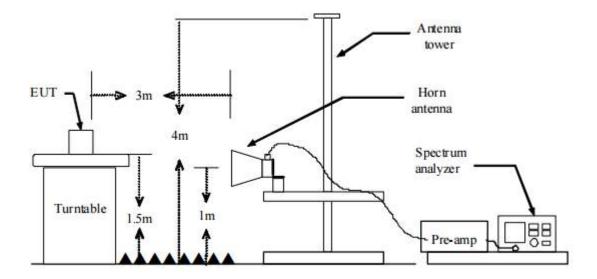


3.6. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}\mathbb{Z}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}\mathbb{Z}$ emissions, whichever is lower.

Test procedure below 30 Mz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mz

- 1. Spectrum analyzer settings for f < 1 GHz:
 - (1) Span = wide enough to fully capture the emission being measured
 - 2 RBW = 120 kHz
 - ③ VBW \ge RBW
 - ④ Detector = quasi peak
 - 5 Sweep time = auto
 - 6 Trace = max hold
- 2. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mz
 - ③ VBW = 3 M $(\geq 3 \times RBW)$
 - (4) Detector = peak
 - \bigcirc Sweep time = auto
 - \bigcirc Trace = max hold
 - \bigcirc Trace was allowed to stabilize

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Test report No.: KES-RF-18T0007 Page (75) of (220)

- 3. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 MHz

 - (4) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (\geq 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/Ds)$

 $f \ge 30$ Mz, extrapolation factor of 20 dB/decade of distance. $F_d = 20log(D_m/Ds)$ Where:

- F_d = Distance factor in dB
- D_m = Measurement distance in meters
- D_s = Specification distance in meters
- 2. $CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)$
- 4. Field strength($dB\mu N/m$) = Level($dB\mu N$) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB μ N/m) Field strength(dB μ N/m)
- 6. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>Y orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>Y orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. All channels, modes (e.g. 802.11a, 802.11n (20 Mt/40 Mt/2 BW), 802.11ac (20 Mt/40 Mt/2 /80 Mt/2)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

10. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mbz)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2400/F(kllz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mb, $76 \sim 88$ Mb, $174 \sim 216$ Mb or $470 \sim 806$ Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to 15.407(b), (b) Undesirable emission limits: Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 Mtz.

A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §

15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

According to RSS-247 6.2 The equipment output power and e.i.r.p. shall be measured in terms of average value. If the transmission is in bursts, the provisions of RSS-Gen for pulsed operation shall apply.

(1) For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

(2) For transmitters operating in the band 5250-5350 MHz Devices shall comply with the following:

a) All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p.; or

b) All emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device, except devices installed in vehicles, shall be labelled or include in the user manual the following text "for indoor use only."

(3) For transmitters operating in the band 5470-5600 MHz and 5650-5725 MHz, Emissions outside the band 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, devices with bandwidth overlapping the band edge of 5725 MHz can meet the emission limit of -27 dBm/MHz e.i.r.p. at 5850 MHz instead of 5725 MHz.

(4) For the band 5725-5850 MHz, Devices operating in the band 5725-5850 MHz with antenna gain greater than 10 dBi can have unwanted emissions that comply with either the limits in this section or in section 5.5 until six (6) months after the publication date of this standard for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2018.

Devices operating in the band 5725-5850 MHz with antenna gain of 10 dBi or less can have unwanted emissions that comply with either the limits in this section or in section 5.5 until April 1, 2018 for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2020.

Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following:

a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;

b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;

c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and

d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

Duty cycle

Regarding to KDB 789033 D02 v02r01, B)2)b), the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in II.B.1.a), and the number of sweep points across duration T exceeds 100.

For the band 5.15-5.25 GHz

Test mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
802.11a	0.246 4	0.318 8	0.772 9	77.29	1.12
802.11n_HT20	0.231 9	0.275 4	0.842 0	84.20	0.75
802.11n_HT40	0.130 4	0.202 9	0.642 7	64.27	1.92
802.11n_VHT20	0.202 9	0.304 3	0.666 8	66.68	1.76
802.11n_VHT40	0.115 9	0.202 9	0.571 2	57.12	2.43
802.11n_VHT80	0.072 5	0.449 3	0.161 4	16.14	7.92

For the band 5.250-5.350 GHz

Test mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
802.11a	0.246 4	0.304 3	0.809 7	80.97	0.92
802.11n_HT20	0.231 9	0.318 8	0.727 4	72.74	1.38
802.11n_HT40	0.130 4	0.246 4	0.529 2	52.92	2.76
802.11n_VHT20	0.202 9	0.347 8	0.583 4	58.34	2.34
802.11n_VHT40	0.115 9	0.260 9	0.444 2	44.42	3.52
802.11n_VHT80	0.087 0	0.565 2	0.153 9	15.39	8.13

For the band 5.470-5.725 GHz

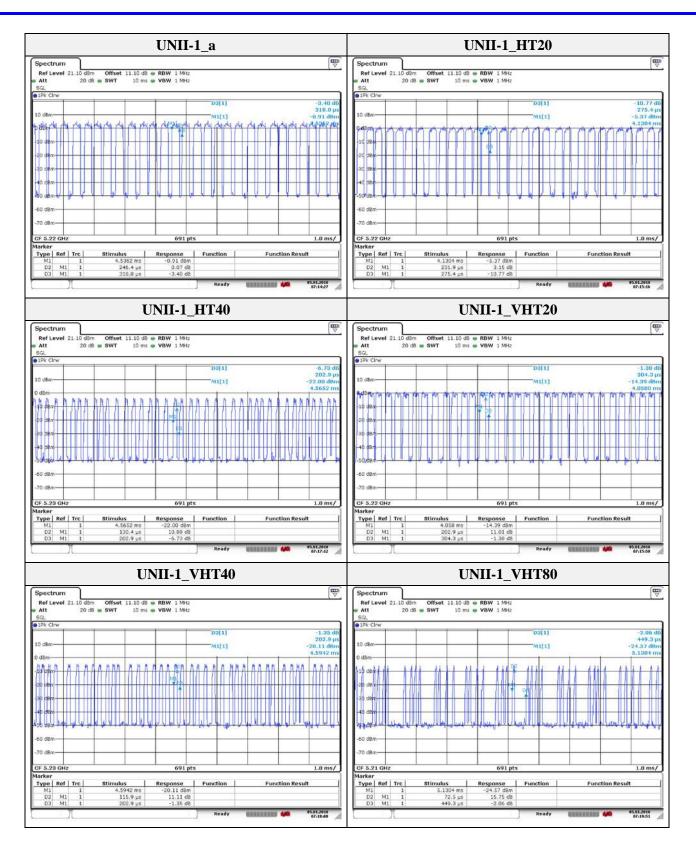
Test mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
802.11a	0.246 4	0.304 3	0.809 7	80.97	0.92
802.11n_HT20	0.231 9	0.289 9	0.799 9	79.99	0.97
802.11n_HT40	0.130 4	0.217 4	0.599 8	59.98	2.22
802.11n_VHT20	0.202 9	0.260 9	0.777 7	77.77	1.09
802.11n_VHT40	0.115 9	0.246 4	0.470 4	47.04	3.28
802.11n_VHT80	0.072 5	0.507 2	0.142 9	14.29	8.45

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

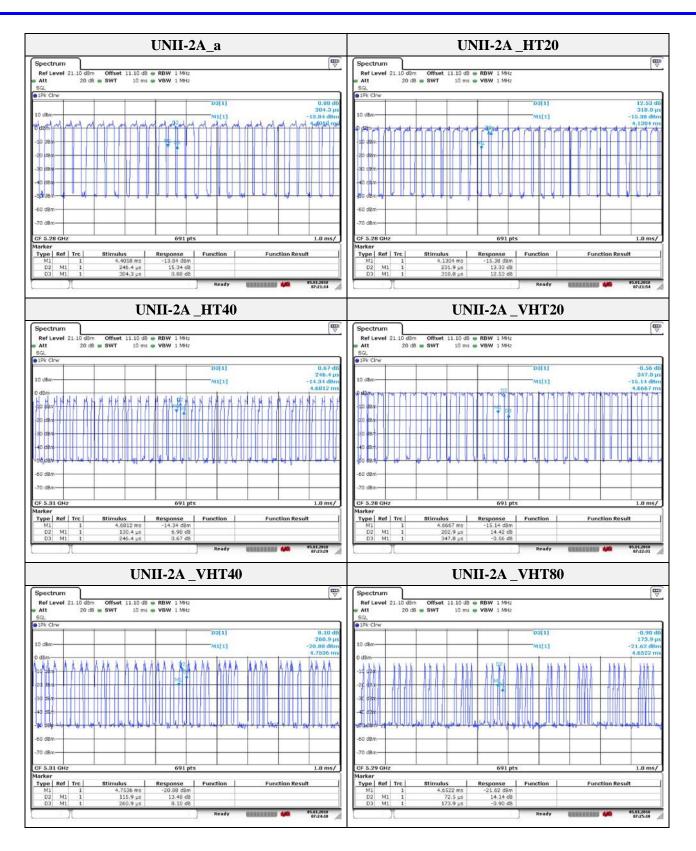
Test report No .: KES-RF-18T0007 Page (80) of (220)

For the band 5.725-5.85 GHz											
Test mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)						
802.11a	0.246 4	0.347 8	0.708 5	70.85	1.50						
802.11n_HT20	0.231 9	0.289 9	0.799 9	79.99	0.97						
802.11n_HT40	0.130 4	0.246 4	0.529 2	52.92	2.76						
802.11n_VHT20	0.202 9	0.289 9	0.699 9	69.99	1.55						
802.11n_VHT40	0.115 9	0.231 9	0.499 8	49.98	3.01						
802.11n_VHT80	0.072 5	0.376 8	0.192 4	19.24	7.16						

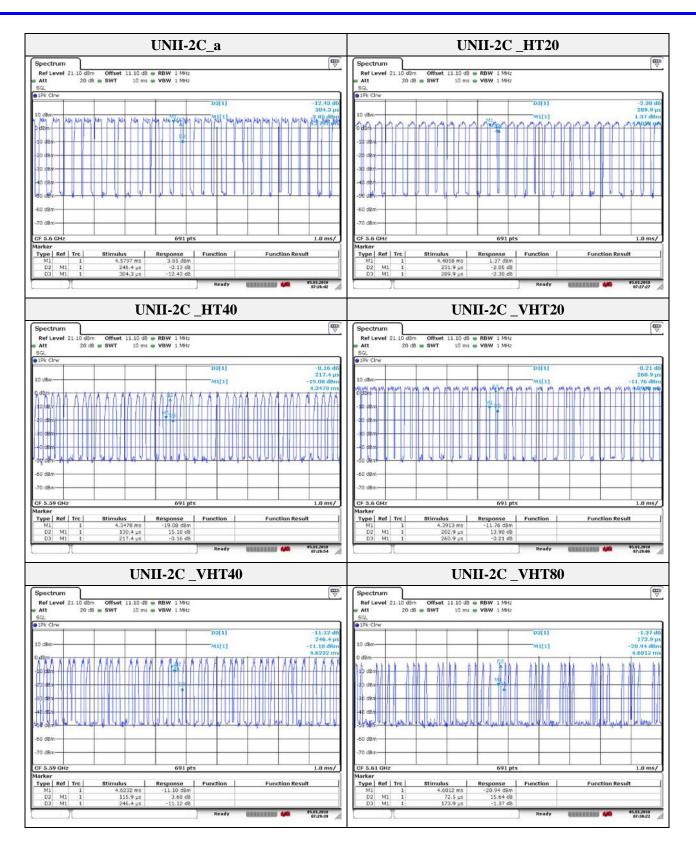

Note:

Duty cycle (Linear) = T_{on} time/Period

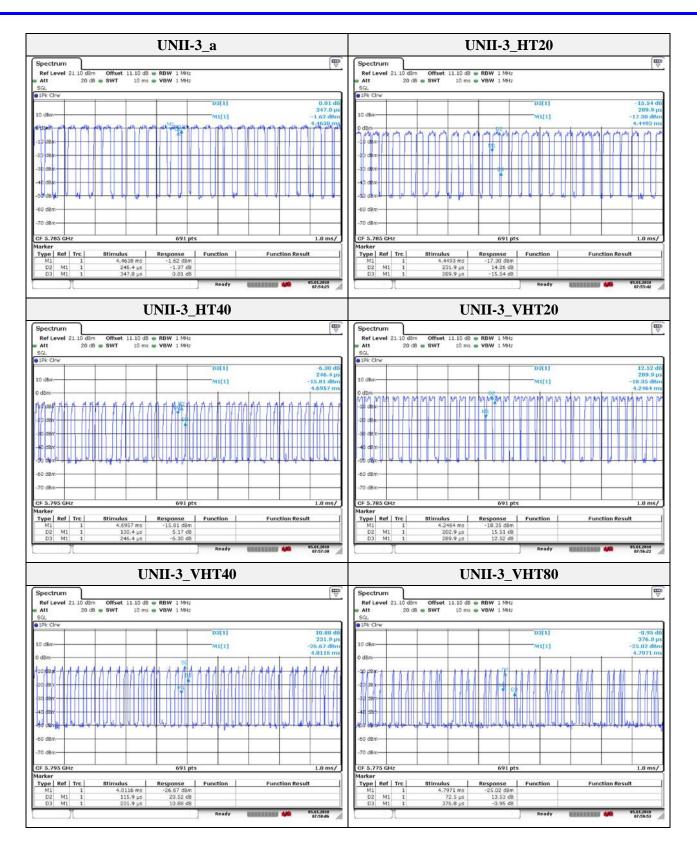
DCF(Duty cycle correction factor (dB)) = 10log(1/duty cycle)



3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0007 Page (81) of (220)

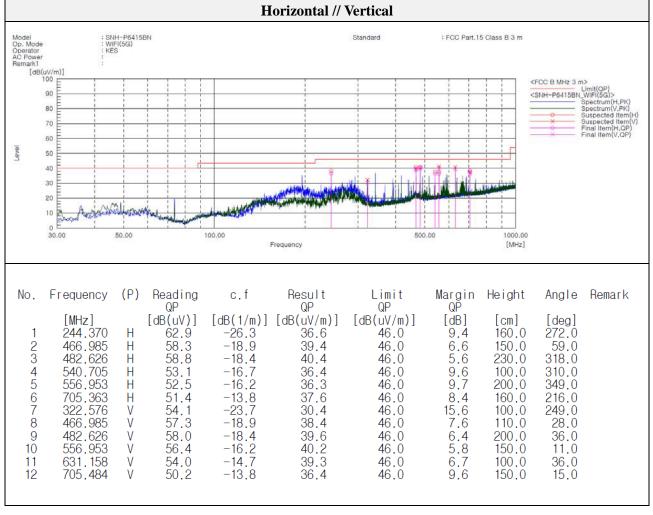


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0007 Page (82) of (220)



3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0007 Page (84) of (220)


Test results	(Below 30 M	z) – Worst ca	ase				
Mode:		UNII-2C					
Distance of	measurement:	3 meter					
Channel:		120					
Frequency	Level	Ant. Pol.	CF	$\mathbf{F}_{\mathbf{d}}$	Field strength	Limit	Margin
(MHz)	(dBµN)	(H/V)	(dB)	(dB)	$(dB\mu N/m)$	(dBµV/m)	(dB)

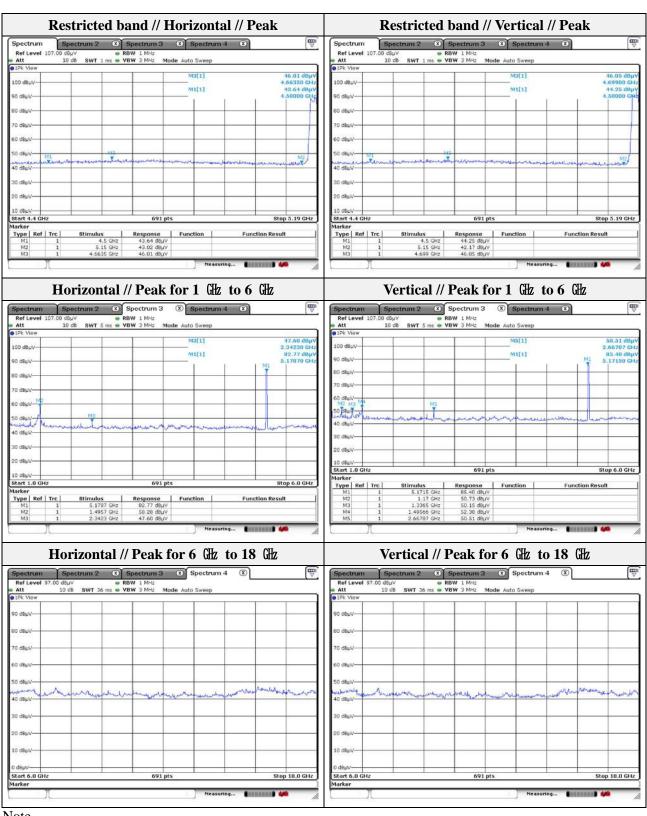
No spurious emissions were detected within 20 dB of the limit

	Horizontal		Vertical					
Spectrum Spectrum 2								
RefLevel 57.00 d8µ∨ ■ Att 0 d8 SWT :	RBW (CISPR) 200 Hz SA ms • VBW 3 kHz Mode Auto FFT	Solice Solice	Ref Level 57.00 d8µV Att 0 d8 SWT 13.4	RBW (CISPR) 200 Hz ms VBW 3 kHz Mode Auto				
IPk Max			91Pk Max					
50 dBµV			50 dBµV					
40 dBµV			40 dBµV					
30 dBµV			30 d8µV					
20 dBµV			20 dBµV					
10 dBµV			10 dBµV					
0 dBµV			0 dBuV-					
-10 deur	to compliant and have more thank	a destance in the second destance	-10 deur	with manager taken an	monumation			
Constant of the second s								
-20 dBµV			-20 dBµV					
-30 dBµV-			+30 dBµV					
-40 dBµV- Start 9.0 kHz	691 pts	Stop 150.0 kHz	-40 dBµV	691 pts	Stop 150.0 kHz			
			Spectrum Spectrum 2 Ref Level 67.00 dBµV Att 0 dB SWT 2.1 m	RBW (CISPR) 9 kHz RBW (CISPR) 9 kHz Second State Stat	T			
• 1Pk Max			1Pk Max					
60 dBµV			60 dBµV					
50 dBµV			50 dBµV					
40 dBµV			40 d8µV					
30 dBµV			30 dBµV					
20 dBµV-			20 dBµV-					
10 dBuV			410 dBµV					
o department water marchen	personal destrong and an and an and an and a second and a s	war and man produced in	Manufacture and a second	and a second and the second	a maisen by water much			
-10 dBµV			-10 dBµV					
-20 dBµV			-20 dBµV					
-30 dBu/V			-30 dBuV					
Start 150.0 kHz	691 pts	Stop 30.0 MHz	Start 150.0 kHz	691 pts	Stop 30 0 MHz			
Start 150.0 kHz	691 pts Neasuring	Stop 30.0 MHz	Start 150.0 kHz	691 pts Neasu	Stop 30.0 MHz			

Test results (Below 1 000 Mz) – Worst case			
Mode:	UNII-2C		
Distance of measurement:	3 meter		
Channel:	120		
·	Uorizont		

Test results (Above 1 000 Mz)

Mode:	UNII-1
Distance of measurement:	3 meter
Channel:	36

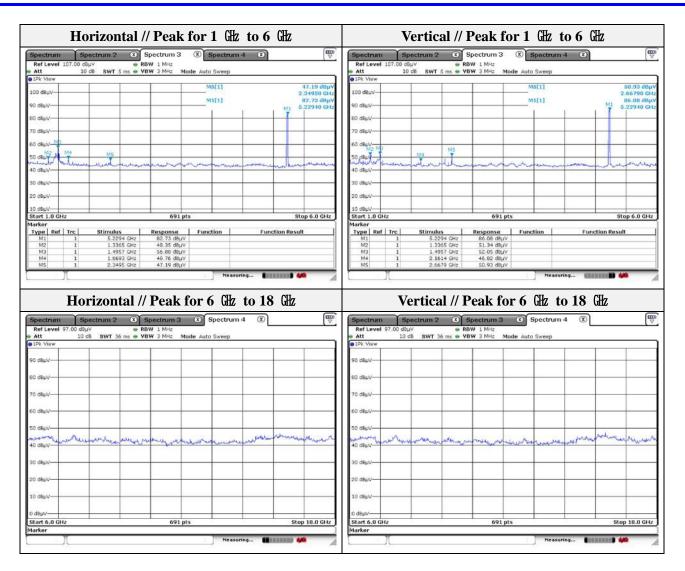

- Spurio	us							
Frequency (MHz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 495.70	58.28	Peak	Н	-6.00	-	52.28	74.00	21.72
2 342.30	47.60	Peak	Н	-0.31	-	47.29	74.00	26.71
1 170.00	50.73	Peak	V	-8.05	-	42.68	74.00	31.32
1 336.50	50.15	Peak	V	-6.98	-	43.17	74.00	30.83
1 495.66	52.38	Peak	V	-6.00	-	46.38	74.00	27.62
2 667.87	50.51	Peak	V	0.60	-	51.11	74.00	22.89

Band edge

Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
4 663.50	46.01	Peak	Н	6.43	-	52.44	74.00	21.56
4 699.00	46.05	Peak	V	6.72	-	52.77	74.00	21.23

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Note.

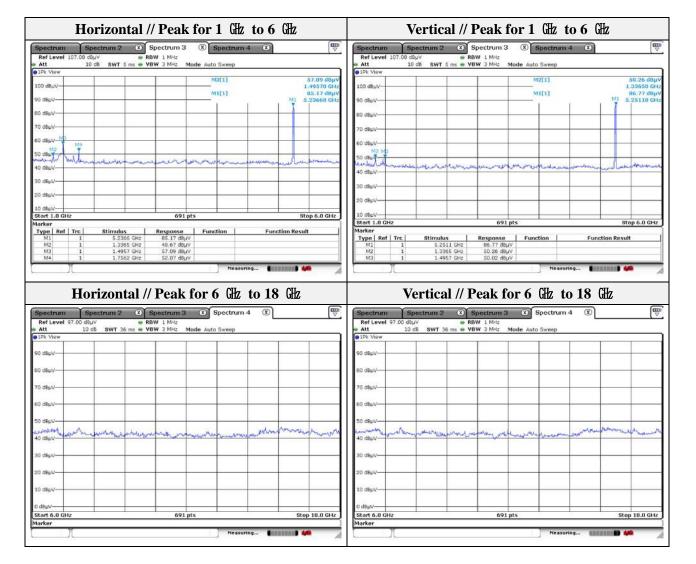

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:		UNII-1						
Distance of	f measurem	ent: 3 meter						
Channel:		44						
- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
1 336.50	48.35	Peak	Н	-6.98	-	41.37	74.00	32.63
1 495.70	56.88	Peak	Н	-6.00	-	50.88	74.00	23.12
1 669.30	48.76	Peak	Н	-4.32	-	44.44	74.00	29.56
2 349.50	47.19	Peak	Н	-0.30	-	46.89	74.00	27.11
1 336.50	51.34	Peak	V	-6.98	-	44.36	74.00	29.64
1 495.70	52.05	Peak	V	-6.00	-	46.05	74.00	27.95
2 161.40	46.82	Peak	V	-0.65	-	46.17	74.00	27.83
2 667.90	50.93	Peak	V	0.60	-	51.53	74.00	22.47

Note.

1. No spurious emission were detected above 6 GHz.


Mode:		UNII-1						
Distance o	Distance of measurement: 3 me							
Channel:		48						
- Spurio	us							
Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
1 336.50	48.67	Peak	Н	-6.98	-	41.69	74.00	32.31
1 495.70	57.09	Peak	Н	-6.00	-	51.09	74.00	22.91
1 756.20	52.07	Peak	Н	-3.50	-	48.57	74.00	25.43
1 336.50	50.26	Peak	V	-6.98	-	43.28	74.00	30.72
1 495.70	50.02	Peak	V	-6.00	-	44.02	74.00	29.98

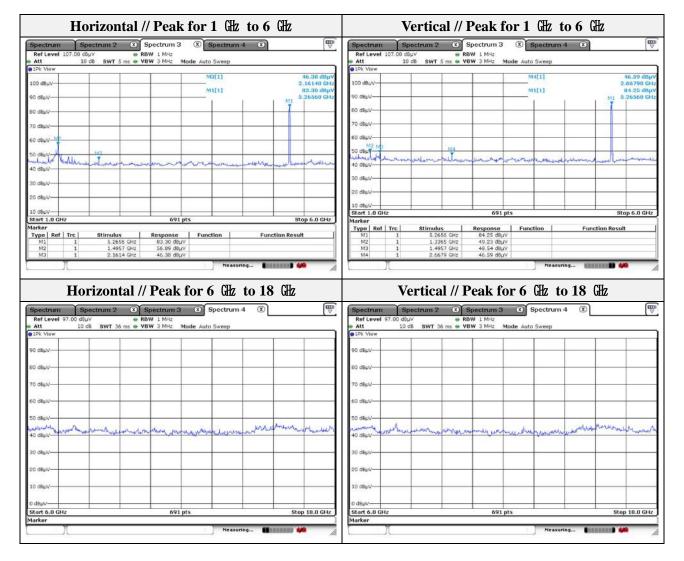
KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil,

Test report No.: KES-RF-18T0007 Page (92) of (220)

Note.

