

Test report No.: KES-RF-17T0026 Page (1) of (25)

TEST REPORT

Part 15 Subpart C 15.249

Equipment under test Station Hub

Model name SNS-R0810W

FCC ID NLMSNSR0810W

Applicant Hanwha Techwin Co., Ltd.

Manufacturer Hanwha Techwin(Tianjin) Co., Ltd

Date of test(s) 2017.02.09 ~ 2017.02.21

Date of issue 2017.02.22

Issued to Hanwha Techwin Co., Ltd.

1204, Changwon-daero, Seongsan-gu Changwon-si, Gyeongsangnam-do, South Korea Tel: +82-70-7147-8361/ Fax: +82-31-8108-3717

Issued by

KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
	1000
Hyeon-su Jang	Jeff Do
Test engineer	Technical manager

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test report No .: KES-RF-17T0026 Page (2) of (25)

Revision history

Revision	Date of issue	Test report No.	Description
-	2017.02.22	KES-RF-17T0026	Initial

Test report No .: KES-RF-17T0026 Page (3) of (25)

TABLE OF CONTENTS

1.	General i	nformation	4
	1.1.	EUT description	4
	1.2.	Test configuration	
	1.3.	Device modifications	5
	1.4.	Information about derivative model	5
	1.5.	Frequency/channel operations	5
	1.6.	Accessory information	5
2.		v of tests	
3.	Test resu	lts	7
	3.1.	20 dB bandwidth	7
	3.2.	Field strength of fundamental & Radiated spurious emission & Out-of-band emission	. 10
	3.3.	AC conducted emissions	
App	endix A.	Measurement equipment	. 24
		Test setup photos	

1. General information

Applicant:	Hanwha Techwin Co., Ltd.		
Applicant address:	1204, Changwon-daero, Sec	ongsan-gu, Changwon-si	
	Gyeongsangnam-do, South	Korea	
Test site:	KES Co., Ltd.		
Test site address:	C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea		
	473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea		
FCC rule part(s):	15.249		
FCC ID:	NLMSNSR0810W		
Test device serial No.:	Production	Pre-production	Engineering

1.1. **EUT description**

Station Unit Equipment under test

Equipment under test	Station Hub		
Frequency range	Single band	2.4 GHz	2 412 MHz ~ 2 462 MHz (11b/g/n_HT20)
	module		2 422 MHz ~ 2 452 MHz (11n_HT40)
		2.4 GHz	2 412 MHz ~ 2 462 MHz (11b/g/n_HT20)
			2 422 MHz ~ 2 452 MHz (11n_HT40)
			5 180 Mz ~ 5 240 Mz (11a/n_HT20, 11ac_VHT20)
		UNII-1	5 190 Mtz ~ 5 230 Mtz (11n_HT40, 11ac_VHT40)
			5 210 Mtz (11ac_VHT80)
			5 260 MHz ~ 5 320 MHz (11a/n_HT20, 11ac_VHT20)
	Dual band	UNII-2A	5 270 Mtz ~ 5 310 Mtz (11n_HT40, 11ac_VHT40)
	module		5 290 Mtz (11ac_VHT80)
			5 500 MHz ~ 5 720 MHz (11a/n_HT20, 11ac_VHT20)
		UNII-2C	5 510 MHz ~ 5 710 MHz (11n_HT40, 11ac_VHT40)
			5 530 MHz ~ 5 690 MHz (11ac_VHT80)
			5 745 M ¹ / ₂ ~ 5 825 M ¹ / ₂ (11a/n_HT20, 11ac_VHT20)
		UNII-3	5 755 MHz ~ 5 795 MHz (11n_HT40, 11ac_VHT40)
			5 775 Mtz (11ac_VHT80)
	900MHz band module	900 MHz	920.6 MHz ~922.0 MHz
Model:	SNS-R0810V	V	
Modulation technique	DSSS, OFDN	И, FSK	
Number of channels	11ch : 2 412 MHz ~ 2 462 MHz, 7 ch : 2 422 MHz ~ 2 452 MHz		

