

Test report No.: KES-RF-15T0095 Page (1) of (20)

DFS TEST REPORT

Part 15 Subpart E 15.407

Equipment under test WiFi Module

Model name SWL-Q93T

Derivative Model SWL-CQ93

FCC ID NLMSWLQ93T

Applicant Hanwha Techwin Co., Ltd.

Manufacturer Hanwha Techwin Co., Ltd.

Date of test(s) 2015.11.16 ~2015.12.15

Date of issue 2015.12.17

Issued to

Hanwha Techwin Co., Ltd.

1204, Changwon-daero, Seongsan-gu, Changwon-si Gyeongsangnam-do, South Korea Tel: +82-70-7147-8361 / Fax: +82-31-8108-3717

Issued by

KES Co., Ltd.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do,431-716, Korea 473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, 12658, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
A	Cello
Kwon-se Kim / Test engineer	Jeff Do / Technical manager

Test report No .: KES-RF-15T0095 Page (2) of (20)

Revision history

Revision	Date of issue	Test report No.	Description
-	2015.12.17	KES-RF-15T0095	Initial

Test report No .: KES-RF-15T0095 Page (3) of (20)

TABLE OF CONTENTS

1.	General information	4
	1.1. EUT description	4
	1.2. Frequency/channel operations	5
	1.3 Information about derivative model	
2.	Description of dynamic frequency selection test	6
	2.1 Applicability	6
	2.2 Requirements	
	2.3 DFS Detection Thresholds	8
	2.4 Parameters of DFS Test Signals	9
3.	Summary of tests	10
4.	DFS (Dynamic Frequency Selection)	11
	4.1 Test results	12
	4.1.1 Traffic load	12
	4.1.2 Channel Loading	14
	4.1.3 Channel move time & aggregate channel closing transmission time	16
	4.1.4 Non-occupancy period	
App	bendix A. Measurement equipment	20

1. General information

Applicant:	Hanwha Techwin Co., Ltd.		
Applicant address:	1204, Changwon-daero, Se	1204, Changwon-daero, Seongsan-gu, Changwon-si	
	Gyeongsangnam-do, South	Korea	
Test site:	KES Co., Ltd.		
Test site address:	C-3701, Simin-daero 365-4	0, Dongan-gu, Anyang-si, G	yeonggi-do,14057, Korea
	473-29, Gayeo-ro, Yeoju-si	, Gyeonggi-do, 12658, Kore	a
Rule part(s):	15.407		
Test device serial No.:	Production	Pre-production	Engineering
Application purpose:	🛛 Original grant	Class I permissive change	Class II permissive change

1.1. EUT description

Equipment under test	WiFi Module
Frequency range	5 260 MHz ~ 5 320 MHz(802.11a/n_HT20), 5 270 MHz ~ 5 310 MHz(802.11n_HT40)
Trequency range	5 500 MHz ~ 5 700 MHz(802.11a/n_HT20), 5 510 MHz ~ 5 670 MHz(802.11n_HT40)
Model:	SWL-Q93T(Basic), SWL-CQ93(Derivative model)
Modulation technique	DSSS, OFDM
	$5\ 260\ \text{Mz} \sim 5\ 320\ \text{Mz}(802.11a/n_HT20)$: 4ch
Number of channels	$5\ 270\ \text{MHz} \sim 5\ 310\ \text{MHz}(802.11n_HT40)$: 2ch
Indinioer of chaliners	5 500 MHz ~ 5 700 MHz(802.11a/n_HT20) : 11ch
	5 510 MHz ~ 5 670 MHz(802.11n_HT40) : 5ch
Antenna specification	Antenna type: FIPA Antenna
Power source	DC 5 V

1.2. Frequency/channel operations

Band2A

Ch.	Frequency (Mz)	Mode
52	5 260	11a/n_HT20
	-	
60	5 300	11a/n_HT20
		-
64	5 320	11a/n_HT20

Ch.	Frequency (Mz)	Mode
54	5 270	11n_HT40
•	-	-
62	5 310	11n_HT40

Band2C

Ch.	Frequency (Mz)	Mode	Ch.	Frequency (Mz)	Mode
100	5 500	11a/n_HT20	102	5 510	11n_HT40
	-	-	-	-	-
116	5 580	11a/n_HT20	110	5 550	11n_HT40
		-	-		-
140	5 700	11a/n_HT20	134	5 670	11n_HT40

1.3 Information about derivative model

This is to notify that SWL-CQ93 are same Hardware, Software and components.