1. No spurious emission were detected above 6 GHz.

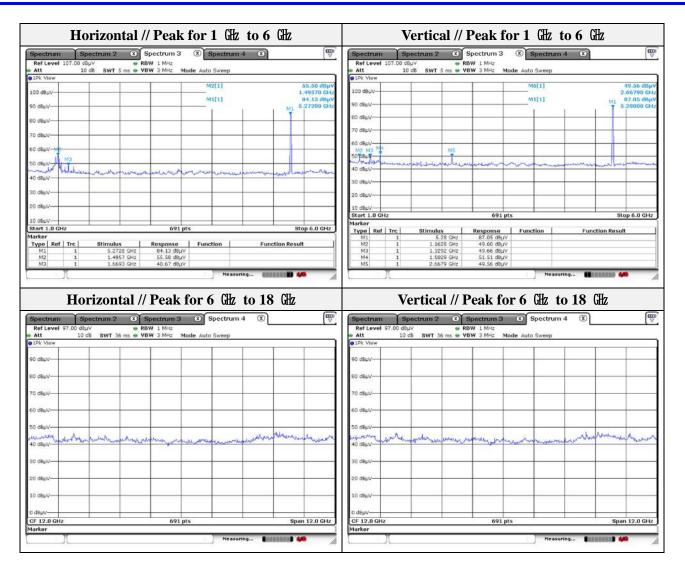
Test report No.: KES-RF-18T0007 Page (93) of (220)


Mode:	e: UNII-2A							
Distance o	Distance of measurement: 3 meter							
Channel:		52						
- Spurio	us							
Frequency (MHz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 495.70	56.89	Peak	Н	-6.00	-	50.89	74.00	23.11
2 161.40	46.38	Peak	Н	-0.65	-	45.73	74.00	28.27
1 336.50	49.23	Peak	V	-6.98	-	42.25	74.00	31.75
1 495.70	48.54	Peak	V	-6.00	-	42.54	74.00	31.46
2 667.90	46.59	Peak	V	0.60	-	47.19	74.00	26.81

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil,

Test report No.: KES-RF-18T0007 Page (94) of (220)

Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr


Note.

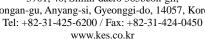
1. No spurious emission were detected above 6 GHz.

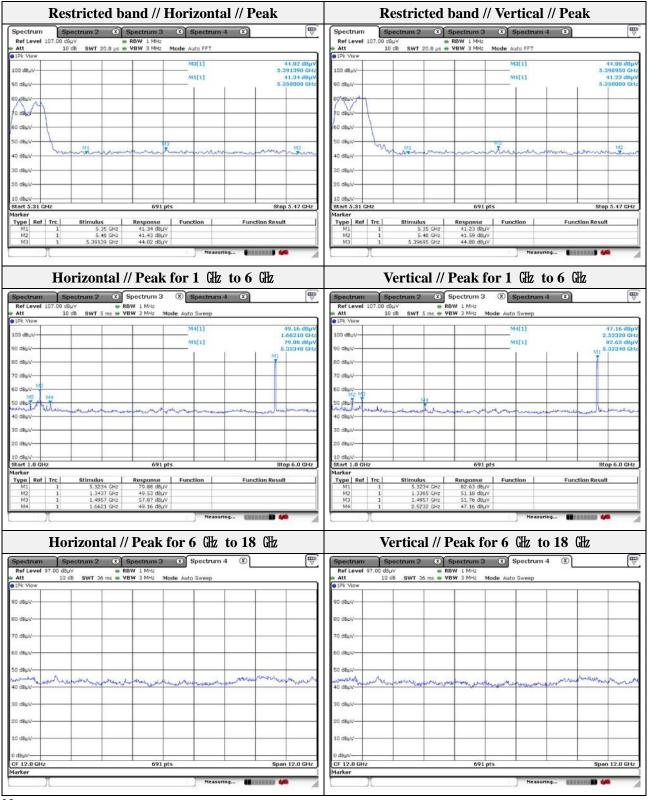
Mode:	: UNII-2A							
Distance o	f measurem	ent: 3 meter						
Channel:		56						
- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
1 495.70	55.58	Peak	Н	-6.00	-	49.58	74.00	24.42
1 669.30	48.67	Peak	Н	-4.32	-	44.35	74.00	29.65
1 162.80	49.60	Peak	V	-8.10	-	41.50	74.00	32.50
1 329.20	49.66	Peak	V	-7.03	-	42.63	74.00	31.37
1 502.90	51.51	Peak	V	-5.95	-	45.56	74.00	28.44
2 667.90	49.56	Peak	V	0.60	-	50.16	74.00	23.84

Note.

1. No spurious emission were detected above 6 GHz.

Mode:	UNII-2A	_
Distance of measurement:	3 meter	
Channel:	64	-
- Spurious		-


Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 343.70	49.53	Peak	Н	-6.94	-	42.59	74.00	31.41
1 495.70	57.87	Peak	Н	-6.00	-	51.87	74.00	22.13
1 662.10	49.16	Peak	Н	-4.39	-	44.77	74.00	29.23
1 336.50	51.18	Peak	V	-6.98	-	44.20	74.00	29.80
1 495.70	51.76	Peak	V	-6.00	-	45.76	74.00	28.24
2 523.20	47.16	Peak	V	0.07	-	47.23	74.00	26.77


- Band e	dge							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 391.39	44.02	Peak	Н	9.01	-	53.03	74.00	20.97
5 407.37	44.88	Peak	V	9.02	-	53.90	74.00	20.10

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea

Test report No .: KES-RF-18T0007 Page (98) of (220)

Note.

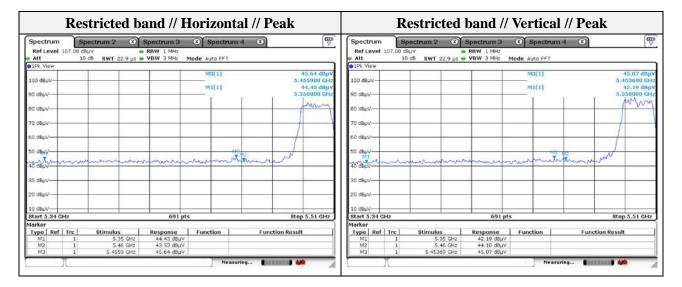
1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

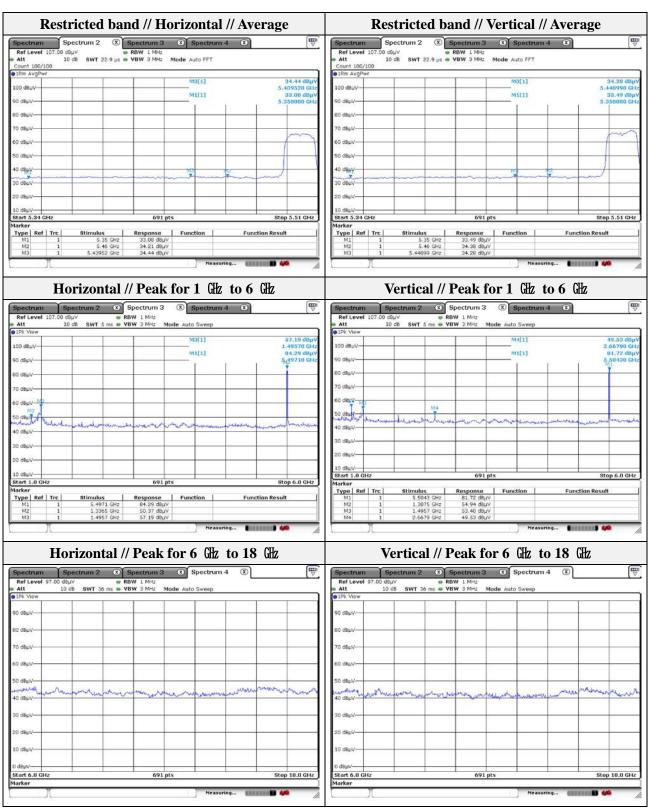
www.kes.co.kr

Test report No.: KES-RF-18T0007 Page (99) of (220)

Mode:	UNII-2C
100000.	


Distance of measurement:	3 meter
Channel:	100

- Spurious


Frequency (Mz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 336.50	50.37	Peak	Н	-6.98	-	43.39	74.00	30.61
1 495.70	57.19	Peak	Н	-6.00	-	51.19	74.00	22.81
1 307.50	54.94	Peak	V	-7.17	-	47.77	74.00	26.23
1 495.70	53.40	Peak	V	-6.00	-	47.40	74.00	26.60
2 667.90	49.53	Peak	V	0.60	-	50.13	74.00	23.87

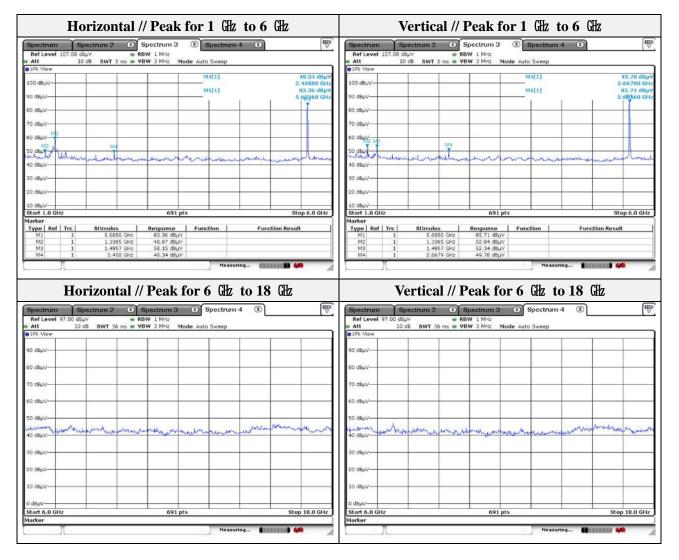
Band edge

Frequency (Mz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
5 455.90	45.64	Peak	Н	9.08	-	54.72	74.00	19.28
5 439.52	34.44	Avg	Н	9.06	0.92	44.42	54.00	9.58
5 453.69	45.07	Peak	V	9.08	-	54.15	74.00	19.85
5 460.00	34.38	Avg	V	-9.08	0.92	44.38	54.00	9.62

Note.

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.



Mode:		UNII-2C						
Distance of	f measurem	ent: 3 meter						
Channel:		120						
- Spurio	us	-						
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
1 336.50	48.87	Peak	Н	-6.98	-	41.89	74.00	32.11
1 495.70	58.15	Peak	Н	-6.00	-	52.15	74.00	21.85
2 458.00	48.34	Peak	Н	-0.09	-	48.25	74.00	25.75
1 336.50	52.84	Peak	V	-6.98	-	45.86	74.00	28.14
1 495.70	52.34	Peak	V	-6.00	-	46.34	74.00	27.66
2 667.90	49.78	Peak	V	0.60	-	50.38	74.00	23.62

Test report No .: KES-RF-18T0007 Page (102) of (220)

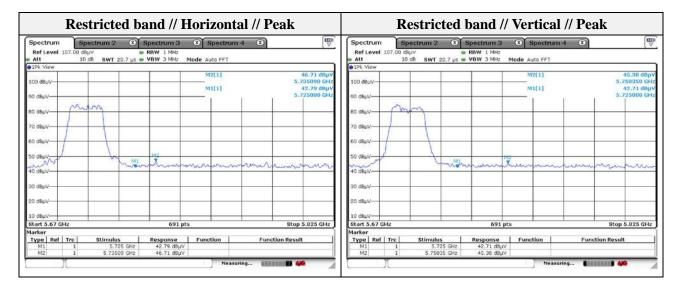
3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Note.

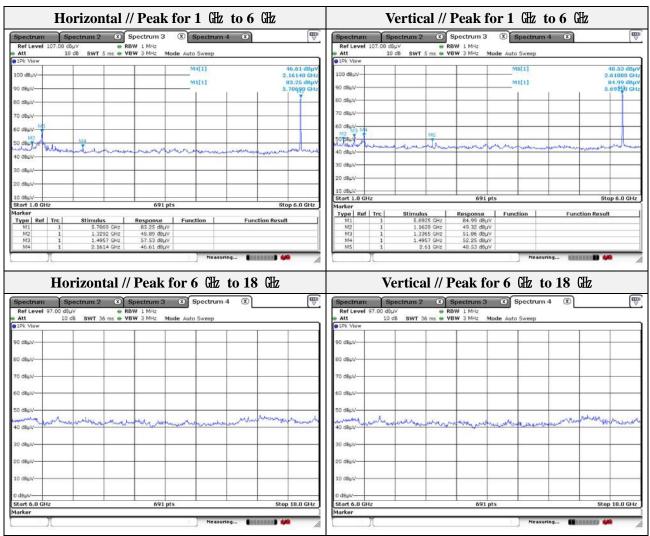
1. No spurious emission were detected above 6 GHz.