Number of channels	11ch: 2 412 MHz ~ 2 462 MHz, 7 ch: 2 422 MHz ~ 2 452 MHz
	$4ch: 5\ 180\ MHz \sim 5\ 240\ MHz, \ 2ch: 5\ 190\ MHz \sim 5\ 230\ MHz, \ 1ch: 5\ 210\ MHz$
	$4ch: 5\ 260\ Mtz \sim 5\ 320\ Mtz,\ 2ch: 5\ 270\ Mtz \sim 5\ 310\ Mtz,\ 1ch: 5\ 290\ Mtz$
	$12ch: 5\; 500 \text{ MHz} \sim 5\; 720 \text{ MHz}, 6ch: 5\; 510 \text{ MHz} \sim 5\; 710 \text{ MHz}, 3ch: 5\; 530 \text{ MHz} \sim 5\; 690 \text{ MHz}$
	$5ch: 5745 \text{ MHz} \sim 5825 \text{ MHz}, 2ch: 5755 \text{ MHz} \sim 5795 \text{ MHz}, 1ch: 5775 \text{ MHz}$
	8ch : 920.6 MHz ~922.0 MHz

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test report No.: KES-RF-17T0026 Page (5) of (25)

Antenna type	11b/g/n_HT20/40 11b/g/n_HT20/40 UNII-1 UNII-2A UNII-2C	 : PCB antenna & 3.4 dBi (Single band) : PCB antenna & 2.9 dBi (Dual band) : PCB antenna & 0.6 dBi : PCB antenna & 0.6 dBi : PCB antenna & 0.6 dBi
	UNII-3 900 MHz	: PCB antenna & 0.6 dBi : Chip antenna & -1.7 dBi
Power source	AC 120V Adapter (O	Output : DC 12V / 1.5 A)

1.2. Test configuration

The <u>Hanwha Techwin Co., Ltd. Station Hub FCC ID: NLMSNSR0810W</u> was tested per the guidance of ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

1.3. Device modifications

N/A

1.4. Information about derivative model

N/A

1.5. Frequency/channel operations

Ch.	Frequency (Mb)
1	920.6
•	
4	921.2
8	922.0

1.6. Accessory information

Applicant	Equipment	Manufacturer	Model	Power source
-	-	-	-	-

15.215(c)

KES Co., Ltd. C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

20 dB bandwidth

Test report No.: KES-RF-17T0026 Page (6) of (25)

Pass

2. Summary of	tests	
Reference	Parameter	Test results
15.249(a)	Field strength of fundamental	Pass
15.205 15.209 15.249(d)	Radiated spurious emission, Out-of-band emission	Pass

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test report No.: KES-RF-17T0026 Page (7) of (25)

