

FCC TEST REPORT

Test report No.:	EMC- FCC- R0164
FCC ID:	NLMSEW3040W
Type of equipment:	Wireless Baby Monitor
Basic Model Name:	SEW-3040W
Applicant:	Samsung Techwin Co., Ltd.
Max.RF Output Power:	15.04 dBm
FCC Rule Part(s):	FCC Part 15 Subpart C 15.247
Frequency Range:	2 410.875 MHz ~ 2 471.625 MHz
Test result:	Complied

The above equipment was tested by EMC compliance Testing Laboratory for compliance with the requirements of FCC Rules and Regulations.

The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of receipt: 2014. 03. 25

Date of test: 2014. 04. 28 ~ 05. 02

Issued date: 2014. 05. 26

Tested by:

KIM, SUNG SIN

Approved by:

YOO, SEONG YEONG

EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

Page: 1 of 35

[Contents]

1. Client information
2. Laboratory information
3. Description of E.U.T
3.1 Basic description
3.2 General description
3.3 Test frequency
3.4 Test Voltage
4. Summary of test results7
4.1 Standards & results
4.2 Uncertainty7
5. Test results
5.1 Antenna Requirement
5.2 Maximum Peak Output Power
5.3 Carrier Frequency Separation
5.4 20 dB Channel Bandwidth15
5.5 Number of Hopping Channels
5.6 Time of Occupancy(Dwell Time)
5.7 Spurious Emission, Band edge, and Restricted bands
6. Test equipment used for test

Page: 2 of 35

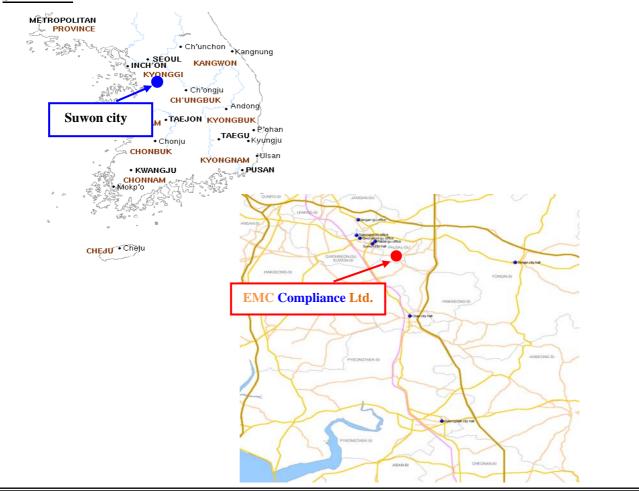
1. Client information

Applicant:	Samsung Techwin Co., Ltd.
Address:	84, Jeongdong-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do,
	Korea
Telephone number:	+82-70-7147-8361
Facsimile number:	+82-31-277-2784
Contact person:	Kang, Jei Soon / js2002.kang@samsung.com
Manufacturer#1:	Samsung Techwin Co., Ltd.
Address:	84, Jeongdong-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do,
	Korea
Manufacturer#2:	TIANJIN SAMSUNG TECHWIN OPTO-ELECTRONIC CO., LTD
Address:	No.11 Weiliu Road. Micro-Electronic Industrial Park Jingang Road
	Tianjin 300385, China

Page: 3 of 35

2. Laboratory information

Address


EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea Telephone Number: 82-31-336-9919 Facsimile Number: 82-505-299-8311

Certificate

KOLAS No.: 231 FCC Site Registration No.: 687132 VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849 IC Site Registration No.:8035A-2

SITE MAP

EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

Page: 4 of 35

3. Description of E.U.T.

3.1 Basic description

Applicant:	Samsung Techwin Co., Ltd.
Address of Applicant	84, Jeongdong-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do, Korea
Manufacturer#1	Samsung Techwin Co., Ltd.
Address of Manufacturer	84, Jeongdong-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do, Korea
Manufacturer#2	TIANJIN SAMSUNG TECHWIN OPTO-ELECTRONIC CO., LTD
Address of Manufacturer	No.11 Weiliu Road. Micro-Electronic Industrial Park Jingang Road Tianjin 300385, China
Type of equipment	Wireless Baby Monitor
Basic Model	SEW-3040W
Serial number	Proto Type