Test report No .: KES-RF-18T0007 Page (103) of (220)

Mode:	UNII-2C


Distance of measurement:	3 meter
Channel:	140

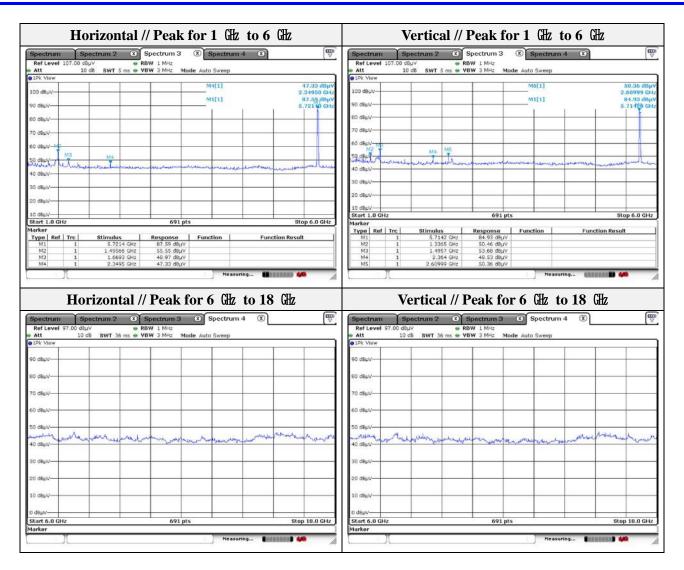
Channel: a


- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1 329.20	48.89	Peak	Н	-7.03	-	41.86	74.00	32.14
1 495.70	57.53	Peak	Н	-6.00	-	51.53	74.00	22.47
2 161.40	46.61	Peak	Н	-0.65	-	45.96	74.00	28.04
1 162.80	49.32	Peak	V	-8.10	-	41.22	74.00	32.78
1 336.50	51.86	Peak	V	-6.98	-	44.88	74.00	29.12
1 495.70	52.25	Peak	V	-6.00	-	46.25	74.00	27.75
2 610.00	48.53	Peak	V	0.38	-	48.91	74.00	25.09

Band edge

Danu C	uge							
Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
5 735.09	46.71	Peak	Н	10.96	-	57.67	68.20	10.53
5 750.35	45.38	Peak	V	11.09	-	56.47	68.20	11.73

Note.


1. No spurious emission were detected above 6 GHz.

Mode:	UNII-2C
Distance of measurement:	3 meter
Channel:	144

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 495.66	55.55	Peak	Н	-6.00	-	49.55	74.00	24.45
1 669.30	48.97	Peak	Н	-4.32	-	44.65	74.00	29.35
2 349.50	47.33	Peak	Н	-0.30	-	47.03	74.00	26.97
1 366.50	50.46	Peak	V	-6.79	-	43.67	74.00	30.33
1 495.70	53.68	Peak	V	-6.00	-	47.68	74.00	26.32
2 364.00	48.53	Peak	V	-0.27	-	48.26	74.00	25.74
2 609.99	50.36	Peak	V	0.38	-	50.74	74.00	23.26

Note.

1. No spurious emission were detected above 6 GHz.

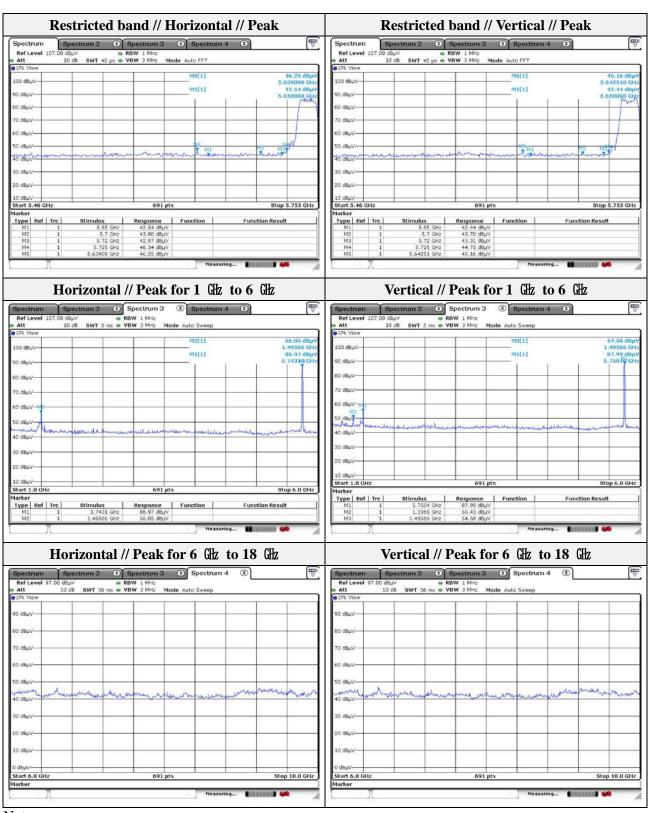
Test report No.: KES-RF-18T0007 Page (107) of (220)

Mode:	UNII-3
Distance of measurement:	3 meter

Channel:

149

Spurious


Frequency (MHz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 495.66	56.05	Peak	Н	-6.00	-	50.05	74.00	23.95
1 336.50	50.343	Peak	V	-6.98	-	43.45	74.00	30.55
1 495.66	54.58	Peak	V	-6.00	-	48.58	74.00	25.42

- Band edge	-	Band	edge
-------------	---	------	------

Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
5 725.00	46.34	Peak	Н	10.87	-	57.21	122.20	64.99
5 639.09	46.25	Peak	Н	10.16	-	56.41	68.20	11.79
5 725.00	44.75	Peak	V	10.87	-	55.62	122.20	66.58
5 642.51	45.16	Peak	V	10.18	_	55.34	68.20	12.86

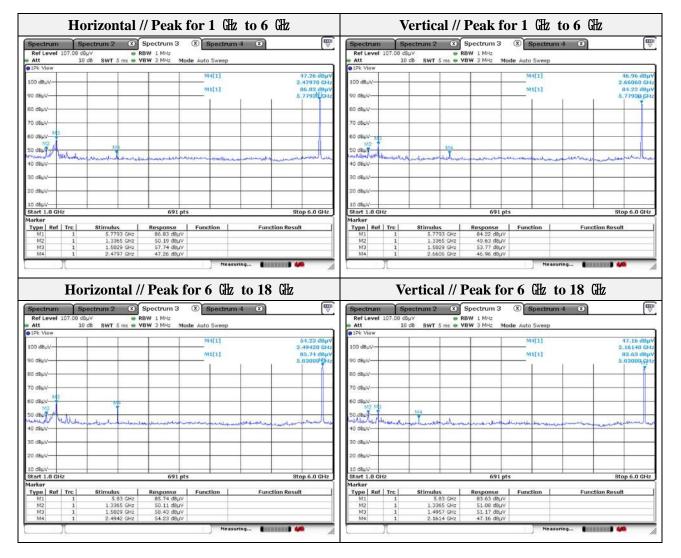
3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0007 Page (108) of (220)

Note.

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:	UNII-3
Distance of measurement:	3 meter
Channel:	157


- Spurio	us							
Frequency (MLz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 336.50	50.19	Peak	Н	-6.98	-	43.21	74.00	30.79
1 502.90	57.74	Peak	Н	-5.95	-	51.79	74.00	22.21
2 479.70	47.26	Peak	Н	-0.05	-	47.21	74.00	26.79
1 336.50	49.63	Peak	V	-6.98	-	42.65	74.00	31.35
1 502.90	53.77	Peak	V	-5.95	-	47.82	74.00	26.18
2 660.60	46.96	Peak	V	0.57	-	47.53	74.00	26.47

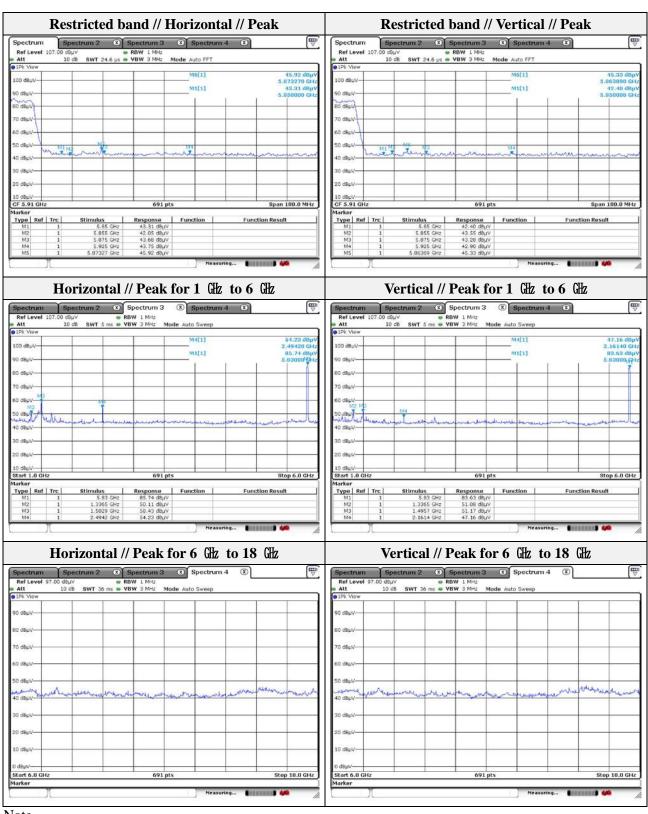
KES Co., Ltd.

Test report No .: KES-RF-18T0007 Page (110) of (220)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Note.

1. No spurious emission were detected above 6 GHz.


Mode:	UNII-3
Distance of measurement:	3 meter
Channel:	165

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 336.50	50.11	Peak	Н	-6.98	-	43.13	74.00	30.87
1 502.90	58.43	Peak	Н	-5.95	-	52.48	74.00	21.52
2 494.20	54.23	Peak	Н	-0.03	-	54.20	74.00	19.80
1 336.50	51.08	Peak	V	-6.98	-	44.10	74.00	29.90
1 495.70	51.17	Peak	V	-6.00	-	45.17	74.00	28.83
2 161.40	47.16	Peak	V	-0.65	-	46.51	74.00	27.49

- Band e	dge							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 850.00	43.31	Peak	Н	11.78	-	55.09	122.20	67.11
5 873.27	45.92	Peak	Н	11.90	-	57.82	105.68	47.86
5 850.00	42.40	Peak	V	11.78	-	54.18	122.20	68.02
5 863.89	45.33	Peak	V	11.85	-	57.18	108.34	51.16

www.kes.co.kr

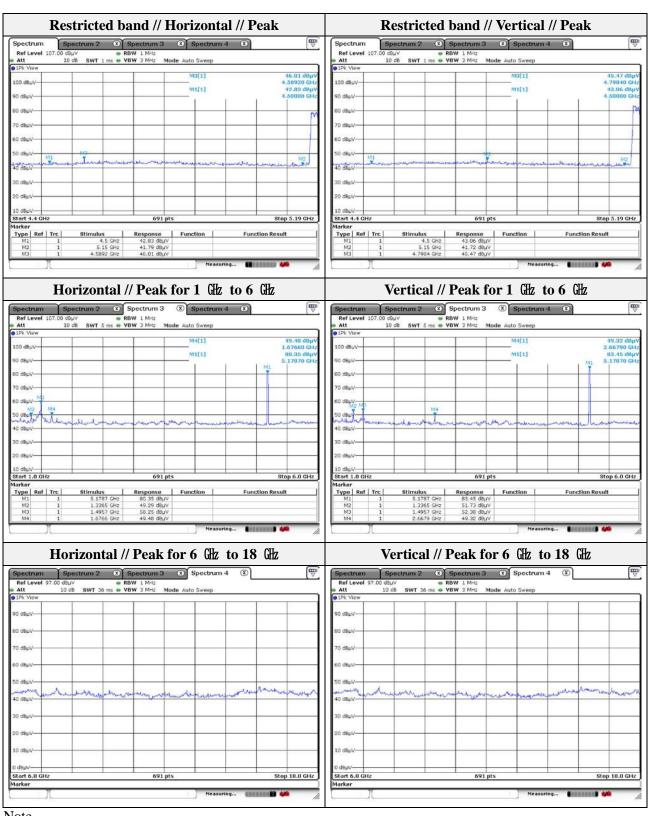
Note.