3. Test results

3.1. 20 dB bandwidth

Test procedure

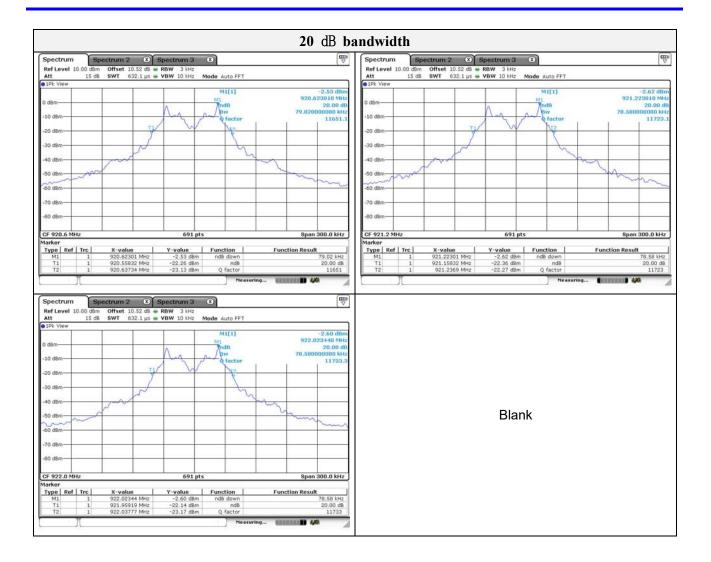
ANSI C63.10-2013

Section 6.9.3

- 1. Use the following spectrum analyzer setting
- 2. Center frequency: Lowest, middle and highest channels
- 3. Span = approximately 2 to 3 times the 20dB bandwidth
- 4. $RBW \ge 1\%$ of the 20dB bandwidth
- 5. VBW \geq 3 x RBW
- 6. Sweep = auto
- 7. Detector function = peak $(1 1)^{-1}$
- 8. Trace = max hold
- 9. Measure the maximum width of the emission that is constrained by the frequencies associat ed with the two outermost amplitude points (upper and lower frequencies) that are attenuate d by 20 dB relative to the maximum level measured in the fundamental emission.

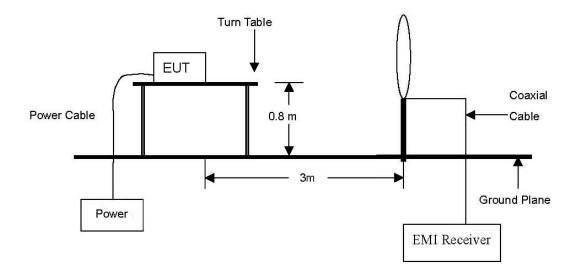
Limit

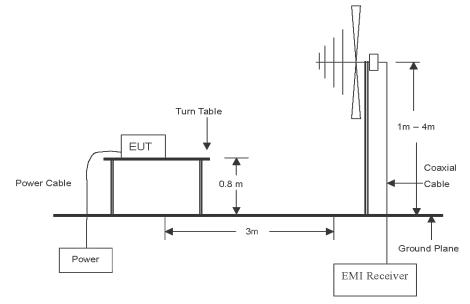
Not applicable


Test results

Frequency(MHz)	20 dB bandwidth(Mz)	Limit(Mbz)
920.6	0.079	
921.2	0.079	-
922.0	0.079	

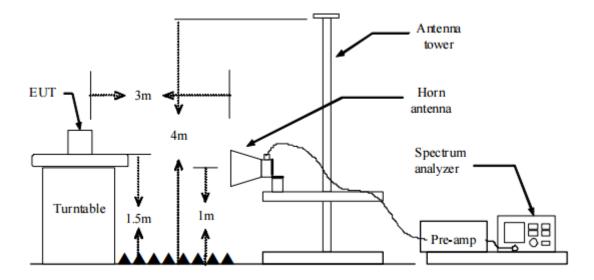
KES Co., Ltd.


C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (9) of (25)



3.2. Field strength of fundamental & Radiated spurious emission & Out-of-band emission Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}\mathbb{Z}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}\mathbb{Z}$ emissions, whichever is lower.

Test procedure below 30 Mz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 MHz

- 1. Spectrum analyzer settings for f < 1 GHz:
 - (1) Span = wide enough to fully capture the emission being measured
 - \bigcirc **RBW** = 100 kHz
 - ③ VBW \ge RBW
 - ④ Detector = quasi peak
 - (5) Sweep time = auto
 - \bigcirc Trace = max hold
- 2. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mz
 - ③ VBW \ge 3 Mz
 - (4) etector = peak
 - \bigcirc Sweep time = auto
 - \bigcirc Trace = max hold
 - \bigcirc Trace was allowed to stabilize

- 3. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 MHz

 - (4) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/Ds)$

 $f \ge 30$ Mz, extrapolation factor of 20 dB/decade of distance. $F_d = 20log(D_m/Ds)$ Where:

- F_d = Distance factor in dB
- D_m = Measurement distance in meters
- D_s = Specification distance in meters
- 3. $CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)$
- 4. Field strength($dB\mu N/m$) = Level($dB\mu N$) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB μ V/m) Field strength(dB μ V/m)
- 6. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>X orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>X orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µV/m)
$0.009 \sim 0.490$	300	2400/F(kllz)
0.490 ~ 1.705	30	24000/F(kHz)
$1.705 \sim 30.0$	30	30
30~88	3	100**
88~216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mb, $76 \sim 88$ Mb, $174 \sim 216$ Mb or $470 \sim 806$ Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to 15.249(a)

Fundamental	Field strength	of fundamental	Field strength of harmonics			
frequency	mV/m	dBuV/m	uV/m	dBuV/m		
902-928 MHz	50	94	500	54		
2400-2483.5 MHz	50	94	500	54		
5725-5875 MHz	50	94	500	54		
24.0-24.25 GHz	250	108	2500	68		

According to 15.249(d)

Emission radiated outside of the specified frequency bands, except harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated limit in FCC part 15C, Section 15.209, whichever is the lesser attenuation.