3.2 General description

Frequency Range	2 410.875 MHz ~ 2 471.625 MHz
Type of Modulation	Modulation technologies: FHSS Modulation : GFSK
Number of Channels	19 channels
Type of Antenna	Wire type
Antenna Gain	2 dBi
Transmit Power	15.04 dBm
Power supply	DC 6 V

Page: 5 of 35

3.3 Test frequency

	Frequency	
Low frequency	2 410.875 MHz	
Middle frequency	2 441.250 Młz	
High frequency	2 471.625 Młz	

3.4 Test Voltage

mode	Voltage
Norminal voltage	DC 6 V

Page: 6 of 35

4. Summary of test results

4.1 Standards & results

FCC Rule	IC Rule	Parameter	Report Section	Test Result
15.203, 15.247(b)(4)	RSS-GEN, 7.1.2	Antenna Requirement	5.1	С
15.247(b)(1), (4)	RSS-210, A8.4(2)	Maximum Peak Output Power	5.2	С
15.247(a)(1)	RSS-210, A8.1(b)	Carrier Frequency Separation	5.3	С
15.247(a)(1)	RSS-210, A8.1(a)	20 dB Channel Bandwidth	5.4	С
-	RSS-210, A1.1	Occupied Bandwidth	5.4	С
15.247(a)(iii) 15.247(b)(1)	RSS-210, A8.1(d)	Nunber of Hopping Channel	5.5	С
15.247(a) (iii)	RSS-210, A8.1(d)	Time of Occupancy(Dwell Time)	5.6	С
15.247(d), 15.205(a), 15.209(a)	RSS-210, A8.5 RSS-210, A2.9 RSS-GEN, 7.2.3	Spurious Emission, BandEdge, Restricted Band	5.7	С
15.207(a)	RSS-GEN, 7.2.4	Conducted Emissions	-	N/A
Note: C=complies NC= Not complies				

NC= Not complies NT=Not tested

NA=Not Applicable

* The method of measurement used to test this DSS device is FCC Public Notice DA 00-705

* The general test methods used to test this device is ANSI C63.4 2003 (or 2009, or ANSI C63.10 2009)

4.2 Uncertainty

Measurement Item		Expanded Uncertainty U = KUc (K = 2)		
Conducted RF power	± 1	. 36 dB		
Occupied Bandwidth	± 2	2.54 kHz		
Conducted Spurious Emissions	± 1	± 1.52 dB		
Radiated Spurious Emissions	30 MHz ~ 300 MHz:	+ 4.86 dB, - 4.88 dB		
	300 MHz ~ 1 000 MHz:	+ 4.98 dB, - 4.99 dB		
	1 GHz ~ 6 GHz:	+ 6.19 dB, - 6.20 dB		
	6 GHz ~ 18 GHz:	+ 6.41 dB, - 6.53 dB		
	18 GHz ~ 25 GHz:	+ 6.41 dB, - 6.53 dB		

EMC compliance Ltd.

Page: 7 of 35

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

5. Test results

5.1 Antenna Requirement

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to \$15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result

-Complied

The transmitter has an wire type of antenna. The directional gain of the antenna is 2 dBi.

Page: 8 of 35

5.2 Maximum Peak Output Power

5.2.1 Regulation

According to \$15.247(b)(1), for frequency hopping systems operating in the 2 400 – 2 483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 – 5 850 MHz band: 1 watt. For all other frequency hopping systems in the 2 400 – 2 483.5 MHz band: 0.125 watts.

According to \$15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.2 Measurement Procedure

The method of measurement used to test this DSS device is FCC Public Notice DA 00-705.

