt 0 dB SWT 2.1 ms 0 D dB W 0 0 0 dBuV 0 0	X RBW (665) 9 kHz VBW 100 kHz Mode	Neasuring		MI I Spectrum Spectrum Ref Level 57.00 dbµV 0 db SV Att 0 db SV 9 1Pk: View 0 dbµV 50 dbµV 40 dbµV 30 dbµV 20 dbµV 10 dbµV 0 dbµV 10 dbµV 10 dbµV -10 dbµV -10 dbµV	95.62 kHz -1.55 d	kHz kHz Mode Auto FF	r	- 44
Spectrum Spectrum Spectrum Spectrum Gamma Spectrum 0.00 dbµV	X RBW (665) 9 kHz VBW 100 kHz Mode	Neasuring		MI I Spectrum Spectrul Ref Level 67.00 dbµV 0 db V Att 0 db SV 60 dbµV 0 dbµV 50 dbµV 0 dbµV 40 dbµV 0 dbµV 10 dbµV 0 dbµV 10 dbµV 0 dbµV	95.62 kHz -1.55 d	kHz kHz Mode Auto FF	r	(E
Type Ref Trc. Stimulus M1 1 95.62 kb Spectrum Spectrum 2 Spectrum Spectrum 2 Strain 0 db uV 0 Nt 0 db SWT 2.1 ms 0 0 db uV 0 0	X RBW (665) 9 kHz VBW 100 kHz Mode	Neasuring		MI I Spectrum Spectru Ref Level 67.00 dbµV 0 db SV 10 dbµV 0 db SV 50 dbµV 40 dbµV 30 dbµV 20 dbµV 10 dbµV 10 dbµV -10 dbµV -20 dbµV	95.62 kHz -1.55 d	kHz kHz Mode Auto FF	r	(E
Type Ref Trc Stimulus M1 1 95.62 kF Spectrum Spectrum 2 0 Spectrum 0 dB W 0 O dB W 0 dB SWT 2.1 ms IPk View 0 0 0 dB W 0 0 20 dB W 0 0 30 dB W 0 0	RBW (66B) 9 kHz VBW 100 kHz WBW 100 kHz	Neasuring		MI I Spectrum Spectrum Ref Level 67.00 dbµV 0 db V Att 0 db V 50 dbµV 0 40 dbµV 0 30 dbµV 0 20 dbµV 0 10 dbµV 0 20 dbµV 0 10 dbµV 0 -10 dbµV -0 -30 dbµV -30 dbµV	95.62 kHz -1.55 d m 2 (E) * RBW (66B) 9 VT 2.1 ms * VBW 100 VT 2.1 ms * VBW 100 	KHZ KHZ Mode Auto FFT	r 	[
Type Ref Trc Stimulus M1 1 95.62 kP Spectrum Spectrum 2 0 Ref Level 67.00 dBµV 0 dB SWT 2.1 ms 1Pk View 0 dB SWT 2.1 ms 10 dBµV 0	X RBW (665) 9 kHz VBW 100 kHz Mode	Neasuring		MI I Spectrum Spectru Ref Level 67.00 dbµV 0 db SV 10 dbµV 0 db SV 50 dbµV 40 dbµV 30 dbµV 20 dbµV 10 dbµV 10 dbµV -10 dbµV -20 dbµV	95.62 kHz -1.55 d m 2 (E) * RBW (66B) 9 VT 2.1 ms * VBW 100 VT 2.1 ms * VBW 100 	kHz kHz Mode Auto FF	r 	(E



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

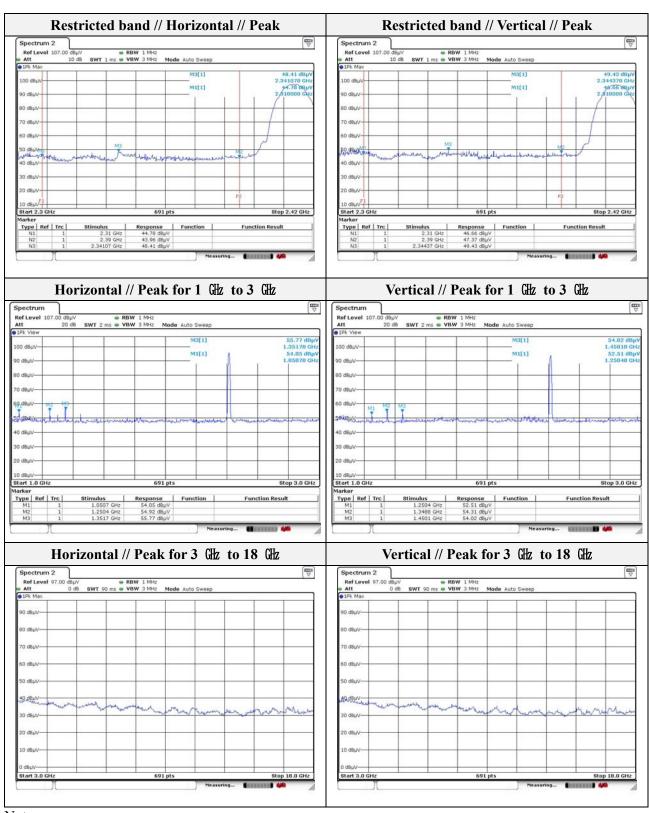
Test report No .: KES-RF-17T0019 Page (23) of (63)

Test results (Below 1 000	M±z) – Worst case
Mode:	802.11b
Distance of measurement:	3 meter
Channel:	11 (Worst case)

11 (Worst case)

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test results (Above 1 000 Mz)


Mode:	802.11b
Distance of measurement:	3 meter
Channel:	01

- Spurio	us							
Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1050.70	54.05	Peak	Н	-9.30	-	44.75	74.00	29.25
1250.40	54.92	Peak	Н	-8.75	-	46.17	74.00	27.83
1351.70	55.77	Peak	Н	-8.50	-	47.27	74.00	26.73
1250.40	52.51	Peak	V	-8.75	-	43.76	74.00	30.24
1348.80	54.31	Peak	V	-8.50	-	45.81	74.00	28.19
1450.10	54.02	Peak	V	-8.25	-	45.77	74.00	28.23

- Band edge

	u cuge							
Frequen (Mbz)	cy Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2341.07	48.41	Peak	Н	-2.51	-	45.90	74.00	28.10
2344.37	49.43	Peak	V	-2.50	-	46.93	74.00	27.07

Note.