Margin (dB)

8.29

8.37

Test result (Fundamental)

Operating	Frequency:		920.6 Młz				
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)
920.58	60.15	Peak	Н	25.56	-	85.71	94.00
920.62	60.07	Peak	V	25.56	-	85.63	94.00

Operating Frequency:

921.2 MHz

Frequency (Mat)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
921.21	60.04	Peak	Н	25.56	-	85.60	94.00	8.40
921.22	60.05	Peak	V	25.56	-	85.61	94.00	8.39

Operating Frequency:

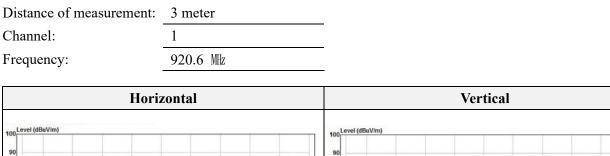
922.0 MHz

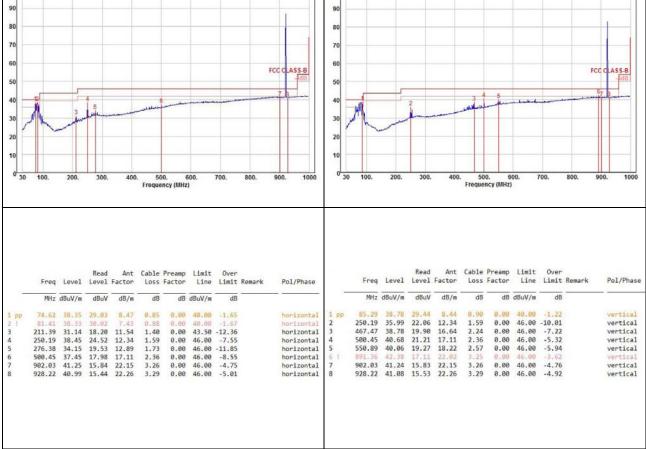
Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
921.99	59.72	Peak	Н	25.58	-	85.30	94.00	8.70
922.02	59.69	Peak	V	25.58	-	85.27	94.00	8.73

Test results	(Below	30	M⊞z)
--------------	--------	----	------

Distance of measurement:	3 meter
Channel:	1 (Worst case)
Frequency:	920.6 MHz

Frequency	Level	Ant. Pol.	CF	F _d	Field strength	Limit	Margin	
(Mz)	(dBµV)	(H/V)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
No spurious emissions were detected within 20 dB of the limit								


Horizontal Vertical E ∇ Spectrum 2 🙁 Spectrum Ref Level 57.0 × -Spectrum Sp trum 2 Ref Level 57. RAW (6dB) 200 (6dB) SWT 13.4 ms . VBW 3 kHz Mode Auto FFT Mode Auto FFT Att Att SWT 13.4 ms . VBW 3 kHz 0 dB 1Pk View 1Pk View M1[1] M1[1] 1.41 dBp 5.420 ki 1.38 dBp 4.600 kH to dBuV 50 dBuV-O dBu 40 dBuV n da 30 dBul tueb 0 dBu 10 dBul 0 dBu dBuV dBug 10 dBuV-10 dBut 20 dBuV 20 dBuV io di 40 d Stop 150.0 kHz Stop 150.0 kHz 691 pts 691 pts Start 9.0 kHz Start 9.0 kHz Type Ref Trc M1 Type Ref Trc M1 Stimulus Response Function Stimulus Response Function Function Result Function Result -..... × Spectrum 2 * Ē sctrum Spectrum 2 RBW (6dB) 9 kHz
 SWT 2.1 ms
 VBW 100 kHz
 Ref Level
 67.00
 dBμV