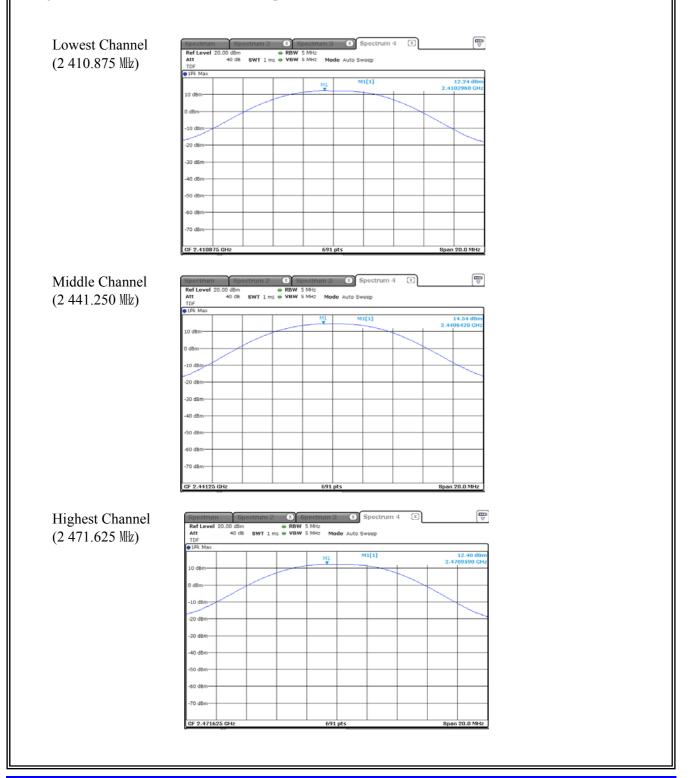
- 1. Check the calibration of the measuring instrument (spectrum analyzer) using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 3. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via UART interface or Bluetooth tester and make sure the spectrum analyzer is operated in its linear range.
- 4. Set the spectrum analyzer as follows: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold
- 5. Measure the highest amplitude appearing on spectral display and record the level to calculate results.
- 6. Repeat above procedures until all frequencies measured were complete.

5.2.3 Test Result

- Complied

Channel	Frequency (朏)	Result (dBm)	Limit (dBm)	Margin (dB)
Low	2 410.875	12.75	21.00	17.25
Middle	2 441.250	15.04	21.00	14.96
High	2 471.625	12.90	21.00	17.10

NOTE:


1. Since the directional gain of the integral antenna declared by the manufacturer ($G_{ANT} = 2 \text{ dBi}$) does not exceed 6.0 dBi, there was no need to reduce the output power.

2. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.2.4 Test Plot

Figure 1. Plot of the Maximum Peak Output Power (Conducted)

EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

Page: 11 of 35

5.3 Carrier Frequency Separation

5.3.1 Regulation

According to \$15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

5.3.2 Measurement Procedure

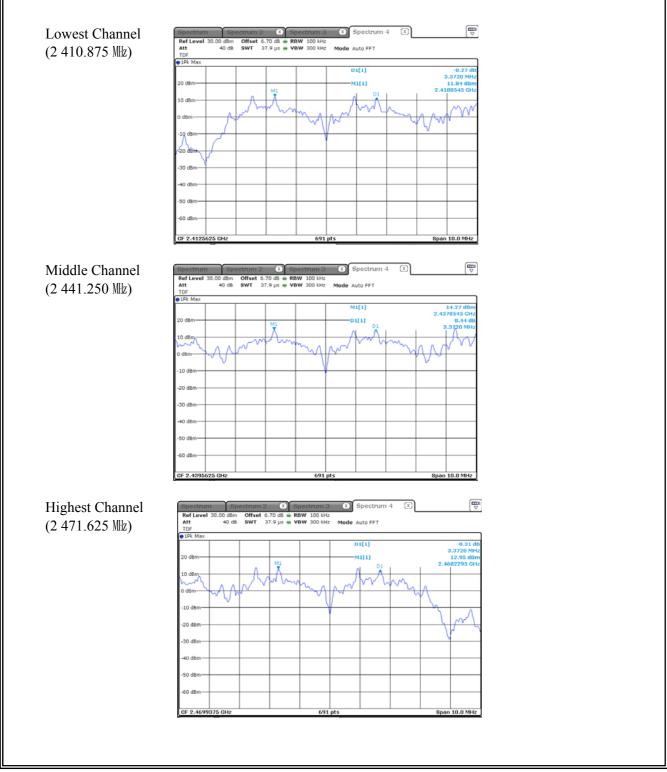
The method of measurement used to test this DSS device is FCC Public Notice DA 00-705.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable and attenuator.
- 3. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via UART interface or Bluetooth tester.
- 4. Set the spectrum analyzer as follows: Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = auto Detector function = peak Trace = max hold
- 5. Measure the separation between the peaks of the adjacent channels using the marker-delta function.
- 6. Repeat above procedures until all frequencies measured were complete.

5.3.3 Test Result

- Complied

Channel	Carrier frequency separation (Mz)	Limit
Low	3.37	≥25 kHz or two-thirds of the 20 dB bandwidth
Middle	3.37	≥25 kHz or two-thirds of the 20 dB bandwidth
High	3.37	≥25 kHz or two-thirds of the 20 dB bandwidth


NOTE: We took the insertion loss of the cable loss into consideration within the measuring instrument.