2. Description of dynamic frequency selection test

2.1 Applicability

The following table from KDB 905462 D02 v01r02 lists the applicable requirements for the DFS testing. The device evaluated in this report is considered a client device without radar detection capability.

Requirement	Operational Mode		
-	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2.1. DFS Applicability

Requirement	Operational Mode	
	Master Device or Client with	Client Without Radar
	Radar Detection	Detection
DFS Detection Threshold	Yes	Not required
Channel Closing Transmission Time	Yes	Yes
Channel Move Time	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required
Non-Occupancy Period	NA/Yes	Yes

Additional requirements for devices with multiple	Master Device or Client with Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time				
All other tests	Any single BW mode Not required			
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several				
frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection				
bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz				
channels and the channel center frequency.				

Table 2.2. DFS Applicability During normal operaion

2.2 Requirements

KDB 905462 D02 v01r02 the following are the requirements for Client Devices:

- a) A Client Device will not transmit before having received appropriate control signals from a Master Device.
- b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.
- c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.
- d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.
- e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shutdown (rather than moving channels), no beacons should appear

Value
Minimum 30 minutes
60 seconds
10 seconds
See Note 1.
200 milliseconds + an
Aggregate of 60 milliseconds over remaining 10
second period.
See Notes 1 and 2.
Minimum 100% of the U-NII 99% transmission
power bandwidth. See Note3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (and aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should the used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 2.3. DFS Response Requirement Values

2.3 DFS Detection Thresholds

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection Thresholds are listed in the following table.

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
$EIRP \ge 200 milliwatt$	-64 dBm
EIRP< 200 milliwatt and	-62 dBm
Power spectral density < 10 dBm/MHz	-02 dBm
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	-04 dBill
Note 1: This is the level at the input of the receiver assuming a () dBi receive antenna.
Note 2: Throughout these test procedures an additional 1 dB has	
transmission waveforms to account for variations in measureme	nt equipment. This will ensure that the test
signal is at or above the detection threshold level to trigger a DF	
Note 3: EIRP is based on the highest antenna gain. For MIMO d	levices refer to KDB Publication 662911
D01	

Table 2.4. DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

2.4 Parameters of DFS Test Signals

As the EUT is a Client Device with no Radar Detection only Zero type radar pulse is required for the testing. Radar Pulse type 0 was used in the evaluation of the Client device for the purpose of measuring the channel Move Time and the Channel Closing Transmission Time.

Radar	Pulse	PRI	Number of Pulses	Minimum	Mnimum
Туре	Width	(µsec)		Percentage of	Number of
	(µsec)			Successful	Trials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI	Roundup:	60%	30
		values randomly	{(1/360)*(19*10 ⁶		
		selected from the list of	PRI µsec)}		
		23 PRI values in Table	I IXI µsec)}		
		5a			
		Test B: 15 unique PRI			
		values randomly			
		selected within the			
		range of 518-3066 µsec,			
		with a minimum			
		increment of 1 µsec,			
		excluding PRI values			
		selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types	\$ 1-4)		80%	120
Note 1 · Sh	ort Pulse Rad	lar Type 0 should be used fo	or the detection bandw	vidth test channel r	nove time and

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 2.5. Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Pulses per Burst	Number of Bursts	Minimum Percentage of Successful	Minimum Trials
5	50-100	5-20	1000- 2000	1-3	8-20	Detection 80%	30

Table 2.6. Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

Table 2.7. Frequency Hopping Radar Test Waveform

3. Summary of tests

Reference	Parameter	Test results
	Channel Move Time	Pass
15.407(h)(iii)(iv)	Channel Closing Transmission Time	Pass
	Non-Occupancy Period	Pass

Test procedures;

The guidance provided in KDB 905462 D02 v01r02 were used in the measurement of the EUT.

