

Test report No.: KES-RF-17T0057 Page (1) of (65)

TEST REPORT Part 15 C & RSS-247 (Issue 2)

Equipment under test SMARTCAM D1

Model name SNH-V6435DN

FCC ID NLMSNHV6435DN

IC 21482- SNHV6435DN

Applicant Hanwha Techwin Co., Ltd.

Manufacturer Hanwha Techwin(Tianjin) Co., Ltd

Date of test(s) 2017.05.18 ~ 2017.05.31

Date of issue 2017.06.07

Issued to

Hanwha Techwin Co., Ltd.

1204, Changwon-daero, Seongsan-gu Changwon-si, Gyeongsangnam-do, South Korea Tel: +82-70-7147-8361/ Fax: +82-31-8108-3717

Issued by

KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
	mh
Hyeon-su Jang	Kwang-yeol Choo
Test engineer	Technical manager

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test report No .: KES-RF-17T0057 Page (2) of (65)

Revision history

Revision	Date of issue	Test report No.	Description
-	2017.06.07	KES-RF-17T0057	Initial

Test report No .: KES-RF-17T0057 Page (3) of (65)

TABLE OF CONTENTS

1.	General	information	4
	1.1.	EUT description	4
	1.2.	Test configuration	5
	1.3.	Device modifications	5
	1.4.	Information about derivative model	5
	1.5.	Accessory information	5
	1.6.	Frequency/channel operations	6
	1.7.	Worst case data rate	6
2.	Summar	y of tests	7
3.	Test resu	lts	8
	3.1.	99% Occupied Bandwidth	8
	3.2.	6 dB bandwidth	.11
	3.3.	Output power	15
	3.4.	Power spectral density	18
	3.5.	Radiated restricted band and emissions	
	3.6.	Conducted spurious emissions & band edge	57
	3.7.	AC conducted emissions	62
App	endix A.	Measurement equipment	64
		Test setup photos	

Test report No.: KES-RF-17T0057 Page (4) of (65)

1. General information

Applicant:	Hanwha Techwin Co., Ltd.		
Applicant address:	1204, Changwon-daero, Seongsan-gu, Changwon-si		
	Gyeongsangnam-do, South Ko	orea	
Test site:	KES Co., Ltd.		
Test site address:	C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea		
	473-21, Gayeo-ro, Yeoju-si, G	yeonggi-do, Korea	
FCC / IC rule part(s):	15.247 / RSS-247		
FCC ID:	NLMSNHV6435DN		
IC Certification:	21482- SNHV6435DN		
Test device serial No.:	Production	Pre-production	Engineering

1.1. EUT description

Equipment under test	SMARTCA	M D1
Model:	SNH-V643	0BN
Frequency range		$2 412 \text{ Mz} \sim 2 462 \text{ Mz} (11b/g/n_HT20)$
		2 422 MHz ~ 2 452 MHz (11n_HT40)
	UNII-1	5 180 Mz ~ 5 240 Mz (11a/n_HT20, 11ac_VHT20)
		5 190 MHz ~ 5 230 MHz (11n_HT40, 11ac_VHT40)
		5 210 Mtz (11ac_VHT80)
	UNII-2A	5 260 MHz ~ 5 320 MHz (11a/n_HT20, 11ac_VHT20)
		5 270 MHz ~ 5 310 MHz (11n_HT40, 11ac_VHT40)
		5 290 Mtz (11ac_VHT80)
	UNII-2C	5 500 MHz ~ 5 720 MHz (11a/n_HT20, 11ac_VHT20)
		5 510 MHz ~ 5 710 MHz (11n_HT40, 11ac_VHT40)
		5 530 MHz ~ 5 690 MHz (11ac_VHT80)
	UNII-3	5 745 MHz ~ 5 825 MHz (11a/n_HT20, 11ac_VHT20)
		5 755 MHz ~ 5 795 MHz (11n_HT40, 11ac_VHT40)
		5 775 Mtz (11ac_VHT80)
Modulation technique	DSSS, OFD	DM
Number of channels	11 ch : 2 41	2 MHz ~ 2 462 MHz, 7 ch : 2 422 MHz ~ 2 452 MHz
	4 ch : 5 180) MHz ~ 5 240 MHz, 2 ch : 5 190 MHz ~ 5 230 MHz, 1 ch : 5 210 MHz
	4 ch : 5 260) MHz ~ 5 320 MHz, 2 ch : 5 270 MHz ~ 5 310 MHz, 1 ch : 5 290 MHz
	12 ch : 5 50	00 MHz ~ 5 720 MHz, 6 ch : 5 510 MHz ~ 5 710 MHz,
) MHz ~ 5 690 MHz
		$5 \text{ MHz} \sim 5.825 \text{ MHz}, 2 \text{ ch} : 5.755 \text{ MHz} \sim 5795 \text{ MHz}, 1 \text{ ch} : 5.775 \text{ MHz}$
	5 CII . 5 745	$m_{\rm He} \sim 5.625 \ m_{\rm He}, 2.011.5755 \ m_{\rm He} \sim 5775 \ m_{\rm He}, 1.011.5775 \ m_{\rm He}$

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (5) of (65)

Antenna specification	11b/g/n_HT20/40 UNII-1 UNII-2A UNII-2C UNII-3	: Chip antenna & 2.92 dBi : Chip antenna & 5.08 dBi : Chip antenna & 4.85 dBi : Chip antenna & 6.89 dBi : Chip antenna & 6.89 dBi
Power source	AC 16V ~ 24V	

1.2. Test configuration

The <u>Hanwha Techwin Co., Ltd. SMARTCAM D1 FCC ID: NLMSNHV6435DN IC: 21482-</u> <u>SNHV6435DN</u> was tested according to the specification of EUT, the EUT must comply with following standards and KDB documents.

FCC Part 15.247 IC RSS-247 Issue 2 and RSS-Gen Issue 4 KDB-558074 D01 v04 ANSI C63.10-2013

1.3. Device modifications

N/A

1.4. Information about derivative model

N/A

1.5. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
-	-	-	-	-

1.6. Frequency/channel operations

Ch.	Frequency (Mz)	Mode
01	2412	802.11b/g/n_HT20
:		- -
06	2437	802.11b/g/n_HT20
· · ·		
11	2462	802.11b/g/n_HT20

Ch.	Frequency (Mz)	Mode
03	2422	802.11n_HT40
· · ·		
06	2437	802.11n_HT40
09	2452	802.11n_HT40

1.7. Worst case data rate

- 1. Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.
- 2. Worst-case data rates were:

802.11b: <u>1 Mbps</u> 802.11g: <u>6 Mbps</u> 802.11n_HT20: <u>MCS0</u> 802.11n_HT40: <u>MCS0</u>

Test report No.: KES-RF-17T0057 Page (7) of (65)

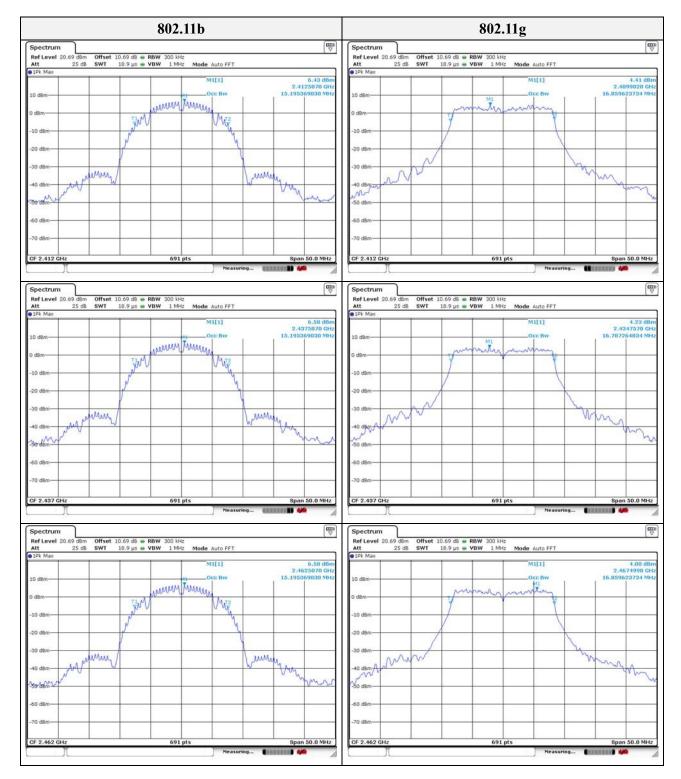
2. Summa	ry of tests		
Section in FCC Part 15	Section in RSS-247 & Gen	Parameter	Test results
-	RSS-Gen 6.6	99% occupied bandwidth	Pass
15.247(a)(2)	RSS-247 5.2 (a)	6 dB bandwidth	Pass
15.247(b)(3)	RSS-247 5.4 (d)	Peak output power Pa	
15.247(e)	RSS-247 5.2 (b)	Power spectral density	Pass
15.205 15.209	RSS-247 5.5 RSS-Gen 8.9, 8.10	Radiated restricted band and emission	Pass
15.247(d)	RSS-247 5.5	Conducted spurious emission and band edge Pas	
15.207(a)	RSS-Gen 8.8	AC conducted emissions Pass	

3. Test results 3.1. 99% Occupied Bandwidth Test procedure ANSI C63.10-2013

Limit

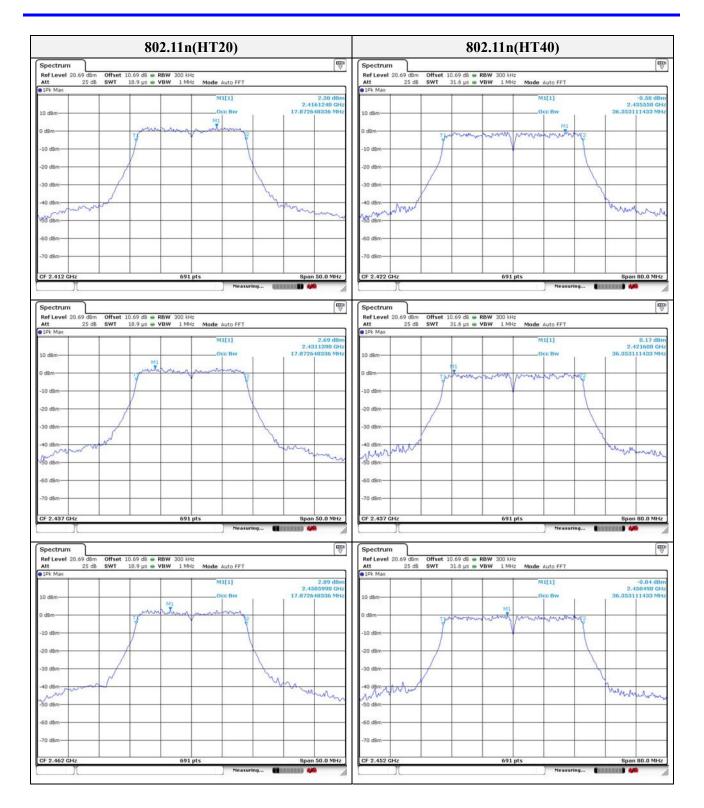
None; for reporting purpose only.

Test results


99 % bandwidth of 20 Mz bandwidth				
Measured 99 % bandwidth(Mz)				T :: (///////////////////////////////
Frequency(Mz)	802.11b	802.11g	802.11n	Limit(Mb)
2412	15.195	16.860	17.873	
2437	15.195	16.787	17.873	-
2462	15.195	16.860	17.873	

99 % bandwidth of 40 Mz bandwidth			
Measured 99 % bandwidth(Mz)			
Frequency(Mz) 802.11n Limit(Mz)			
2422	36.353		
2437	36.353	-	
2452	36.353		

Test report No.: KES-RF-17T0057 Page (9) of (65)


Test plots

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (10) of (65)

Test report No.: KES-RF-17T0057 Page (11) of (65)

3.2. 6 dB bandwidth

Test procedure KDB 558074 D01 v04 – Section 8.1 or 8.2 Used test method is section 8.1.