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.


Mode:	802.11b
Distance of measurement:	3 meter
Channel:	06

- Spurio	us							
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1050.70	55.25	Peak	Н	-9.30	-	45.95	74.00	28.05
1250.40	54.36	Peak	Н	-8.75	-	45.61	74.00	28.39
1351.70	54.75	Peak	Н	-8.50	-	46.25	74.00	27.75
1250.40	51.77	Peak	V	-8.75	-	43.02	74.00	30.98
1348.80	53.97	Peak	V	-8.50	-	45.47	74.00	28.53
1450.10	53.77	Peak	V	-8.25	-	45.52	74.00	28.48

www.kes.co.kr

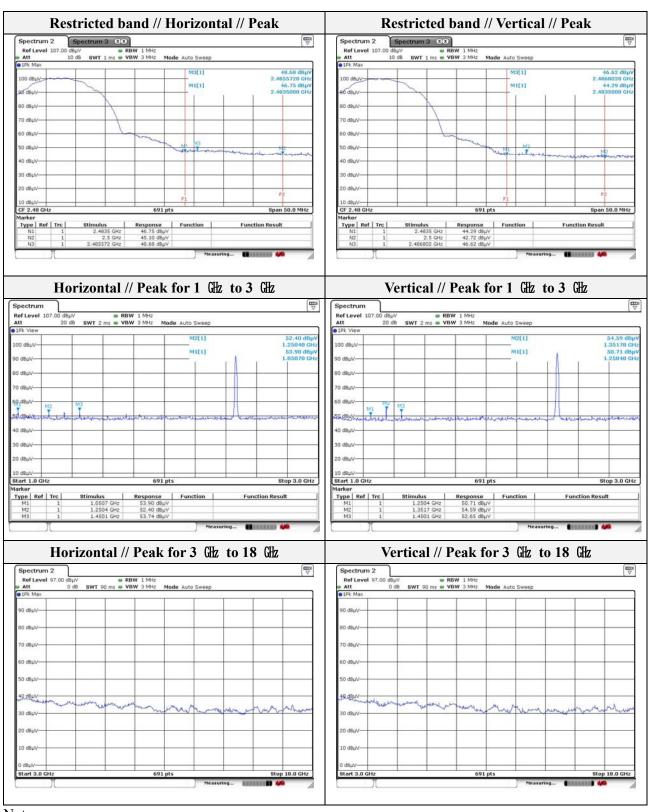
Test report No.: KES-RF-17T0019 Page (27) of (63)

Note.

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:	802.11b
Distance of measurement:	3 meter
Channel:	11


- Spurio	us							
Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1050.70	53.90	Peak	Н	-9.30	-	44.60	74.00	29.40
1250.40	52.40	Peak	Н	-8.75	-	43.65	74.00	30.35
1450.10	53.74	Peak	Н	-8.25	-	45.49	74.00	28.51
1250.40	50.71	Peak	V	-8.75	-	41.96	74.00	32.04
1351.70	54.59	Peak	V	-8.50	-	46.09	74.00	27.91
1450.10	52.65	Peak	V	-8.25	-	44.40	74.00	29.60

Band edge

_

Dunu t	~~5~							
Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2485.57	48.68	Peak	Н	-1.78	-	46.90	74.00	27.10
2486.80	46.62	Peak	V	-1.78	-	44.84	74.00	29.16

Note.

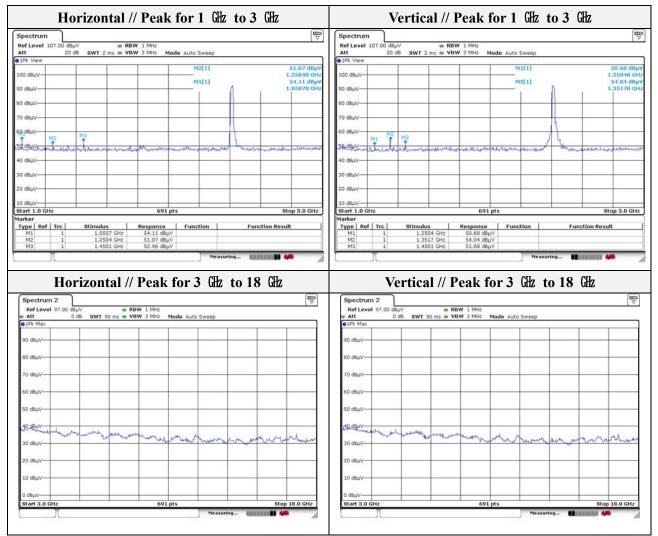
1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

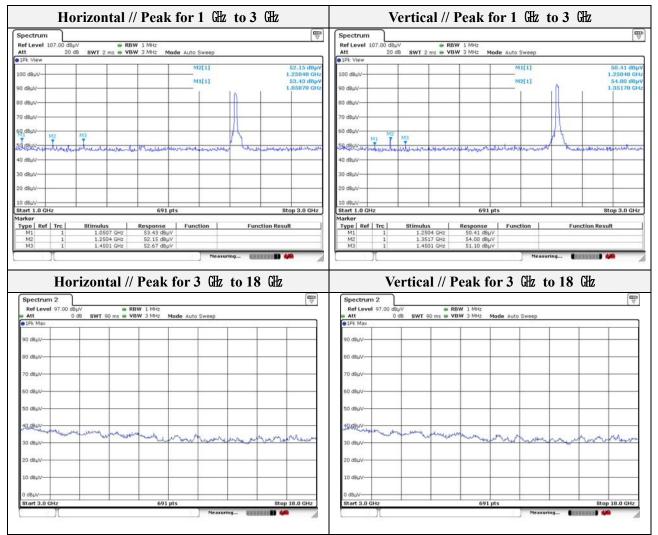
Mode:	802.11g
Distance of measurement:	3 meter
Channel:	01


- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1050.70	54.11	Peak	Н	-9.30	-	44.81	74.00	29.19
1250.40	51.07	Peak	Н	-8.75	-	42.32	74.00	31.68
1450.10	52.96	Peak	Н	-8.25	-	44.71	74.00	29.29
1250.40	50.68	Peak	V	-8.75	-	41.93	74.00	32.07
1351.70	54.04	Peak	V	-8.50	-	45.54	74.00	28.46
1450.10	51.68	Peak	V	-8.25	-	43.43	74.00	30.57

Band edge Frequency Ant. Pol. CF DCF Field strength Margin Limit Level **Detect mode** $(dB\mu N/m)$ (MHz) (dBµV) (H/V) (dB) (dB) $(dB\mu N/m)$ (dB) 62.83 74.00 2389.18 65.10 Peak Н -2.27 11.17 -2389.18 45.29 43.02 10.98 Average Н -2.27 54.00 -V 2389.18 63.34 Peak -2.27 61.07 74.00 12.93 -V 2389.18 43.25 -2.27 40.98 54.00 13.02 Average -

Note.