4. DFS (Dynamic Frequency Selection) Test setup

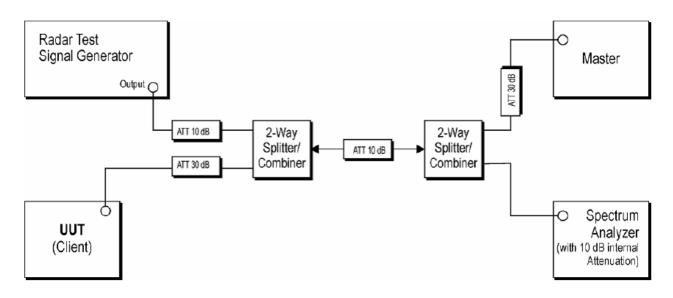


Figure 1: Conducted Test Setup for DFS

Test procedure

KDB 905462 D02 v01r02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 1 shows the typical test setup.

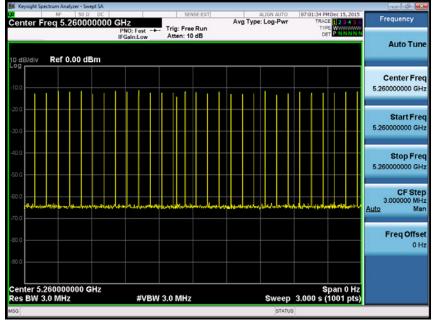
In Band 2A, one channel selected between 5260 and 5350 Mz is chosen for the testing.

In Band 2C, one channel selected between 5500 and 5720 MHz was chosen for testing.

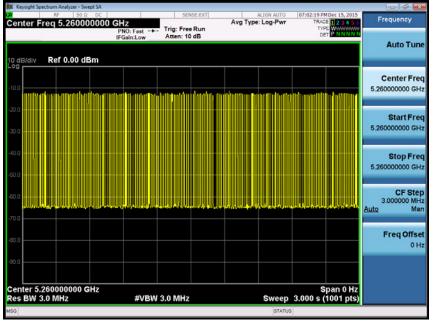
- 1. The Client Device (EUT) is setup per the diagram in Firure1 and communications between the Master device and the Client is established.
- 2. An MPEG or data file that is typical for the device is streamed from the Master to the Client to properly load the network.

4.1 Test results

4.1.1 Traffic load


Mode:

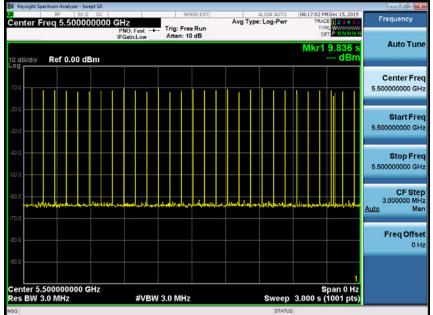
802.11 a (Band2A)


Operating frequency:

5 260 MHz

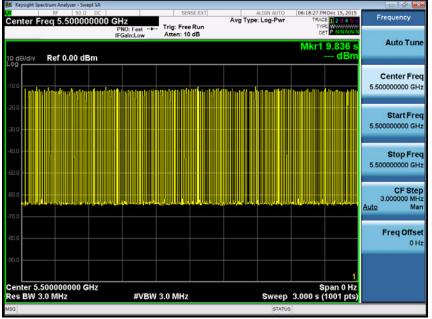
Time Display, Non WLAN Channel Traffic

Time Display, WLAN Channel Traffic (Streaming Video)


Test report No.: KES-RF-15T0095 Page (13) of (20)

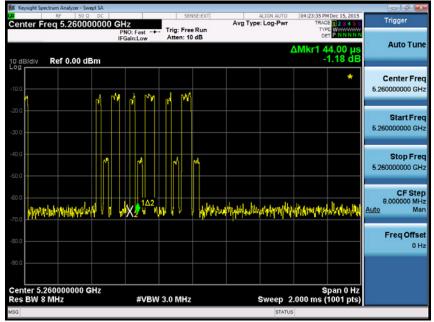
Mode:

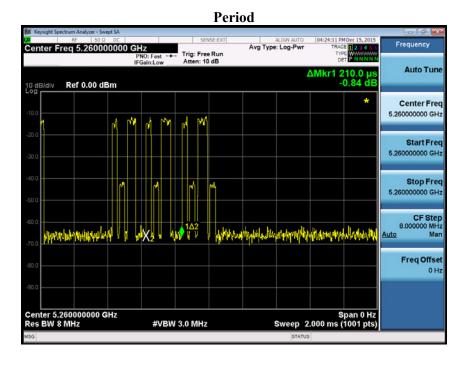
802.11 a (Band2C)