Section 8.1

- 1. RBW = 100 kHz.
- 2. VBW \geq 3 \times RBW.
- 3. Detector = peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

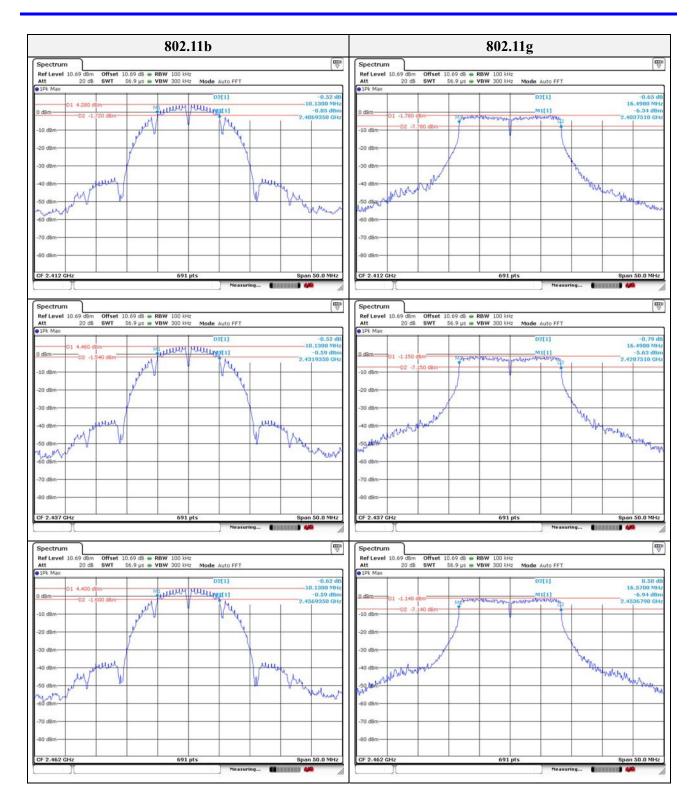
Section 8.2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, $VBW \ge 3 \times RBW$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\ge 6 \text{ dB}$.

Limit

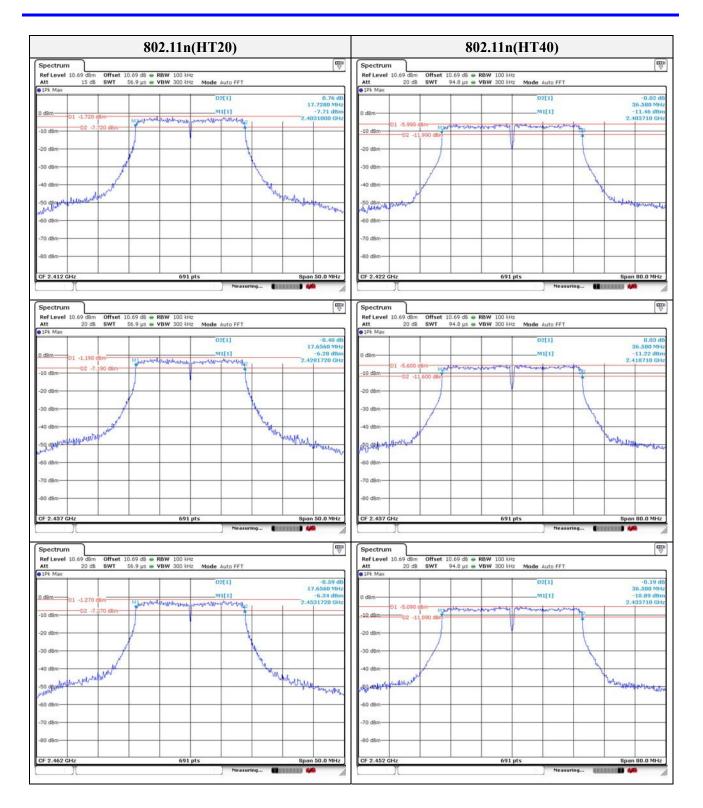
According to \$15.247(a)(2), systems using digital modulation techniques may operate $902 \sim 928$ Mb, $2400 \sim 2483.5$ Mb, and $5725 \sim 5850$ Mb bands. The minimum 6 dB bandwidth shall be at least 500 kb.

According to RSS-247 5.2 (a), the minimum 6 dB bandwidth shall be 500 kHz.


Test results

6 dB bandwidth of 20 Mz bandwidth							
	Limit(M±2)						
Frequency(Mb)	Frequency(Mz) 802.11b 802.11g 802.11n						
2412	10.130	16.498	17.728				
2437	10.130	16.498	17.656	0.5			
2462	10.130	16.570	17.656				

6 dB bandwidth of 40 Mz bandwidth							
Measured 6 dB bandwidth(Mz)							
Frequency(Mz)	Frequency(Mz) 802.11n Limit(Mz)						
2422	36.580						
2437	36.580	0.5					
2452	36.580						



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (13) of (65)

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (14) of (65)

3.3. Output power

Test procedure KDB 558074 D01 v04 – section 9.1.1, 9.1.2 or 9.1.3 Used test method is section 9.1.3.

Section 9.1.1

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is gr eater than the DTS bandwidth.

- 1. Set the RBW \geq DTS bandwidth.
- 2. Set VBW \geq 3 \times RBW.
- 3. Set span \geq 3 \times RBW
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level

Section 9.1.2

For measuring the output power of a device transmitting a wide-band noise-like signal where the pe ak power amplitude is a statistical parameter, the preferred methodology is to use an integrated aver age power measurement, as described in 9.2. The peak integrated band power method of 11.9.1 in ANSI C63.10-2013 is not applicable.

Section 9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS ba ndwidth and shall utilize a fast-responding diode detector.

Limit

According to §15.247(b)(3), For systems using digital modulation in the 902~928 MŁ, 2 400~2 483.5 MŁ, and 5 725~5 850 MŁ bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmit-ting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

According to RSS-247 5.4 (d), For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in Section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

Test report No.: KES-RF-17T0057 Page (17) of (65)

Test	results

Measured output power (dBm)								
Mada	2412 MHz		243'	2437 MHz		2 MHz		
Mode	Peak	Average	Peak	Average	Peak	Average		
11b	18.44	15.84	18.92	15.96	18.83	15.92		
11g	22.73	13.85	23.50	14.44	23.47	14.34		
11n_HT 20	22.85	12.87	23.08	13.33	22.78	13.20		
Mada	2422 MHz		2422 MHz 2437 MHz		2452 MHz			
Mode	Peak	Average	Peak	Average	Peak	Average		
11n_HT 40	21.92	12.65	22.03	13.13	22.08	13.15		

Test report No.: KES-RF-17T0057 Page (18) of (65)

3.4. Power spectral density Test procedure KDB 558074 D01 v04– section 10.2

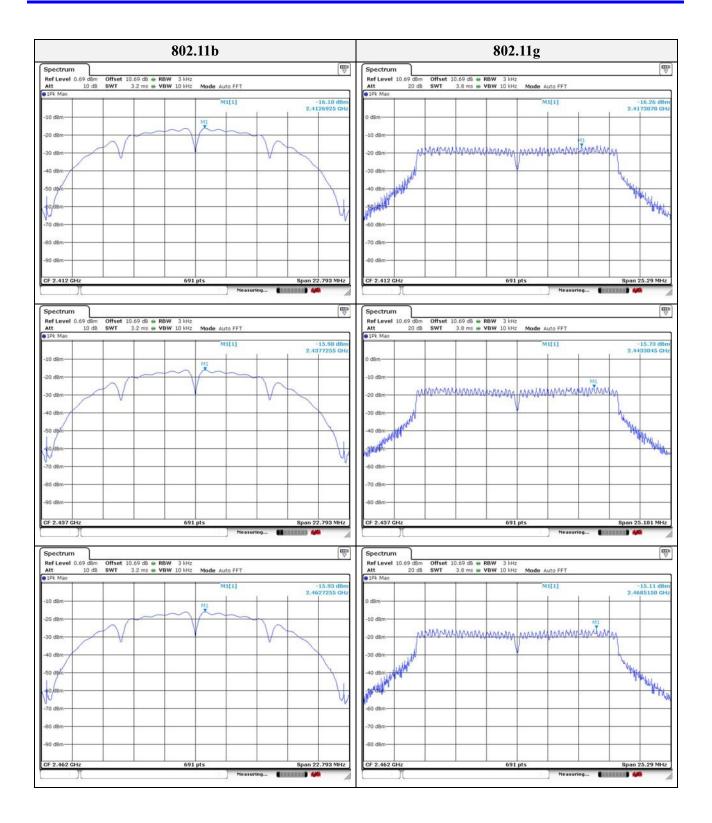
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz
- 4. Set the VBW \geq 3 \times RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW(no less than 3 kHz) and repeat.

Limit

According to \$15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

According to RSS-247 5.2 (b), The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of Section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

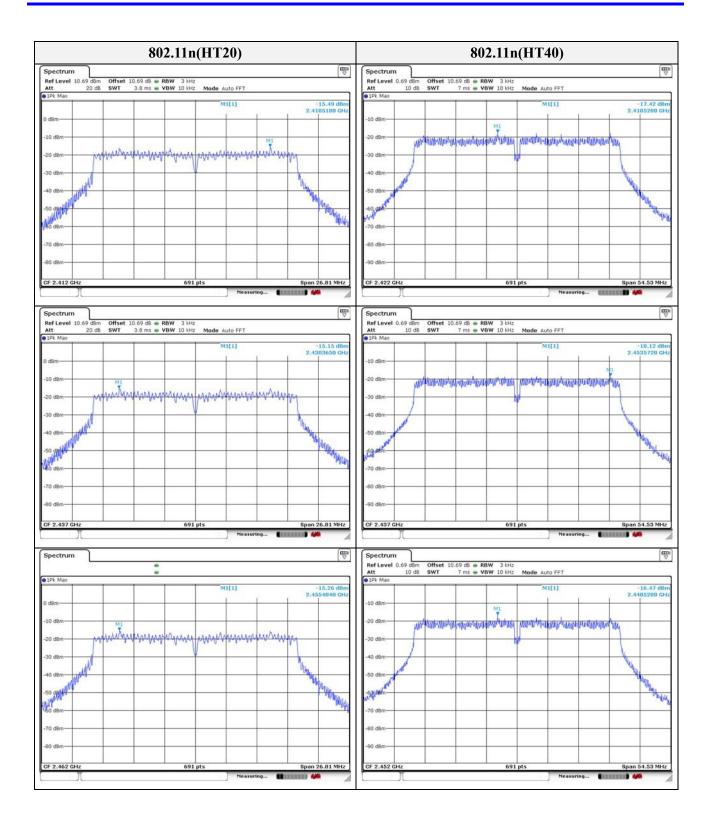
Test report No.: KES-RF-17T0057 Page (19) of (65)


Test results

PSD of 20 Mz bandwidth							
	Limit(dBm)						
Frequency(Mb)	Frequency(Mz) 802.11b 802.11g 802.11n						
2412	-16.10	-16.26	-15.49				
2437	-15.98	-15.73	-15.15	8			
2462	-15.93	-15.11	-15.26				

PSD of 40 Mz bandwidth						
Measured PDS(dBm)						
Frequency(Mz)802.11nLimit(dBm)						
2422	-17.42					
2437	-18.12	8				
2452	-16.47					

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (20) of (65)

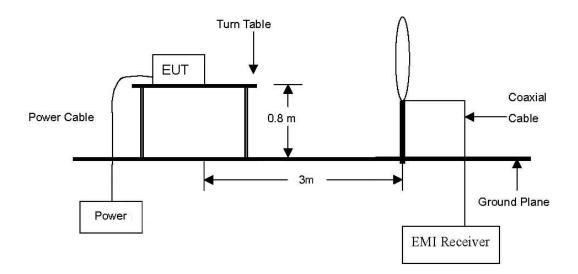


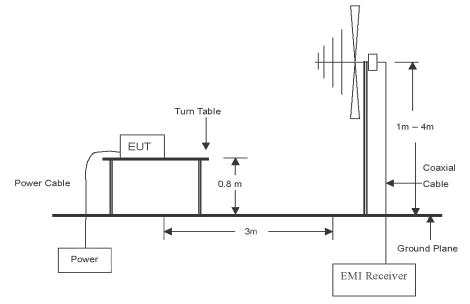
KES Co., Ltd. C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

www.kes.co.kr

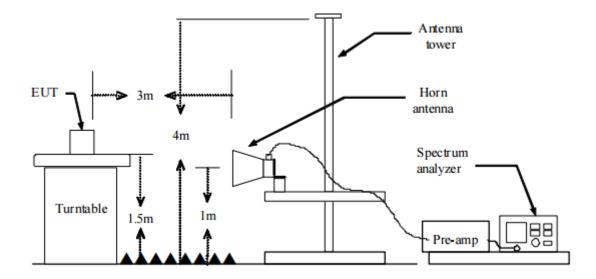
Test report No.: KES-RF-17T0057 Page (21) of (65)




3.5. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}\mathbb{Z}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}\mathbb{Z}$ emissions, whichever is lower.

