

* RF Exposure

1. Regulation

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Limits for Maximum Permissive Exposure: RF exposure is calculated.

Elimits for transmant retimestive Exposure. It exposure is carealated.							
Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time			
	Strength [V/m]	Strength [A/m]	[mW/cm²]	[minute]			
Limits for General Population / Uncontrolled Exposure							
0.3 ~ 1.34 614		1.63	*(100)	30			
1.34 ~ 30	824/f	2.19/f	$*(180/f^2)$	30			
30 ~ 300	27.5	0.073	0.2	30			
300 ~ 1 500	/	/	f/1 500	30			
1 500 ~ 15 000	/	/	1.0	30			

f=frequency in MZ, *= plane-wave equivalent power density

MPE (Maximum Permissive Exposure) Prediction

Predication of MPE limit at a given distance: Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2 \quad \left(\Rightarrow R = \sqrt{PG/4\pi S} \right)$$

 $S = power density [mW /cm^2]$

P = Power input to antenna [mW]

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna [cm]

EUT: Maximum peak output power = 325.09 [mW] (25.12 dBm)					
Antenna gain = $1.48 (1.70 \text{dBi})$					
100 -W + 20 C (-dD);	$S = PG/4\pi R^2 = 100 \times 3.98 / (4 \times \pi \times 400)$				
100 mW, at 20 cm from an antenna 6 [dBi]	$= 0.079 \ 18 \ [\text{mW/cm}^2] < 1.0 \ [\text{mW/cm}^2]$				
325.09 mW, at 20 cm from an antenna 1.70 [dBi]	$S = PG/4\pi R^2 = 0.095 \ 66 \ [mW/cm^2] < 1.0 \ [mW/cm^2]$				

2. RF Exposure Compliance Issue

The information should be included in the user's manual:

This appliance and its antenna must not be co-located or operation in conjunction with any other antenna or transmitter. A minimum separation distance of 20 cm must be maintained between the antenna and the person for this appliance to satisfy the RF exposure requirements.

3. Calculation Result of RF Exposure

* 802.11b

Channel	Frequency	Ant Gain	power	power	Power Density at 20 cm
	[MHz]		[dBm]	[mW]	[mW/cm²]
Lowest	2 412	1.48	19.55	90.16	0.026 53
Middle	2 437	1.48	18.97	78.89	0.023 21
Highest	2 462	1.48	18.66	73.45	0.021 61

* 802.11g

Channel	Frequency	Ant Gain	power	power	Power Density at 20 cm
	[MHz]		[dBm]	[mW]	[mW/cm²]
Lowest	2 412	1.48	25.12	325.09	0.095 66
Middle	2 437	1.48	24.45	278.61	0.081 98
Highest	2 462	1.48	22.56	180.30	0.053 06

* 802.11n HT20

Channel Frequency	Emaguamay	Ant Gain	power	power	Power Density
	riequency				at 20 cm
	[MHz]		[dBm]	[mW]	[mW/cm²]
Lowest	2 412	1.48	24.16	260.62	0.076 69
Middle	2 437	1.48	24.41	276.06	0.081 23
Highest	2 462	1.48	22.40	173.78	0.051 14

* 802.11n HT40

Channel Fr	F	Ant Gain	power	power	Power Density
	Frequency				at 20 cm
	[MHz]		[dBm]	[mW]	[mW/cm²]
Lowest	2 422	1.48	19.67	92.68	0.027 27
Middle	2 437	1.48	19.74	94.19	0.027 72
Highest	2 452	1.48	19.85	96.61	0.028 43