

Test report No.: KES-RF-16T0072 Page (1) of (17)

DFS TEST REPORT

Part 15 Subpart E 15.407

Equipment under test HOME CAMERA

Model name SNH-V6430BNH

FCC ID NLMSNHV6430BNH

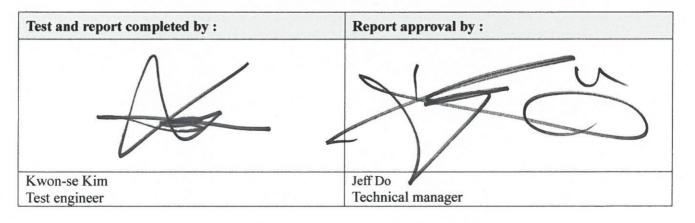
Applicant Hanwha Techwin Co., Ltd.

Manufacturer Tianjin Samsung Techwin Opto-Electronic Co., Ltd.

Date of test(s) 2016.07.14 ~ 2016.09.02

Date of issue 2016.09.07

Issued to


Hanwha Techwin Co., Ltd.

1204, Changwon-daero, Seongsan-gu, Changwon-si Gyeongsangnam-do, South Korea Tel: +82-70-7147-8361 / Fax: +82-31-8108-3717

Issued by

KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea 473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test report No.: KES-RF-16T0072 Page (2) of (17)

Revision history

Revision	Date of issue	Test report No.	Description
-	2016.09.07	KES-RF-16T0072	Initial

Test report No.: KES-RF-16T0072 Page (3) of (17)

TABLE OF CONTENTS

1.	General	information	. 4
	1.1.	EUT description	. 4
	1.2.	Test configuration	. 5
		Frequency/channel operations	
2.		ry of tests	
3.		Oynamic Frequency Selection) test description	
	3.1.	Applicability	. 7
	3.2.	Requirements	
	3.3.	DFS Detection Thresholds	
	3.4.	Parameters of DFS Test Signals	10
4.	Test res	sults	11
	4.1.	DFS (Dynamic Frequency Selection)	11
	4.1.1	Radar waveform	12
	4.1.2	LAN Traffic	13
	4.1.3	Channel move time & aggregate channel closing transmission time	14
	4.1.4	Non-occupancy period	16
App		Measurement equipment	

1. General information

Applicant:	Hanwha Techwin Co., Ltd.		
Applicant address:	1204, Changwon-daero, Seongsan-gu, Changwon-si		
	Gyeongsangnam-do, South Korea		
Test site:	KES Co., Ltd.		
Test site address:	C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea		
	473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea		
Rule part(s):	15.407		
FCC ID:	NLMSNHV6430BNH		
Test device serial No.:	Production Pre-production Engineering		