Test procedure below 30 Mz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 MHz

- 1. Spectrum analyzer settings for f < 1 GHz:
 - (1) Span = wide enough to fully capture the emission being measured
 - \bigcirc **RBW** = 100 kHz
 - ③ VBW \ge RBW
 - ④ Detector = quasi peak
 - (5) Sweep time = auto
 - 6 Trace = max hold
- 2. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 M/z
 - ③ VBW \ge 3 Mz
 - (4) Detector = peak
 - \bigcirc Sweep time = auto
 - 6 Trace = max hold
 - \bigcirc Trace was allowed to stabilize

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

- 3. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 MHz

 - (4) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (\geq 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/Ds)$

 $f \ge 30$ Mz, extrapolation factor of 20 dB/decade of distance. $F_d = 20log(D_m/Ds)$ Where:

- F_d = Distance factor in dB
- D_m = Measurement distance in meters
- D_s = Specification distance in meters
- 3. $CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)$
- 4. Field strength($dB\mu V/m$) = Level($dB\mu V$) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB μ V/m) Field strength(dB μ V/m)
- 6. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>Z orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>Z orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µV/m)
$0.009 \sim 0.490$	300	2 400 / F(kHz)
0.490 ~ 1.705	30	24 000 / F(kHz)
$1.705 \sim 30.0$	30	30
30~88	3	100**
88~216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mb, $76 \sim 88$ Mb, $174 \sim 216$ Mb or $470 \sim 806$ Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to RSS-Gen, Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits :

Frequency (Mz)	Distance (Meters)	Radiated (µN/m)
$0.009 \sim 0.490$	300	2 400 / F(kliz)
0.490 ~ 1.705	30	24 000 / F(kHz)
1.705 ~ 30.0	30	30
30~88	3	100
88~216	3	150
216~960	3	200
Above 960*	3	500

* Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licenceexempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Note: Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.

Duty cycle

Regarding to KDB 558074 D01_v04, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

Test mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
802.11b	10.00	10.00	1	100	0
802.11g	10.00	10.00	1	100	0
802.11n(HT20)	10.00	10.00	1	100	0
802.11n(HT40)	10.00	10.00	1	100	0

Duty cycle (Linear) = T_{on} time/Period

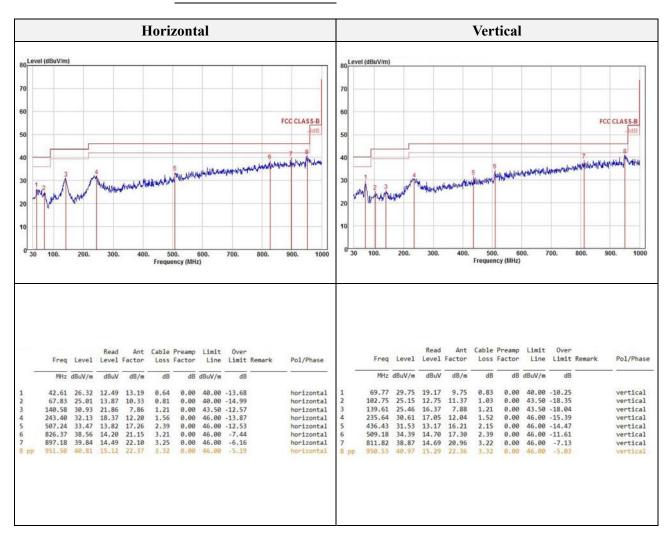
DCF(Duty cycle correction factor (dB)) = 10log(1/duty cycle)

802.11b // Middle channel	802.11g // Middle channel					
Spectrum		Spectrum				
Ref Level 30.69 dBm Offset 10.69 dB . RBW 10 MHz			•			(*)
Att 40 dB # SWT 10 ms # VBW 10 MHz SGL		SGL	-			
●1Pk Clrw		1Pk Clrw				
20 dBm-		28.88991	and the street with a street	hearth contraction	tentente	Alteratherestic
10 dBm-		10 dBm				
0 dBm-		0 dBm-				
-10 dBm		-10 d8m				
-20 dBm-		-20 dBm				
-30 d8m		-30 dBm			-	
-40 d8m-		-40 d8m				
		10 0011				
-50 dBm-		-50 dBm			+ +	
-60 d8m		-60 dBm		· ·		
		00.00.0				
						1.0 ms/
691 pts Ready 802.11n(HT20) // Middle chann	1.0 ms/	CF 2.437 GHz	.11n(HT40) //	Re	^{ady} channe	1111) 🦇 da
802.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dbm Offset 10.69 db @ RBW 10 MHz		802 Spectrum Ref Level 30.69 dBm	.11n(HT40) //	/ Middle		
802.11n(HT20) // Middle chann	nel	802	.11n(HT40) //	/ Middle		
802.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dBm Offset 10.69 dB = RBW 10 MHz Att 40 dB = SWT 10 ms = VBW 10 MHz	nel	802 Spectrum Ref Level 30.69 dBm C Att 40 dB • \$.11n(HT40) //	/ Middle		
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dbm Offset 10.69 db # RBW 10 MHz Att 40 db # SWT 10 ms # VBW 10 MHz SGL IPK Clrw	nel	802 Spectrum Ref Level 30.69 dBm C Att 40 db # S SGL #1Pk Clrw	.11n(HT40) //	/ Middle		
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dbm Offset 10.69 db # RBW 10 MHz Att 40 db # SWT 10 ms # VBW 10 MHz Spectrum BIPK Clrw	nel	802 Spectrum Ref Level 30.69 dBm C Att 40 dB S SIR. Clrw 20 dBm 20	.11n(HT40) /	re. / Middle (channe	₩₩ ₩ //]
B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dbm Offset 10.69 db Ref Level 30.69 dbm Offset 10.69 db VBW 10 MHz SGL	nel	802 Spectrum Ref Level 30.69 dBm C Att 40 dB S SIR. Clrw 20 dBm 20	.11n(HT40) //	re. / Middle (channe	I (\)
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dbm Offset 10.69 db RBW 10 MHz Att 40 db SWT 10 ms VBW 10 MHz SGL IP/F Clw 10 ms VBW 10 MHz 20 dbm IP/F clw 10 ms VBW 10 MHz	nel	Spectrum 802 Ref Level 30.69 dBm C Att 40 db S SGL IPR Chrw C 20 dBm Column C	.11n(HT40) /	re. / Middle (channe	I (
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dB Offset 10.69 dB RBW 10 MHz Att	nel	Spectrum 802 Ref Level 30.69 dBm C Att 40 dB S 9 IPk Clrw 20 dBm C 10 dBm 0 dB 0 0	.11n(HT40) /	re. / Middle (channe	I (
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dB Offset 10.69 dB RBW 10 MHz Spectrum Offset 10.69 dB RBW 10 MHz Spectrum SPE CIW 20 dBm 20 dBm 20 dBm 10 ms 20 dBm 10 dBm 10 dBm	nel	802 Spectrum Ref Level 30.66 dism C Att 40 dB = S SGL PR CIrw 20 dBm 	.11n(HT40) /	re. / Middle (channe	I (\)
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dB Offset 10.69 dB RBW 10 MHz Att	nel	Spectrum 802 Ref Level 30.69 dBm C Att 40 dB S 9 IPk Clrw 20 dBm C 10 dBm 0 dB 0 0	.11n(HT40) /	re. / Middle (channe	I (\)
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dBm Offset 10.69 dB = RBW 10 MHz Att 40 dB = SWT 10 ms VBW 10 MHz Spectrum 10 ms = VBW 10 MHz Spectrum 10 dBm Offset 10.69 dB = RBW 10 MHz Spectrum 10 dBm Offset 10.69 dB = RBW 10 MHz Offset 10.69 dB = RBW 10 MHz Spectrum 10 dBm Offset 10.69 dB = RBW 10 MHz Offset 10.69 dB = R	nel	Spectrum Ref Level 30.69 dbm C Att 40 db 9 s SGL 1Pk Cliw 20 dbm 10 dbm 10 dbm 0 dbm -10 dbm -20 dbm	.11n(HT40) /	re. / Middle (channe	I (\)
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dBm Offset 10.69 dB = RBW 10 MHz Att 40 dB = SWT 10 ms = VBW 10 MHz SGL DIPK Claw 20 dBm Offset 10.69 dB = RBW 10 MHz 0 dBm 0 dBm -10 dBm 0 dBm	nel	Spectrum Ref Level 30.69 dBm C Att 40 dB 8 5GL 1Pk Crw 20 dBm	.11n(HT40) /	re. / Middle (channe	I (
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dBm Offset 10.69 dB = RBW 10 MHz Att 40 dB = SWT 10 ms VBW 10 MHz Spectrum 10 ms = VBW 10 MHz Spectrum 10 dBm Offset 10.69 dB = RBW 10 MHz Spectrum 10 dBm Offset 10.69 dB = RBW 10 MHz Offset 10.69 dB = RBW 10 MHz Spectrum 10 dBm Offset 10.69 dB = RBW 10 MHz Offset 10.69 dB = R	nel	Spectrum Ref Level 30.69 dbm C Att 40 db 9 s SGL 1Pk Cliw 20 dbm 10 dbm 10 dbm 0 dbm -10 dbm -20 dbm	.11n(HT40) /	re. / Middle (channe	I (\)
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dB Offset 10.69 dB RBW 10 MHz Att 40 dB Offset 10.69 dB RBW 10 MHz Spectrum 10 ms VBW 10 MHz Spectrum 20 dBm OBm -0 dBm	nel	Spectrum Ref Level 30.69 dBm C Ref Level 30.69 dBm C Att SGL <	.11n(HT40) /	re. / Middle (channe	I (\)
Resady B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dBm Offset 10.69 dB * RBW 10 MHz Att 40 dB * SWT 10 M***********************************	nel	Spectrum Ref Level 30.69 dism C SGL 40 db s s SGL 50 dism 0 db s SGL 50 dbm - <td< td=""><td>.11n(HT40) /</td><td>re. / Middle (</td><td>channe</td><td>₩₩ ₩ //] </td></td<>	.11n(HT40) /	re. / Middle (channe	₩₩ ₩ //]
Ready B02.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dB Offset 10.69 dB RBW 10 MHz Att 40 dB Offset 10.69 dB RBW 10 MHz Solution of the WBW 10 MHz	nel	Spectrum Ref Level 30.69 dBm C Ref Level 30.69 dBm C Att SGL <	.11n(HT40) /	re. / Middle (channe	I (\)
Ready BO2.11n(HT20) // Middle chann Spectrum Ref Level 30.69 dBm Offset 10.69 dB = RBW 10 MHz Att 40 dB = SWT 10 ms VBW 10 MHz Sol 1PK Cfw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nel	Spectrum Rof Level 30.69 dBm C Att 40 dB 9 8 SGL 1Pk Clrw 20 dBm 10 dBm 10 dBm 10 dBm -0 dBm -0 dBm	.11n(HT40) /	Re. / Middle (+2 +2 	channe	I (