1. No spurious emission were detected above 3 GHz.


2. Average test would be performed if the peak result were greater than the average limit.

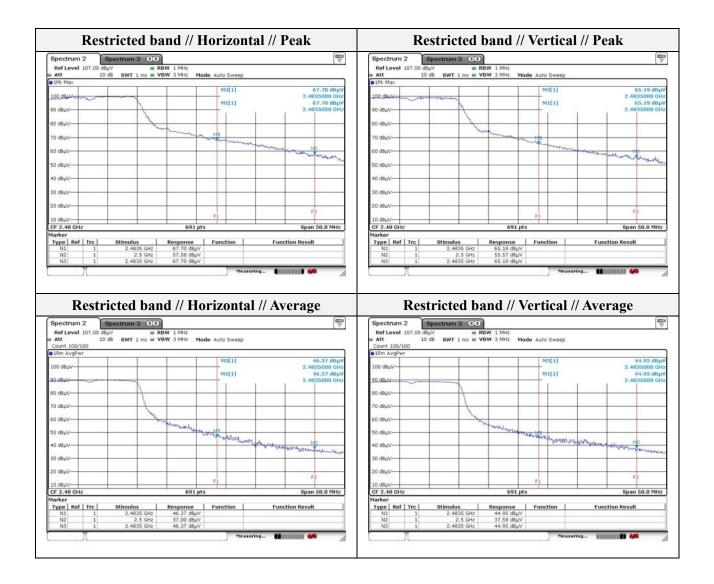
Mode:	802.11g
Distance of measurement:	3 meter
Channel:	06

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1050.70	53.43	Peak	Н	-9.30	-	44.13	74.00	29.87
1250.40	52.15	Peak	Н	-8.75	-	43.40	74.00	30.60
1450.10	52.67	Peak	Н	-8.25	-	44.42	74.00	29.58
1250.40	50.41	Peak	V	-8.75	-	41.66	74.00	32.34
1351.70	54.00	Peak	V	-8.50	-	45.50	74.00	28.50
1450.10	51.10	Peak	V	-8.25	-	42.85	74.00	31.15

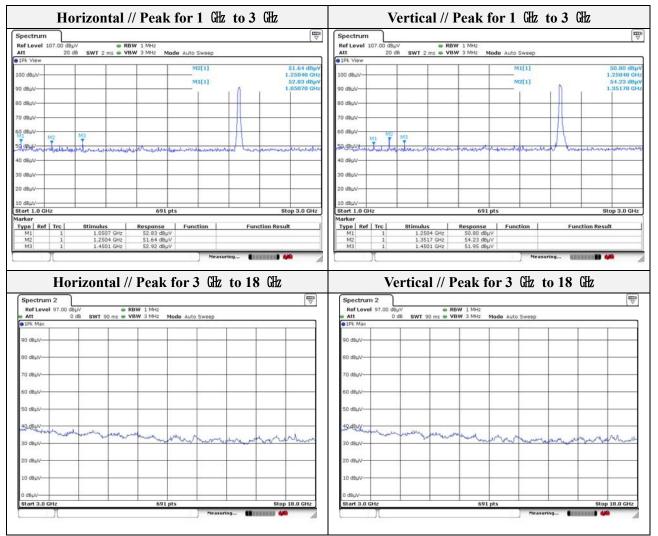
Note.

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.


C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Mode:	802.11g
Distance of measurement:	3 meter
Channel:	11

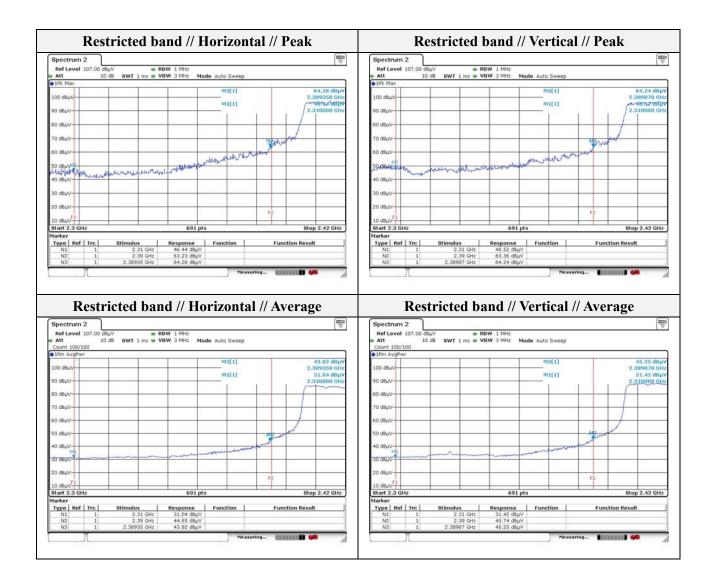

- Spurio	us							
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1050.70	52.83	Peak	Н	-9.30	-	43.53	74.00	30.47
1250.40	51.64	Peak	Н	-8.75	-	42.89	74.00	31.11
1450.10	52.92	Peak	Н	-8.25	-	44.67	74.00	29.33
1250.40	50.80	Peak	V	-8.75	-	42.05	74.00	31.95
1351.70	54.23	Peak	V	-8.50	-	45.73	74.00	28.27
1450.10	51.95	Peak	V	-8.25	-	43.70	74.00	30.30