1.1. EUT description

Equipment under test	HOME CAMERA
Frequency range	2 412 MHz ~ 2 462 MHz (11b/g/n_HT20)
	2 422 Mz ~ 2 452 Mz (11n_HT40)
	UNII-1 5 180 Mz ~ 5 240 Mz (11a/n_HT20, 11ac_VHT20)
	5 190 Mtz ~ 5 230 Mtz (11n_HT40, 11ac_VHT40)
	5 210 Mz (11ac_VHT80)
	UNII-2A 5 260 Mz ~ 5 320 Mz (11a/n_HT20, 11ac_VHT20)
	5 270 Mz ~ 5 310 Mz (11n_HT40, 11ac_VHT40)
	5 290 Mtz (11ac_VHT80)
	UNII-2C 5 500 MHz ~ 5 720 MHz (11a/n_HT20, 11ac_VHT20)
	5 510 MHz ~ 5 710 MHz (11n_HT40, 11ac_VHT40)
	$5\ 530\ \text{Mz} \sim 5\ 690\ \text{Mz}\ (11ac_VHT80)$
	UNII-3 5 745 MHz ~ 5 825 MHz $(11a/n_HT20, 11ac_VHT20)$
	5 755 MHz ~ 5 795 MHz (11n_HT40, 11ac_VHT40)
	5 775 Mlz (11ac_VHT80)
Model:	SNH-V6430BNH
Modulation technique	DSSS, OFDM
Number of channels	11ch: 2 412 MHz ~ 2 462 MHz, 7 ch: 2 422 MHz ~ 2 452 MHz
	$4ch: 5\; 180 \;\; \text{Mz} \; \sim 5\; 240 \;\; \text{Mz}, 2ch: 5\; 190 \;\; \text{Mz} \; \sim 5\; 230 \;\; \text{Mz}, 1ch: 5\; 210 \;\; \text{Mz}$
	$4ch: 5\ 260\ \text{Mz}\ \sim 5\ 320\ \text{Mz}, 2ch: 5\ 270\ \text{Mz}\ \sim 5\ 310\ \text{Mz}, 1ch: 5\ 290\ \text{Mz}$
	$12 ch: 5\; 500 \text{ Mz} \sim 5\; 720 \text{ Mz}, 6 ch: 5\; 510 \text{ Mz} \sim 5\; 710 \text{ Mz}, 3 ch: 5\; 530 \text{ Mz} \sim 5\; 690 \text{ Mz}$
	$5ch: 5\ 745\ \text{Mz}\ \sim 5\ 825\ \text{Mz}, 2ch: 5\ 755\ \text{Mz}\ \sim 5795\ \text{Mz}, 1ch: 5\ 775\ \text{Mz}$
Antenna specification	11b/g/n_HT20/40 : Chip antenna & 2.74 dBi
	UNII-1 : Chip antenna & 1.39 dBi
	UNII-2A : Chip antenna & 1.95 dBi
	UNII-2C : Chip antenna & 3.91 dBi
	UNII-3 : Chip antenna & 3.39 dBi
Power source	DC 48 V Adapter (Input : AC 120V / 60Hz,0.6A)

1.2. Test configuration

The <u>Hanwha Techwin Co., Ltd. HOME CAMERA FCC ID: NLMSNHV6430BNH</u> was tested per the guidance of KDB 905462 D02 v02, D03 v01r02.

1.3. Frequency/channel operations

UNII-2A

TI	NITT	20
U	NII	-2C

ч.
ːh.
00
16
44

Ch.	Frequency (Mb)	
100	5 500	
116	5 580	
144	5 720	

Table 1.8-1. 802.11a/n/ac_HT20/VHT20 mode

UNII-2A

UNII-2C

Ch.	Frequency (Mb)
54	5 270
62	5 310

Ch.	Frequency (Mb)	
102	5 510	
118	5 590	
142	5 710	

Table 1.8-2. 802.11a/n/ac_HT40/VHT40 mode

UNII-2A

UNII-2C

Ch.	Frequency (Mz)	
58	5 290	

Ch.	Frequency (Mz)	
106	5 530	
122	5 610	
138	5 690	

Table 1.8-3. 802.11ac_VHT80 mode

2. Summary of tests

Reference	Parameter	Test results
15.407(h)(iii)(iv)	Channel Move Time	Pass
	Channel Closing Transmission Time	Pass
	Non-Occupancy Period	Pass

Test procedures;

The guidance provided in KDB 905462 D02 v02 were used in the measurement of the EUT.

3. DFS (Dynamic Frequency Selection) test description

3.1. Applicability

The following table from KDB 905462 D02 v02 lists the applicable requirements for the DFS testing. The device evaluated in this report is considered a client device without radar detection capability.

Requirement	Operational Mode				
	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2.1. DFS Applicability

Requirement	Operational Mode			
	Master Device or Client	Client Without		
	with Radar Detection	Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		
Non-Occupancy Period	NA/Yes	Yes		

Additional requirements for devices with multiple	Master Device or Client with Radar Detection	Client Without Radar Detection			
U-NII Detection Bandwidth and statistical Performance Check	All BW modes must be tested	Not required			
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link			
All other tests	Any single BW mode	Not required			
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection					

frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 2.2. DFS Applicability During normal operaion

3.2. Requirements

KDB 905462 D02 v02 the following are the requirements for Client Devices:

- a) A Client Device will not transmit before having received appropriate control signals from a Master Device.
- b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.
- c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.
- d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.
- e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shutdown (rather than moving channels), no beacons should appear

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	Aggregate of 60 milliseconds over remaining 10 second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission
	power bandwidth. See Note3.
Note 1. Channel Maya Time and the Channel Cl	aging Transmission Time should be performed with Pader

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (and aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should the used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 2.3. DFS Response Requirement Values

3.3. DFS Detection Thresholds

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection Thresholds are listed in the following table.