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test results	(Below 30 M	Ł)					
Mode:		802.11b					
Distance of	measurement	3 meter					
Channel:		06 (Worst	case)				
Frequency	Loval	Ant Dol	CF	F.	Field strongth	Limit	Margin

Frequency	Level	Ant. Pol.	CF	Fd	Field strength	Limit	Margin
(MHz)	(dBµV)	(H/V)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
No spurious emissions were detected within 20 dB of the limit							


		Hori		Vertical										
Spectrum		8				Spec	Contract of Contra	ectrum 2 💌	ľ					EII ▽
Ref Level 57.0		RBW (CISP		anne a care			evel 57.00 dB		RBW (CISPR					
Att 1Pk Max	0 dB SWT 13.4	ms 🖷 VBW	3 kHz Mod	le Auto FFT		Att IPk N		1B SWT 13.4 ms	VBW	3 kHz	Mode Auto	FFT		
отык мах			T T			O IPK P	lax		-	1	-		1	
50 d8µV	1 1		1 1			50 dBµ		1 1					1	
50 00µV						50 Obt	*							
40 dBµV						40 dBµ								
0 0000						40 005	5							
30 dBuV						30 dBµ								
o oppre						30 000								
20 dBuV	· · · · · · · · · · · · · · · · · · ·		· · · ·			20 dBu		· · · · ·				-		
							S							
IO dBµV						10 dBp								
io acpr			1 1			10 000								
dBuV					· · · · · ·	0 dBµV	S					-		
un horana	warestation	M. man wellet	1	1000	10000	helpe	when much and	whileman	and an a		a second as	1000000000	1 States	1.000
10 dBuV		-a- addeenaapply	mound	momentaria	and the manufactures	-10 dB	N		- supported by	anning	mannen	mangene	manne	news
10 ocpt						10.00								
20 dBµV						-20 dB	N		_					
1000000						20 00	10 I.							
30 dBµV						-30 dB	N							
to other	1 1				1 1			1 1					1	
										-				
40 dBu/						-40 dB	N					-		
itart 9.0 kHz	Spectrum 2	_	1 pts	Measuring	Stop 150		0.0 kHz	ectrum 2 🛛	691	pts	Measur	ing 🚺	Stop	9
40 dBµV Start 9.0 kHz Spectrum Ref Level 67.00	I dBµV	RBW (CISPR)	9 kHz			D.0 kHz Start	rum Sp		RBW (CISPR)) kHz	_			N.
Start 9.0 kHz Spectrum Ref Level 67.00		RBW (CISPR)				0.0 kHz Start	D.0 kHz rum Sp vel 67.00 dBµ 0 d		RBW (CISPR)) kHz	Measur			N.
Spectrum Ref Level 67.00	I dBµV	RBW (CISPR)	9 kHz			D.0 kHz Start	D.0 kHz rum Sp vel 67.00 dBµ 0 d		RBW (CISPR)) kHz	_			N.
Spectrum Ref Level 67.00 Att	I dBµV	RBW (CISPR)	9 kHz			Spec Spec Spec Ref L Att ● 1Pk N	0.0 kHz rum Sp vel 67.00 dBµ 0 d lax		RBW (CISPR)) kHz	_			N.
Spectrum Ref Level 67.00 Att	I dBµV	RBW (CISPR)	9 kHz			0.0 kHz Start	0.0 kHz rum Sp vel 67.00 dBµ 0 d lax		RBW (CISPR)) kHz	_			N.
tart 9.0 kHz Spectrum Raf Level 67.00 Att 1Pk Max 0 dBµV	I dBµV	RBW (CISPR)	9 kHz				2.0 kHz rum Sp ivel 67.00 dBµ 0 d		RBW (CISPR)) kHz	_			N
tart 9.0 kHz Spectrum Raf Level 67.00 Att 1Pk Max 0 dBµV	I dBµV	RBW (CISPR)	9 kHz			Spec Spec Spec Ref L Att ● 1Pk N	2.0 kHz rum Sp ivel 67.00 dBµ 0 d		RBW (CISPR)) kHz	_			N
Ref Level 67.00 Att 10 dBµV	I dBµV	RBW (CISPR)	9 kHz			D.0 kHz Spec Sec V Sec Secc Secc Secc Secc Secc Secc	vel 67.00 dbu vel 67.00 dbu vax		RBW (CISPR)) kHz	_			N
tart 9.0 kHz Spectrum Ref Level 67.00 Att 1Pk Max 0 dBµV 0 dBµV	I dBµV	RBW (CISPR)	9 kHz				vel 67.00 dbu vel 67.00 dbu vax		RBW (CISPR)) kHz	_			N.
tort 9.0 kHz pectrum tef Level 67.00 ttt DRk Max 0 dBµV 0 dBµV 0 dBµV 0 dBµV	I dBµV	RBW (CISPR)	9 kHz			Open Spect CTT0 Spect Ref L Att 01Pk N 60 dBµ 50 dBµ 40 dBµ	2.0 kHz		RBW (CISPR)) kHz	_			N.
tart 9.0 kHz Spectrum Ref Lovel 67.00 Att IPk Max 0 dBµV 0 dBµV 0 dBµV 0 dBµV	I dBµV	RBW (CISPR)	9 kHz			D.0 kHz Spec Sec V Sec Secc Secc Secc Secc Secc Secc	2.0 kHz		RBW (CISPR)) kHz	_			N.
Ref Level 67.00 Att 1Pk Max 10 d8µV 10 d8µV 10 d8µV 10 d8µV	I dBµV	RBW (CISPR)	9 kHz			D.0 kHz Btart Image: Specific state st	V		RBW (CISPR)) kHz	_			N.
tart 9.0 kHz	I dBµV	RBW (CISPR)	9 kHz			OB RH2 Btort CT0 Spec Ref L Att 01Pk N 60 dBµ 50 dBµ 40 dBµ	V		RBW (CISPR)) kHz	_			N.
Spectrum Ref Level 67.00 Att 10 d8µV	I dBµV	RBW (CISPR)	9 kHz			Open Spect Image: Constraint of the second se	2.0 kHz 7.107 Sf 9.0 dbµ 0 d 10		RBW (CISPR)) kHz	_			N.
tart 9.0 kHz Spectrum Rof Level 67.00 HT TPI Max 0 d8µV	0.68 SWT 2.1 m	RBW (CISPR) S = VBW 10	9 kHz 0 kHz Mode A	Auto FFT		D.0 kHz Btart Image: Special state sta	Puttin St Puttin St 0 d 0 d V 0 V V V V V V V V	SWT 2.1ms	RBW (CISPR) 101	kHz Mo	de Auto FF1	r		(q
Ref 1 9.0 kHz Spectrum Ref Level 67.00 Ant 119k Mair 10 dBuV	I dBµV	RBW (CISPR) S = VBW 10	9 kHz 0 kHz Mode A	Auto FFT		D.0 kHz Btart Image: Special state sta	Puttin St Puttin St 0 d 0 d V 0 V V V V V V V V	SWT 2.1ms	RBW (CISPR) 101	kHz Mo	de Auto FF1	r)
Ref 1 9.0 kHz Spectrum Ref Level 67.00 Ant 119k Mair 10 dBuV	0.68 SWT 2.1 m	RBW (CISPR) S = VBW 10	9 kHz 0 kHz Mode A	Auto FFT		D.0 kHz Btart Image: Special state sta	Puttin St Puttin St 0 d 0 d V 0 V V V V V V V V		RBW (CISPR) 101	kHz Mo	de Auto FF1	r)
Stort 9.0 kHz Spectrum Ref Level 67.00 Att Stift Max Stift Max	0.68 SWT 2.1 m	RBW (CISPR) S = VBW 10	9 kHz 0 kHz Mode A	Auto FFT		D.0 kHz Btart Image: Special state sta	2.0 kHz run St vel 67.00 db/ 0 d 34 v v v v v v v v v	SWT 2.1ms	RBW (CISPR) 101	kHz Mo	de Auto FF1	r		
Stort 9.0 kHz Spectrum Ref Level 67.00 Att Att 11k Max 50 dBµV 40 dBµV 20 dBµV 20 dBµV 10 dBµV 10 dBµV	0.68 SWT 2.1 m	RBW (CISPR) S = VBW 10	9 kHz 0 kHz Mode A	Auto FFT		D.0 kHz Btart Image: Specific state st	2.0 kHz run St vel 67.00 db/ 0 d 34 v v v v v v v v v	SWT 2.1ms	RBW (CISPR) 101	kHz Mo	de Auto FF1	r		
Stort 9.0 kHz Spectrum Ref Level 67.00 Att Stort 9.0 dBµV 50 dBµV 50 dBµV 20 dBµV 20 dBµV 10 dBµV 0 dBµV 10 dBµV	0.68 SWT 2.1 m	RBW (CISPR) S = VBW 10	9 kHz 0 kHz Mode A	Auto FFT		Open Spect Image: Spect set of the	P.0. KH2 Fram SI O	SWT 2.1ms	RBW (CISPR) 101	kHz Mo	de Auto FF1	r)
Ref 19.0 kHz Spectrum Ref Level 67.00 Att 10 dbµV 0 dbµV 0 dbµV 0 dbµV 0 dbµV 0 dbµV 10 dbµV 10 dbµV 10 dbµV 10 dbµV 10 dbµV 10 dbµV	0.68 SWT 2.1 m	RBW (CISPR) S = VBW 10	9 kHz 0 kHz Mode A	Auto FFT		D.0 kHz Btart Image: Specific state st	P.0. KH2 Fram SI O	SWT 2.1ms	RBW (CISPR) 101	kHz Mo	de Auto FF1	r)
tart 9.0 kHz Spectrum Set Lavel 67.00 Set Lavel 67.00 0 dBuV	0.68 SWT 2.1 m	RBW (CISPR) S = VBW 10	9 kHz 0 kHz Mode A	Auto FFT		CC0 Spect Spect	2.0 kHz Trum Sr Vivel 67.00 dbp/s 0 dd 0 dd v 0 dd v v	SWT 2.1ms	RBW (CISPR) 101	kHz Mo	de Auto FF1	r		
Rart 9.0 kHz Spectrum Ref Level 67.00 Ro 0 d8uV 10 d8uV	dbyv 9 db SWT 2.1 m	Raw (CISPR) S = VBW 10	9 kHz 0 kHz Mode A	Auto FFT		District Bitart Image: Second s	2.0 kHz Trum Sr Vivel 67.00 dbp/s 0 dd 0 dd v 0 dd v v	SWT 2.1ms	RBW (CISPR) 101	kHz Mo	de Auto FF1	r	susjud	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (28) of (65)

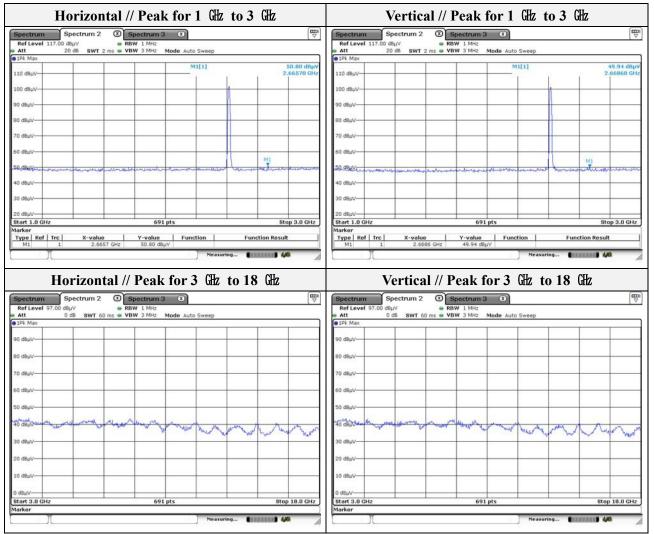
Test results	(Below 1	000	M∄z) – Worst case
--------------	----------	-----	-------------------