Band edge Frequency Level Ant. Pol. CF DCF Field strength Limit Margin **Detect mode** (M₽z) $(dB\mu V)$ (H/V) (dB) (dB) $(dB\mu N/m)$ $(dB\mu N/m)$ (dB) 2483.50 67.70 Peak Н -1.79 65.91 74.00 8.09 --2483.50 46.37 Average Η -1.79 44.58 54.00 9.42 V 2483.50 65.19 Peak -1.79 63.40 74.00 10.60 _ V 2483.50 44.95 -1.79 43.16 54.00 10.84 Average -

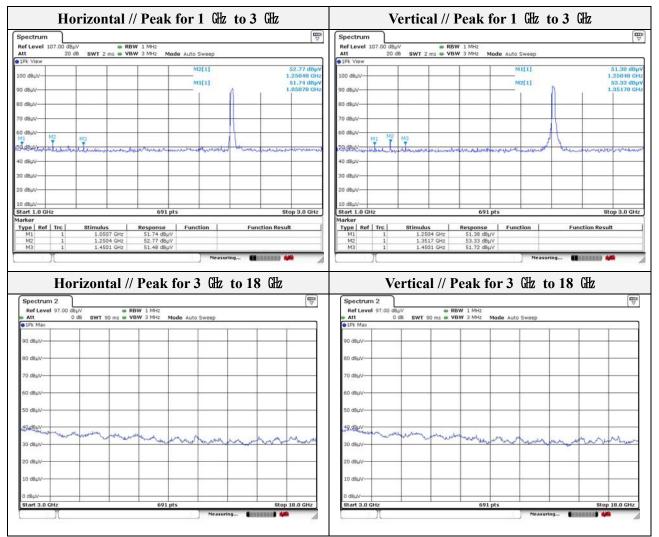
Note.

1. No spurious emission were detected above 3 GHz.

KES Co., Ltd. C-3701, 40, Simin-daero 365beon-gil,

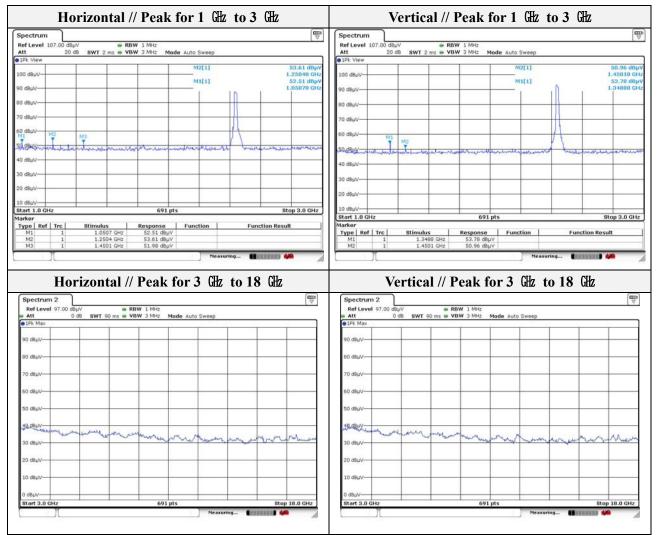

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Mode:	802.11n(HT20)		
Distance of measurement:	3 meter		
Channel:	01		


- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1050.70	51.74	Peak	Н	-9.30	-	42.44	74.00	31.56
1250.40	52.77	Peak	Н	-8.75	-	44.02	74.00	29.98
1450.10	51.48	Peak	Н	-8.25	-	43.23	74.00	30.77
1250.40	51.38	Peak	V	-8.75	-	42.63	74.00	31.37
1351.70	53.33	Peak	V	-8.50	-	44.83	74.00	29.17
1450.10	51.72	Peak	V	-8.25	-	43.47	74.00	30.53

Band edge Frequency Ant. Pol. CF DCF Field strength Margin Limit Level **Detect mode** $(dB\mu N/m)$ $(dB\mu N/m)$ (MHz) (dBµV) (H/V) (dB) (dB) (dB) 62.01 74.00 2389.35 64.28 Peak Н -2.27 11.99 -41.55 2389.35 43.82 12.45 Average Н -2.27 54.00 -V 2389.87 64.24 Peak -2.26 61.98 74.00 12.02 -V 2389.87 45.25 -2.26 42.99 54.00 11.01 Average -

Note.