Page: 13 of 35

5.3.4 Test Plot

Figure 2.Plot of the Carrier Frequency Separation

EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

Page: 14 of 35

5.4 20 dB Channel Bandwidth

5.4.1 Regulation

According to \$15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

5.4.2 Measurement Procedure

The method of measurement used to test this DSS device is FCC Public Notice DA 00-705.

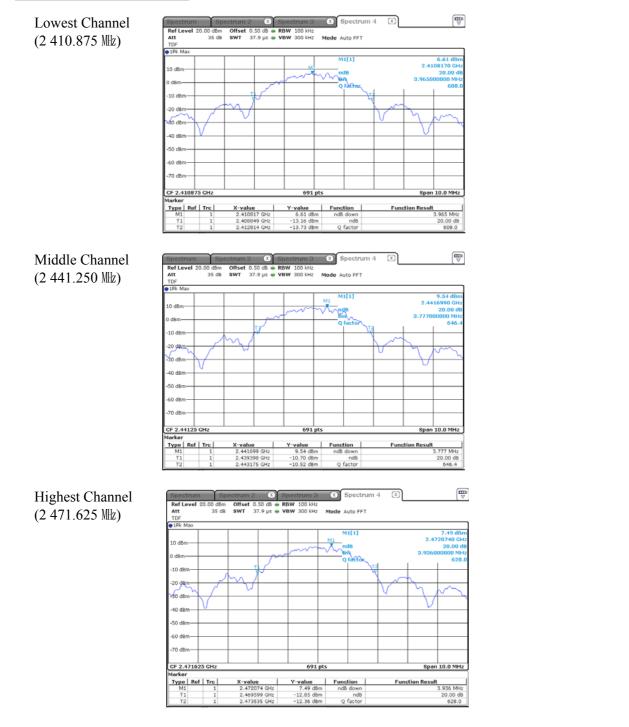
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable and attenuator.
- 3. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via UART interface or Bluetooth tester and make sure the spectrum analyzer is operated in its linear range.
- 4. Set the spectrum analyzer as follows: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold
- 5. Set a reference level on it equal to the highest peak value.
- 6. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 7. Repeat above procedures until all frequencies measured were complete..

5.4.3 Test Result

- Complied

Channel	20 ^{dB} Channel Bandwidth(^{MHz})	Carrier frequency Separation(^{Mbz})	Occupied Bandwidth (99 % BW)(^{MHz})
Low	3.97	3.37	3.62
Middle	3.78	3.37	3.57
High	3.94	3.37	3.60

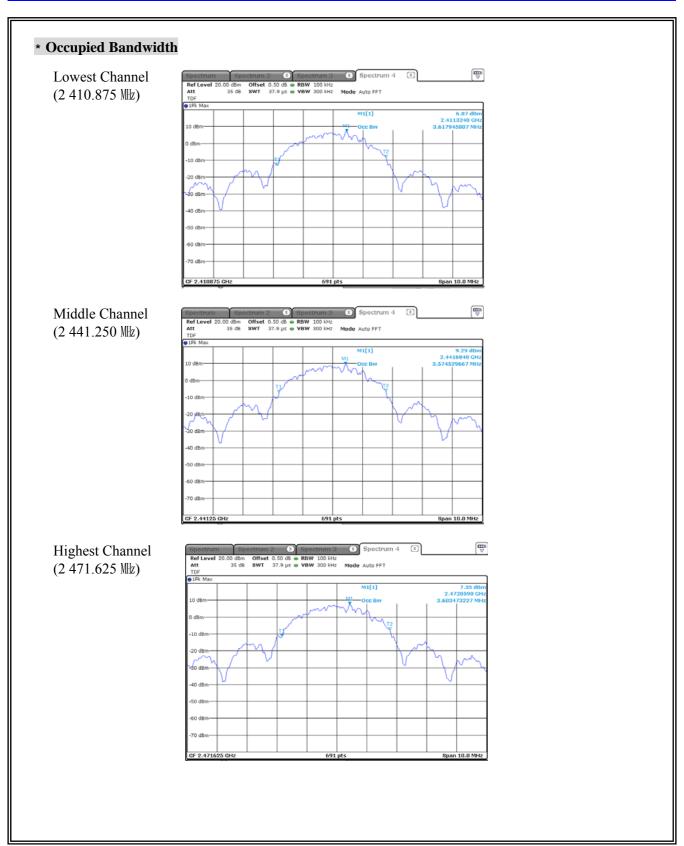
NOTE: We took the insertion loss of the cable loss into consideration within the measuring instrument.