Mode:	802.11b
Distance of measurement:	3 meter
Channel:	06 (Worst case)

Test results	(Above 1	000	MHz)	
---------------------	----------	-----	------	--

Mode:	802.11b
Distance of measurement:	3 meter
Channel:	01

- Spurious


Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2665.70	50.80	Peak	Н	0.59	-	51.39	74.00	22.61
2668.60	49.94	Peak	V	0.60	-	50.54	74.00	23.46

Band edge

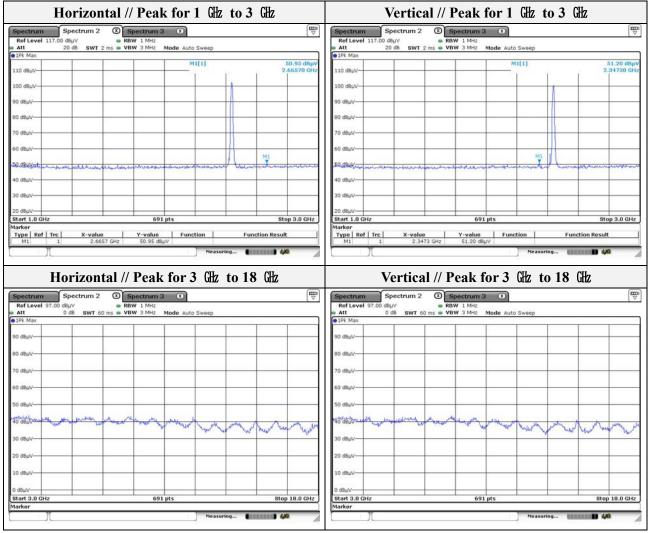
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
2386.74	52.15	Peak	Н	-0.23	-	51.92	74.00	22.08
2386.22	52.74	Peak	V	-0.23	-	52.51	74.00	21.49

spectrum	Spectrum 2 🛞	Spectrum 3	(8)				Spectrum	Sp	ectrum 2 🛞	Spectrum 3	×			9
Ref Level 117.0		RBW 1 MHz					Ref Level			BW 1 MHz				
Att IPk Max	20 dB SWT 1 ms 🖷	VBW 3 MHz Mo	de Auto Sweep				Att 1Pk Max	20	dB SWT 1 ms 🖷 V	BW 3 MHz Mo	de Auto Sweep			
APR man	_		M3[1]	T		52.15 dBuV	AFK Max			1 1	M3[1]		5	52.74 dB
10 d8µV					3	386740 GHz	110 d8µV			+				86220 G
			M1[1]			48.61 dBµV					M1[1]			18.02 dB
00 dBuV				T.	1 3	-310000 GHz	100 d8µV					T.	2.31	10000.0
dBuV					1		90 dBuV						1	
00514							yo obpy							
dBuV-				-			80 dBuV							
and the second se														
dBuV							70 dBµV			+ +				
dBuV-							60 dBuV					-		
osho-				M3			oo oshv					M3	8	
Judeur II	monabelleman	and the second second	and the second second	un the	S.	-	50 d8uV		meterman	A CONTRACTOR		The Man	1	-
	And an and a second second							Contraction of the s			1000 C	20 C C C C	1 1	
dBµV					_		40 dBµV			+ +			+ +	
dBuV-							30 dBuV							
UBUV-				F2		-	30 0601			-		F2	1	
dBuv 1				1			20 dBuV						++	-
art 2.3 GHz		691 pt:	0.		St	op 2.42 GHz	Start 2.3 GH	-lz		691 pt:	s		Stop	2.42 G
orker		9 ²⁰ 5	63			· · · · · · · · · · · · · · · · · · ·	Marker							
ype Ref Trc		Y-value	Function	្រ	Function Res	ult	Type Ref		X-value	Y-value	Function	Fun	ction Result	3
M1 1 M2 1		48.61 dBµV 49.80 dBµV					M1 M2	1	2.31 GHz 2.39 GHz	48.02 dBµV 49.38 dBµV				
M3 1		52.15 dBµV					M3		2.39 GHz	52.74 dBµV				

Note.

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (31) of (65)

Mode:	802.11b
Distance of measurement:	3 meter
Channel:	06

- Spurious

Spurio	u s							
Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
2665.70	50.95	Peak	Н	0.59	-	51.54	74.00	22.46
2347.30	51.20	Peak	V	-0.30	-	50.90	74.00	23.10

Note.

1. No spurious emission were detected above 3 GHz.

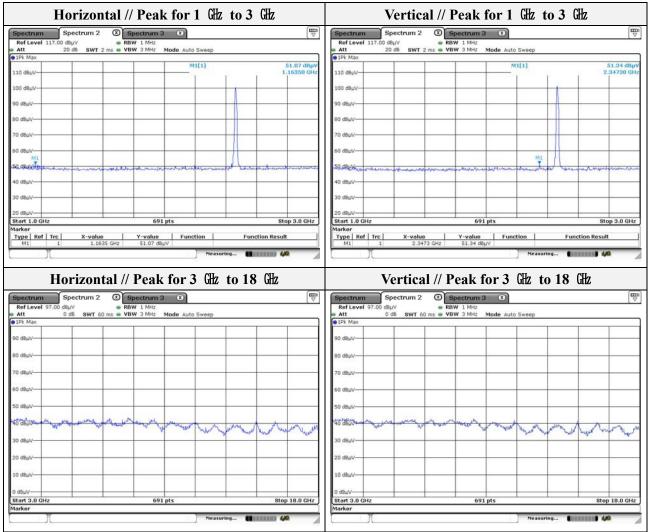
2. Average test would be performed if the peak result were greater than the average limit.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (32) of (65)

Mode:	802.11b
Distance of measurement:	3 meter
Channel:	11

- Spurious


Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1163.50	51.07	Peak	Н	-8.09	-	42.98	74.00	31.02
2347.30	51.34	Peak	V	-0.30	-	51.04	74.00	22.96

- Band edge

Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
2486.80	53.19	Peak	Н	-0.04	-	53.15	74.00	20.85
2486.87	51.94	Peak	V	-0.04	-	51.90	74.00	22.10

Spectrum	Spectrum	2 🗴 S	pectrum 3	×			Spectrum	Sp	ectrum 2 🛞	Spectrum 3	x				1
Ref Level 11			W 1 MHz				Ref Level			BW 1 MHz					
Att	20 dB SW	T 1 ms 🖷 VB	W 3 MHz Mod	le Auto Swee	>		Att	28	dð SWT 1 ms 🖷 V	BW 3 MHz Mo	de Auto	Sweep			
1Pk Max							IPk Max								
				M3[1]		53.19 d8µV						13[1]			1.94 dBµ
110 d8µV						2.4868020 GHz	110 d8µV-				-				8740 Gł
100 dB(N			1. I.	M1[1]		50.98 dBpV 2.4835000 GHz	200000000000000000000000000000000000000			1 I.	1	11[1]			0.38 dBp 5000 GF
100 della	~			1	T	2.4835000 GH2	100 dBuV-	~~~			_	1	T T	2.4835	5000 GH
<u></u>	1						-						1 1		
0 dBuV							90 dBuV-								
		N	I I.							1 1			1 1		
IO dBµV		1					80 dBµV		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
			1 1							1 1			1 1		
70 dBµV							70 dBµV								
10.00.00							10.00.00				-		1 1	-	
50 dBµV		~		M3			60 dBµV			the second		M3			
			maline	mati lente	the second	M2	10.10.11			man	MI	Turn		M2	
50 dBµV					and and a	and an and the second for	50 d8µV				and the second second		- Constanting	the states	-
40 dBµV							40 dBµV								
30 dBuV			1 1				30 dBuV			1 1		1	1 1		
30 OBUV		-				52	30 GBUV		· · · · · · · · · · · · · · · · · · ·				· · · · · · ·	57	
O dBuy				F1		Ť	20 dBuV				F1			Ĩ	
CF 2.48 GHz			201 -1-			0	CF 2.48 GH			201-11					
			691 pts	102		Span 50.0 MHz		2		691 pts	5			span 5	50.0 MHz
larker							Marker	Con C							
Type Ref 1			Y-value	Function	Fu	nction Result	Type Ref	Trc	X-value	Y-value	Fun	tion	Funct	ion Result	
M1		4835 GHz	50.98 dBµV				M1	1	2.4835 GHz	50.38 dBµV					
M2 M3	1	2.5 GHz 6802 GHz	49.56 dBµV 53.19 dBµV				M2 M3	1	2.5 GHz 2.486874 GHz	48.22 dBµV 51.94 dBµV					

Note.

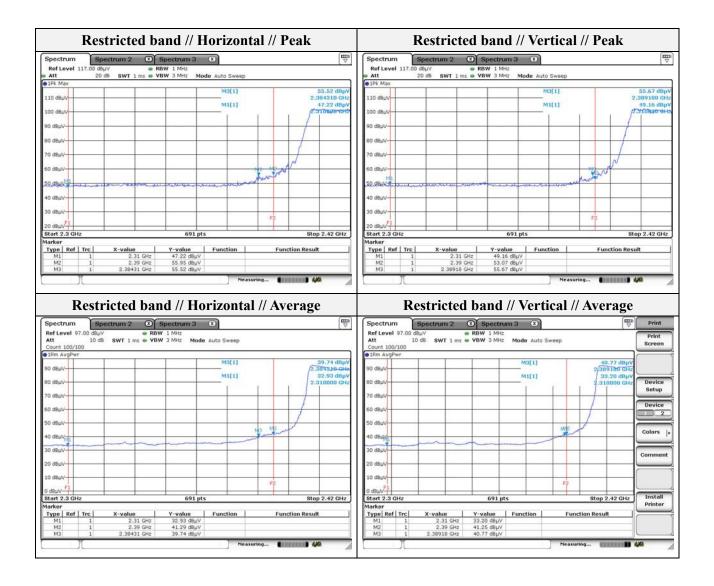
1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

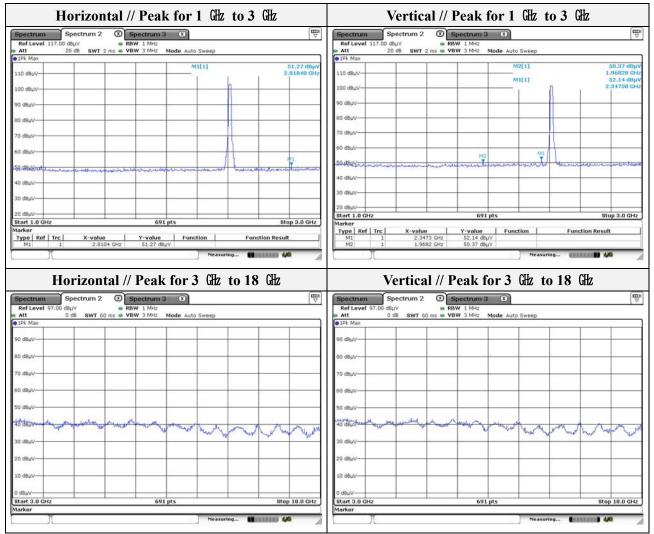
C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Mode:	802.11g		
Distance of measurement:	3 meter		
Channel:	01		

- Spurious


Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2810.40	51.27	Peak	Н	1.12	-	52.39	74.00	21.61
2347.30	52.14	Peak	V	-0.30	-	51.84	74.00	22.16
1968.20	50.37	Peak	V	-1.31	-	49.06	74.00	24.94

Band edge

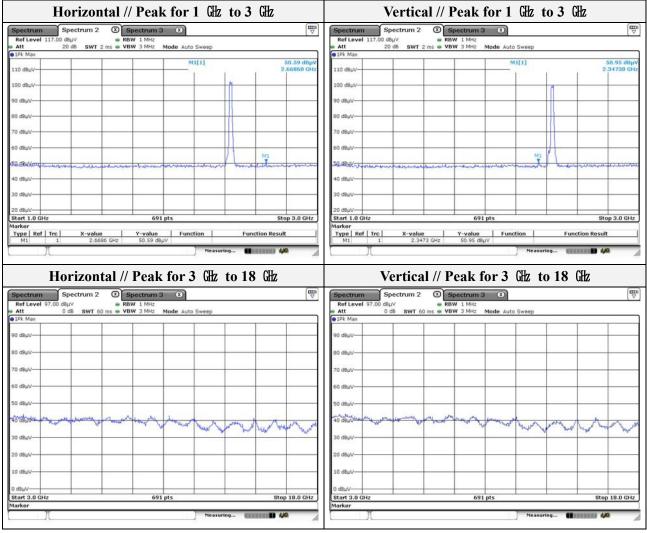

_

Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
2390.00	55.95	Peak	Н	-0.22	-	55.73	74.00	18.27
2390.00	41.29	Average	Н	-0.22	-	41.07	54.00	12.93
2389.18	55.67	Peak	V	-0.22	-	55.45	74.00	18.55
2389.18	40.77	Average	V	-0.22	-	40.55	54.00	13.45

Note.