Operating frequency:

5 500 MHz

Time Display, Non WLAN Channel Traffic

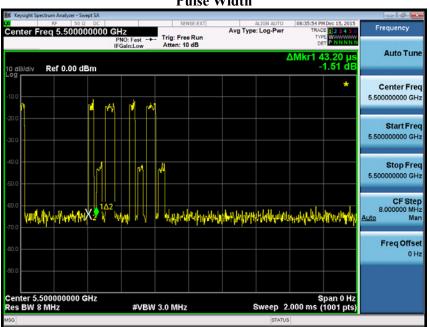



4.1.2 Channel Loading

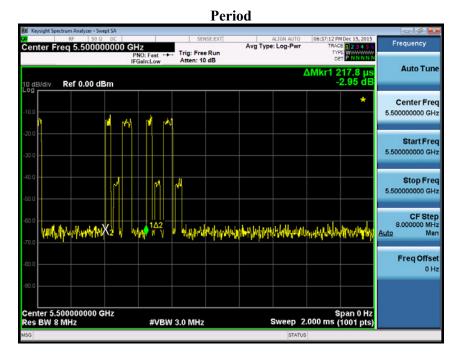
Mode:	802.11 a (Band2A)
Operating frequency:	5 260 MHz

Channel Loading = Pulse Width / Period = 44µs / 210 µs = 20.95%

Pulse Width



Mode:		802.11 a (Band2C)
~ · /	_	


Operating frequency:

5 500 MHz

Channel Loading = Pulse Width / Period = 43.2µs / 217.8 µs = 19.83%

Pulse Width

Notes: Per KDB 905462 D02 v01, timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater. For example, you can zero span the spectrum analyzer and approximate the transmission time.

4.1.3 Channel move time & aggregate channel closing transmission time

802.11 a (Band2A)

Operating frequency:

5 260 MHz

Keysight Spectrum Analyzer - Swept SA RF S0 Ω DC		SENSE:EXT	ALIGN AUTO	06:12:05 PMDec 15, 2015	Frequency
enter Freq 5.26000000	PNO: Fast Tri	g: Free Run ten: 10 dB	g Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWWWWW DET PINNNNN	Frequency
dB/div Ref 0.00 dBm	I Gaine of			Mkr3 637.5 ms -65.05 dBm	Auto Tun
					Center Fre 5.260000000 GH
0.0 0.0 0.0			يان در مربور مي المار ورو رو مربور مربور المربور مي المار ورو رو مربور		Start Fre 5.26000000 GH
0.0					Stop Fre 5.260000000 GH
enter 5.260000000 GHz es BW 3.0 MHz	#VBW 3.0		Sweep	Span 0 Hz 10.00 s (8001 pts)	CF Ste 3.000000 MH Auto Ma
1 Δ2 1 t. (Δ) 2 F 1 t. (Δ) 3 N 1 t. (Δ) 5	597.5 ms (Δ) 437.5 ms -13 637.5 ms -65	2.26 dB 3.95 dBm 5.05 dBm	PORCHON VIIDTH	POINCHON VIALOU	Freq Offs 0 H
6 7 8 9 0					
9		ш	STATUS		

Channel closing transmission time calculated	Test results
Sweep time[S] sec	10
Sampling bins[B]	8001
Number of sampling bins in 10 sec[N]	2
Closing transmission time [C] ms	2.49

Note:

Dwell = S/B;

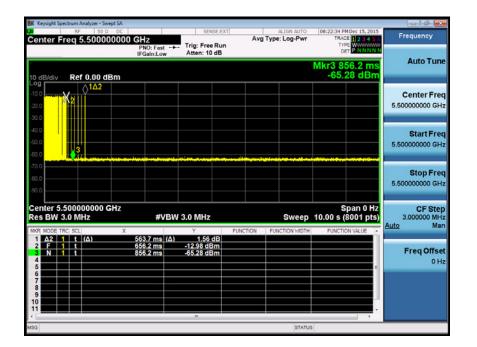
Where **dwell** is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins.

An upper bound of the aggregate duration of the channel closing transmission time is calculated by:

$C = N \times Dwell;$

Where C is the closing time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and dwell is the dwell time per bin.