 Att
 0
 dB
 Ref Level 67.00 Att RBW (6dB) 9 kHz
 SWT 2.1 ms
 VBW 100 kHz Mode Auto FFT Mode Auto FFT 1Pk Vie IPk View io dBu 60 dBµ\ i0 dB 40 dBul 40 dBuV 0 dBµ n dRuly 20 dRuly 10 dBu 10 dBu) dBuVdBuV-10 dBul -10 dBuV 20 dE 20 dBuV 0 de 30 dBul Start 150.0 kHz Marker Stop 30.0 MHz 691 pts Stop 30.0 MHz Start 150.0 kHz Marker 691 pts CONTRACTOR 444 Measuring.... CONTRACTOR 440 Measuring...

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test results (Below 1 000 Mz)

Note.

1. 902Mz, 928Mz – Band edge markers.

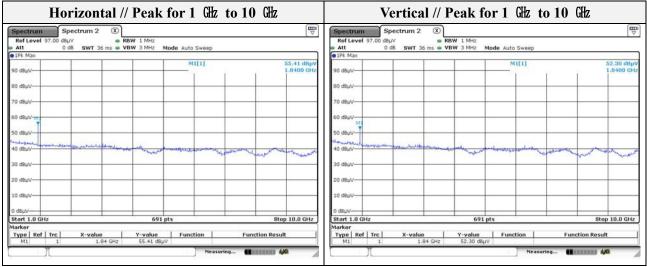
Dist	ance o	of m	easu	reme	ent:	3 n	neter													
Chai	annel: 4																			
Frequency: 921.2 Mz																				
Horizontal							Vertical													
100Leve	l (dBuV/m)										100 Lev	el (dBuV/m)			_	_				
90		_			_						90									
80		_		_	_				-		80		_	-		_				1
70	_	_			_						70		_	_						
60	-	_		_	_					C CLASS-B	60			_		_			ECC	CLASS-B
50										-1dB	50		-							-adB
40	1				5	-				7.8	40	1.	-	3		hum	- de	- angent		- Barrow
30	Monded	hind	Month	Aler							30	and then	ment	Interes				_		
20	- 10 - m				_						20	~	and the second se			_				
10		_			_				_		10									
	76		Read				Limit					Ence	1.0002	Read	Ant Factor		Preamp	Limit Line	Over Limit Remark	Po1/Phas
_	Freq	Level	Level			Factor	Line		Remark	Po1/Phase			Level dBuV/m	dBuV	dB/m	dB		dBuV/m	dB	
1 pp	MHz 74.62	dBuV/m	dBuV	dB/m 8.47	dB 8.85	6.80	48.88	dB		horizontal	1		34.93		8.47	0.85		40.00	-5.07	vertical
2	145.43	30.25	20.97	8.04	1.24	0.00	43.50	-13.25		horizontal	2	85.29	33.53	24.19	8.44	0.90	0.00	40.00	-6.47	vertical
3 4	211.39 250.19		19.42 24.06	12.34	1.40	0.00	43.50 46.00	-11.14		horizontal horizontal	3 4	500.45		21.21	17.11	1.59	0.00	46.00	-9.81 -5.32	vertical vertical
5	500.45 562.53				2.36	0.00	46.00	-8.57		horizontal horizontal	5 pp 6	550.89	42.58	21.79		2.57	0.00	46.00	-3.42	vertical
7	902.03	41.19	15.78	22.15	3.26	0.00	46.00	-4.81		horizontal horizontal	7	902.03	41.31 41.33	15.90	22.15	3.26	0.00	46.00	-4.69	vertical
						2725		1155			1000								a yana 87 (20)	

Note.

1. 902Mz, 928Mz - Band edge markers.