Page: 16 of 35

5.4.4 Test Plot

Figure 3.Plot of the 20 dB Channel Bandwidth & Occupied Bandwidth

* 20 dB Channel Bandwidth



EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

Page: 17 of 35

EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

Page: 18 of 35

5.5 Number of Hopping Channels

5.5.1 Regulation

According to §15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 Mz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. According to §15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 Mz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 Mz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 Mz band: 0.125 watts.

5.5.2 Measurement Procedure

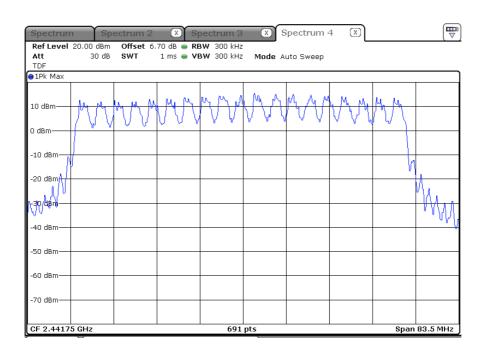
The method of measurement used to test this DSS device is FCC Public Notice DA 00-705.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable and attenuator.
- 3. Turn on the EUT and set the hopping function enabled by controlling it via UART interface or Bluetooth tester.
- 4. Set the spectrum analyzer as follows: Span = the frequency band of operation RBW ≥ 1 % of the span VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold
- 5. Record the number of hopping channels.

5.5.3 Test Result

- Complied

Frequency	Number of hopping channel	Limit
2 410.875 – 2 471.625 Młz	19	≥15


NOTE: We took the insertion loss of the cable loss into consideration within the measuring instrument.

Page: 20 of 35

5.5.4 Test Plot

Figure 4. Plot of the Number of Hopping Channels

Page: 21 of 35

5.6 Time of Occupancy(Dwell Time)

5.6.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 Mz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.6.2 Measurement Procedure

The method of measurement used to test this DSS device is FCC Public Notice DA 00-705.

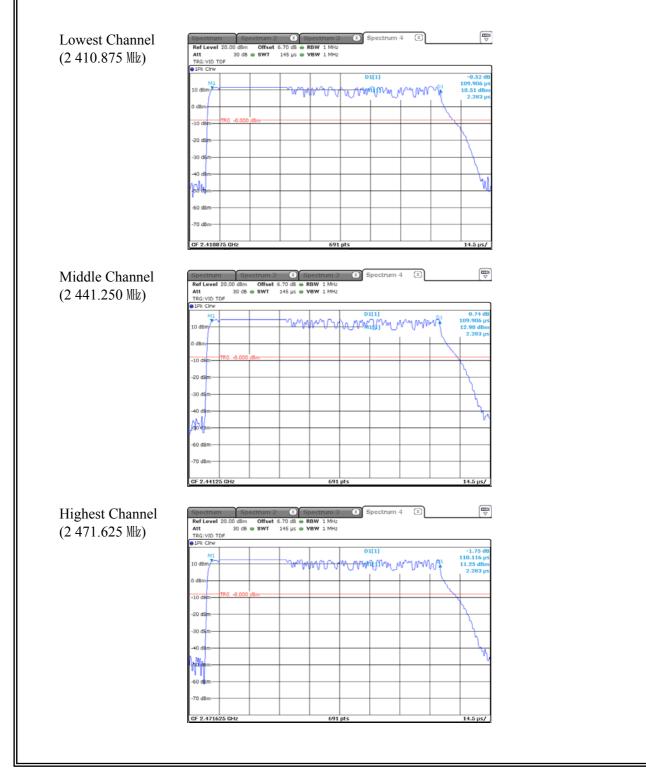
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 3. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via UART interface or Bluetooth tester.
- 4. Set the spectrum analyzer as follows: Span = zero span, centered on a hopping channel RBW = 1 M VBW ≥ RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold
- 5. Measure the dwell time using the marker-delta function.
- 6. Repeat above procedures until all frequencies measured were complete.
- 7. Repeat this test for different modes of operation (e.g., data rate, modulation format, etc.), if applicable.