1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (37) of (65)

Mode:	802.11g
Distance of measurement:	3 meter
Channel:	06

- Spurious

- Spurio	Jus							
Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2668.60	50.59	Peak	Н	0.60	-	51.19	74.00	22.81
2347.30	50.95	Peak	V	-0.30	-	50.65	74.00	23.35

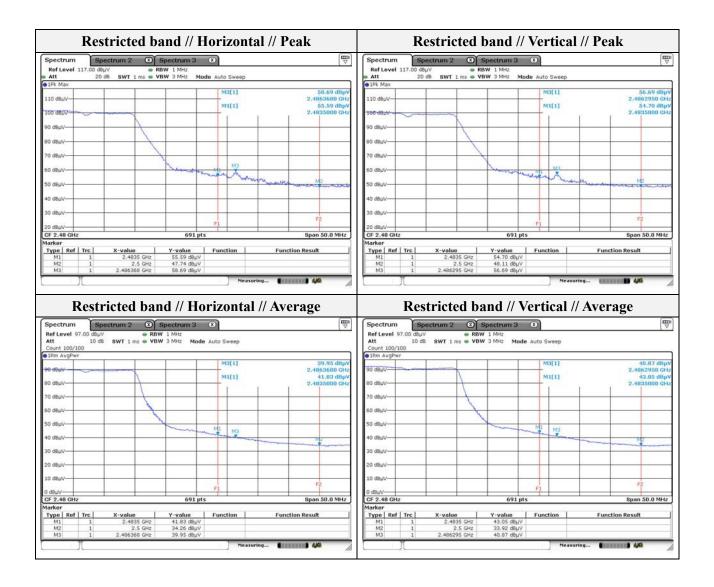
Note.

1. No spurious emission were detected above 3 GHz.

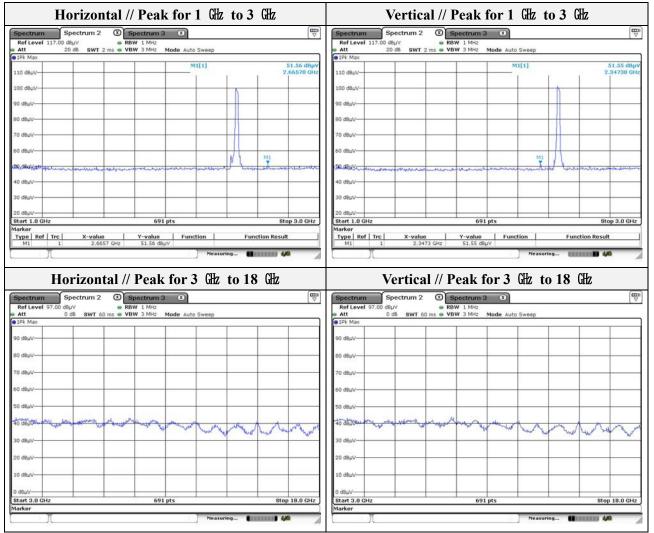
2. Average test would be performed if the peak result were greater than the average limit.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (38) of (65)

Mode:	802.11g
Distance of measurement:	3 meter
Channel:	11


- Spurious

Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2665.70	51.56	Peak	Н	0.59	-	52.15	74.00	21.85
2347.30	51.55	Peak	V	-0.30	-	51.25	74.00	22.75


- Band edge

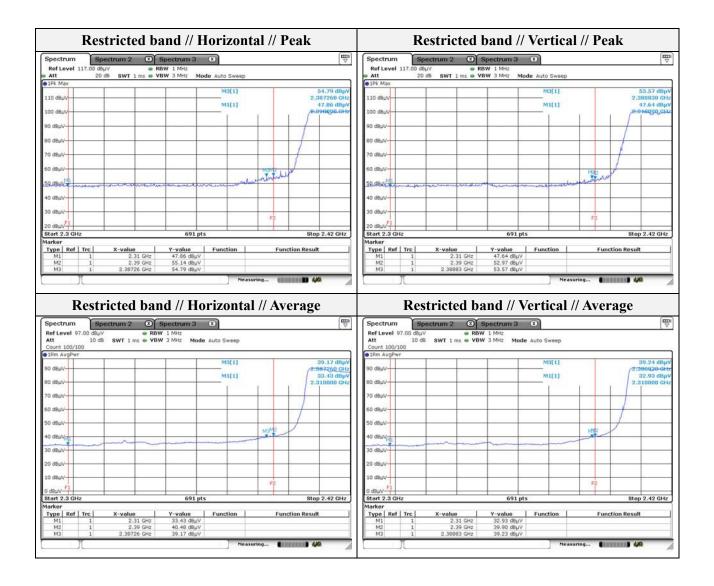
Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2486.37	58.69	Peak	Н	-0.04	-	58.65	74.00	15.35
2486.37	39.95	Average	Н	-0.04	-	39.91	54.00	14.09
2486.30	56.69	Peak	V	-0.04	-	56.65	74.00	17.35
2486.30	40.87	Average	V	-0.04	-	40.83	54.00	13.17

Note.

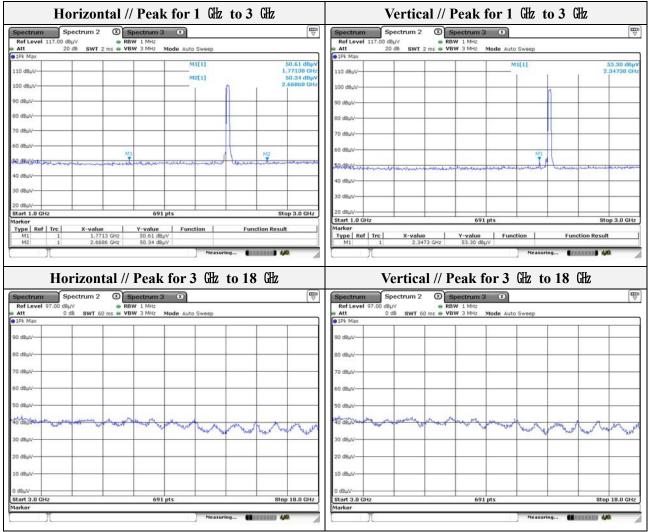
1. No spurious emission were detected above 3 GHz.

www.kes.co.kr

Mode:	802.11n(HT20)
Distance of measurement:	3 meter
Channel:	01

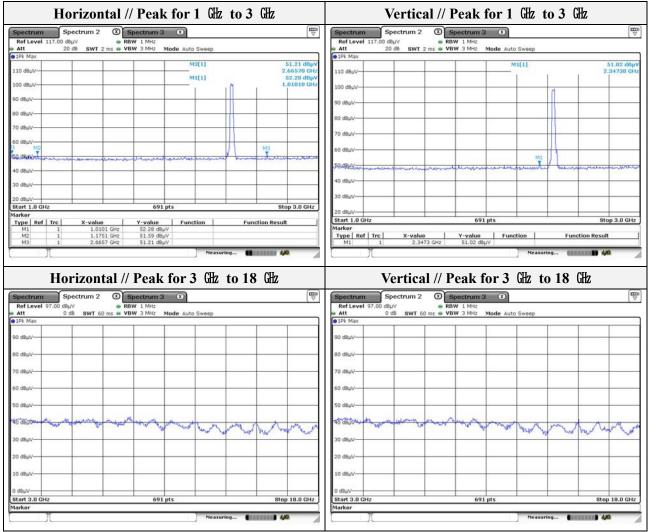

- Spurio	us							
Frequency (畑)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1771.30	50.61	Peak	Н	-3.35	-	47.26	74.00	26.74
2668.60	50.34	Peak	Н	0.60	-	50.94	74.00	23.06
2347.30	53.30	Peak	V	-0.30	-	53.00	74.00	21.00

Band edge


_

Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
2390.00	55.14	Peak	Н	-0.22	-	54.92	74.00	19.08
2390.00	40.48	Average	Н	-0.22	-	40.26	54.00	13.74
2388.83	53.57	Peak	V	-0.22	-	53.35	74.00	20.65
2388.83	39.23	Average	V	-0.22	-	39.01	54.00	14.99

Note.

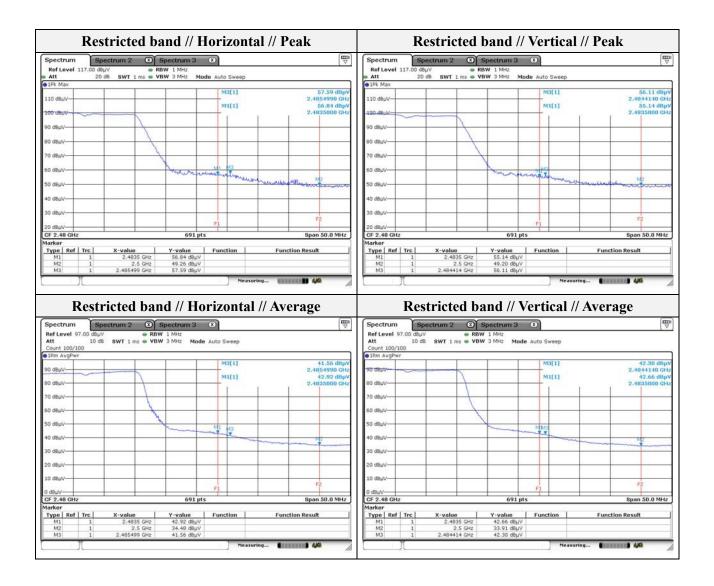

1. No spurious emission were detected above 3 GHz.

Mode:	802.11n(HT20)
Distance of measurement:	3 meter
Channel:	06

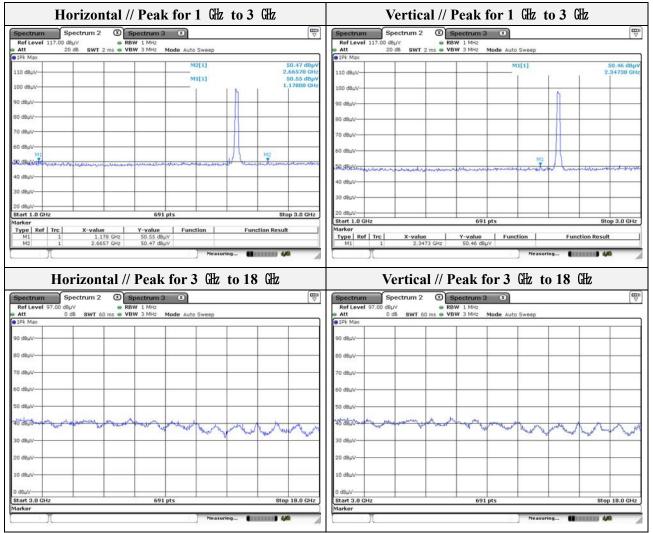
- Spurio	us							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
1010.10	52.28	Peak	Н	-9.08	-	43.20	74.00	30.80
1175.10	51.59	Peak	Н	-8.02	-	43.57	74.00	30.43
2665.70	51.21	Peak	Н	0.59	-	51.80	74.00	22.20
2347.30	51.02	Peak	V	-0.30	-	50.72	74.00	23.28

Note.