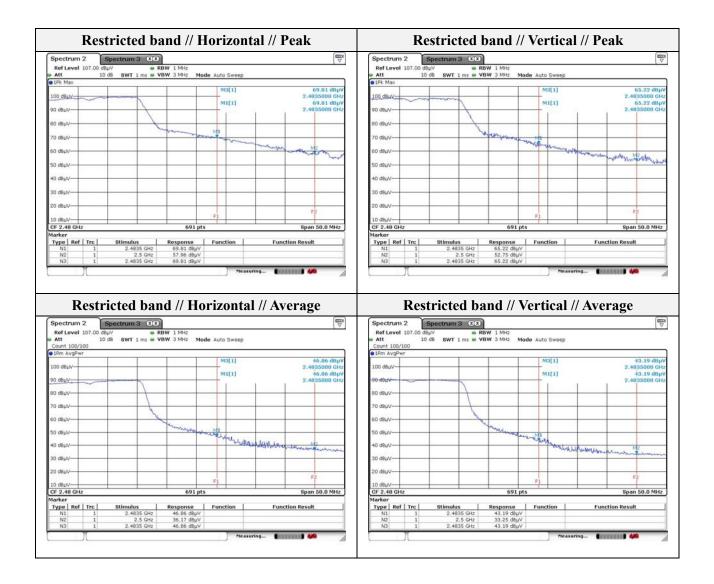

1. No spurious emission were detected above 3 GHz.

Mode:	802.11n(HT20)		
Distance of measurement:	3 meter		
Channel:	06		

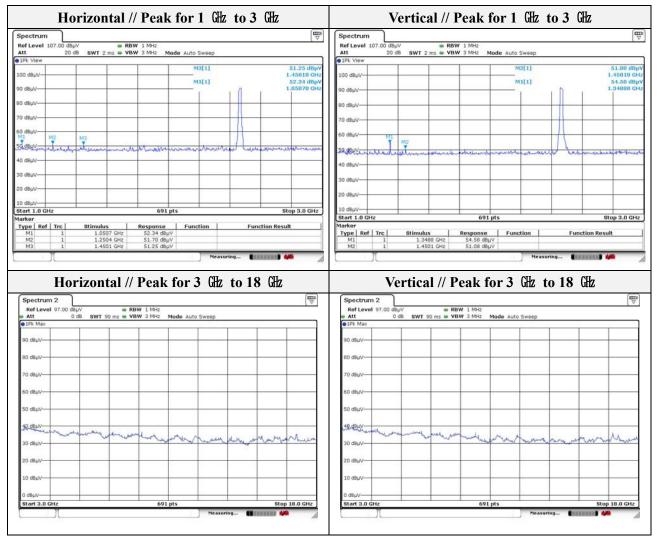
- Spurio	us							
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1050.70	52.51	Peak	Н	-9.30	-	43.21	74.00	30.79
1250.40	53.61	Peak	Н	-8.75	-	44.86	74.00	29.14
1450.10	51.98	Peak	Н	-8.25	-	43.73	74.00	30.27
1348.80	53.78	Peak	V	-8.50	-	45.28	74.00	28.72
1450.10	50.96	Peak	V	-8.25	-	42.71	74.00	31.29

Note.

1. No spurious emission were detected above 3 GHz.


www.kes.co.kr

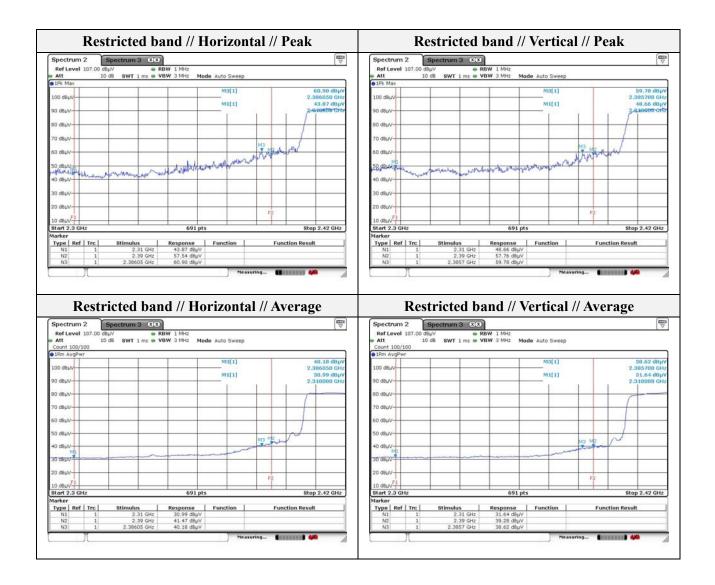
Mode:	802.11n(HT20)
Distance of measurement:	3 meter
Channel:	11


- Spurio	us							
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
1050.70	52.34	Peak	Н	-9.30	-	43.04	74.00	30.96
1250.40	51.70	Peak	Н	-8.75	-	42.95	74.00	31.05
1450.10	51.25	Peak	Н	-8.25	-	43.00	74.00	31.00
1348.80	54.58	Peak	V	-8.50	-	46.08	74.00	27.92
1450.10	51.08	Peak	V	-8.25	-	42.83	74.00	31.17

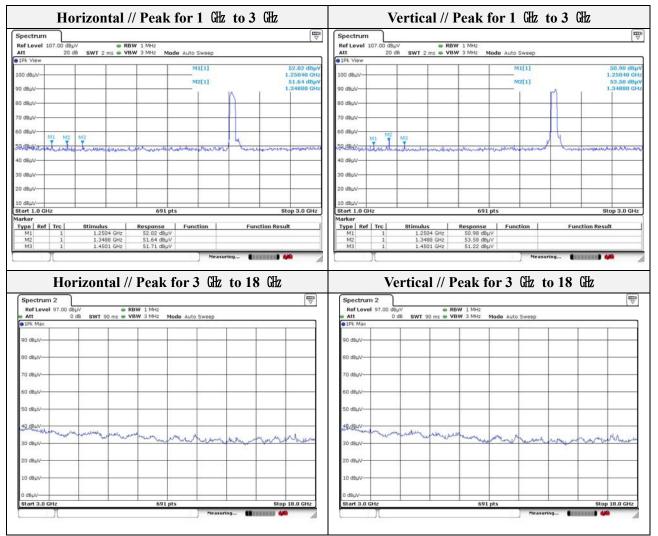
- Band e	dge							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
2483.50	69.81	Peak	Н	-1.79	-	68.02	74.00	5.98
2483.50	46.86	Average	Н	-1.79	-	45.07	54.00	8.93
2483.50	65.22	Peak	V	-1.79	-	63.43	74.00	10.57
2483.50	43.19	Average	V	-1.79	-	41.40	54.00	12.60

Note.

1. No spurious emission were detected above 3 GHz.

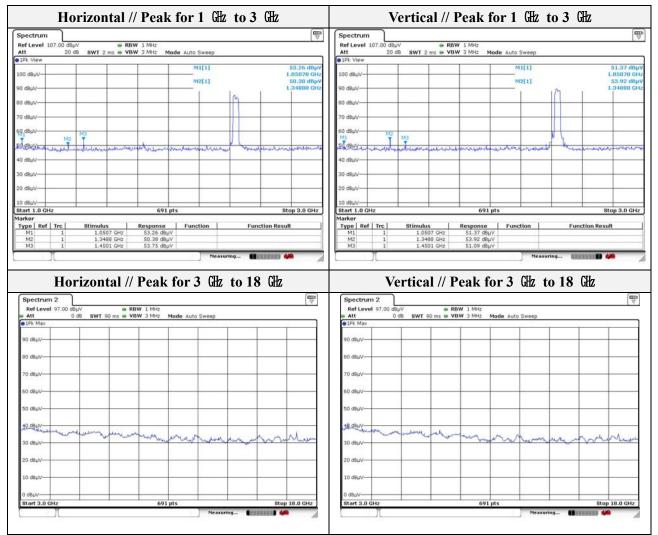

www.kes.co.kr

Mode:	802.11n(HT40)		
Distance of measurement:	3 meter		
Channel:	03		


- Spurio	us							
Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1250.40	52.02	Peak	Н	-8.75	-	43.27	74.00	30.73
1348.80	51.64	Peak	Н	-8.50	-	43.14	74.00	30.86
1450.10	51.71	Peak	Н	-8.25	-	43.46	74.00	30.54
1250.40	50.98	Peak	V	-8.75	-	42.23	74.00	31.77
1348.80	53.58	Peak	V	-8.50	-	45.08	74.00	28.92
1450.10	51.22	Peak	V	-8.25	-	42.97	74.00	31.03