5.6.3 Test Result

- Complied

Channel	Reading[ms]	Hopping rate [hop/s]	Number of Channels	Actual[s]	Limit[s]
Low	0.11	740.00	19	0.03	0.40
Middle	0.11	740.00	19	0.03	0.40
High	0.11	740.00	19	0.03	0.40

Actual = Reading × (Hopping rate / Number of channels) × Test period Test period = 0.4 [seconds / channel] × 19 [channel] = 7.6 [seconds] NOTE:


1. We took the insertion loss of the cable loss into consideration within the measuring instrument.

Page: 23 of 35

5.6.4 Test Plot

EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

Page: 24 of 35

5.7 Spurious Emission, Band edge, and Restricted bands

5.7.1 Regulation

According to §15.247(d), in any 100 klz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Field strength ($\mu V/m @ 3m$)	Field strength (dBµV/m @ 3m)
30–88	100	40.0
88–216	150	43.5
216–960	200	46.0
Above 960	500	54.0

According to §15.109(a), for an unintentional device, except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the above table.

** The emission limits shown in the above table are based on measurement instrumentation employing a CISPR quasi-peak detector and above 1000 MHz are based on the average value of measured emissions.

5.7.2 Measurement Procedure

The method of measurement used to test this DSS device is FCC Public Notice DA 00-705.

- 1) Band-edge Compliance of RF Conducted Emissions
- 1. Set the spectrum analyzer as follows:
 - Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation RBW ≥ 1% of the span VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is greater than that at the band-edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- 3. Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

2) Spurious RF Conducted Emissions:

- 1. Set the spectrum analyzer as follows:
 - Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold

- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
 - a 4×4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
- 3. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

3) Spurious Radiated Emissions:

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters.
- 2. The EUT was placed on the top of the 0.8-meter height, 1×1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1000 MHz using the TRILOG broadband antenna, and from 1000 MHz to 26500 MHz using the horn antenna.
- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4 × 4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

5.7.3 Test Result

- Complied

- 1. Band edge compliance of RF Conducted Emissions was shown in figure 10.
- 2. Band edge compliance of RF Radiated Emissions was shown in figure 11.
- 3. Spurious RF conducted Emissions were shown in the Figure 12. Note: We took the insertion loss of the cable into consideration within the measuring instrument.
- 4. Measured value of the Field strength of spurious Emissions (Radiated)

* Below 1 🕀 data (Worst-case: Middle channel)

White channe)							
Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu N/m)]$	$[dB(\mu N/m)]$	[dB]		
Quasi-Peak DA	TA. Emissions	below 30 M	k						
Below 30.00	Not Detected	-	-	-	-	-	-		
Quasi-Peak DA	Quasi-Peak DATA. Emissions below 1 🗷								
261.59	120	Н	44.7	-13.0	31.7	46.0	14.3		
528.22	120	V	37.2	-6.5	30.7	54.0	23.3		
830.74	120	V	34.7	-1.3	33.4	540.	20.6		
Above 900.00	Not Detected	-	-	-	-	-	-		

Middle channel (2 441.250 Mz)

Page: 28 of 35

* Above 1 🕀 data

Low channel (2 410.875 Mz)

,	,							
Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin	
[MHz]	[kHz]	[V/H]	$[dB(\mu N)]$	[dB]	$[dB(\mu N/m)]$	$[dB(\mu V/m)]$	[dB]	
Peak DATA. Emissions above 1 ^{GHz}								
2 458.25	1 000	Н	52.8	0.2	53.0	74.0	21.0	
2 506.25	1 000	Н	52.4	0.1	52.5	74.0	21.5	
Above 3 000.00	Not Detected	-	-					
Average DATA	Average DATA. Emissions above 1 GHz							
2 458.25	1 000	Н	39.7	0.2	39.9	54.0	14.1	
2 506.25	1 000	Н	40.3	0.1	40.4	54.0	13.6	
Above 3 000.00	Not Detected	-	-	-	-	-	-	