Dwell = [S] / [B] = 10 / 8001 = 0.00124 Closing Transmission Time[C] = [N] × [Dwell] = 2 × 0.00124 = 0.00248 s = 2.49 ms Channel Move Time : 0.5975 s


Test report No.: KES-RF-15T0095 Page (17) of (20)

Mode:

802.11 a (Band2C)

Operating frequency:

5 500 MHz

Channel closing transmission time calculated	Test results
Sweep time[S] sec	10
Sampling bins[B]	8001
Number of sampling bins in 10 sec[N]	2
Closing transmission time [C] ms	2.49

Note:

Dwell = S/B;

Where **dwell** is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins.

An upper bound of the aggregate duration of the channel closing transmission time is calculated by: $C = N \times Dwell;$

Where C is the closing time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and dwell is the dwell time per bin.

Dwell = [S] / [B] = 10 / 8001 = 0.00124 Closing Transmission Time[C] = [N] × [Dwell] = 2 × 0.00124 = 0.00248 s = 2.49 ms Channel Move Time : 0.5637 s

Test report No.: KES-RF-15T0095 Page (18) of (20)

4.1.4 Non-occupancy period

Mode:

802.11 a (Band2A)

5 260 MHz

Operating frequency:

RF 50 Ω DC		SENSE:		ALIGN AUTO	07:23:36 PM D		Frequency
enter Freq 5.260150000	PNO: Fast → IFGain:Low	- Trig: Free R Atten: 10 dB	un	ype: Log-Pwr	TRACE TYPE DET	1 2 3 4 5 6 W NNNNN	
dB/div Ref 0.00 dBm					ΔMkr1 1. -52	800 ks .29 dB	Auto Tun
						*	Center Fre 5.260150000 GH
.0							Start Fre 5.260150000 GF
.0							Stop Fre 5.260150000 GF
	tere inversitä	harrow an etal.		di este indistano	•1∆2		CF Ste 1.000000 MH Auto Ma
0.0						_	Freq Offs 0 F
					Sn	an û Hz	
enter 5.260150000 GHz es BW 1.0 MHz	23 (514	/ 3.0 MHz			Sp 200 ks (40	an 0 Hz	

Test report No.: KES-RF-15T0095 Page (19) of (20)

Mode:

802.11 a (Band2C)

Operating frequency:

5 500 MHz

Keysight Spectrum Analyzer - Swept SA		L annual mod			
RF 50 Ω DC enter Freq 5.500000000	GHz PNO: Fast →→ IFGain:Low	SENSE:EXT Trig: Free Run Atten: 10 dB	ALIGN AUTO Avg Type: Log-Pwr	07:53:30 PM Dec 15, 2015 TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P NNNNN	Frequency
dB/div Ref 0.00 dBm				ΔMkr1 1.800 ks -49.97 dB	Auto Tun
0.0 WX2					Center Fre 5.50000000 GH
0.0 // 2					Start Fre 5.500000000 GH
					Stop Fre 5.50000000 GH
	ules el la buce o del sobo			142	CF Ste 1.000000 MH Auto Ma
0.0					Freq Offso 0 H
enter 5.500000000 GHz				Span 0 Hz	
es BW 1.0 MHz	#VBW :	3.0 MHz	Sweep 2	.200 ks (40001 pts)	

Test report No.: KES-RF-15T0095 Page (20) of (20)

Measurement equipment Appendix A. Calibration Calibration Serial No. Equipment Manufacturer Model due. interval N9010A MY51440103 2016.01.26 Spectrum Analyzer Agilent 1 year R&S Vector Signal Generator SMBV100A 1407.6004K02 1 year 2016.07.23 Attenuator HP 8493C 08961 1 year 2016.07.24 HP 8493C 09304 2016.07.24 Attenuator 1 year 8493C 2016.07.24 Attenuator Anritsu 51401 1 year 8493C 78799 1 year 2016.07.24 Attenuator Anritsu Attenuator **KEYSIGHT** 8493C 82506 1 year 2016.04.02 8493C 2016.04.02 Attenuator **KEYSIGHT** 82507 1 year ZFSC-2-10G+ F679501347-1 2016.07.24 Splitter MINI-CIRCUITS 1 year Splitter MINI-CIRCUITS ZFSC-2-10G+ F679501347-2 2016.07.24 1 year

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
-	-	-	-