Band edge Frequency Ant. Pol. CF DCF Field strength Margin Limit Level **Detect mode** $(dB\mu N/m)$ (MHz) (dBµV) (H/V) (dB) (dB) $(dB\mu N/m)$ (dB) 58.62 74.00 2386.05 60.90 Peak Н -2.28 15.38 -2386.05 40.18 -2.28 37.90 16.10 Average Н 54.00 -V 2385.70 59.78 Peak -2.29 57.49 74.00 16.51 -V 2385.70 38.62 -2.29 36.33 54.00 17.67 Average -

Note.

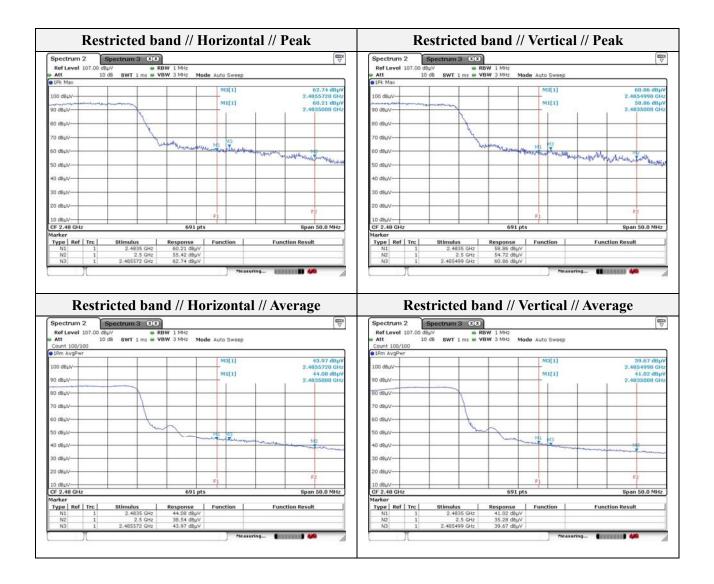

1. No spurious emission were detected above 3 GHz.

Mode:	802.11n(HT40)		
Distance of measurement:	3 meter		
Channel:	06		

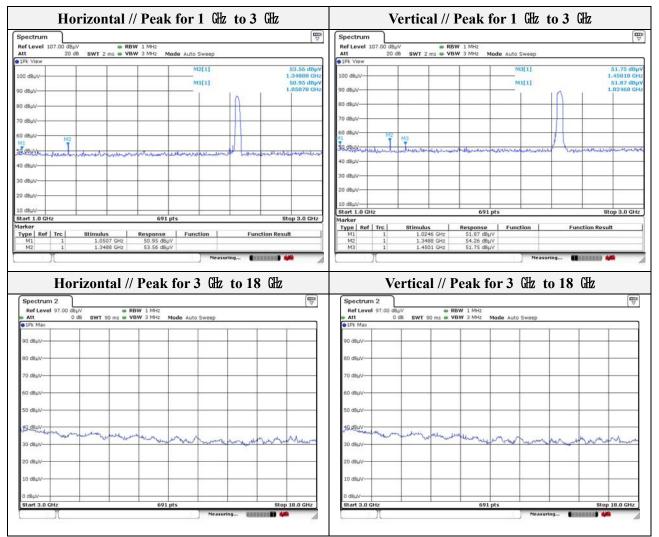
- Spurio	us							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1050.70	53.26	Peak	Н	-9.30	-	43.96	74.00	30.04
1348.80	50.38	Peak	Н	-8.50	-	41.88	74.00	32.12
1450.10	53.75	Peak	Н	-8.25	-	45.50	74.00	28.50
1050.70	51.37	Peak	V	-9.30	-	42.07	74.00	31.93
1348.80	53.92	Peak	V	-8.50	-	45.42	74.00	28.58
1450.10	51.09	Peak	V	-8.25	-	42.84	74.00	31.16

Note.

1. No spurious emission were detected above 3 GHz.



Mode:	802.11n(HT40)
Distance of measurement:	3 meter
Channel:	09


- Spurious								
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1050.70	50.95	Peak	Н	-9.30	-	41.65	74.00	32.35
1348.80	53.56	Peak	Н	-8.50	-	45.06	74.00	28.94
1024.60	51.87	Peak	V	-9.37	-	42.50	74.00	31.50
1348.80	54.26	Peak	V	-8.50	-	45.76	74.00	28.24
1450.10	51.75	Peak	V	-8.25	-	43.50	74.00	30.50

- Band edge								
Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
2485.57	62.74	Peak	Н	-1.78	-	60.96	74.00	13.04
2485.57	43.97	Average	Н	-1.78	-	42.19	54.00	11.81
2485.50	60.86	Peak	V	-1.78	-	59.08	74.00	14.92
2485.50	39.67	Average	V	-1.78	-	37.89	54.00	16.11

Note.

1. No spurious emission were detected above 3 GHz.

Test report No .: KES-RF-17T0019 Page (54) of (63)

Test results (18 GHz to 30	GHz) – Worst case
Mode:	802.11b
Distance of measurement:	3 meter
Channel:	11 (Worst case)

	Horizontal		Spectrum 2 Ref Level 97.00 d6µV RBW 1 MHz RBW Att 0 d8 SWT 72 ms @ VBW 3 MHz Mode Auto Sweep			
	RBW 1 MHz ns • VBW 3 MHz Mode Auto Sweep					
1Pk Max		NY 10 17	IPk Max			
90 d8µV			90 dbµV	_		
80 dBµV			80 dBµV	_		
70 dBµV			70 dBuV	_		
60 dBµV			60 dBµV	_		
50 dBµV			50 dBuV			
40 dBµV			40 dBuV			
30 dBpv allowshiphalan	an and the share and the	anone water	30 den have a contract of the second and the second and the	man Merte		
20 dBµV			20 dBu/v			
10 dBµV			10 dBµV	_		
0 dBµV			0 dBµV			
Start 18.0 GHz	691 pts	Stop 30.0 GHz	Start 18.0 GHz 691 pts	Stop 30.0 GH		
	Meas	aring 🖬 Akkana 🦇 🥼	Measuring			

Note.