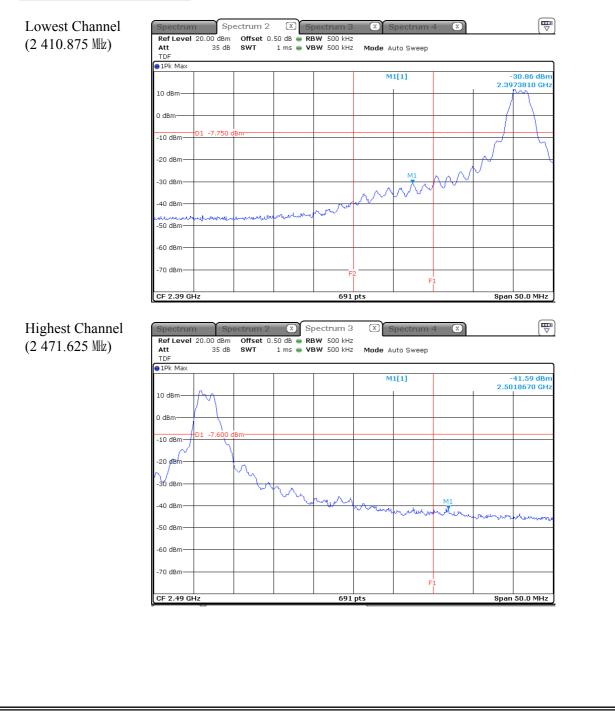
Middle channel (2 441.250 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu N/m)]$	$[dB(\mu N/m)]$	[dB]
Peak DATA. Er	nissions above 1	l GHz					
2 392.50	1 000	Н	52.7	0.4	53.1	74.0	20.9
Above 3 000.00	Not Detected	-	-				
Average DATA	. Emissions abo	ve 1 GHz					
2 392.50	1 000	Н	38.2	0.4	38.6	54.0	15.4
Above 3 000.00	Not Detected	-	-	-	-	-	-

EMC compliance Ltd.

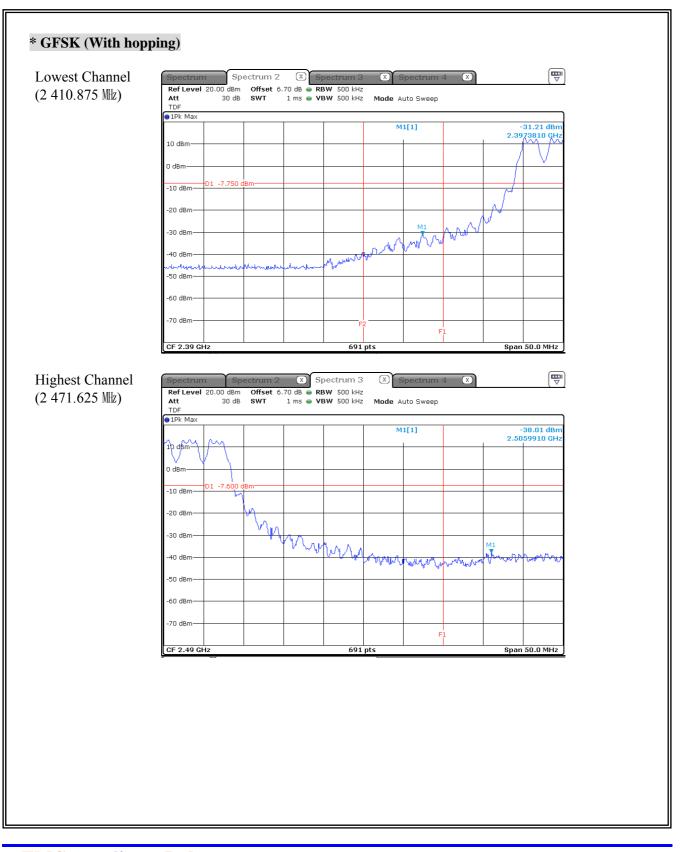
Page: 29 of 35

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	$[dB(\mu N/m)]$	$[dB(\mu N/m)]$	[dB]
1 647.75	Cmissions above 1	H	45.5	-1.4	44.1	74.0	29.9
Above 2 000.00	Not Detected	-	-				
Average DATA. Emissions above 1 GHz							
Average DATA	A. Emissions abo						
Average DAT 1 647.75	1 000	Н	36.0	-1.4	34.6	54.0	19.4


Page: 30 of 35

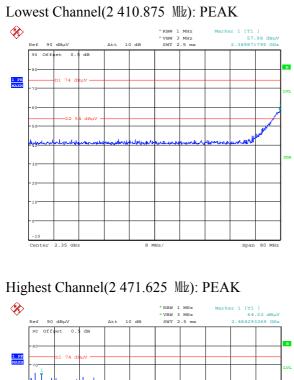
5.7.4 Test Plot

Figure 6. Plot of the Band Edge (Conducted)