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:UNII-1(HT20)Distance of measurement:3 meterChannel:36

- Spurio	us							
Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 336.50	49.29	Peak	Н	-6.98	-	42.31	74.00	31.69
1 495.70	58.25	Peak	Н	-6.00	-	52.25	74.00	21.75
1 676.60	49.48	Peak	Н	-4.26	-	45.22	74.00	28.78
1 336.50	51.73	Peak	V	-6.98	-	44.75	74.00	29.25
1 495.70	52.38	Peak	V	-6.00	-	46.38	74.00	27.62
2 667.90	49.32	Peak	V	0.60	-	49.92	74.00	24.08


Band edge

- Danu e	Euge							
Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
4 589.20	46.01	Peak	Н	5.81	-	51.82	74.00	22.18
4 798.40	45.47	Peak	V	7.54	-	53.01	74.00	20.99

KES Co., Ltd.

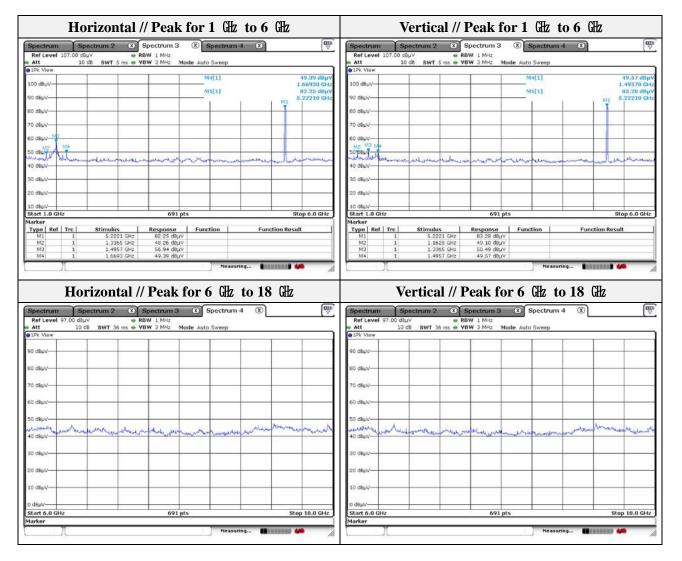
3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Note.

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

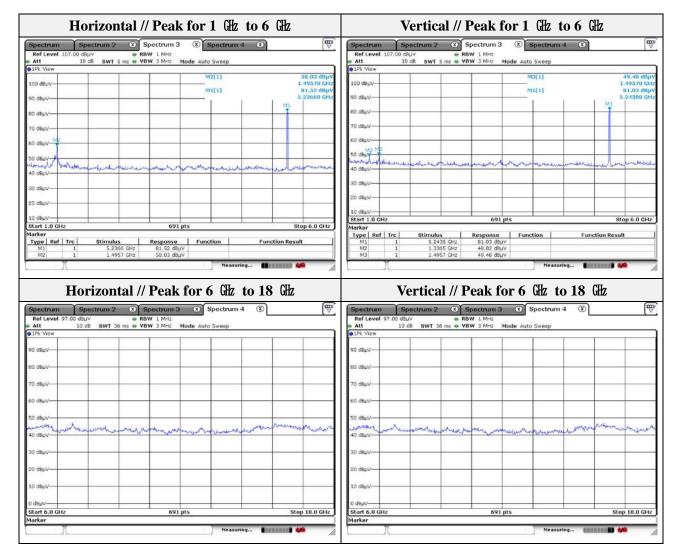
Mode:	UNII-1(HT20)
Distance of measurement:	3 meter
Channel:	44


- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 336.50	48.26	Peak	Н	-6.98	-	41.28	74.00	32.72
1 495.70	56.94	Peak	Н	-6.00	-	50.94	74.00	23.06
1 669.30	49.39	Peak	Н	-4.32	-	45.07	74.00	28.93
1 162.80	49.10	Peak	V	-8.10	-	41.00	74.00	33.00
1 336.50	50.49	Peak	V	-6.98	-	43.51	74.00	30.49
1 495.70	49.57	Peak	V	-6.00	-	43.57	74.00	30.43

KES Co., Ltd.

Test report No .: KES-RF-18T0007 Page (116) of (220)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr


Note.

1. No spurious emission were detected above 6 GHz.

Mode:	UNII-1(HT20)
Distance of measurement:	3 meter
Channel:	48

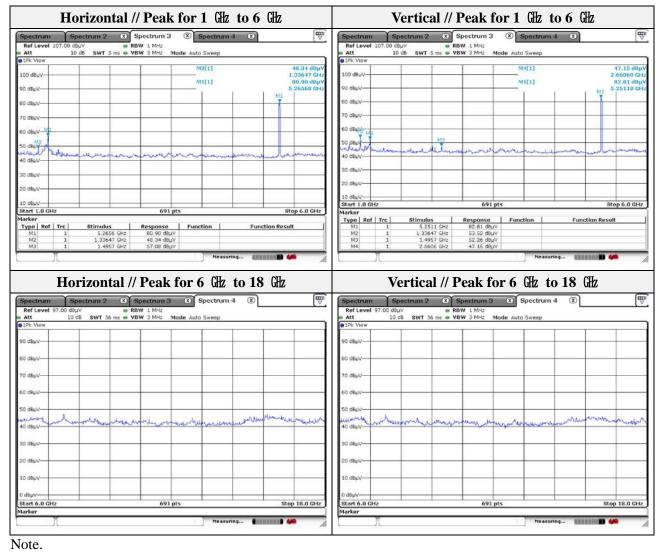
- Spurio	us							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 495.70	58.03	Peak	Н	-6.00	-	52.03	74.00	21.97
1 336.50	48.82	Peak	V	-6.98	-	41.84	74.00	32.16
1 495.70	49.48	Peak	V	-6.00	-	43.48	74.00	30.52

Note.

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Tel: +82-31-425-6200 / Fax: +82-31-424-0450


www.kes.co.kr

Mode:	UNII-2A(HT20)
Distance of measurement:	3 meter

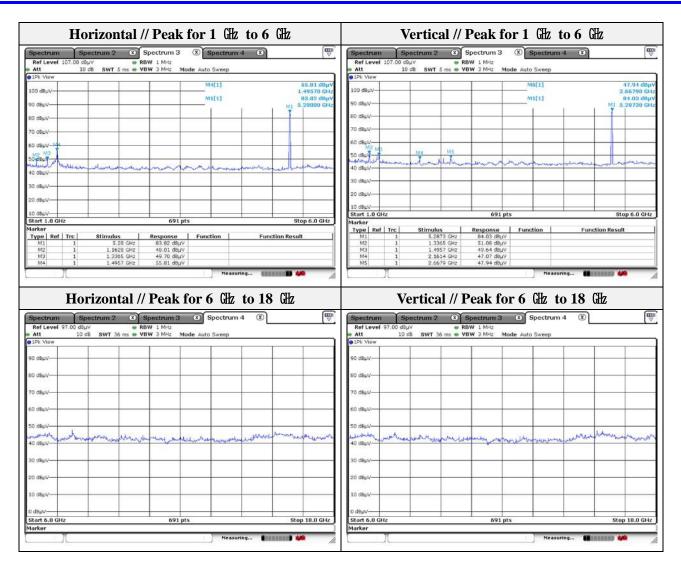
Channel:

52

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 336.47	48.34	Peak	Н	-6.98	-	41.36	74.00	32.64
1 495.70	57.08	Peak	Н	-6.00	-	51.08	74.00	22.92
1 336.47	53.52	Peak	V	-6.98	-	46.54	74.00	27.46
1 495.70	52.26	Peak	V	-6.00	-	46.26	74.00	27.74
2 660.60	47.15	Peak	V	0.57	-	47.72	74.00	26.28

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.


Mode:	UNII-2A(HT20)
Distance of measurement:	3 meter

Channel	:
Cinamie	•

56

- Spurio	us							
Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 162.80	48.01	Peak	Н	-8.10	-	39.91	74.00	34.09
1 336.50	49.70	Peak	Н	-6.98	-	42.72	74.00	31.28
1 495.70	55.81	Peak	Н	-6.00	-	49.81	74.00	24.19
1 336.50	51.08	Peak	V	-6.98	-	44.10	74.00	29.90
1 495.70	49.64	Peak	V	-6.00	-	43.64	74.00	30.36
2 161.40	47.07	Peak	V	-0.65	-	46.42	74.00	27.58
2 667.90	47.94	Peak	V	0.60	-	48.54	74.00	25.46

Note.

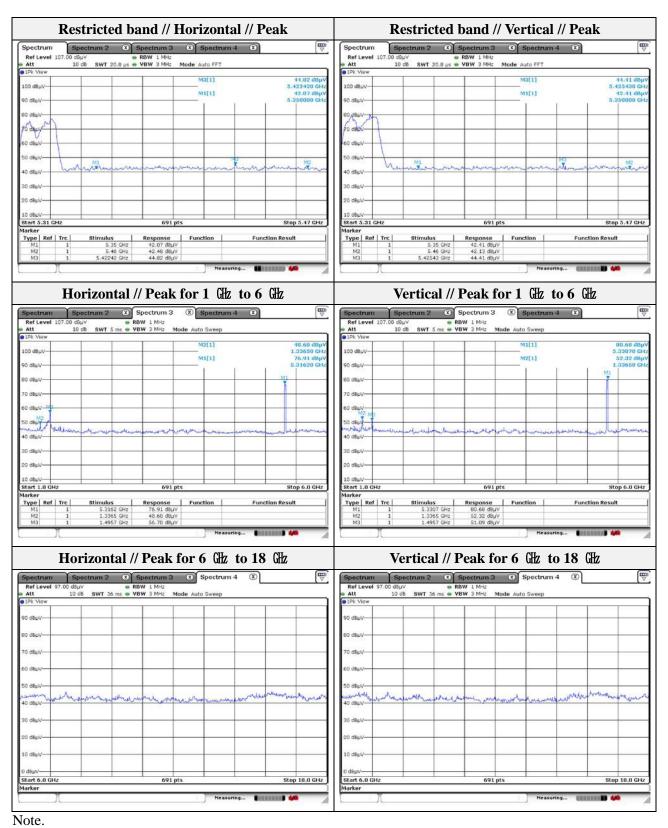
1. No spurious emission were detected above 6 GHz.

Mode:UNII-2A(HT20)Distance of measurement:3 meter

Channel:

64

- Spurio	us							
Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 336.50	48.60	Peak	Н	-6.98	-	41.62	74.00	32.38
1 495.70	56.70	Peak	Н	-6.00	-	50.70	74.00	23.30
1 336.50	52.32	Peak	V	-6.98	-	45.34	74.00	28.66
1 495.70	51.09	Peak	V	-6.00	-	45.09	74.00	28.91


Band edge

Frequency (MLz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
5 422.42	44.82	Peak	Н	9.04	-	53.86	74.00	20.14
5 425.43	44.41	Peak	V	9.04	-	53.45	74.00	20.55

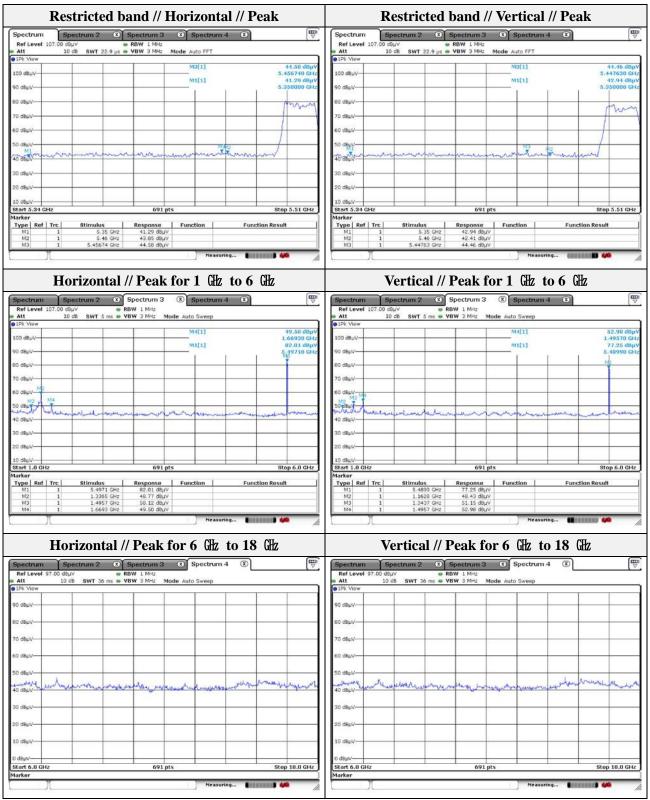
Test report No.: KES-RF-18T0007 Page (122) of (220)