Distance of measurement:	3 meter			
Channel:	8			
Frequency:	922.0 MHz			
Hori	zontal		Vertical	
	5	100 90 80 70 50 7.8 40 30 20 10 00. 1000 0	vel (dBuV/m)	FCC C ASS-B FCB 57 B 700. 800. 900. 1000
	0.00 48.00 -1.63 0.00 45.00 -2.88 0.00 46.00 -8.75 0.00 46.00 -8.76 0.00 46.00 -5.94	Pol/Phase horizontal 1 1 horizontal 2 horizontal 3 horizontal 4 horizontal 5 horizontal 7	Read Ant Cable Preamp Limit Freq Level Factor Loss Factor Line MHz dBuV/m dBuV dB/m dB dB dB/d dB/d 250.19 40.18 26.25 12.34 1.59 0.00 46.00 506.45 39.33 19.86 17.11 2.36 0.00 46.00 550.89 39.38 19.90 18.22 2.57 0.00 46.00 650.80 41.12 18.91 19.50 2.71 0.00 46.00 802.03 41.25 12.84 21.55 3.26 0.00 46.00	Limit Remark Pol/Phase

Note.


1. 902Mz, 928Mz - Band edge markers.

Test results (Above 1 000 Mz)

Distance of measurement:	3 meter
Channel:	1
Frequency:	920.6 MHz

Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1840.00	55.41	Peak	Н	-5.48	-	49.93	74.00	24.07
1840.00	52.30	Peak	V	-5.48	-	46.82	74.00	27.18

Note.

1. Average test would be performed if the peak result were greater than the average limit.

KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Distance of measurement:	3 meter				
Channel:	4				
Frequency:	921.2 MHz				

Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1840.00	48.44	Peak	Н	-5.48	-	42.96	74.00	31.04
1840.00	46.80	Peak	V	-5.48	-	41.32	74.00	32.68

Spectrum 2		E Contraction (Contraction (Co	Spectrum Spe	ectrum 2 🛞		[m ▽
	RBW 1 MHz VBW 3 MHz Mode Auto Sweep		Ref Level 97.00 d8µ\	 RBW 1 MH SWT 36 ms • VBW 3 MH 		
1Pk Max	• TON STATE MODE ACTO SWEEP		IPk Max	awi so ins e for shin	- Mode Adto Sweep	
90 d8µV	M1[1]	48.44 dBpV 1.8400 GHz	90 dBµV-		M1[1]	46.80 d8p 1.8400 GH
80 d8µV			80 dBµV		-	
70 dBuV			70 dBµV			
60 dBµV			60 dBµV		-	
50 dBuV			50 dBµV-14		-	
40 dBuV	man the man and an and and and and and and and an	man more man	40 dBUV	ade and the manufacture de trees	and many and a sure of the sur	and the second second
30 dBµV			30 dBhA			
20 d8µV			20 dBµV			
10 dBµV			10 dBµV			
0 dBµV			0 dBµV			
Start 1.0 GHz	691 pts	Stop 10.0 GHz	Start 1.0 GHz	2	691 pts	Stop 10.0 GHz
Marker <u>Type Ref Trc X-value</u> M1 1 1.84 GH	Y-value Function 42 48.44 dBµV	Function Result	Marker Type Ref Trc M1 1	X-value Y-valu 1.84 GHz 46.80	e Function	Function Result

Note.

1. Average test would be performed if the peak result were greater than the average limit.

KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Distance of measurement:	3 meter
Channel:	8
Frequency:	922.0 MHz

Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
1842.00	48.88	Peak	Н	-5.46	-	43.42	74.00	30.58
1842.00	46.50	Peak	V	-5.46	-	41.04	74.00	32.96