* GFSK (Without hopping)

EMC compliance Ltd. Pag 65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

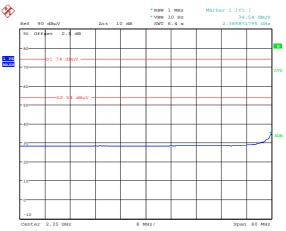
Page: 31 of 35



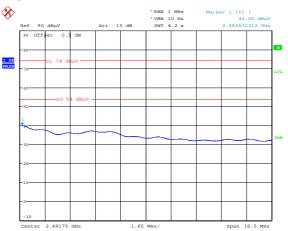
Page: 32 of 35

5.7.4 Test Plot (Continue)

Figure 7. Plot of the Band Edge (Radiated)



1000 174 dauv <td


Note.

Peak offset(dB) = ANT Factor- Amp Gain + Cable Loss Average offset (dB) = ANT Factor- Amp Gain + Cable Loss

Lowest Channel(2 410.875 Mtz): AVERAGE

Highest Channel(2 471.625 Mtz): AVERAGE

EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

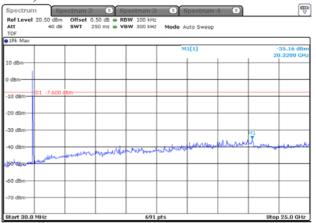
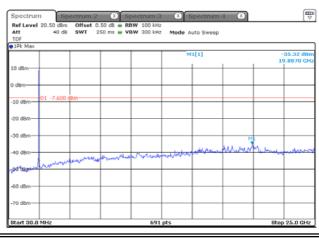

Page: 33 of 35

Figure 8. Plot of the Spurious RF conducted emissions

* GFSK


Lowest Channel(2 410.875 MHz): 30 MHz \sim 25 GHz

Middle Channel(2 441.250 Mz): 30 Mz ~ 25 Gz

	O dB SWT	0.50 dB 👄 R 250 ms 👄 V	BW 100 kHz BW 300 kHz	Mode A	uto Sweep			
TDF 1Pk Max								
				м	1[1]			34.42 dBr 9.9230 GH
10 dBm		-						
0 d8m		_						
-10 d8m 01 -7	.600 dBm	-						
-20 d8m								
-30 dBm		-				M	-	
-40 d8m					man	mone	Justice	and the second
-40 d8m	metallishand	bonnorth	herrighterned	all for the particular				
-60 dBm								

Highest Channel(2 471.625 MHz): 30 MHz ~ 25 GHz

EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon- si, Gyeonggi-do, 443-390, Korea 82-31-336-9919 (Main) 82-505-299-8311 (Fax) This test report shall not be reproduced except in full, Without the written approval.

Page: 34 of 35

6. Test equipment used for test

	Description	Manufacture	Model No.	Serial No.	Next Cal Date.
	EMI Test Receiver	R&S	ESCI	100001	14.07.25
	LISN	R&S	ENV216	101352	14.10.04
	Signal generator	R&S	SMR40	100007	14.06.11
	Amplifier	Sonoma Instrument	310N	293004	14.10.31
	Spectrum Analyzer	R&S	FSV40	100989	15.01.29
	Spectrum Analyzer	R&S	FSP40	100209	14.10.21
•	Broadband Preamplifier	Schwarzbeck	BBV9718	216	14.06.10
	Broadband Preamplifier	Schwarzbeck	BBV9721	2	15.05.09
	Power Divider	Aeroflex/ Weinschel,Inc	1580-1	RM986	15.04.08
	Loop Antenna	R&S	HFH2-Z2	100355	15.06.19
	Bi-Log Antenna	Schwarzbeck	VULB9163	552	14.07.18
	Horn Antenna	ETS - Lindgren	3115	62589	14.11.11
	Horn Antenna	ETS - Lindgren	3116	86635	15.02.26
	Attenuator	HP	8491A	16861	14.07.08
	Highpass Filter	Wainwright Instruments GmbH	WHKX3.0/ 18G-12SS	44	15.02.05
	Antenna Mast	Innco Systems	МА4000-ЕР	303	-
	Turn Table	Innco Systems	DT2000S-1t	79	-

Page: 35 of 35