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:	UNII-2C(HT20)
Distance of measurement:	3 meter
Channel:	100

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 336.50	48.77	Peak	Н	-6.98	-	41.79	74.00	32.21
1 495.70	58.12	Peak	Н	-6.00	-	52.12	74.00	21.88
1 669.30	49.50	Peak	Н	-4.32	-	45.18	74.00	28.82
1 162.80	48.43	Peak	V	-8.10	-	40.33	74.00	33.67
1 343.70	51.15	Peak	V	-6.94	-	44.21	74.00	29.79
1 495.70	52.98	Peak	V	-6.00	-	46.98	74.00	27.02


- Band e	edge							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
5 456.74	44.58	Peak	Н	9.08	-	53.66	74.00	20.34
5 447.63	44.46	Peak	V	9.07	-	53.53	74.00	20.47

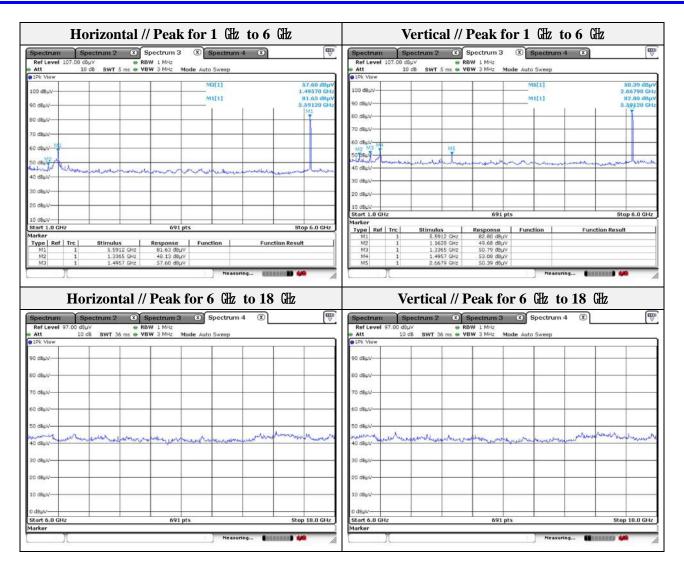
KES Co., Ltd.

Test report No .: KES-RF-18T0007 Page (124) of (220)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Note.

1. No spurious emission were detected above 6 GHz.


2. Average test would be performed if the peak result were greater than the average limit.

Mode:	UNII-2C(HT20)
Distance of measurement:	3 meter
Channel:	120

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 336.50	48.13	Peak	Н	-6.98	-	41.15	74.00	32.85
1 495.70	57.60	Peak	Н	-6.00	-	51.60	74.00	22.40
1 162.80	49.68	Peak	V	-8.10	-	41.58	74.00	32.42
1 336.50	50.79	Peak	V	-6.98	-	43.81	74.00	30.19
1 495.70	53.08	Peak	V	-6.00	-	47.08	74.00	26.92
2 667.90	50.39	Peak	V	0.60	-	50.99	74.00	23.01

Note.

1. No spurious emission were detected above 6 GHz.

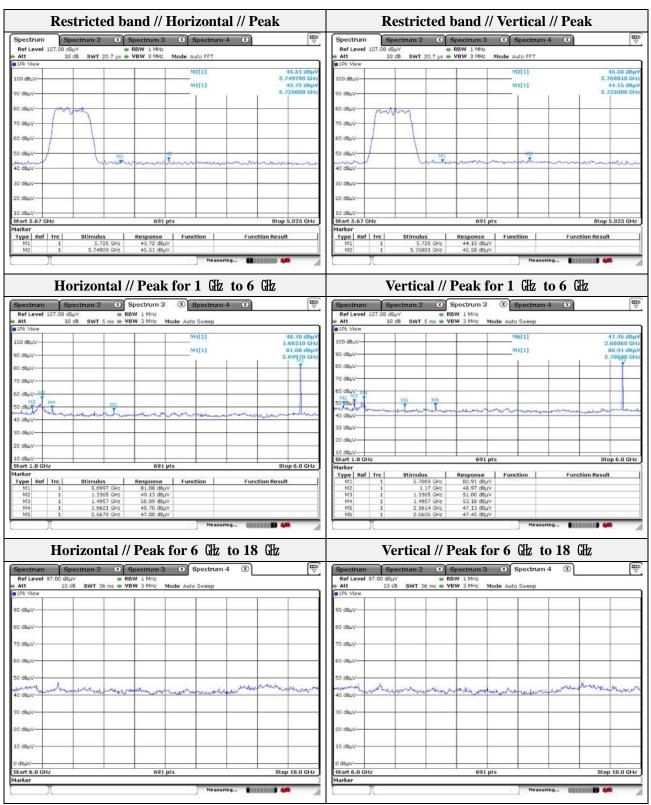
Mode:	UNII-2C(HT20)
Distance of measurement:	3 meter

Channel	•
Channel	•

:	3 meter	
	140	

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 336.50	49.13	Peak	Н	-6.98	-	42.15	74.00	31.85
1 495.70	56.09	Peak	Н	-6.00	-	50.09	74.00	23.91
1 662.10	48.70	Peak	Н	-4.39	-	44.31	74.00	29.69
2 667.90	47.08	Peak	Н	0.60	-	47.68	74.00	26.32
1 170.00	48.97	Peak	V	-8.05	-	40.92	74.00	33.08
1 336.50	51.00	Peak	V	-6.98	-	44.02	74.00	29.98
1 495.70	53.18	Peak	V	-6.00	-	47.18	74.00	26.82
2 161.40	47.13	Peak	V	-0.65	-	46.48	74.00	27.52
2 660.60	47.45	Peak	V	0.57	-	48.02	74.00	25.98

Band edge


_

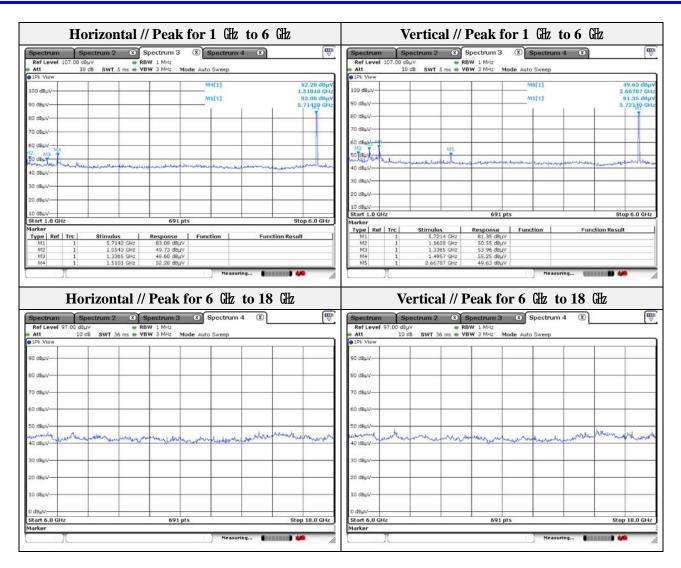
Dunu	uge							
Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 749.29	45.51	Peak	Н	11.08	-	56.59	68.20	11.61
5 768.81	45.58	Peak	V	11.24	-	56.82	68.20	11.38

www.kes.co.kr

Test report No.: KES-RF-18T0007 Page (128) of (220)

Note.

1. No spurious emission were detected above 6 GHz.


2. Average test would be performed if the peak result were greater than the average limit.

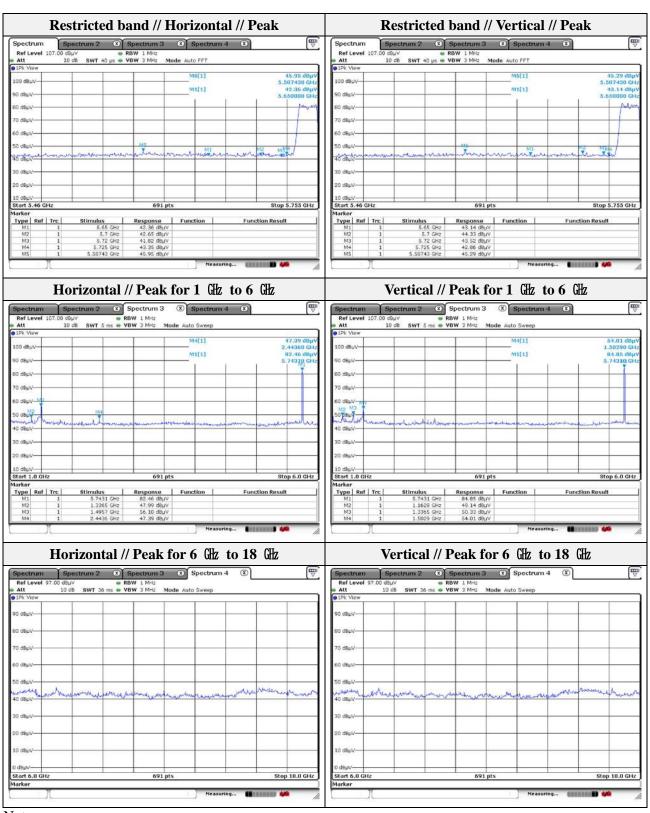
Mode:	UNII-2C(HT20)
Distance of measurement:	3 meter
Channel:	144

- Spurio	us							
Frequency (MLz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 054.30	49.73	Peak	Н	-8.79	-	40.94	74.00	33.06
1 336.50	48.60	Peak	Н	-6.98	-	41.62	74.00	32.38
1 510.10	52.28	Peak	Н	-5.88	-	46.40	74.00	27.60
1 162.80	50.55	Peak	V	-8.10	-	42.45	74.00	31.55
1 336.50	53.96	Peak	V	-6.98	-	46.98	74.00	27.02
1 495.70	55.25	Peak	V	-6.00	-	49.25	74.00	24.75
2 667.87	49.63	Peak	V	0.60	-	50.23	74.00	23.77

Note.

1. No spurious emission were detected above 6 GHz.

Mode:	UNII-3(HT20)
Distance of measurement:	3 meter
Channel:	149


- Spurio	us							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 336.50	47.99	Peak	Н	-6.98	-	41.01	74.00	32.99
1 495.70	56.10	Peak	Н	-6.00	-	50.10	74.00	23.90
2 443.60	47.39	Peak	Н	-0.12	-	47.27	74.00	26.73
1 162.80	49.14	Peak	V	-8.10	-	41.04	74.00	32.96
1 336.50	50.33	Peak	V	-6.9	-	43.35	74.00	30.65
1 502.90	54.01	Peak	V	-5.95	-	48.06	74.00	25.94

Frequency (Mz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
5 725.00	43.35	Peak	Н	10.87	-	54.22	122.20	67.98
5 587.43	45.95	Peak	Н	9.74	-	55.69	68.20	12.51
5 725.00	42.86	Peak	V	10.87	-	53.73	122.20	68.49
5 587.43	45.29	Peak	V	9.74	-	55.03	68.20	13.17

KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0007 Page (132) of (220)

Note.

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.



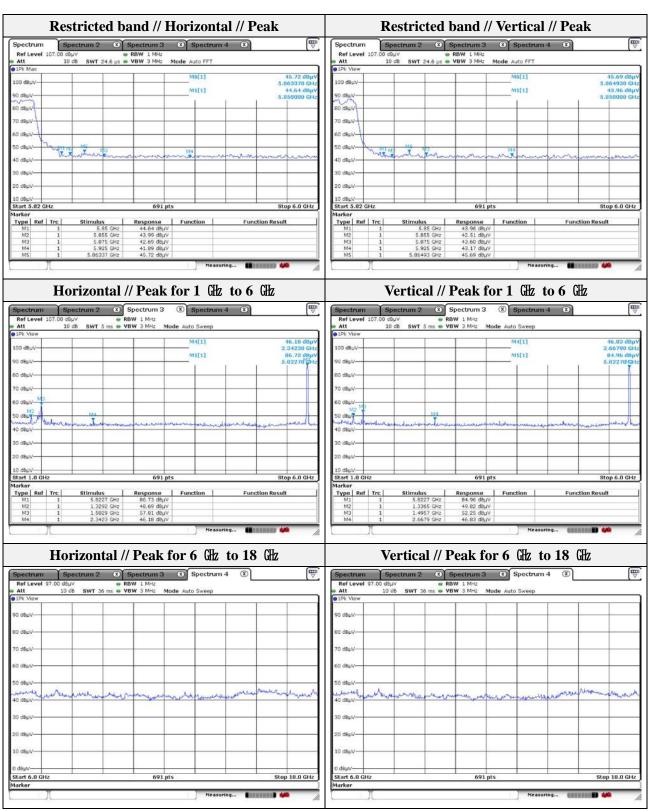
Mode:	UNII-3(HT20)
Distance of measurement:	3 meter
Channel:	157

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 336.50	50.26	Peak	Н	-6.98	-	43.28	74.00	30.72
1 495.70	58.70	Peak	Н	-6.00	-	52.70	74.00	21.30
1 669.30	48.92	Peak	Н	-4.32	-	44.60	74.00	29.40
1 162.80	48.78	Peak	V	-8.10	-	40.68	74.00	33.32
1 336.50	51.21	Peak	V	-6.98	-	44.23	74.00	29.77
1 695.70	52.55	Peak	V	-4.07	-	48.48	74.00	25.52
2 667.90	48.54	Peak	V	0.60	-	49.14	74.00	24.86

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Note.