1. No spurious emission were detected above 3 GHz.


Mode:	802.11n(HT20)
Distance of measurement:	3 meter
Channel:	11

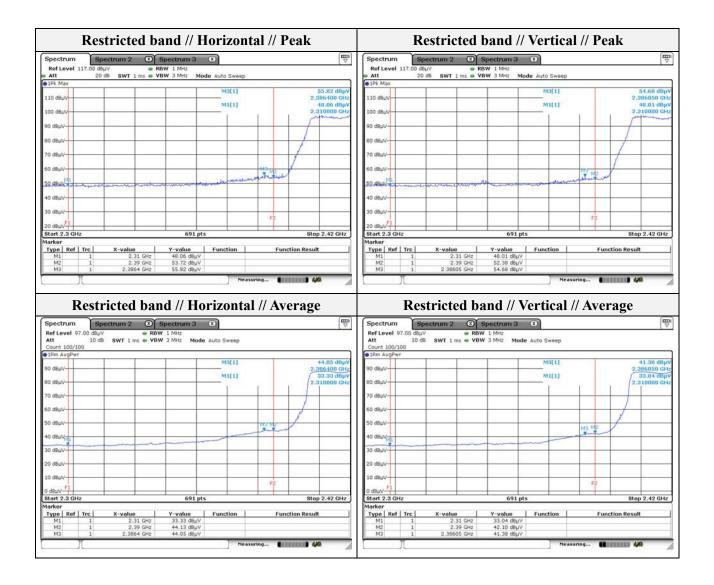
Spurious Frequency CF DCF Field strength Limit Margin Level Ant. Pol. **Detect mode** (MHz) $(dB\mu N)$ (H/V) (dB) (dB) $(dB\mu N/m)$ $(dB\mu V/m)$ (dB) 42.55 1178.00 50.55 Peak Н -8.00 -74.00 31.45 0.59 22.94 2665.70 50.47 Peak Η -51.06 74.00 2347.30 50.46 V -0.30 50.16 74.00 23.84 Peak -


- Band edge

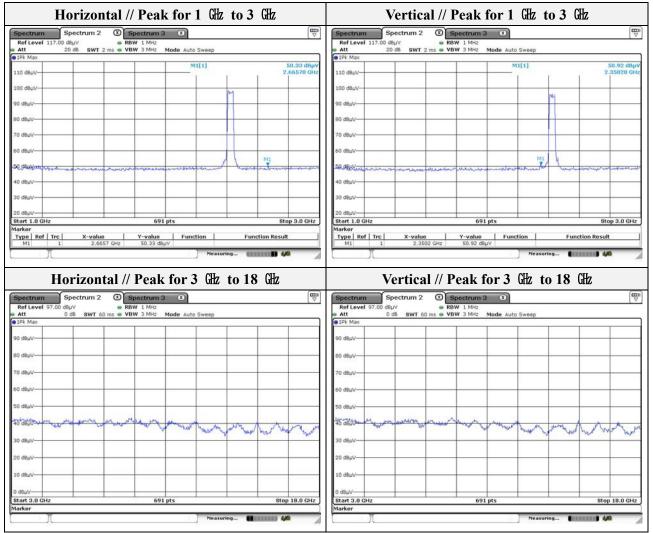
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2485.50	57.59	Peak	Н	-0.04	-	57.55	74.00	16.45
2485.50	41.56	Average	Н	-0.04	-	41.52	54.00	12.48
2484.41	56.11	Peak	V	-0.04	-	56.07	74.00	17.93
2484.41	42.30	Average	V	-0.04	-	42.26	54.00	11.74

Note.

1. No spurious emission were detected above 3 GHz.

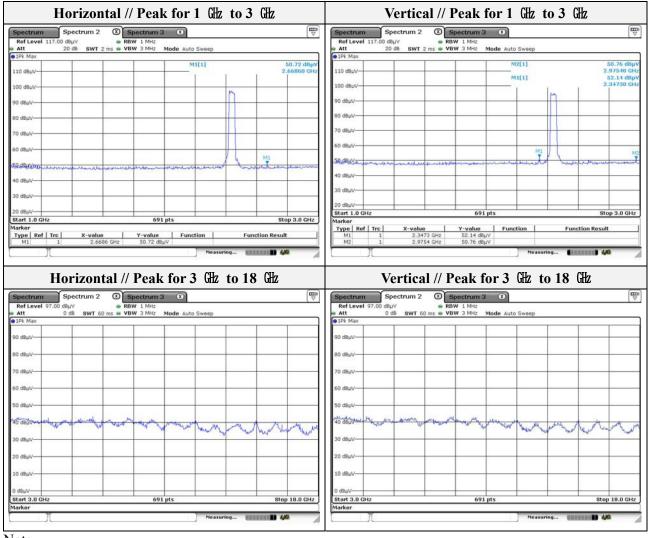


Mode:	802.11n(HT40)
Distance of measurement:	3 meter
Channel:	03


- Spurio	ous							
Frequency	Level	Detect mode	Ant. Pol.	CF	DCF	Field strength	Limit	Margin
(MHz)	(dBµV)	Detect mode	(H/V)	(dB)	(dB)	(dBµV/m)	(dBµN/m)	(dB)
2665.70	50.33	Peak	Н	0.59	-	50.92	74.00	23.08
2350.20	50.92	Peak	V	-0.30	-	50.62	74.00	23.38

- Band e	dge							
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2386.40	55.82	Peak	Н	-0.23	-	55.59	74.00	18.41
2386.40	44.05	Average	Н	-0.23	-	43.82	54.00	10.18
2386.05	54.68	Peak	V	-0.23	-	54.45	74.00	19.55
2386.05	41.38	Average	V	-0.23	-	41.15	54.00	12.85

Note.


1. No spurious emission were detected above 3 GHz.

www.kes.co.kr

Mode:	802.11n(HT40)
Distance of measurement:	3 meter
Channel:	06

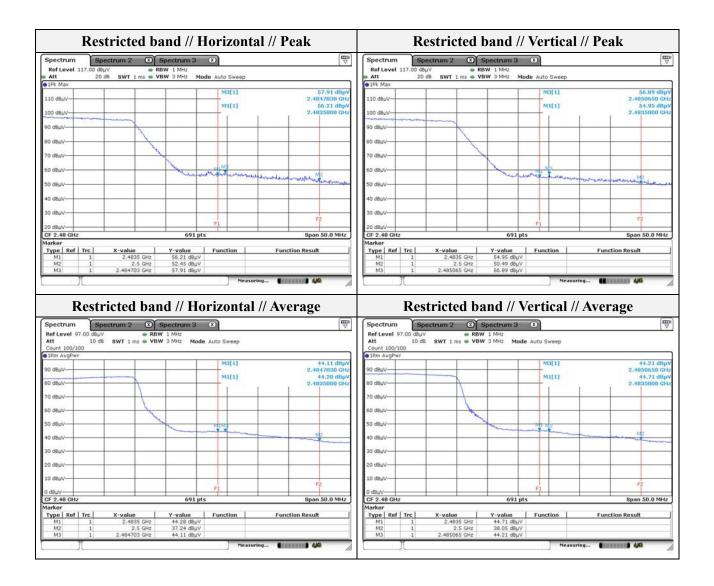
- Spurio	us							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2668.60	50.72	Peak	Н	0.60	-	51.32	74.00	22.68
2347.30	52.14	Peak	V	-0.30	-	51.84	74.00	22.16
2975.40	50.76	Peak	V	1.71	-	52.47	74.00	21.53

Note.

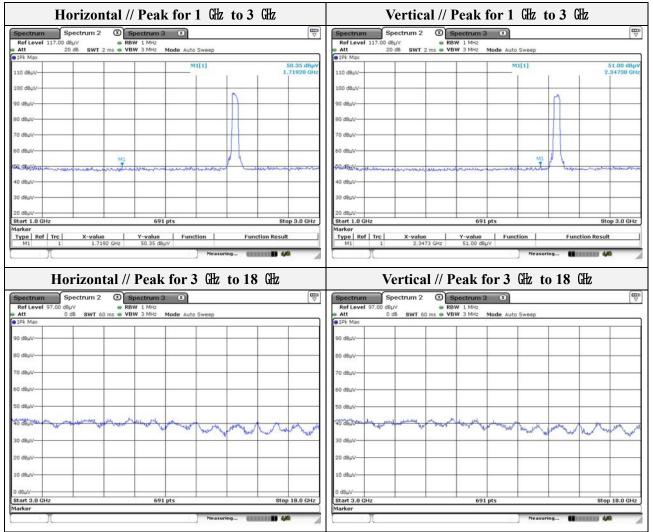
1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:	802.11n(HT40)
Distance of measurement:	3 meter
Channel:	09


Spurious Frequency Level Ant. Pol. CF DCF Field strength Limit Margin **Detect mode** $(dB\mu V/m)$ (MHz) (dBµV) (H/V) (dB) (dB) $(dB\mu N/m)$ (dB) 46.50 1719.20 50.35 Peak Н -3.85 -74.00 27.50 V -51.00 -0.30 50.70 23.30 2347.30 Peak 74.00

- Band edge


Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2484.70	57.91	Peak	Н	-0.04	-	57.87	74.00	16.13
2484.70	44.11	Average	Н	-0.04	-	44.07	54.00	9.93
2485.07	56.89	Peak	V	-0.04	-	56.85	74.00	17.15
2485.07	44.21	Average	V	-0.04	-	44.17	54.00	9.83

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.
The test results in the report only apply to the tested sample.

Note.

1. No spurious emission were detected above 3 GHz.

Test results (18 GHz to 30 GHz) – Worst case						
Mode:	802.11b	_				
Distance of measurement:	3 meter					
Channel:	06 (Worst case)					
		_				
Horiz		Vertical				
Spectrum Spectrum 2 (8)	(m)	Spectrum Spectrum 2 (8)				

Horizontal			Vertical				
Spectrum Spectrum 2 Ref Level 87.00 dBuV	RBW 1 MHz		Spectrum Spectrum Spectrum	RBW 1 MHz			[□ □
	ms - VBW 3 MHz Mode Auto Sweep			B SWT 48 ms S VBW 3 MHz	Mode Auto Sweep		
• 1Pk Max			1Pk Max				
80 d8µV-			80 dBµV				
70 d8µV			70 d8µV				
60 d8µV			60 dBµV			+ +	
50 d8µV			50 dBµV				-
40 dBµV			40 dBµV				
BOMEREY or good and the man source and	www.angrand. Harrison and and and and and and and and and an	were and the second	30'dauximeramitella	and the second stand and the second sec	restand the sale again to some	Hunger Harres	al growth and a start of the
20 dBµV			20 dBµV				
10 d8µV			10 dBµV				
0 dBµV			0 dBuV				
-10 dBµV			-10 dBµV				+
CF 24.0 GHz	691 pts	Span 12.0 GHz	CF 24.0 GHz	6	91 pts		n 12.0 GHz
N	Measuring	12.55.2817 13.56:14			Measuring	QUARTER 10 4/0	12,05,2917 13:56:19

Note.