Spectrum Spectrur	n2 🔊			E	Spectrum	pectrum 2 🛞				E
Ref Level 97.00 dBuV	BBW 1 MHz				Ref Level 97.00 de		BW 1 MHz			
	T 36 ms . VBW 3 MHz	Mode Auto Sweep				dB SWT 36 ms .		ode Auto Sweep		
1Pk Max					1Pk Max					
i0 dBµV-		M1[1]		18.88 d8pV 1.8420 GHz	90 dBµV-			M1[1]	7 7	46.50 d8 1.8420 G
i0 dBµV					80 dBµV		++			
0 dBµV					70 dBµV		-			
0 dBµV					60 dBµV		-			
0 dBµV					50 dBuV-14				-	
0 dBµV	and the second second second second	man manus mandag	when and the second	ment	40 dBµV	have when the second	and when a	- manufament	a service and a	and well
0 dBµV		-			30 dBµV		-			
0 d8µV					20 d8µV		++			
0 dBµV					10 dBµV					
dBµV	-				0 dBµV					_
itart 1.0 GHz	6	91 pts	Stop	10.0 GHz	Start 1.0 GHz		691 pt	ts	g	Stop 10.0 GH
arker	alue Y-value	e Function	Function Result		Marker	X-value	Y-value	Function	Function Re	
Type Ref Trc X-v	1.842 GHz 48.88		Function Result		Type Ref Trc	1.842 GHz	46.50 dBµV		Function Re	suit

Note.

1. Average test would be performed if the peak result were greater than the average limit.

3.3. AC conducted emissions

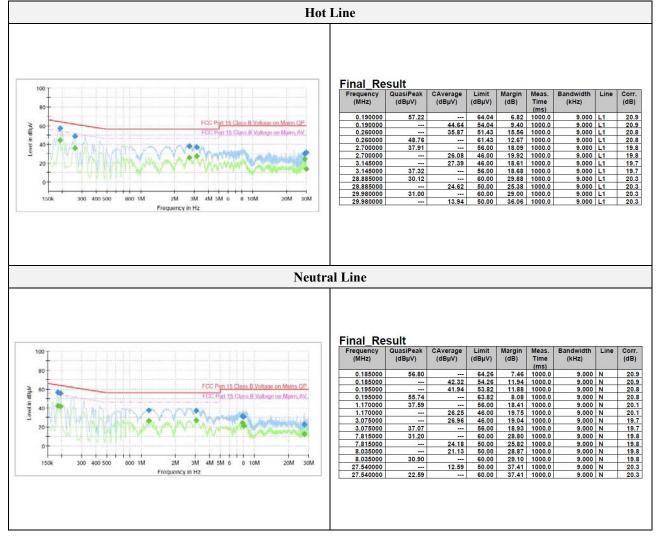
Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Enguarate of Emission (407)	Conducted limit (dBµN/m)					
Frequency of Emission (Mz)	Quasi-peak	Average				
0.15 - 0.50	66 - 56*	56 - 46*				
0.50 - 5.00	56	46				
5.00 - 30.0	60	50				

Note.

1. All AC line conducted spurious emission are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and the appropriate frequencies. All data rates and modes were investigated for conducted spurious emission. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.


3. Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level).

KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (23) of (25)

Test results

Test report No.: KES-RF-17T0026 Page (24) of (25)

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	100736	1 year	2017.07.06
Spectrum Analyzer	R&S	FSV40	101002	1 year	2017.07.06
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2018.01.23
Attenuator	Keysight	8493C	82506	1 year	2018.01.23
Loop Antenna	R&S	HFH2- Z2.335.4711.52	826532	2 years	2017.03.03
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	9168-713	2 years	2017.05.15
Horn Antenna	E/L	3117	135889	2 years	2018.10.25
High Pass Filter	WAINWRIGHT INSTRUMENT	WHJS3000-10TT	1	1 year	2017.07.04
Low Pass Filter	WEINSCHEL	WLK1.0/18G-10TT	1	1 year	2017.07.04
Preamplifier	HP	8449B	3008A00538	1 year	2017.07.05
Preamplifier	SCHWARZBECK	BBV-9718	9718-246	1 year	2017.10.14
EMI Test Receiver	R&S	ESR3	101781	1 year	2017.05.03
EMI Test Receiver	R&S	ESU26	100552	1 year	2017.04.24
EMI Test Receiver	R&S	ESR3	101783	1 year	2017.05.03
Pulse Limiter	R&S	ESH3-Z2 0357.8810.54	101914	1 year	2017.12.13
LISN	R&S	ENV216	101137	1 year	2018.02.03

Peripheral devices

Device Manufacturer		Model No.	Serial No.
Notebook Computer	Samsung Electronics Co., Ltd.	NP-QX411L	HJV993BB905283V
Test Board	N/A	N/A	N/A