1. No spurious emission were detected above 6 GHz.


Mode:	UNII-3(HT20)
Distance of measurement:	3 meter
Channel:	165

- Spurio	us							
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 329.20	48.69	Peak	Н	-7.03	-	41.66	74.00	32.34
1 502.90	57.81	Peak	Н	-5.95	-	51.86	74.00	22.14
2 342.30	46.18	Peak	Н	-0.31	-	45.87	74.00	28.13
1 336.50	49.82	Peak	V	-6.98	-	42.84	74.00	31.16
1 495.70	52.25	Peak	V	-6.00	-	46.25	74.00	27.75
2 667.90	46.83	Peak	V	0.60	-	47.43	74.00	26.57

- Band e	dge							
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 850.00	44.64	Peak	Н	11.78	-	56.42	122.20	68.78
5 863.37	45.72	Peak	Н	11.85	-	57.57	108.46	50.89
5 850.00	43.96	Peak	V	11.78	-	55.74	122.20	66.46
5 864.93	45.69	Peak	V	11.86	-	57.55	108.02	50.47

Test report No.: KES-RF-18T0007 Page (136) of (220)

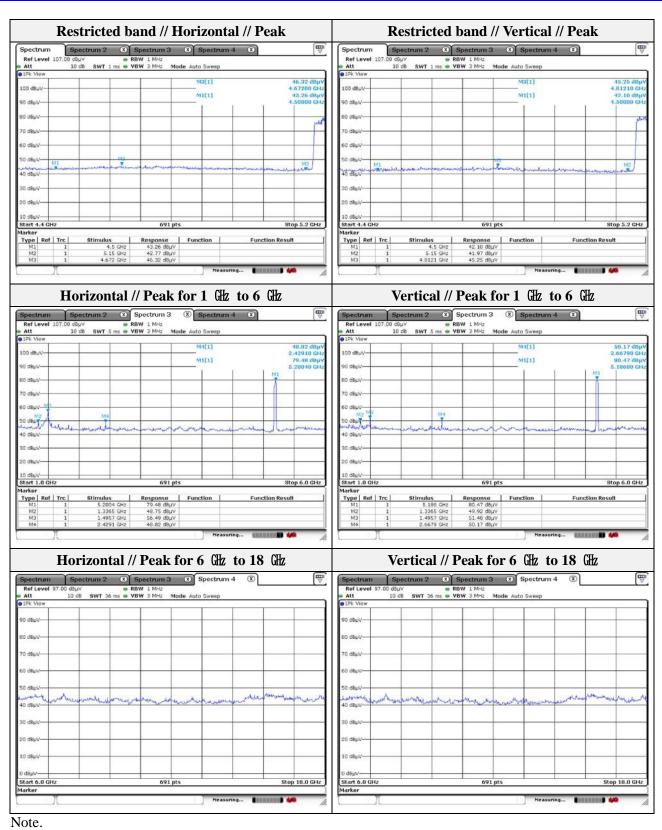
Note.

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:UNII-1(HT40)Distance of measurement:3 meterChannel:38

- Spurio	us							
Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1 336.50	48.75	Peak	Н	-6.98	-	41.77	74.00	32.23
1 495.70	56.49	Peak	Н	-6.00	-	50.49	74.00	23.51
2 429.10	48.82	Peak	Н	-0.15	-	48.67	74.00	25.33
1 336.50	49.92	Peak	V	-6.98	-	42.94	74.00	31.06
1 495.70	51.48	Peak	V	-6.00	-	45.48	74.00	28.52
2 667.90	50.17	Peak	V	0.60	-	50.77	74.00	23.23


Band edge

- Danu C	uge							
Frequency (Mtz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
4 672.00	46.32	Peak	Н	6.50	-	52.82	74.00	21.18
4 812.10	45.25	Peak	V	7.65	-	52.90	74.00	21.10

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil,

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

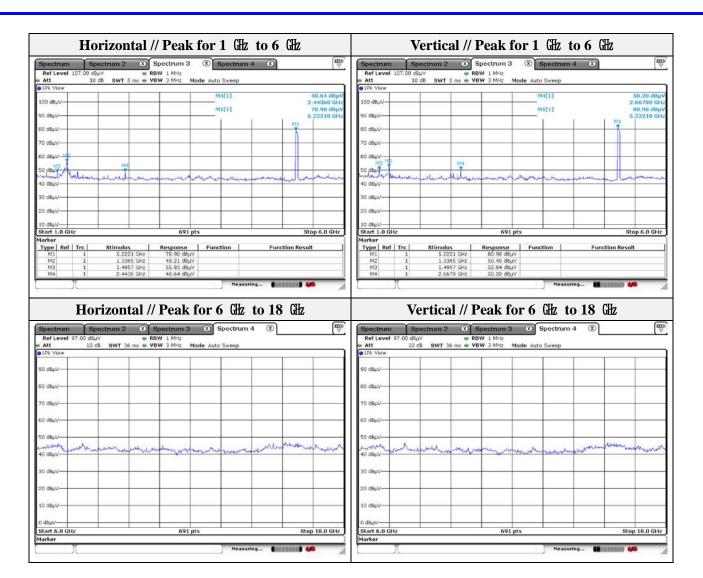
1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode: UNII-1(HT40) 3 meter Distance of measurement: Ch 46

annel:		
iumer.		

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 336.50	48.21	Peak	Н	-6.98	-	41.23	74.00	32.77
1 495.70	55.93	Peak	Н	-6.00	-	49.93	74.00	24.07
2 443.60	48.64	Peak	Н	-0.12	-	48.52	74.00	25.48
1 336.50	50.40	Peak	V	-6.98	-	43.42	74.00	30.58
1 495.70	52.04	Peak	V	-6.00	-	46.04	74.00	27.96
2 667.90	50.20	Peak	V	0.60	-	50.80	74.00	23.20

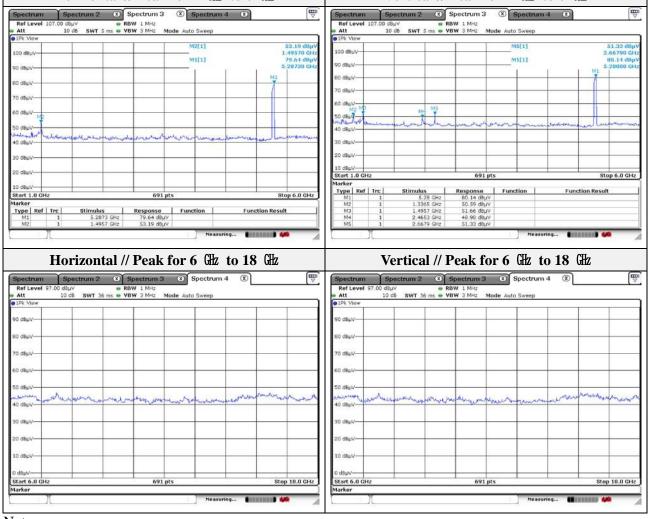


KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

www.kes.co.kr

Test report No.: KES-RF-18T0007 Page (140) of (220)


Note.

1. No spurious emission were detected above 6 GHz.

Margin (dB) 26.81 30.39 28.34 25.18 22.07

Mode:		UNII-2.	A(HT40)					
Distance of	f measurem	ent: 3 meter						
Channel:		54						
- Spurio	us							
Frequency (MHz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	
1 495.70	53.19	Peak	Н	-6.00	-	47.19	74.00	
1 336.50	50.59	Peak	V	-6.98	-	43.61	74.00	
1 495.70	51.66	Peak	V	-6.00	-	45.66	74.00	
2 465.30	48.90	Peak	V	-0.08	-	48.82	74.00	
2 667.90	51.33	Peak	V	0.60	-	51.93	74.00	
H	Horizontal // Peak for 1 GHz to 6 GHz Vertical // Peak for 1 GHz to 6 GHz							
Spectrum	Spectrum 2 C Spectrum 3 C Spectrum 4 C Spectrum 2 Spectrum 3 Spectrum 4 C Spectrum 2 Spectrum 3 Spectrum 4 C Spectrum 4 C Spectrum 4 C Spectrum 5 Spectrum							

Note.

1. No spurious emission were detected above 6 GHz.

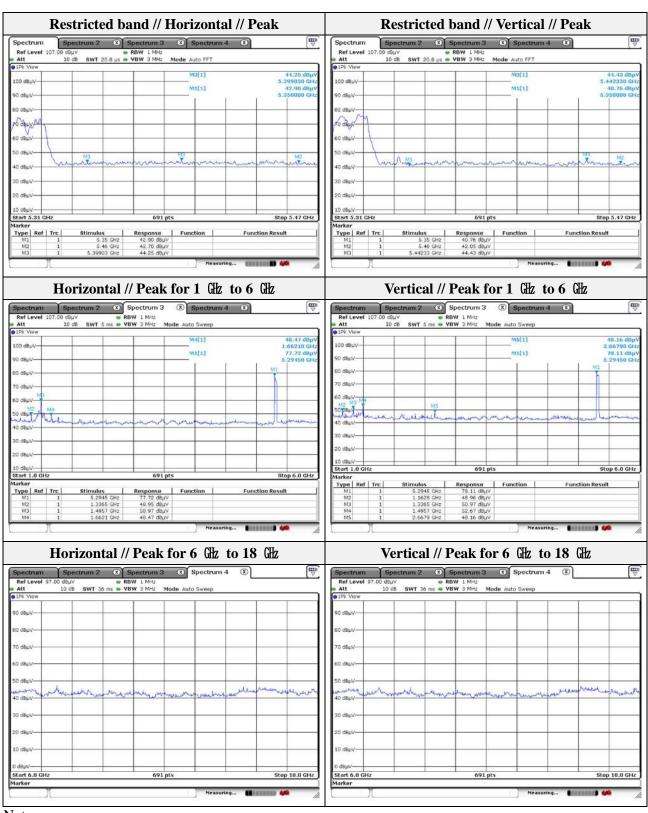
2. Average test would be performed if the peak result were greater than the average limit.

Mode:UNII-2A(HT40)Distance of measurement:3 meter

Channel:

62

- Spurio	us							
Frequency (MHz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 336.50	48.95	Peak	Н	-6.98	-	41.97	74.00	32.03
1 495.70	58.97	Peak	Н	-6.00	-	52.97	74.00	21.03
1 662.10	48.47	Peak	Н	-4.39	-	44.08	74.00	29.92
1 162.80	48.96	Peak	V	-8.10	-	40.86	74.00	33.14
1 336.50	50.97	Peak	V	-6.98	-	43.99	74.00	30.01
1 495.70	52.67	Peak	V	-6.00	-	46.67	74.00	27.33
2 667.90	48.16	Peak	V	0.60	-	48.76	74.00	25.24


Band edge

_

Frequency (Mz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
5 399.03	44.25	Peak	Н	9.01	-	53.26	74.00	20.74
5 442.33	44.43	Peak	V	9.06	-	53.49	74.00	20.51

www.kes.co.kr

Note.