Maximum Transmit Power	Value (See Notes 1, 2, and 3)			
$EIRP \ge 200 milliwatt$	-64 dBm			
EIRP< 200 milliwatt and	-62 dBm			
Power spectral density < 10 dBm/MHz	-02 ubiii			
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm			
density requirement	-04 ubiii			
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.				

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS respons.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01

Table 2.4. DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

3.4. Parameters of DFS Test Signals

As the EUT is a Client Device with no Radar Detection only Zero type radar pulse is required for the testing. Radar Pulse type 0 was used in the evaluation of the Client device for the purpose of measuring the channel Move Time and the Channel Closing Transmission Time.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Mnimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	Roundup: {(1/360)*(19*10 ⁶ PRI μsec)}	60%	30
		Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	(Radar Types			80%	120
Note 1: Sh	ort Pulse Rac	lar Type 0 should be used for	or the detection bandw	ridth test, channel r	nove time, and

channel closing time tests.

Table 2.5. Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

Table 2.6. Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

Table 2.7. Frequency Hopping Radar Test Waveform

4. Test results

4.1. DFS (Dynamic Frequency Selection)

Test setup

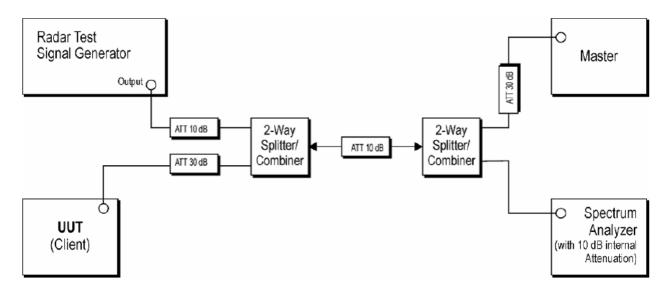
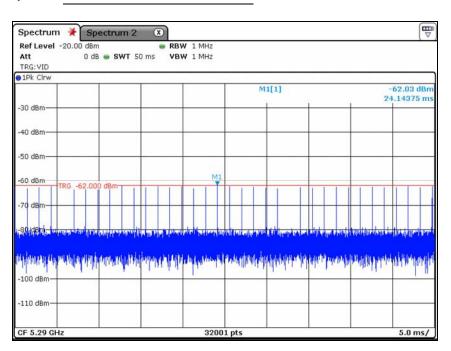


Figure 1: Conducted Test Setup for DFS

Test procedure

KDB 905462 D02 v02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 1 shows the typical test setup.

- 1. One frequency will be chosen from the Operating Channels of the UUT within the 5250 ~5350 M b or 5470 ~5725 M bands.
- 2. The Client Device (EUT) is setup per the diagram in Firure1 and communications between the Master device and the Client is established.
- 3. An MPEG or data file that is typical for the device is streamed from the Master to the Client to properly load the network.


4.1.1 Radar waveform

Mode:

802.11ac VHT80 (Band2A)

5 290 MHz

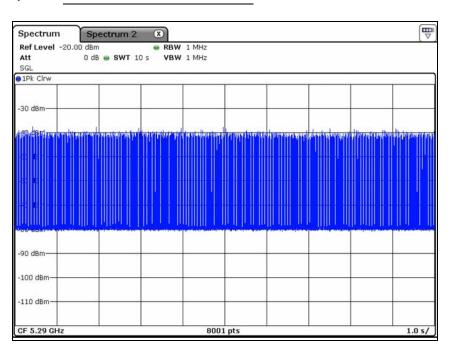
Operating frequency:

Mode:

Operating frequency:

802.11ac_VHT80 (Band2C) 5 530 Mtz

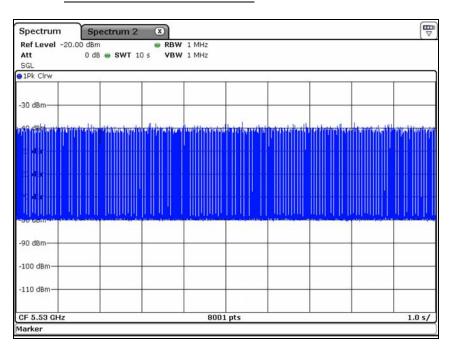
Spectrum 🔆 Spe	ctrum 2 🙁						T T
Ref Level -20.00 dBm Att 0 dB TRG:VID		N 1 MHz N 1 MHz					
1Pk Clrw							
			м	1[1]			-62.07 dBi 2.71563 m
-30 dBm				-			
-40 dBm							
-50 dBm							
-60 dBm TRG -62.000	dire	M1			_		
	Ubiii						
-70 dBm		1					
so getou tata tata in a tapa a	a na amila dalata satuta a satuta (and and weather a	ef éléc es latemastela	and a shirt of a	(). La chevela	and the state of the section of the	rafile Johann
hallange ⁿ a balan hal	in the main providence of the providence	den in it have the	Parklashiry	p. p	liperaturi († 14 pr	lease begilt,	and the second
-100 dBm							
-110 dBm-							
CF 5.53 GHz		3200	1 pts				5.0 ms/


4.1.2 LAN Traffic

Mode:

802.11ac_VHT80 (Band2A)

5 290 MHz


Operating frequency:

Mode:

802.11ac_VHT80 (Band2C) 5 530 Mb

Operating frequency:

Test report No.: KES-RF-16T0072 Page (14) of (17)

4.1.3 Channel move time & aggregate channel closing transmission time

Mode:

802.11ac VHT80 (Band2A)

5 290 MHz

Operating frequency:

Spect	rum	¥ Sp	ectrum 2 🛞				E
		20.00 dBm		W 3 MHz			(.
Att		0 dB	SWT 10 s VB	W 3 MHz			
SGL							
1Pk Cl	rw			21			
		~			D3[1]		-0.09 dB
30 dBg	M	1 D3					511.875 ms
	1777				M1[1]		-30.72 dBm
U'UU							1.134063 9
n din	11						
	Щ.						
	₩ -						
1 8 8	#		a the same at the state of a family be as an	and the state of the state			
	-						
80 dBm							
90 dBm							
90 0BII							
100 dB	m-					_	
100 00	~~						
110 dB	m			-			
CF 5.2	9 GHz			32001 pt	s		1.0 s/
larker		5 mg					
Type	Ref		X-value	Y-value	Function	Functi	on Result
M1		1	1.134063 s	-30,72 dBm			
M2		1	1.334063 s	-75.09 dBm			
D3	M1	1	511.875 ms	-0.09 dB			

Channel closing transmission time calculated	Test results
Sweep time[S] sec	10
Sampling bins[B]	32001
Number of sampling bins in 10 sec[N]	2
Closing transmission time [C] ms	0.624

Channel move time (s)	Limit
0.512	$\leq 10 \text{ s}$

Note:

Dwell = S/B;

Where **dwell** is the dwell time per spectrum analyzer sampling bin, **S** is the sweep time and **B** is the number of spectrum analyzer sampling bins.

An upper bound of the aggregate duration of the channel closing transmission time is calculated by:

 $C = N \times Dwell;$

Where C is the closing time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and dwell is the dwell time per bin.