1. No spurious emission were detected above 18 GHz.

www.kes.co.kr

Test report No.: KES-RF-17T0019 Page (55) of (63)

3.5 Conducted spurious emissions & band edge Test procedure

Pand adga

Band edge

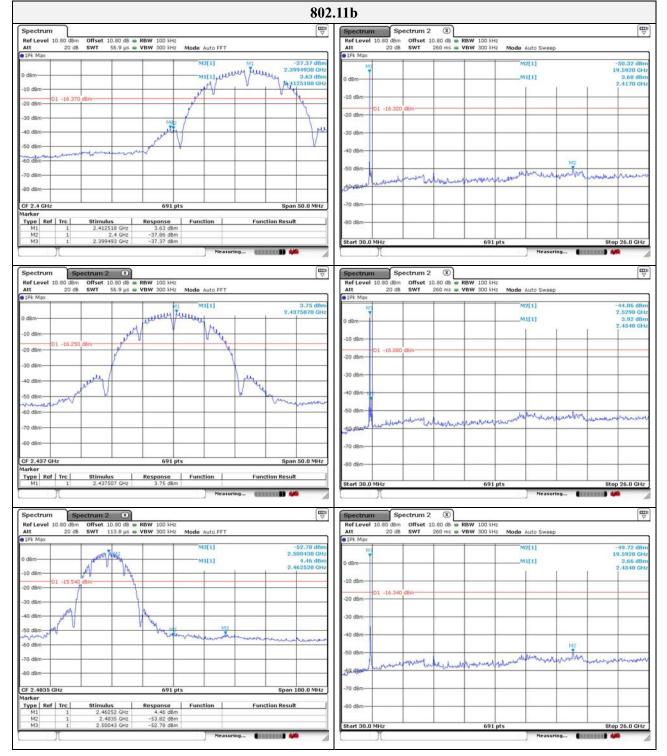
KDB 558074 D01 v03r05 - Section 11.3

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100 kHz
- 4. VBW = 300 kHz
- 5. Detector = Peak
- 6. Number of sweep points \geq 2 × Span/RBW
- 7. Trace mode = max hold
- 8. Sweep time = auto
- 9. The trace was allowed to stabilize

Out of band emissions

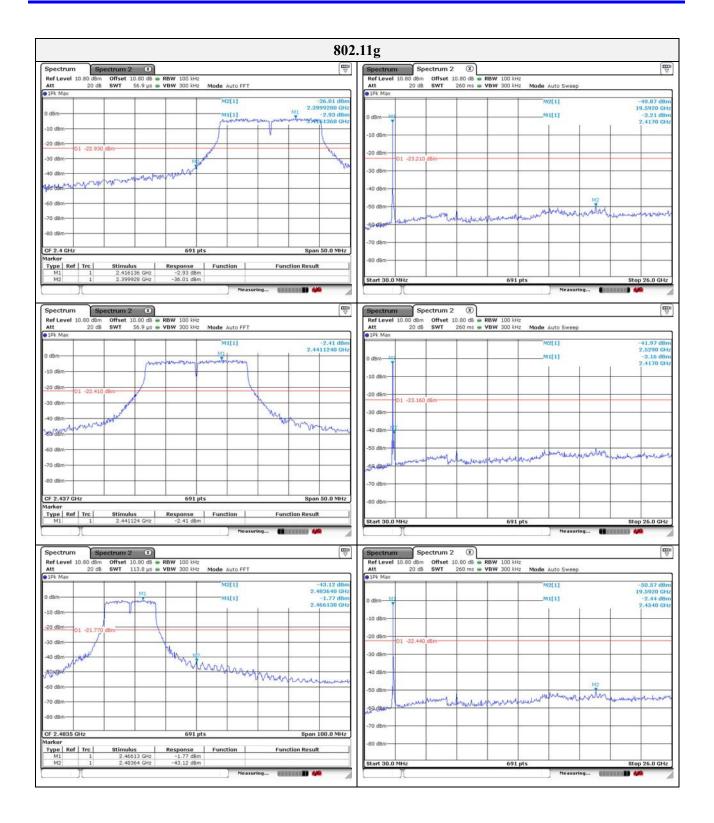
KDB 558074 D01 v03r05 - Section 11.3

- 1. Start frequency was set to 30 MHz and stop frequency was set to 25 GHz for 2.4 GHz frequencies and 40 GHz for 5 GHz frequencies
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