1. No spurious emission were detected above 6 GHz.

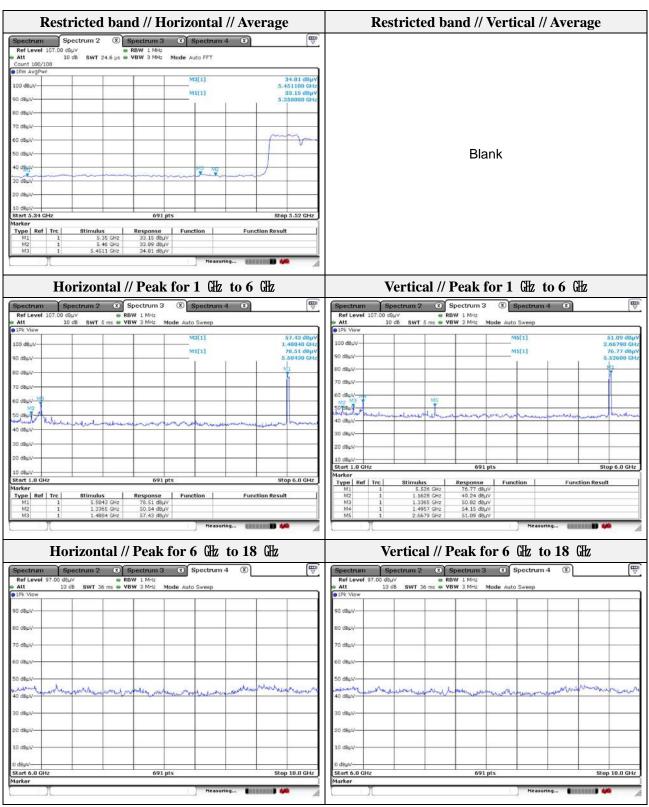
2. Average test would be performed if the peak result were greater than the average limit.

Mode:	UNII-2C(HT40)
Distance of measurement:	3 meter

Channel:

102

Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
50.54	Peak	Н	-6.98	-	43.56	74.00	30.44
57.43	Peak	Н	-6.04	-	51.39	74.00	22.61
49.24	Peak	V	-8.10	-	41.14	74.00	32.86
50.82	Peak	V	-6.98	-	43.84	74.00	30.16
54.15	Peak	V	-6.00	-	48.15	74.00	25.85
51.09	Peak	V	0.60	-	51.69	74.00	22.31
	(dB,AV) 50.54 57.43 49.24 50.82 54.15	(dBµN) Detect mode 50.54 Peak 57.43 Peak 49.24 Peak 50.82 Peak 54.15 Peak	(dBµN)Detect modeHIII H/V)50.54PeakH57.43PeakH49.24PeakV50.82PeakV54.15PeakV	(dB _µ N) Detect mode (H/V) (dB) 50.54 Peak H -6.98 57.43 Peak H -6.04 49.24 Peak V -8.10 50.82 Peak V -6.98 54.15 Peak V -6.00	(dB,AV) Detect mode (H/V) (dB) (dB) 50.54 Peak H -6.98 - 57.43 Peak H -6.04 - 49.24 Peak V -8.10 - 50.82 Peak V -6.98 - 54.15 Peak V -6.00 -	Image: Constraint of the sector mode Image: Constraint of the	Image: Market Mode Image:


Band of	edge
---------	------

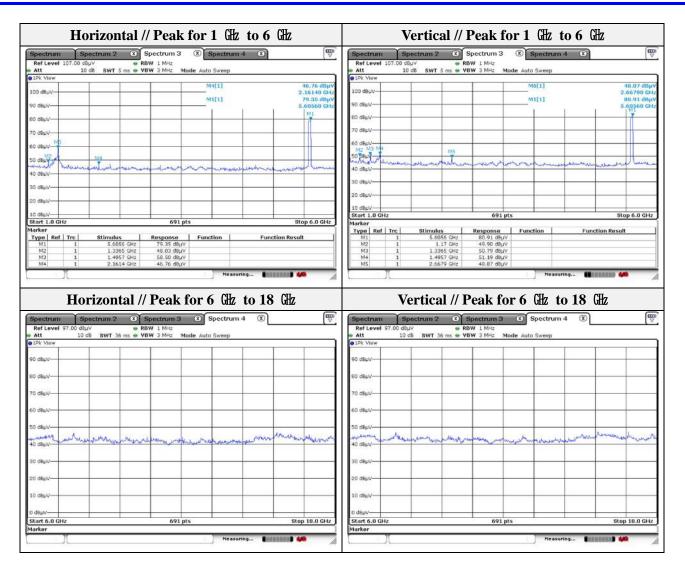
- Danu e	uge							
Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 453.97	45.22	Peak	Н	9.08	-	54.30	74.00	19.70
5 451.10	34.81	Avg	Н	9.07	2.76	46.64	54.00	7.36
5 446.67	44.16	Peak	V	9.07	-	53.23	74.00	20.77

Restricted band // Horizontal // Peak							Restricted band // Vertical // Peak									
Spectrum	Sp	ectrum 2	× s	Spectrum 3	× Sp	ectrum 4	8	E	Spectrun	Sp	ectrum 2 🔍	Spectrum 3	× Spectru	m 4 🛞		
Ref Level 1	07.00 dB	JV.		RBW 1 MHz					Ref Leve	107.00 dE	UV Vu	BBW 1 MHz				1.
Att			4.6 µs 🖷	VBW 3 MHz	Mode Auto	FFT			Att		dB SWT 24.6 µs	VBW 3 MHz	Mode Auto FFT			
• 1Pk View									1Pk View							_
and the second second	-				M0[1]		45.22 dBµV	S. Lansaction				M3[1]		11.4	44.16 dBp
100 d8µV			-	+ +				5.453970 GHz	100 d8µV						5.	.446670 GH
90 dBuV					MIL	1]		42.15 dBpV 5.350000 GHz	90 dBuV-				M1[1]			42.06 dBp/ .350000 GH.
AD ORPHA					1	E	E	3.330000 GH2	AD ORHA				1	T.	1	.330000 GH
BD dBuV									60 dBuV			-				-
								manymen							A	A.
70 dBµV				++				lower	70 dBµV			+		_	NW	man
									1001201000							199
50 dBµV			_	+ +			- 1		60 dBµV			-		-		-
227/21/2									22712407						1	
50 dBµV						The me			50 dBµV				M3 M	2	1	
40 dBuV	more	innen	non	moun	mount	marine	mand		40 dBuV	month	- when men a	volument	mahan	howman	P.	
40 Obby									40 Obby							
30 dBuV									30 dBuV-							-
				1 1			1									
20 dBµV				+ +					20 dBµV					_		
				1 1					20000000							
10 dBµV				1 1					10 dBµV							
Start 5.34 GH	42			691 p	ots			Stop 5.52 GHz	Start 5.34	GH2		691 pt	\$		Ste	op 5.52 GHz
Marker									Marker	1				0.000		
Type Ref		Stimulus	S GHz	Response	Functio	n	Function I	Result	Type Re	Trc	Stimulus 5.35 GHz	Response	Function	Fun	ction Resu	ut -
M1 M2	1		IS GH2	42.15 dBµ\ 44.00 dBµ\					M1 M2	1	5.35 GHz 5.46 GHz	42.06 dBµV 41.97 dBµV				
M3	1	5.4539		45.22 dBuV					M3	1	5.44667 GHz	44.16 dBµV				
	r					Neasuring			-	11			Max	suring		
	L					ricesoring		10	<u>k</u>				riea	and and a second second		-

Test report No.: KES-RF-18T0007 Page (145) of (220)

Note.

1. No spurious emission were detected above 6 GHz.


2. Average test would be performed if the peak result were greater than the average limit.

Mode:	UNII-2C(HT40)
Distance of measurement:	3 meter
Channel:	118

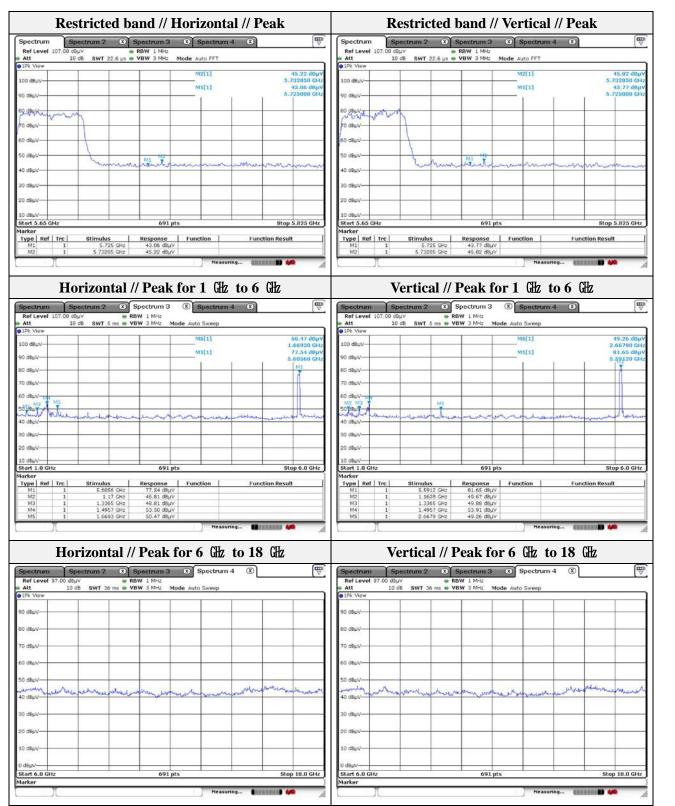
- Spurio	us							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 336.50	48.03	Peak	Н	-6.98	-	41.05	74.00	32.95
1 495.70	58.50	Peak	Н	-6.00	-	52.50	74.00	21.50
2 161.40	46.76	Peak	Н	-0.65	-	46.11	74.00	27.89
1 170.00	49.90	Peak	V	-8.05	-	41.85	74.00	32.15
1 336.50	50.79	Peak	V	-6.98	-	43.81	74.00	30.19
1 495.70	51.19	Peak	V	-6.00	-	45.19	74.00	28.81
2 667.90	48.87	Peak	V	0.60	-	49.47	74.00	24.53

Note.

1. No spurious emission were detected above 6 GHz.

Mode:	UNII-2C(HT40)
Distance of measurement:	3 meter
Channel:	134

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1 170.00	46.81	Peak	Н	-8.05	-	38.76	74.00	35.24
1 336.50	48.81	Peak	Н	-6.98	-	41.83	74.00	32.17
1 495.70	53.50	Peak	Н	-6.00	-	47.50	74.00	26.50
1 669.30	50.47	Peak	Н	-4.32	-	46.15	74.00	27.85
1 162.80	49.67	Peak	V	-8.10	-	41.57	74.00	32.43
1 336.50	49.88	Peak	V	-6.98	-	42.90	74.00	31.10
1 495.70	53.91	Peak	V	-6.00	-	47.91	74.00	26.09
2 667.90	49.26	Peak	V	0.60	-	49.86	74.00	24.14


- Band edge

- Danu C	uge							
Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 732.85	45.22	Peak	Н	10.94	-	56.16	68.20	12.04
5 732.85	45.82	Peak	V	10.94	-	56.76	68.20	11.44

www.kes.co.kr

Test report No.: KES-RF-18T0007 Page (149) of (220)

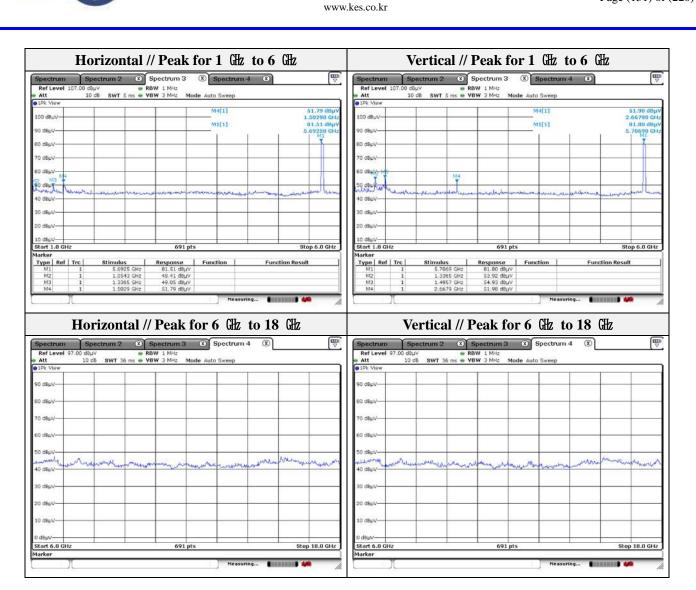
Note.

1. No spurious emission were detected above 6 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Mode:	UNII-2C(HT40)
Distance of measurement:	3 meter

Channel:	142


- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
1 054.30	48.41	Peak	Н	-8.79	-	39.62	74.00	34.38
1 336.50	49.05	Peak	Н	-6.98	-	42.07	74.00	31.93
1 502.90	51.79	Peak	Н	-5.95	-	45.84	74.00	28.16
1 336.50	53.92	Peak	V	-6.98	-	46.94	74.00	27.06
1 495.70	54.93	Peak	V	-6.00	-	48.93	74.00	25.07
2 667.90	51.98	Peak	V	0.60	-	52.58	74.00	21.42

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test report No.: KES-RF-18T0007 Page (151) of (220)

Note.

1. No spurious emission were detected above 6 GHz.