Dwell = [S] / [B] = 10 / 32001 = 0.000312 Closing Transmission Time[C] = [N] × [Dwell] = 2 × 0.000312 = 0.000624 s = 0.624 ms

Mode:

802.11ac_VHT80 (Band2C)

5 530 MHz

Operating frequency:

Spect	rum	Sp	ectrum 2 🙁				
Ref Le	vel -2	20.00 dBm	e RB	W 3 MHz			
Att		0 dB	SWT 10 s VB	W 3 MHz			
SGL							
1Pk Cl	rw						
		-			D3[1]		1.91 dE
BQ dBa	M	D3					511.875 ms
	117150				M1[1]		-30.75 dBm
							1.133125
				+ +			
				-			2
		11	and we find that a star was to be a star whether the	had a sublementation of the	A 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	elimeter surgered on	and an a data of the other maters in
			[the second s
80 dBm							
	31						
90 dBm							
-100 dB							
100 00							
-110 dB	m-						
CF 5.5	3 GHz			32001 pt	s		1.0 s/
larker		_			-		
Type	Ref	Trc	X-value	Y-value	Function	Functi	ion Result
M1		1	1.133125 s	-30.75 dBm			
			1.333125 s	-74.34 dBm			
M2		1	1.333125 5	-/4.54 UDIII			

Channel closing transmission time calculated	Test results
Sweep time[S] sec	10
Sampling bins[B]	32001
Number of sampling bins in 10 sec[N]	1
Closing transmission time [C] ms	0.312

Channel move time (s)	Limit
0.512	≤ 10 s

Note:

Dwell = S/B;

Where **dwell** is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins.

An upper bound of the aggregate duration of the channel closing transmission time is calculated by:

$C = N \times Dwell;$

Where C is the closing time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and dwell is the dwell time per bin.

Dwell = [S] / [B] = 10 / 32001 = 0.000312 Closing Transmission Time[C] = [N] × [Dwell] = 1 × 0.000312 = 0.000312 s = 0.312 ms

4.1.4 Non-occupancy period

Mode:

802.11ac_VHT80 (Band2A)

5 290 MHz

Operating frequency:

Spectrum 🧩	Spectrum 2 🙁		
Ref Level -20.0 Att SGL	0 dBm BW 0 dB SWT 2200 s VBW		
1Pk Clrw			
M1 Bm		D2[1] M1[1]	-42.37 di 1800.000 -30.34 dBn 87.175
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm		- 23 will be with the state of the state of the state of the	warder the sol Ifen age her breen
-80 dBm			
-90 dBm			
-100 dBm			
-110 dBm			
CF 5.29 GHz		8001 pts	220.0 s/

Mode:

802.11ac_VHT80 (Band2C) 5 530 Mtz

Operating	frequency:
-----------	------------

Spectrum	Spectrum 2 🛛 🗴	1			W
Ref Level -20. Att SGL	00 dBm 0 dB 🖷 SWT 2200 s	RBW 3 MHz VBW 3 MHz			X
M1 -30 dBm			D2[1]		-42.02 d 1800.150 -29.84 dBr 62.425
-40 dBm					
-60 dBm		_			
70.dBm		te din tetapatan dari dar	a attended at the standard attended	191 F. d. Armond	
90 dBm		_			
100 dBm					
CF 5.53 GHz		8001			220.0 s/

Test report No.: KES-RF-16T0072 Page (17) of (17)

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	101389	1 year	2017.01.25
Vector Signal Generator	R&S	SMBV100A	1407.6004K02	1 year	2017.07.04
Attenuator	HP	8493C	08961	1 year	2017.07.05
Attenuator	HP	8493C	09304	1 year	2017.07.05
Attenuator	KEYSIGHT	8493C	82506	1 year	2017.01.25
Attenuator	KEYSIGHT	8493C	82507	1 year	2017.01.25
Attenuator	Agilent	8493C	51401	1 year	2017.07.05
Attenuator	KEYSIGHT	8493C	82530	1 year	2017.01.25
Splitter	MINI-CIRCUITS	ZFSC-2-10G+	F679501347-1	1 year	2017.07.04
Splitter	MINI-CIRCUITS	ZFSC-2-10G+	F679501347-2	1 year	2017.07.04

Appendix A. Measurement equipment

Peripheral devices

Device	Manufacturer	Model No.	Serial No.	Note.
Access Point (Master)	Cisco system Inc.	AIR-RM3000AC-A-K9	-	FCC ID: LDK102086
Notebook Computer	Samsung Electronics Co., Ltd.	NT-R530	ZWC493BZC00014H	-