1. No spurious emission were detected above 18 GHz.

www.kes.co.kr

Test report No.: KES-RF-17T0057 Page (57) of (65)

3.6. Conducted spurious emissions & band edge

Test procedure

Band edge

KDB 558074 D01 v04 - Section 11.3

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
 - 3. RBW = 100 kHz
 - 4. VBW = 300 kHz
 - 5. Detector = Peak
- 6. Number of sweep points \geq 2 × Span/RBW
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Out of band emissions

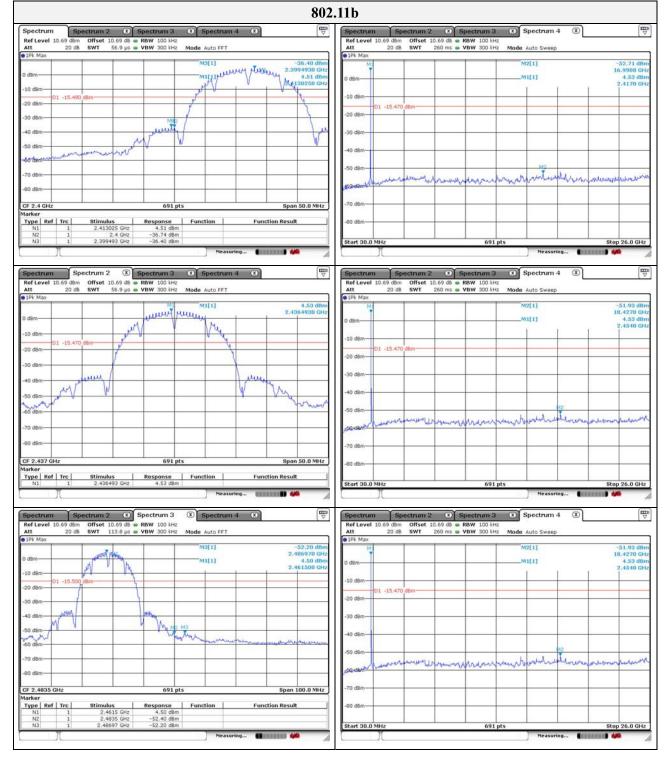
KDB 558074 D01 v04 - Section 11.3

- 1. Start frequency was set to 30 MHz and stop frequency was set to 25 GHz for 2.4 GHz frequencies and 40 GHz for 5 GHz frequencies
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

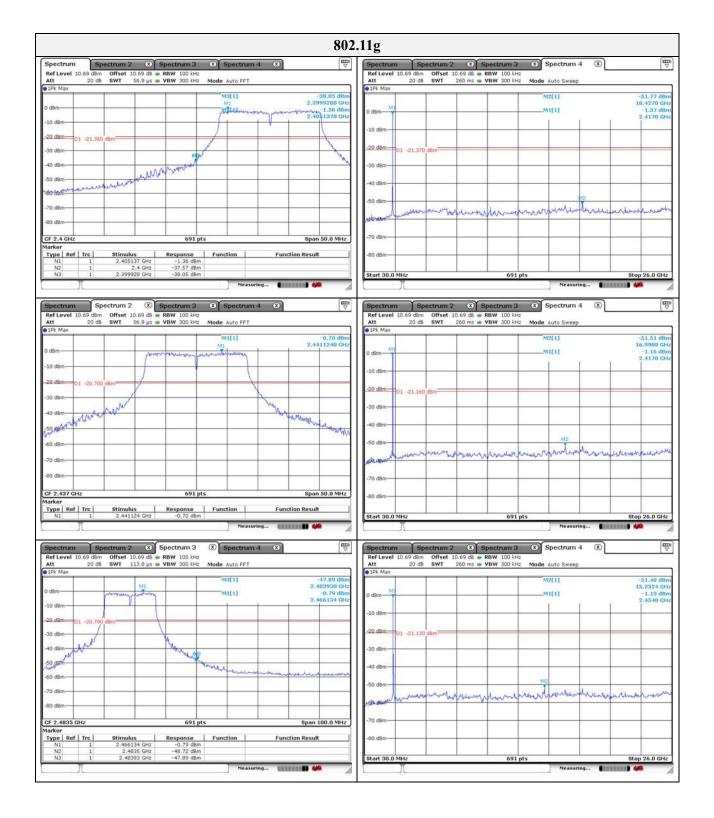
Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread s pectrum or digitally modulated intentional radiator is operating, the radio frequency power that is pr oduced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted o r a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RM S averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation n required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limit ts specified in section 15.209(a) is not required. In addition, radiated emission which in the restricte d band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.205(c))

According to RSS-247 5.5, In any 100 kHz bandwidth outside the frequency band in which the spr ead spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the t ransmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time inter rule as neuroited and an Section 5.4(4) the attraviation mean-square averaging over a time inter

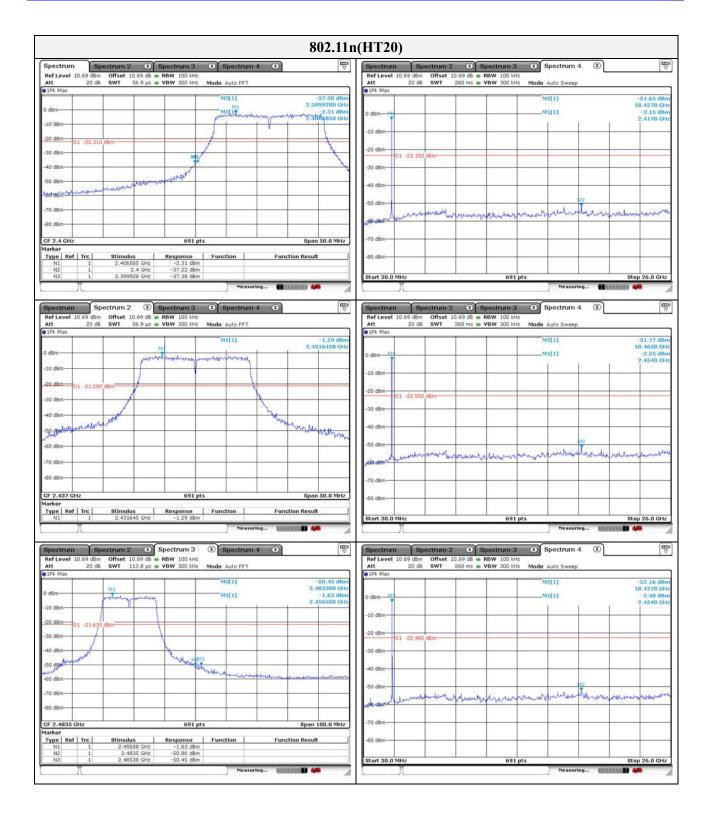

val, as permitted under Section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. At tenuation below the general field strength limits specified in RSS-Gen is not required.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

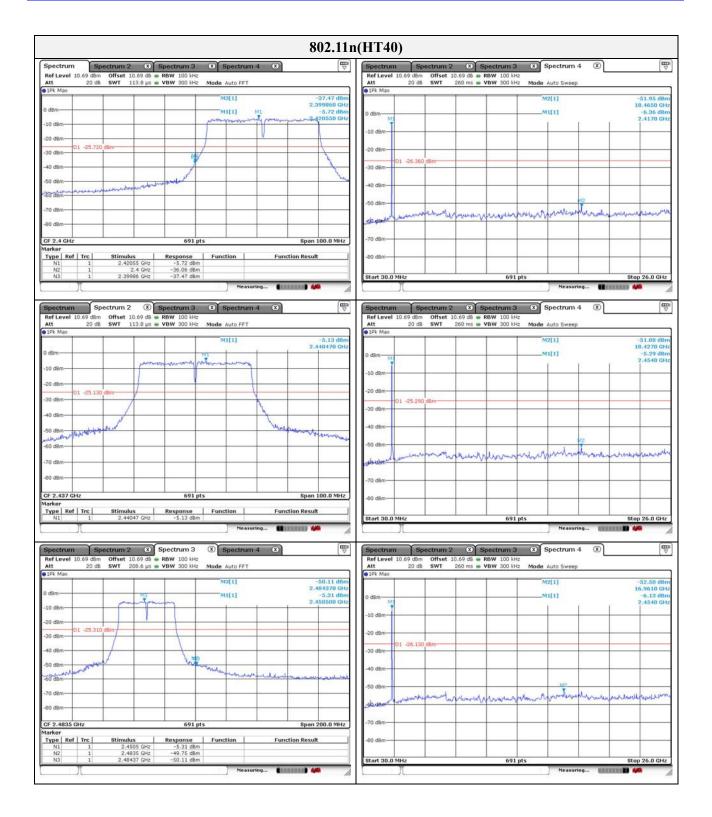


C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (58) of (65)

Test results



This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (60) of (65)

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (61) of (65)

3.7. AC conducted emissions

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Fundaments of Emission (MR)	Conducted limit (dBµN/m)				
Frequency of Emission (Mz)	Quasi-peak	Average			
0.15 - 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			

According to RSS-Gen 8.8, a radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits in Table 3.

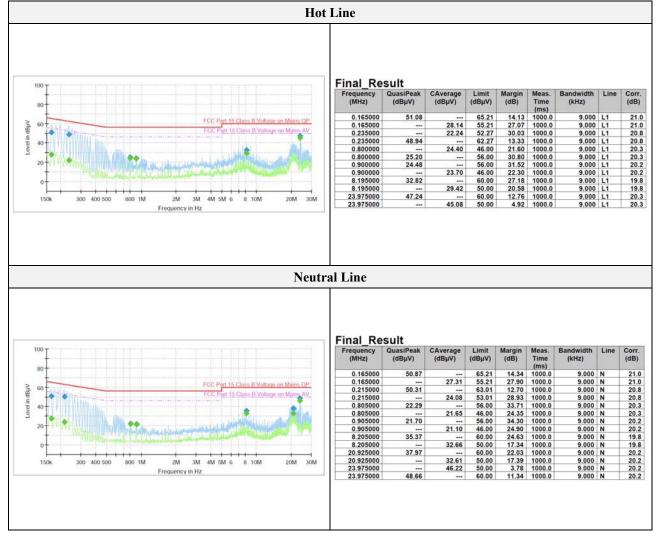
Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 3 below. The more stringent limit applies at the frequency range boundaries.

	Conducted	limit (dBµV/m)
Frequency of Emission (Mz)	Quasi-peak	Average
0.15 - 0.50	66 - 56*	56 - 46*
0.50 - 5.00	56	46
5.00 - 30.0	60	50

* The level decreases linearly with the logarithm of the frequency.

* A linear average detector is required.

Note:


- 1. All AC line conducted spurious emission are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and the appropriate frequencies. All data rates and modes were investigated for conducted spurious emission. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.
- 2. Both Cable loss and LISN factor are included in measurement level (QP Level or AV Level).

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0057 Page (63) of (65)

Test results

www.kes.co.kr

Test report No.: KES-RF-17T0057 Page (64) of (65)

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	100736	1 year	2017.07.06
Spectrum Analyzer	R&S	FSV40	101002	1 year	2017.07.06
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2018.01.23
Power Meter	Anritsu	ML2495A	1438001	1 year	2018.01.23
Pluse Power Sensor	Anritsu	MA2411B	1339205	1 year	2018.01.23
AC Power Supply	HP	6813A	3729A00754	1 year	2018.01.19
Attenuator	Agilent	8493C	82506	1 year	2018.01.23
Loop Antenna	ETS-LINDGRREN	6502	00148046	2 years	2019.01.05
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	9168-714	2 years	2018.11.28
Horn Antenna	A.H	SAS-571	414	2 years	2019.02.15
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170550	2 years	2019.02.15
High Pass Filter	WAINWRIGHT INSTRUMENT	WHJS3000-10TT	1	1 year	2017.07.04
Low Pass Filter	WEINSCHEL	WLK1.0/18G-10TT	1	1 year	2017.07.04
Preamplifier	HP	8449B	3008A00538	1 year	2017.07.05
Preamplifier	SCHWARZBECK	BBV-9718	9718-246	1 year	2017.10.14
EMI Test Receiver	R&S	ESR3	101781	1 year	2018.04.27
EMI Test Receiver	R&S	ESU26	100552	1 year	2018.04.19
LISN	R&S	ENV216	101137	1 year	2018.02.03

Peripheral devices

Device	Manufacturer	Model No.	Serial No.	
Notebook Computer	Samsung Electronics Co., Ltd.	NT-RV518-AD6S	HTK99NC600207R	
Test Board	N/A	N/A	N/A	