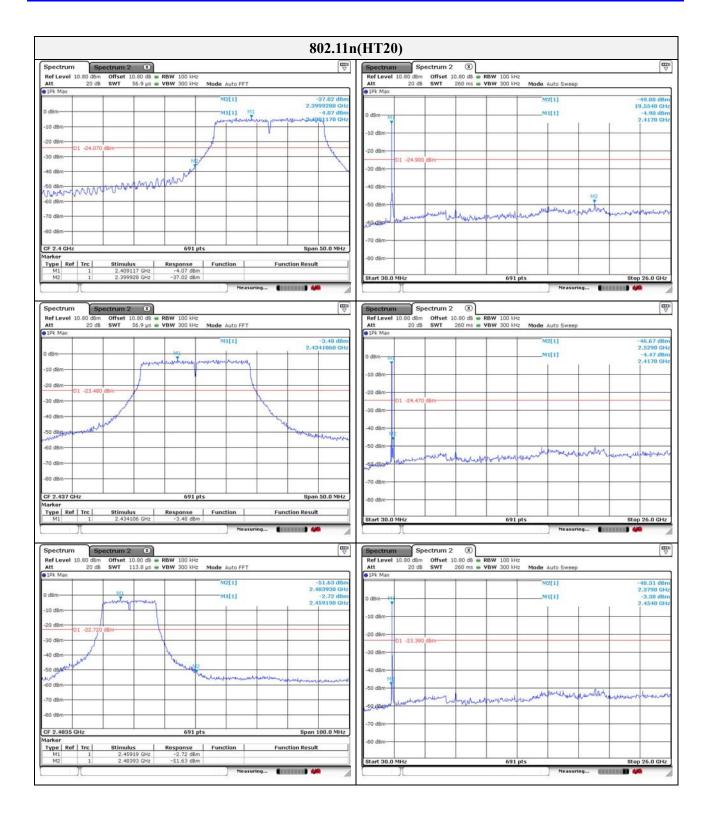

Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

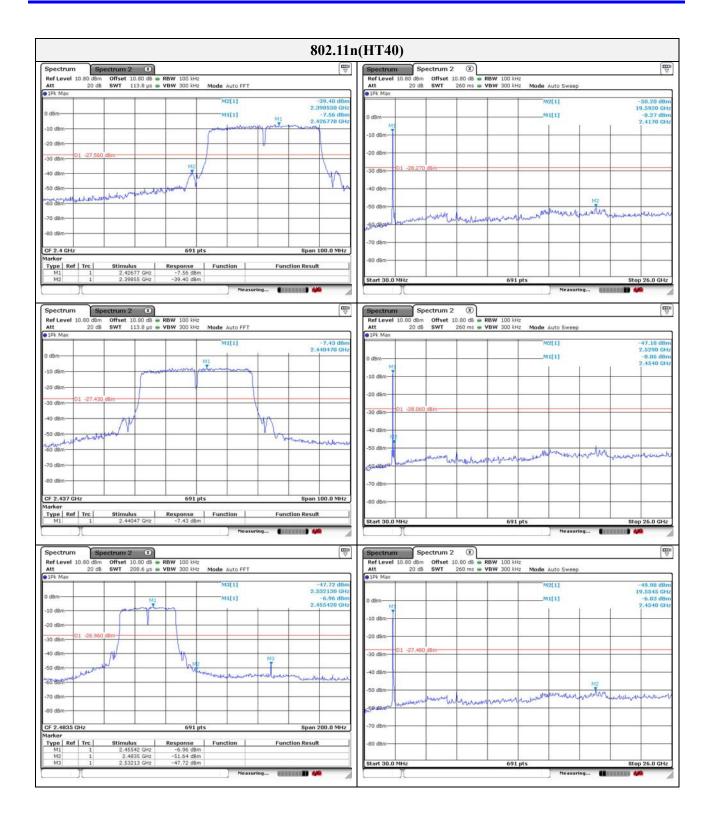
C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0019 Page (56) of (63)


Test results

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0019 Page (57) of (63)


C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0019 Page (58) of (63)

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0019 Page (59) of (63)

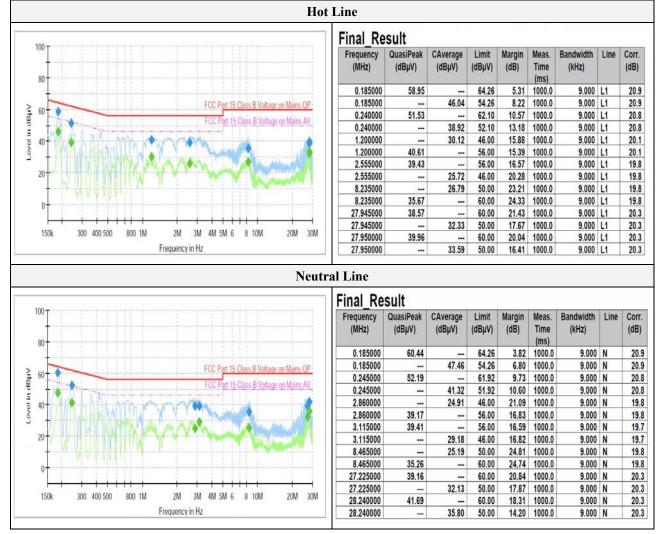
3.6. AC conducted emissions

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Enguarate of Emission (407)	Conducted limit (dBµN/m)			
Frequency of Emission (Mz)	Quasi-peak	Average		
0.15 - 0.50	66 - 56*	56 - 46*		
0.50 - 5.00	56	46		
5.00 - 30.0	60	50		

Note.


1. All AC line conducted spurious emission are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and the appropriate frequencies. All data rates and modes were investigated for conducted spurious emission. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

3. Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level).

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0019 Page (61) of (63)

Test results

www.kes.co.kr

Test report No.: KES-RF-17T0019 Page (62) of (63)

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	100736	1 year	2017.07.06
Spectrum Analyzer	R&S	FSV40	101002	1 year	2017.07.06
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2018.01.23
Power Meter	Anritsu	ML2495A	1438001	1 year	2018.01.23
Pluse Power Sensor	Anritsu	MA2411B	1339205	1 year	2018.01.23
Attenuator	Keysight	8493C	82506	1 year	2018.01.23
Loop Antenna	R&S	HFH2- Z2.335.4711.52	826532	2 years	2017.03.03
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	9168-713	2 years	2017.05.15
Horn Antenna	E/L	3117	135889	2 years	2018.10.25
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170550	2 years	2017.04.30
High Pass Filter	WAINWRIGHT INSTRUMENT	WHJS3000-10TT	1	1 year	2017.07.04
Low Pass Filter	WEINSCHEL	WLK1.0/18G-10TT	1	1 year	2017.07.04
Preamplifier	HP	8449B	3008A00538	1 year	2017.07.05
Preamplifier	SCHWARZBECK	BBV-9718	9718-246	1 year	2017.10.14
EMI Test Receiver	R&S	ESR3	101781	1 year	2017.05.03
EMI Test Receiver	R&S	ESU26	100552	1 year	2017.04.24
EMI Test Receiver	R&S	ESR3	101783	1 year	2017.05.03
Pulse Limiter	R&S	ESH3-Z2 0357.8810.54	101914	1 year	2017.12.13
LISN	R&S	ENV216	101137	1 year	2018.02.03

Peripheral devices

Device Manufacturer		Model No.	Serial No.
Notebook Computer	Samsung Electronics Co., Ltd.	NP-QX411L	HJV993BB905283V
Test Board	N/A	N/A	N/A